339 research outputs found

    Hypergraphs and hypermatrices with symmetric spectrum

    Full text link
    It is well known that a graph is bipartite if and only if the spectrum of its adjacency matrix is symmetric. In the present paper, this assertion is dissected into three separate matrix results of wider scope, which are extended also to hypermatrices. To this end the concept of bipartiteness is generalized by a new monotone property of cubical hypermatrices, called odd-colorable matrices. It is shown that a nonnegative symmetric rr-matrix AA has a symmetric spectrum if and only if rr is even and AA is odd-colorable. This result also solves a problem of Pearson and Zhang about hypergraphs with symmetric spectrum and disproves a conjecture of Zhou, Sun, Wang, and Bu. Separately, similar results are obtained for the HH-spectram of hypermatrices.Comment: 17 pages. Corrected proof on p. 1

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be χ\chi-colorable if its vertices can be colored with χ\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require n11/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy k\ell \ll \sqrt{k}, we give an algorithm to color the it with nO(2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2O(k)2^{-O(k)} (resp. kO(k)k^{-O(k)}) fraction of the hyperedges when =O(logk)\ell = O(\log k) (resp. =2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kΩ(k)k^{-\Omega(k)} of the hyperedges when k\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when =k\ell =\sqrt{k}, it is hard to even beat the 2k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory

    Full text link
    Device-to-Device (D2D) communication has been recognized as a promising technique to offload the traffic for the evolved Node B (eNB). However, the D2D transmission as an underlay causes severe interference to both the cellular and other D2D links, which imposes a great technical challenge to radio resource allocation. Conventional graph based resource allocation methods typically consider the interference between two user equipments (UEs), but they cannot model the interference from multiple UEs to completely characterize the interference. In this paper, we study channel allocation using hypergraph theory to coordinate the interference between D2D pairs and cellular UEs, where an arbitrary number of D2D pairs are allowed to share the uplink channels with the cellular UEs. Hypergraph coloring is used to model the cumulative interference from multiple D2D pairs, and thus, eliminate the mutual interference. Simulation results show that the system capacity is significantly improved using the proposed hypergraph method in comparison to the conventional graph based one.Comment: 27 pages,10 figure

    A characterization and an application of weight-regular partitions of graphs

    Full text link
    A natural generalization of a regular (or equitable) partition of a graph, which makes sense also for non-regular graphs, is the so-called weight-regular partition, which gives to each vertex uVu\in V a weight that equals the corresponding entry νu\nu_u of the Perron eigenvector ν\mathbf{\nu}. This paper contains three main results related to weight-regular partitions of a graph. The first is a characterization of weight-regular partitions in terms of double stochastic matrices. Inspired by a characterization of regular graphs by Hoffman, we also provide a new characterization of weight-regularity by using a Hoffman-like polynomial. As a corollary, we obtain Hoffman's result for regular graphs. In addition, we show an application of weight-regular partitions to study graphs that attain equality in the classical Hoffman's lower bound for the chromatic number of a graph, and we show that weight-regularity provides a condition under which Hoffman's bound can be improved

    Marchenko-Pastur Theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors

    Get PDF
    The celebrated Marchenko-Pastur theorem gives the asymptotic spectral distribution of sums of random, independent, rank-one projections. Its main hypothesis is that these projections are more or less uniformly distributed on the first grassmannian, which implies for example that the corresponding vectors are delocalized, i.e. are essentially supported by the whole canonical basis. In this paper, we propose a way to drop this delocalization assumption and we generalize this theorem to a quite general framework, including random projections whose corresponding vectors are localized, i.e. with some components much larger than the other ones. The first of our two main examples is given by heavy tailed random vectors (as in a model introduced by Ben Arous and Guionnet or as in a model introduced by Zakharevich where the moments grow very fast as the dimension grows). Our second main example is given by vectors which are distributed as the Brownian motion on the unit sphere, with localized initial law. Our framework is in fact general enough to get new correspondences between classical infinitely divisible laws and some limit spectral distributions of random matrices, generalizing the so-called Bercovici-Pata bijection.Comment: 40 pages, 10 figures, some minor mistakes correcte
    corecore