448 research outputs found

    Near-Far Effect on Coded Slotted ALOHA

    Get PDF
    International audienceMotivated by scenario requirements for 5G cellular networks, we study one of the candidate protocols for massive random access: the family of random access methods known as Coded Slotted ALOHA (CSA). A recent trend in research has explored aspects of such methods in various contexts, but one aspect has not been fully taken into account: the impact of path loss, which is a major design constraint in long-range wireless networks. In this article, we explore the behavior of CSA, by focusing on the path loss component correlated to the distance to the base station. Path loss provides opportunities for capture, improving the performance of CSA. We revise methods for estimating CSA behavior, provide bounds of performance, and then, focusing on the achievable throughput, we extensively explore the key parameters, and their associated gain (experimentally). Our results shed light on the behavior of the optimal distribution of repetitions in actual wireless networks

    Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access

    Full text link
    The analogies between successive interference cancellation (SIC) in slotted ALOHA framework and iterative belief-propagation erasure-decoding, established recently, enabled the application of the erasure-coding theory and tools to design random access schemes. This approach leads to throughput substantially higher than the one offered by the traditional slotted ALOHA. In the simplest setting, SIC progresses when a successful decoding occurs for a single user transmission. In this paper we consider a more general setting of a channel with capture and explore how such physical model affects the design of the coded random access protocol. Specifically, we assess the impact of capture effect in Rayleigh fading scenario on the design of SIC-enabled slotted ALOHA schemes. We provide analytical treatment of frameless ALOHA, which is a special case of SIC-enabled ALOHA scheme. We demonstrate both through analytical and simulation results that the capture effect can be very beneficial in terms of achieved throughput.Comment: Accepted for presentation at IEEE WCNC'14 Track 2 (MAC and Cross-Layer Design

    Packet data communications over coded CDMA with hybrid type-II ARQ

    Get PDF
    This dissertation presents in-depth investigation of turbo-coded CDNIA systems in packet data communication terminology. It is divided into three parts; (1) CDMA with hybrid FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random access environment and (3) an implementation issue on turbo decoding. As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated in deterministic environment. It highlights the practically achievable spectral efficiency of CDMA system with turbo codes and the effect of code rates on the performance of systems with MF and LMMSE receivers, respectively. For given ensemble distance spectra of punctured turbo codes, an improved union bound is used to evaluate the error probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end and, then, the corresponding spectral efficiency is computed as a function of system load. In the second part, a generalized analytical framework is first provided to analyze hybrid type-11 ARQ in random access environment. When applying hybrid type-11 ARQ, probability of packet success and packet length is generally different from attempt to attempt. Since the conventional analytical model, customarily employed for ALOHA system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded analytical model is introduced. It can be regarded as a network of queues and Jackson and Burke\u27s theorems can be applied to simplify the analysis. The second part is further divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-11 ARQ using packet combining and CDMA unslotted ALOHA with hybrid type-11 ARQ using code combining. For code combining, the rate compatible punctured turbo (RCPT) codes are examined. In the third part, noticing that the decoding delay is crucial to the fast ARQ, a parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo codes. It utilizes the forward and backward variables computed in the previous iteration to provide boundary distributions for each sub-block MAP decoder. It has at least two advantages over the existing parallel scheme; No performance degradation and No additional computation

    An efficient data transmission policy in an integrated voice-data ds-cdma network

    Get PDF
    CDMA schemes appear to be promising access techniques for coping with the requirements of third-generation mobile systems, mainly because of their flexibility. This paper proposes an adaptive S-ALOHA DS-CDMA access scheme as a method for integrating non-real time (i.e. Internet applications) and real-time (i.e. voice) services, by exploiting the potentials of CDMA under time-varying conditions. The adaptive component terminals autonomously change their transmission rate according to the total (voice+data) channel occupancy, so that the minimum possible data delay is almost always achieved.Peer ReviewedPostprint (published version

    KALOHA:  ike  i ke ALOHA

    Get PDF
    A new family of channel-access schemes  called KALOHA  (for ``Knowledge in ALOHA") is introduced.  KALOHA consists of modifying the pure ALOHA  protocol  by  endowing nodes with knowledge regarding the local times when packets  and acknowledgments are received,  and sharing  estimates of channel utilization at the medium access control (MAC) layer. The only physical-layer feedback needed   in KALOHA is the reception of  correct data packets and their ACKs. A  simple Markov-chain model is used  to  compare the throughput of KALOHA with ALOHA and slotted ALOHA. The analysis takes into account the amount of knowledge that nodes have and  the  effect of  acknowledgments and turnaround latencies.  The results  demonstrate the  benefits  derived from using  and sharing knowledge of channel utilization at the MAC layer.  KALOHA is more stable  than ALOHA and attains  more than double  the throughput of  ALOHA,  without the need for carrier sensing, requiring time slotting at the physical layer, or using other physical-layer mechanisms

    Using CDMA as Anti-Collision Method for RFID - Research & Applications

    Get PDF
    corecore