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Abstract. We address the problem of obtaining well-defined criteria for multiple criteria
optimal control problems. Necessary and sufficient conditions for an objective functional to
be nonessential are proved. The results provide effective tools for determining nonessential
objectives in multiobjective optimal control problems.
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1. INTRODUCTION

Multiobjective optimal control attracts more and more attention and is a
topic of extensive current research (see, e.g., [1−3] and references therein).
We consider multiobjective problems of optimal control governed by ordinary
differential dynamical systems. This comprises an important class of problems
which naturally appear in practical applications to economics [4], Ch. 8, and
engineering modelling [5]. Our main goal is to extend and apply the results found
in the literature on nonessential functions of mathematical static optimization
programming [6,7] to functionals of optimal control theory.

It is well known that the concept of Pareto optimality (efficiency) plays a crucial
role in optimal control [5,8]. The question of obtaining well-defined criteria for
multiple criteria decision-making problems seems, however, to be considered in
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the literature only for static multiobjective optimization problems (cf. [6,7] and
references therein). In this work we investigate the problem of obtaining well-
defined criteria for multiple criteria optimal control problems.

One of the approaches dealing with the problem of obtaining well-defined
criteria for multiple criteria static decision-making problems is the concept of
nonessential objective functions. A certain objective function is called nonessential
if the set of efficient solutions is the same both with or without that objective
function. Information about nonessential objectives helps a decision-maker to get
insights and understand better a problem, and this might be a good starting point
for further investigation or revision of the model. Dropping nonessential functions
leads to a problem with a smaller number of objectives, which can be solved more
easily. For this reason, the idea of nonessential objectives should be used as a
regular feature in conditioning and analysis of multiple criteria programs [6,9,10].
To the best of the authors’ knowledge, no study has been done in this field for
optimal control problems. We are interested in generalizing the previous results
on nonessential objectives found in the literature to cover multiobjective optimal
control problems. More precisely, we generalize the concept of nonessential
objective functions to functionals of optimal control systems and give the first steps
on the corresponding theory. The main results provide methods for identifying
nonessential objectives in multiobjective optimal control problems.

2. MULTIOBJECTIVE OPTIMAL CONTROL PROBLEMS

We consider a dynamical control system described by n state variables x =
(x1, . . . , xn) ∈ Rn and r control variables u = (u1, . . . , ur) ∈ Rr, r ≤ n. Both
state and control variables vary with respect to the scalar variable t ∈ R. Given
a control vector function u : [a, b] → Rr, the state evolution over [a, b], namely
x : [a, b] → Rn, must satisfy the control system

ẋ(t) = h(t, x(t), u(t)) , (1)

the boundary conditions
x(a) = α , x(b) = β , (2)

and m inequality constraints

gi(t, x(t), u(t)) ≤ 0 , i = 1, . . . m . (3)

We would like to find a piecewise-continuous control function u(·) and the
corresponding state trajectory x(·), satisfying (1), (2), and (3), which minimizes
a finite number N of (objective) functionals:

min
∫ b

a
f(t, x(t), u(t))dt

=min
(∫ b

a
f1(t, x(t), u(t))dt, · · · ,

∫ b

a
fN (t, x(t), u(t))dt

)
.
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All functions f(t, x, u), g(t, x, u), and h(t, x, u) are assumed to be continuously
differentiable with respect to t and x variables. To simplify notation, we write

IN [x, u] =
∫ b

a
f(t, x(t), u(t))dt

and

Ii[x, u] =
∫ b

a
fi(t, x(t), u(t))dt , i = 1, . . . , N .

In general, there does not exist a pair of functions (x, u) that renders the minimum
value to each functional Ii, i = 1, . . . , N , simultaneously, and one uses the
concept of Pareto optimality. Let us denote by S the set of feasible solutions,
i.e. the set of all admissible functions (x, u). The multiobjective optimal control
problem consists of finding all feasible solutions that are efficient in the sense of
Definition 2.1. This problem is denoted in the sequel by (P ).

