5,248 research outputs found

    The Use of Reference Objectives in Multiobjective Optimization - Theoretical Implications and Practical Experience

    Get PDF
    The paper presents a survey of known results and some new developments in the use of reference objectives -- that is, any reasonable or desirable point in the objective space -- instead of weighting coefficients in multiobjective optimization. The main conclusions are as follows: (1) Any point in the objective space -- no matter whether it is attainable or not, ideal or not -- can be used instead of weighting coefficients to derive scalarizing functions which have minima at Pareto points only. Moreover, entire basic theory of multiobjective optimization -- necessary and sufficient conditions of optimality and existence of Pareto-optimal solutions, etc. -- can be developed with the help of reference objectives instead of weighting coefficients or utility functions. (2) Reference objectives are very practical means for solving a number of problems such as Pareto-optimality testing, scanning the set of Pareto-optimal solutions, computer-man interactive solving of multiobjective problems, group assessment of solutions of multiobjective optimization or cooperative game problems, or solving dynamic multiobjective optimization problems

    Nonessential Functionals in Multiobjective Optimal Control Problems

    Get PDF
    We address the problem of obtaining well-defined criteria for multiobjective optimal control systems. Necessary and sufficient conditions for an optimal control functional to be nonessential are proved. The results provide effective tools for determining nonessential objectives in vector-valued optimal control problems.Comment: Presented at the 5th Junior European Meeting on Control & Information Technology (JEM'06), September 20-22, 2006, Tallinn, Estoni

    A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions

    Full text link
    In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving non-smooth convex objective functions. Our approach is in the line of a previous work where was considered the case of convex di erentiable objective functions. Based on the Yosida regularization of the subdi erential operators involved in the system, we obtain the existence of strong global trajectories. We prove a descent property for each objective function, and the convergence of trajectories to weak Pareto minima. This approach provides a dynamical endogenous weighting of the objective functions. Applications are given to cooperative games, inverse problems, and numerical multiobjective optimization

    The proximal point method for locally lipschitz functions in multiobjective optimization with application to the compromise problem

    Get PDF
    This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel, Iusem, and Svaiter [SIAM J. Optim., 15 (2005), pp. 953–970] is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new (scalarization-free) approach for convergence analysis of the method is proposed where the first-order optimality condition of the scalarized problem is replaced by a necessary condition for weak Pareto points of a multiobjective problem. As a consequence, this has allowed us to consider the method without any assumption of convexity over the constraint sets that determine the vectorial improvement steps. This is very important for applications; for example, to extend to a dynamic setting the famous compromise problem in management sciences and game theory.Fundação de Amparo à Pesquisa do Estado de GoiásConselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nivel SuperiorMinisterio de Economía y CompetitividadAgence nationale de la recherch

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I objective and constraint functions

    Get PDF
    In the paper, we introduce the concepts of G-type I and generalized G-type I functions for a new class of nonconvex multiobjective variational control problems. For such nonconvex vector optimization problems, we prove sufficient optimality conditions for weakly efficiency, efficiency and properly efficiency under assumptions that the functions constituting them are G-type I and/or generalized G-type I objective and constraint functions. Further, for the considered multiobjective variational control problem, its dual multiobjective variational control problem is given and several duality results are established under (generalized) G-type I objective and constraint functions
    corecore