
Copyright

by

Eshan Chattopadhyay

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211360052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Eshan Chattopadhyay

certifies that this is the approved version of the following dissertation:

Explicit Two-Source Extractors and More

Committee:

David Zuckerman, Supervisor

Anna Gal

Xin Li

Brent Waters

Explicit Two-Source Extractors and More

by

Eshan Chattopadhyay, B.Tech.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2016

for Mom and Dad

Acknowledgments

I am deeply indebted to my advisor, David Zuckerman for any success I have had in grad school.

David tolerated me during my initial days and taught me to be brave in approaching difficult prob-

lems. David has been extremely generous with many things over the years: ideas, advice, freedom

and support, and I have vastly benefitted both personally and as a researcher. His remarkable op-

timism and bold ideas to evade seemingly unavoidable barriers led to some of the stronger results

in this thesis. It has been a pleasure knowing and working with David, and is clearly one of the

best things of my grad life.

Apart from David, I am very thankful to Xin Li, who has had a big influence on my research.

Xin has been an amazing collaborator and friend, and I have learnt a lot of things from him. I

thank him for hosting me at Johns Hopkins which turned out to be a very productive time. I thank

Vipul Goyal for hosting me for a productive and fun-filled summer at Microsoft Research, India.

Vipul has a great attitude towards research, and apart from technical stuff, I hope I have absorbed

some of his approach towards research. I also thank Satya Lokam and Bhavana Kanukurthi for

discussions during my stay at MSR from which I learnt a lot. Many thanks to my thesis committee

members: Anna Gal, Xin Li, Brent Waters and David Zuckerman for patiently reading my thesis

and useful comments.

I have been lucky to visit other research institutes during my graduate studies and I have

greatly benefitted from these trips. I thank Avi Wigderson and Ran Raz for arranging a trip to the

Institute of Advanced Studies. I thank Yael Kalai for discussions at various points and inviting me

v

to Microsoft Research, New England. I thank Yevgeniy Dodis for many valuable discussions and

sharing many research directions. I thank the organizers of the Oberwolfach Complexity workshop:

Peter Burgisser, Oded Goldreich, Madhu Sudan, and Salil Vadhan for a fun-filled week of talks

and discussions on complexity. I also thank the organizers of the workshop on the Foundations of

Randomness: Artur Ekert, Renato Renner, Miklos Santha, Umesh Vazirani and Thomas Vidick

for a memorable week in South Africa. I thank Assaf Naor for arranging a visit to the Simons

Algorithms and Geometry meeting in New York. I also wish to thank Divesh Aggarwal, Noga Alon,

Mark Braverman, Gil Cohen, Zeev Dvir, Oded Goldreich, Venkat Guruswami, Robert Kleinberg,

Adam Klivans, Or Meir, Raghu Meka, Eric Price, Anup Rao, Alexander Razborov, Omer Reingold,

Michael Saks, Igor Shinkar, Thomas Steinke, Avishay Tal, Salil Vadhan, Omri Weinstein, Daniel

Wichs and Henry Yuen for useful discussions and enjoyable conversations at various points.

I am very grateful to my friends and office mates: Aayush, Abhishek, Adarsh, Ameya, Ankit

Garg, Ankit Rawat, Akshay, Fu, Harsh, John, Kartik, Matteo, Pravesh, Rakesh, Rashish, Rishabh,

Saurabh, Sebastien, Siddhesh, Teja, Thodoris, Udit, Venkata, Vishal, Xue (and many others) for

the many discussions on random topics, coffee breaks at odd hours and support at various points

which helped me remain motivated even when I wasn’t making much progress in research.

Finally, I would like to thank my family and people closest to me for their incredible belief

in my abilities and invaluable support over these years (despite various hardships), without which

this thesis would have been impossible. A special thanks to my parents for raising me right and

providing me with a happy childhood, and my grandmothers for spoiling me.

Eshan Chattopadhyay

The University of Texas at Austin

May 2016

vi

Explicit Two-Source Extractors and More

Publication No.

Eshan Chattopadhyay, Ph.D.

The University of Texas at Austin, 2016

Supervisor: David Zuckerman

In this thesis we study the problem of extracting almost truly random bits from imperfect sources

of randomness. This is motivated by the wide use of randomness in computer science, and the

fact that most accessible sources of randomness generate correlated bits, and at best contain some

amount of entropy. We follow Chor and Goldreich [CG88] and Zuckerman [Zuc90], and model weak

sources using min-entropy, where an (n, k)-source X is a distribution on n bits and takes any string

x with probability at most 2−k. It is known that it is impossible to extract random bits from a

single (n, k)-source, and Chor and Goldreich [CG88] raised the question of extracting randomness

from two such independent (n, k)-sources. Existentially, such 2-source randomness extractors exist

for min-entropy k ≥ log n + O(1), but the best known construction prior to work in this thesis

requires min-entropy k ≥ 0.499n [Bou05b]. One of the main contributions of this thesis is an

explicit 2-source extractor for min-entropy logC n, for some constant C.