Definition 2.1. (Pareto optimality). A pair of functions (x̃, ũ) ∈ S is said to be an
efficient (Pareto optimal) solution of the problem (P ) if, and only if, there exists no
(x, u) ∈ S such that IN [x, u] 5 IN [x̃, ũ], where

IN [x, u] 5 IN [x̃, ũ]
⇔ ∀i ∈ {1, . . . , N} : Ii[x, u] 6 Ii[x̃, ũ]∧∃j ∈ {1, . . . , N} : Ij [x, u] < Ij [x̃, ũ] .

The set of efficient solutions of (P ) is denoted by SN
E .

We remark that many practical applications that appear in engineering and
economics can be written in the form of problem (P ) [5].

The central result in optimal control theory is given by the celebrated Pontrya-
gin maximum principle [11], which is a necessary optimality condition. A version
of the Pontryagin maximum principle for Pareto optimal solutions of multiobjective
optimal control problems was proved already in the 1960s [12]. Roughly speaking,
one can say that the necessary and sufficient conditions for Pareto optimality are
obtained by converting the multiobjective optimal control problem into a single
optimal control problem or a family of single optimal control problems with an
auxiliary scalar integral functional, possibly depending on some parameters [13,14].
For a gentle introduction to optimal control, including necessary and sufficient
conditions and the issue of existence, we refer the reader to [15,16] (scalar case)
and [5,8] (Pareto optimal solutions). Here we just recall three basic lemmas
(cf. [8], Ch. 17) that relate the Pareto optimal solution of a multiobjective optimal
control problem to the solutions of an appropriate scalar optimal control problem.

Lemma 2.2. ([8], §17.4) If the feasible pair (x̃, ũ) ∈ S is efficient for (P ), then it
minimizes each one of the scalar integral functionals

Ii[x, u] , i ∈ {1, . . . , N},
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subject to the constraints (x, u) ∈ S and

Ij [x, u]− Ij [x̃, ũ] ≤ 0 , j = 1, . . . , N (and j 6= i) .

Lemma 2.2 is very useful because it implies that the necessary conditions
for optimal control subject to isoperimetric constraints [11,17] are also necessary
for Pareto optimality in the multiobjective optimal control problem. As with the
necessary conditions, the next two lemmas reduce the sufficient conditions for
Pareto optimality to sufficient conditions for optimal control in the scalar optimal
control problem.

Lemma 2.3. ([8], §17.5) A feasible pair (x̃, ũ) ∈ S is efficient for (P ) if there
exists a constant γ ∈ RN , with γi > 0 for i = 1, . . . , N and

∑N
i=1 γi = 1, such

that
N∑

i=1

γiIi[x, u] ≥
N∑

i=1

γiIi[x̃, ũ]

for every (x, u) ∈ S.

Remark 2.4. Proof of Lemma 2.3 is very simple. Moreover, Lemma 2.3 is easily
generalized. Let f be a strongly increasing function if y 5 ỹ ⇒ f(y) < f(ỹ).
Then (x̃, ũ) ∈ S is efficient for (P ) if there exists a strongly increasing function f
and f

(
IN [x, u]

) ≥ f
(
IN [x̃, ũ]

) ∀(x, u) ∈ S.

Unlike Lemma 2.3, not all the components of γ in the next Lemma 2.5 need
to be nonzero. However, in Lemma 2.5 the minimum of

∑N
i=1 γiIi[x, u] must be

achieved by a unique (x̃, ũ) ∈ S.

Lemma 2.5. ([8], §17.5) A feasible pair (x̃, ũ) ∈ S is efficient for (P ) if there
exists a constant γ ∈ RN , with γi ≥ 0 for i = 1, . . . , N and

∑N
i=1 γi = 1, such

that
N∑

i=1

γiIi[x, u] >
N∑

i=1

γiIi[x̃, ũ]

for every (x, u) ∈ S, (x, u) 6= (x̃, ũ).

Together with the Pontryagin maximum principle [11,17], Lemmas 2.2, 2.3, and
2.5 provide expedient tools to study concrete multiobjective problems of optimal
control (cf. Section 4).

3. NONESSENTIAL FUNCTIONALS: MAIN RESULTS

We form a new multiobjective optimal control problem (P̃ ) from (P ) by adding
a new functional IN+1[x, u] =

∫ b
a fN+1(t, x(t), u(t))dt to problem (P ). Let SN+1

E
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denote the set of efficient solutions of the problem (P̃ ). With this notation we
introduce the definition of a nonessential functional.

