8 research outputs found

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    Sparse graph codes for compression, sensing, and secrecy

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from student PDF version of thesis.Includes bibliographical references (p. 201-212).Sparse graph codes were first introduced by Gallager over 40 years ago. Over the last two decades, such codes have been the subject of intense research, and capacity approaching sparse graph codes with low complexity encoding and decoding algorithms have been designed for many channels. Motivated by the success of sparse graph codes for channel coding, we explore the use of sparse graph codes for four other problems related to compression, sensing, and security. First, we construct locally encodable and decodable source codes for a simple class of sources. Local encodability refers to the property that when the original source data changes slightly, the compression produced by the source code can be updated easily. Local decodability refers to the property that a single source symbol can be recovered without having to decode the entire source block. Second, we analyze a simple message-passing algorithm for compressed sensing recovery, and show that our algorithm provides a nontrivial f1/f1 guarantee. We also show that very sparse matrices and matrices whose entries must be either 0 or 1 have poor performance with respect to the restricted isometry property for the f2 norm. Third, we analyze the performance of a special class of sparse graph codes, LDPC codes, for the problem of quantizing a uniformly random bit string under Hamming distortion. We show that LDPC codes can come arbitrarily close to the rate-distortion bound using an optimal quantizer. This is a special case of a general result showing a duality between lossy source coding and channel coding-if we ignore computational complexity, then good channel codes are automatically good lossy source codes. We also prove a lower bound on the average degree of vertices in an LDPC code as a function of the gap to the rate-distortion bound. Finally, we construct efficient, capacity-achieving codes for the wiretap channel, a model of communication that allows one to provide information-theoretic, rather than computational, security guarantees. Our main results include the introduction of a new security critertion which is an information-theoretic analog of semantic security, the construction of capacity-achieving codes possessing strong security with nearly linear time encoding and decoding algorithms for any degraded wiretap channel, and the construction of capacity-achieving codes possessing semantic security with linear time encoding and decoding algorithms for erasure wiretap channels. Our analysis relies on a relatively small set of tools. One tool is density evolution, a powerful method for analyzing the behavior of message-passing algorithms on long, random sparse graph codes. Another concept we use extensively is the notion of an expander graph. Expander graphs have powerful properties that allow us to prove adversarial, rather than probabilistic, guarantees for message-passing algorithms. Expander graphs are also useful in the context of the wiretap channel because they provide a method for constructing randomness extractors. Finally, we use several well-known isoperimetric inequalities (Harper's inequality, Azuma's inequality, and the Gaussian Isoperimetric inequality) in our analysis of the duality between lossy source coding and channel coding.by Venkat Bala Chandar.Ph.D

    Expander Graphs and Coding Theory

    Get PDF
    Expander graphs are highly connected sparse graphs which lie at the interface of many diïŹ€erent ïŹelds of study. For example, they play important roles in prime sieves, cryptography, compressive sensing, metric embedding, and coding theory to name a few. This thesis focuses on the connections between sparse graphs and coding theory. It is a major challenge to explicitly construct sparse graphs with good expansion properties, for example Ramanujan graphs. Nevertheless, explicit constructions do exist, and in this thesis, we survey many of these constructions up to this point including a new construction which slightly improves on an earlier edge expansion bound. The edge expansion of a graph is crucial in applications, and it is well-known that computing the edge expansion of an arbitrary graph is NP-hard. We present a simple algo-rithm for approximating the edge expansion of a graph using linear programming techniques. While Andersen and Lang (2008) proved similar results, our analysis attacks the problem from a diïŹ€erent vantage point and was discovered independently. The main contribution in the thesis is a new result in fast decoding for expander codes. Current algorithms in the literature can decode a constant fraction of errors in linear time but require that the underlying graphs have vertex expansion at least 1/2. We present a fast decoding algorithm that can decode a constant fraction of errors in linear time given any vertex expansion (even if it is much smaller than 1/2) by using a stronger local code, and the fraction of errors corrected almost doubles that of Viderman (2013)

    Extractors for Adversarial Sources via Extremal Hypergraphs

    Get PDF
    Randomness extraction is a fundamental problem that has been studied for over three decades. A well-studied setting assumes that one has access to multiple independent weak random sources, each with some entropy. However, this assumption is often unrealistic in practice. In real life, natural sources of randomness can produce samples with no entropy at all or with unwanted dependence. Motivated by this and applications from cryptography, we initiate a systematic study of randomness extraction for the class of adversarial sources defined as follows. A weak source X\mathbf{X} of the form X1,...,XN\mathbf{X}_1,...,\mathbf{X}_N, where each Xi\mathbf{X}_i is on nn bits, is an (N,K,n,k)(N,K,n,k)-source of locality dd if the following hold: (1) Somewhere good sources: at least KK of the Xi\mathbf{X}_i\u27s are independent, and each contains min-entropy at least kk. We call these Xi\mathbf{X}_i\u27s good sources, and their locations are unknown. (2) Bounded dependence: each remaining (bad) source can depend arbitrarily on at most dd good sources. We focus on constructing extractors with negligible error, in the regime where most of the entropy is contained within a few sources instead of across many (i.e., kk is at least polynomial in KK). In this setting, even for the case of 00-locality, very little is known prior to our work. For d≄1d \geq 1, essentially no previous results are known. We present various new extractors for adversarial sources in a wide range of parameters, and some of our constructions work for locality d=KΩ(1)d = K^{\Omega(1)}. As an application, we also give improved extractors for small-space sources. The class of adversarial sources generalizes several previously studied classes of sources, and our explicit extractor constructions exploit tools from recent advances in extractor machinery, such as two-source non-malleable extractors and low-error condensers. Thus, our constructions can be viewed as a new application of non-malleable extractors. In addition, our constructions combine the tools from extractor theory in a novel way through various sorts of explicit extremal hypergraphs. These connections leverage recent progress in combinatorics, such as improved bounds on cap sets and explicit constructions of Ramsey graphs, and may be of independent interest

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore