12,770 research outputs found

    Necessary and sufficient conditions for 1-adaptivity

    Full text link

    Sequentiality and Adaptivity Gains in Active Hypothesis Testing

    Full text link
    Consider a decision maker who is responsible to collect observations so as to enhance his information in a speedy manner about an underlying phenomena of interest. The policies under which the decision maker selects sensing actions can be categorized based on the following two factors: i) sequential vs. non-sequential; ii) adaptive vs. non-adaptive. Non-sequential policies collect a fixed number of observation samples and make the final decision afterwards; while under sequential policies, the sample size is not known initially and is determined by the observation outcomes. Under adaptive policies, the decision maker relies on the previous collected samples to select the next sensing action; while under non-adaptive policies, the actions are selected independent of the past observation outcomes. In this paper, performance bounds are provided for the policies in each category. Using these bounds, sequentiality gain and adaptivity gain, i.e., the gains of sequential and adaptive selection of actions are characterized.Comment: 12 double-column pages, 1 figur

    Regulating Highly Automated Robot Ecologies: Insights from Three User Studies

    Full text link
    Highly automated robot ecologies (HARE), or societies of independent autonomous robots or agents, are rapidly becoming an important part of much of the world's critical infrastructure. As with human societies, regulation, wherein a governing body designs rules and processes for the society, plays an important role in ensuring that HARE meet societal objectives. However, to date, a careful study of interactions between a regulator and HARE is lacking. In this paper, we report on three user studies which give insights into how to design systems that allow people, acting as the regulatory authority, to effectively interact with HARE. As in the study of political systems in which governments regulate human societies, our studies analyze how interactions between HARE and regulators are impacted by regulatory power and individual (robot or agent) autonomy. Our results show that regulator power, decision support, and adaptive autonomy can each diminish the social welfare of HARE, and hint at how these seemingly desirable mechanisms can be designed so that they become part of successful HARE.Comment: 10 pages, 7 figures, to appear in the 5th International Conference on Human Agent Interaction (HAI-2017), Bielefeld, German

    Adaptive high-order finite element solution of transient elastohydrodynamic lubrication problems

    Get PDF
    This article presents a new numerical method to solve transient line contact elastohydrodynamic lubrication (EHL) problems. A high-order discontinuous Galerkin (DG) finite element method is used for the spatial discretization, and the standard Crank-Nicolson method is employed to approximate the time derivative. An h-adaptivity method is used for grid adaptation with the time-stepping, and the penalty method is employed to handle the cavitation condition. The roughness model employed here is a simple indentation, which is located on the upper surface. Numerical results are presented comparing the DG method to standard finite difference (FD) techniques. It is shown that micro-EHL features are captured with far fewer degrees of freedom than when using low-order FD methods

    Adaptivity to Noise Parameters in Nonparametric Active Learning

    Full text link
    This work addresses various open questions in the theory of active learning for nonparametric classification. Our contributions are both statistical and algorithmic: -We establish new minimax-rates for active learning under common \textit{noise conditions}. These rates display interesting transitions -- due to the interaction between noise \textit{smoothness and margin} -- not present in the passive setting. Some such transitions were previously conjectured, but remained unconfirmed. -We present a generic algorithmic strategy for adaptivity to unknown noise smoothness and margin; our strategy achieves optimal rates in many general situations; furthermore, unlike in previous work, we avoid the need for \textit{adaptive confidence sets}, resulting in strictly milder distributional requirements

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic
    corecore