Definition 3.1. The functional IN+1 is said to be nonessential in (P̃ ) if, and only
if, SN

E = SN+1
E . A functional which is not nonessential will be called essential.

We are interested in characterizing integral functionals which do not change the
set of efficient solutions (nonessential objective functionals). Throughout the text
we denote by Si, i = 1, 2, . . . , N,N + 1, the set of optimal solutions of the scalar
optimal control problem

min Ii[x, u]

subject to S. We start with a simple example taken from [18].

Example 3.2. Consider a system characterized by a single state and control variable
(n = r = 1) that evolves according to the state equation

ẋ(t) = u(t)

with the control constraint set

U = {u : [a, b] → R : |u(t)| ≤ 1}.

The system is to be transferred from a given initial state x(0) = ξ 6= 0 to a given
terminal state x(T ) = 0 within an unspecified bounded interval [0, T ]. Functionals
to be minimized are

I1 =
∫ T

0
dt , I2 =

∫ T

0
|u(t)|dt .

Applying the Pontryagin maximum principle [11], one obtains:

S1 = {(x(t), u(t)) : u(t) = −sgn{ξ}} , min
∫ T

0
dt = |ξ|

and
S2 = {(x(t), u(t)) : u(t) = −sgn{ξ}v(t)},

where
v(t) ∈ V = {v(t) : 0 ≤ v(t) ≤ 1, t ∈ [0, T ], v(t) 6≡ 0} ,

min
∫ T

0
| − sgn{ξ}v(t)|dt = |ξ| .

Details can be found in [18]. It is easy to see that S1 ∩ S2 = S1 (we can take
v(t) = 1, t ∈ [0, T ]). In this problem we have: S1 = S1

E = S2
E ⊂ S2. Hence I2

is nonessential, but I1 is essential (in order to see this, we need only to interchange
indices).
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Lemma 3.3. We have SN
E ⊂ SN+1

E if and only if for every (x, u) ∈ SN
E the

following condition holds:

∃(x′, u′) ∈ S : IN [x′, u′] = IN [x, u] ⇒ IN+1[x′, u′] = IN+1[x, u] .

Proof. Let SN
E ⊂ SN+1

E and assume, on the contrary, that there exists (x̃, ũ) ∈ SN
E

such that
∃(x′, u′) ∈ S : IN [x′, u′] = IN [x̃, ũ] (4)

and
IN+1[x′, u′] 6= IN+1[x̃, ũ]. (5)

We conclude from (4) that (x′, u′) ∈ SN
E . Therefore (x′, u′) is not in SN+1

E or
(x̃, ũ) is not in SN+1

E by (5). This contradicts the fact that SN
E ⊂ SN+1

E . Let us
now prove the second implication. If SN

E = ∅, then SN
E ⊂ SN+1

E . Let SN
E 6= ∅.

Suppose that for every (x, u) ∈ SN
E there holds:

∃(x′, u′) ∈ S : IN [x′, u′] = IN [x, u] ⇒ IN+1[x′, u′] = IN+1[x, u] (6)

and SN
E is not contained in SN+1

E . In this case there exists (x̃, ũ) in SN
E which is

not in SN+1
E . Hence

∃(x̂, û) ∈ S : IN+1[x̂, û] 5 IN+1[x̃, ũ] . (7)

This gives IN [x̂, û] = IN [x̃, ũ] and from (6) we have IN+1[x̂, û] = IN+1[x̃, ũ].
Consequently, IN+1[x̂, û] = IN+1[x̃, ũ], contrary to (7).

Remark 3.4. Notice that in Example 3.2 the scalar optimal control problem

min I1[x, u]

subject to S has a unique solution. Therefore, Lemma 3.3 holds true for the
example.

Definition 3.5. A function f : RN → R is nondecreasing if for y1 and y2 ∈ RN

y1 5 y2 implies f(y1) ≤ f(y2).

Theorem 3.6. If IN+1[x, u] = f(IN [x, u]) ∀(x, u) ∈ S, where f : RN → R, then
SN

E ⊂ SN+1
E . Furthermore, SN

E = SN+1
E if the function f is nondecreasing on the

set IN (S).

Proof. Let (x, u) ∈ SN
E . If there exists (x′, u′) ∈ S such that IN [x′, u′] =

IN [x, u], then f(IN [x′, u′]) = f(IN [x, u]) and so IN+1[x′, u′] = IN+1[x, u].
Therefore SN

E ⊂ SN+1
E by Lemma 3.3.
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We will now show the inclusion SN+1
E ⊂ SN

E . Let (x, u) ∈ S, (x, u)
being not an element of the set SN

E . In this case there exists (x′, u′) ∈ S such
that IN [x′, u′] 5 IN [x, u]. If f is nondecreasing on IN (S), we know that
IN+1[x′, u′] = f(IN [x′, u′]) ≤ f(IN [x, u]) = IN+1[x, u]. Hence (x, u) is not
an element of the set SN+1

E .

Remark 3.7. Example 3.2 shows that the sufficient condition for an objective
functional to be nonessential, given by Theorem 3.6, is not necessary.

Theorem 3.8. Let SN+1 = {(x0, u0)}. If the functional IN+1 is nonessential, then
(x0, u0) ∈ SN

E .

Proof. Let SN
E = SN+1

E . If (x0, u0) is not an element of the set SN
E , then (x0, u0)

is also not an element of the set SN+1
E . In this case, there exists (x′, u′) ∈ S

such that IN+1[x′, u′] 5 IN+1[x0, u0]. So IN+1[x′, u′] ≤ IN+1[x0, u0]. This
is a contradiction to the assumption that SN+1 = {(x0, u0)}.

Theorem 3.9. Let the set S be compact. If the functional IN+1 is nonessential,
then SN+1 ∩ SN

E 6= ∅.

Proof. Consider the problem

min
∫ b

a
f(t, x(t), u(t))dt (8)

subject to SN+1. Let S̃ denote the set of efficient solutions of the problem (8). By
the compactness of the set S, the set S̃ is nonempty. Let (x0, u0) ∈ S̃. If (x0, u0)
is not an element of SN

E , then by assumption (x0, u0) is not an element of SN+1
E .

In this case, there exists (x′, u′) ∈ S such that IN+1[x′, u′] 5 IN+1[x0, u0]. Hence
(x′, u′) ∈ SN+1. This contradicts the fact that (x0, u0) is an efficient solution of
the problem (8).

Remark 3.10. Notice that I2 is nonessential in Example 3.2 and we have
S1

E ∩ S2 6= ∅.

The next section provides an example of application of the obtained results to
check whether a functional is nonessential.

4. AN ILLUSTRATIVE EXAMPLE

We illustrate the obtained results with a multiobjective control problem
borrowed from [5], §4.3, where N = 3, n = 2, r = 1, m = 4, a = 0, b = T ,
with T not fixed. We consider a mobile rocket car with mass one running in rails
on a closed region −3 ≤ x1 ≤ 3 (we denote the position of the centre of the car
at time t by x1(t)), whose movement we can control with its accelerator u, where
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the maximum allowable acceleration is 1 and the maximum break power is −1,
i.e., −1 ≤ u ≤ 1 (negative force means break, positive force means acceleration).
The dynamics of the system is given by Newton’s second law, force equals mass
times acceleration, which in our setting reads as u(t) = ẍ1(t). The problem is to
move the car from a given location to a pre-assigned destination. If the car is at a
position x1 = 1 at time t = 0, with no velocity, that is ẋ1(0) = 0, we want to find
a piecewise constant function u(t) that drives the car to x1(T ) = 0 at some instant
T > 0. The state of the system is given by the position x1(t) and the velocity
x2(t) = ẋ1(t) (where we are and how fast we are going at each instant of time
t). Different objective functionals can be considered, for example, minimizing the
time T (functional I1 below); maximizing the velocity at T (maximizing x2(T ),
which corresponds to functional I2 below); and a linear combination I3 of these
functionals: minimize

I1 =
∫ T

0
1dt, I2 =

∫ T

0
−u(t)dt, I3 = I1 + I2,

subject to the control system {
ẋ1 = x2,

ẋ2 = u;
(9)

to the boundary conditions

x1(0) = 1, x1(T ) = 0, x2(0) = 0; (10)

and inequality constraints
|u| ≤ 1, |x1| ≤ 3. (11)

Let us denote by Si, i = 1, 2, 3, the solution set of the scalar optimal control
problem min Ii[x, u] subject to (9)–(11). We have:1 S1 = {(x1, u1)} with

u1 = −1,

x1
1 = − t2

2
+ 1, x1

2 = −t,

0 ≤ t ≤ T =
√

2;

S2 = {(x2, u2)} with

u2 =

{
−1 if 0 ≤ t ≤ 2,

+1 if 2 ≤ t ≤ T = 4 +
√

6,

x2
1 =

{
− t2

2 + 1 if 0 ≤ t ≤ 2,
t2

2 − 4t + 5 if 2 ≤ t ≤ 4 +
√

6,
x2

2 =

{
−t if 0 ≤ t ≤ 2,

t− 4 if 2 ≤ t ≤ 4 +
√

6;

1 The solutions to the scalar optimal control problems Ii[x, u] → min are found by
application of the Pontryagin maximum principle [11]. Details can be found in [5], §4.3.
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S3 = {(x3, u3)} with

u3 =

{
−1 if 0 ≤ t ≤ 1,

+1 if 1 ≤ t ≤ T = 2;

x3
1 =

{
− t2

2 + 1 if 0 ≤ t ≤ 1,
t2

2 − 2t + 2 if 1 ≤ t ≤ 2,
x2

2 =

{
−t if 0 ≤ t ≤ 1,

t− 2 if 1 ≤ t ≤ 2.

Direct calculations show that

I2[x1, u1] = [
√

2,
√

2]T = A,

I2[x2, u2] = [4 +
√

6,−
√

6]T = B,

I2[x3, u3] = [2, 0]T = C.

Let ζ denote the set I2(S2
E). It is the continuous, convex curve ÂB (details can

be found in [5], §4.3). As C ∈ ζ, we have S2
E ∩ S3 6= ∅. Moreover, let us notice

that I3 has the form I3[x, u] = f(I2[x, u]), where f : R2 → R is a nondecreasing
function. Therefore, the functional I3 is nonessential by Theorem 3.6.

Remark 4.1. If we change the functional I3 into

I3[x, u] = γ1I1[x, u] + γ2I2[x, u], (12)

where γi ∈ R and γi ≥ 0, i = 1, 2 or

I3[x, u] = [(I1[x, u]−
√

2)p + (I2[x, u] +
√

6)p]1/p, (13)

where p ∈ [1,∞], then again I3 will be nonessential by Theorem 3.6. It is worth
noting that functionals (12) and (13) can be used in order to find efficient solutions
of the problem min I2[x, u] subject to (9)–(11). We mentioned this in Section 2,
details can be found in [5] and [8].

5. CONCLUSIONS

The problem of optimization of a vector-valued criterion often arises in
connection with the solution of problems in the areas of planning, organization
of production, operational research, and dynamical control systems. Currently,
the problem of optimizing vector-valued criteria is a central part of control
theory and great attention is being given to it in the design and construction
of modern automatic control systems, for example in specific applications of
seismology, energetic chemistry, and metallurgy. In this work we use the notion of
Pareto optimality in control theory to define and investigate nonessential objective
functionals of optimal control. For multiple criteria optimal control problems this
notion seems to be new and not used before. We believe that the concept of a
nonessential objective functional is an important issue in optimal control and we
trust it will have an important role in the study of vector optimization problems
of control theory. In future, it would be interesting to study the consequences of
dropping nonessential objectives in multiobjective optimal control problems.
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Mitteolulised funktsionaalid mitmekriteeriumilistes
optimaaljuhtimise ülesannetes

Agnieszka B. Malinowska ja Delfim F. M. Torres

On uuritud täpselt defineeritud optimaalsuskriteeriumi leidmise probleemi
mitmekriteeriumilistes optimaaljuhtimise ülesannetes. On tõestatud sihifunktsiooni
mitteolulisuse vajalikud ja piisavad tingimused. Saadud tulemused võimalda-
vad efektiivselt määrata mitteolulisi kriteeriume mitmekriteeriumilistes optimaal-
juhtimise ülesannetes.
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