vii

Other results in this thesis include improved ways of extracting random bits from various

other sources of randomness, as well as stronger notions of randomness extraction. Our results

have applications in privacy amplification [BBR88,Mau92,BBCM95], which is a classical problem

in information cryptography, and give protocols that achieve almost optimal parameters. Other

applications include explicit constructions of non-malleable codes, which is a relaxation of the

notion of error-detection codes and have applications in tamper-resilient cryptography [DPW10].

viii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.0.1 A Brief History of Extractors . 2

1.0.2 Our Results . 8

Chapter 2 Preliminaries 11

2.1 Seeded Extractors . 11

2.2 Conditional Min-Entropy . 13

2.3 Some Probability Lemmas . 14

2.4 Sampling Using Weak Sources . 17

2.5 2-Source Extractors . 18

2.6 Abelian XOR Lemmas . 20

2.7 Finding Primitive Elements in Finite fields . 21

Chapter 3 Alternating Extraction and its Applications to Breaking Correlations 22

3.1 The Basic Alternating Extraction Method and a New Lemma 23

ix

3.2 The Flip-Flop Primitive . 27

3.3 Correlation Breakers with Advice . 32

3.4 Handling Linear Correlations . 35

3.5 Non-Malleable Independence Preserving Mergers . 44

3.5.1 `-Non-Malleable Independence Preserving Merger 46

3.5.2 (`, t)-Non-Malleable Independence Preserving Merger 53

Chapter 4 Seeded Non-Malleable Extractors and Privacy Amplification 55

4.1 Prior Work and Our Results in [CGL16] . 57

4.2 Subsequent Work and Our Results in [CL16a] . 59

4.3 A Non-Malleable Extractor for log2(n/ε) min-entropy 61

4.4 Near Optimal Non-Malleable Extractors . 64

4.4.1 A Recursive Non-Malleable Independence Preserving Merger 66

4.4.2 The Non-Malleable Extractor Construction 69

4.4.3 A Trade-off Between Min-Entropy and Seed Length 73

4.5 Improved t-Non-Malleable Extractors . 75

Chapter 5 Resilient Functions and Extracting from NOBF Sources 77

5.1 Our Results and Overview of Techniques . 79

5.2 Monotone Constant-Depth Resilient Functions are t-Independent Resilient 82

5.3 Monotone Boolean Functions in AC0 Resilient to Coalitions 83

5.3.1 Our Construction and Key Lemmas . 85

5.3.2 Proof of Lemma 5.3.3 : Bound on Influence of Coalitions on fExt 92

5.3.3 Proof of Lemma 5.3.5: Bound on the Bias of fExt 94

Chapter 6 Two-Source Extractors and Ramsey Graphs 101

x

6.1 Prior Work and Our results . 102

6.2 Ramsey Graphs . 103

6.3 An Outline of Our 2-Source Extractor Construction 105

6.4 Reduction to an NOBF Source . 107

6.5 Wrapping Up the Proofs of Theorem 13 and Theorem 14 111

6.6 Achieving Smaller Error . 112

6.7 Towards Optimal Ramsey Graphs . 114

Chapter 7 Multi-Source Extractors 116

7.1 Our Result and Overview of techniques . 117

7.2 An Independence Preserving Merger Using a Weak Source 118

7.3 The Extractor Construction . 122

Chapter 8 Extractors for Sumset Sources 125

8.1 Relations and Applications to Other Sources . 126

8.2 Overview of Techniques . 128

8.3 The Extractor Construction . 130

Chapter 9 Extractors for Small-Space Sources 134

9.1 Our Result and Overview of Techniques . 135

9.2 A Reduction from Small-Space Sources to Sumset Sources 137

9.3 Any-Order Small-Space-Sources . 139

9.4 Total Entropy and Some-Where Entropy Sources . 140

Chapter 10 Extractors for Interleaved Sources 144

10.1 Our Results and Applications . 145

xi

10.1.1 Best-Partition Communication Complexity 147

10.1.2 Interleaved Non-Malleable Extractors . 148

10.2 Outline of Constructions . 150

10.2.1 Extractors for 2-Interleaved Sources . 150

10.2.2 Interleaved Non-Malleable Extractors . 154

10.3 Constructing Spanning Vectors . 156

10.4 Extractors for 2-Interleaved Sources . 159

10.4.1 Extractors for 2-Interleaved Sources on {0, 1}2n 159

10.4.2 Extracting from 2-Interleaved Sources on F2n
p 163

10.4.3 Improving the Output Length . 164

10.4.4 One Bit Extractors for 2-Interleaved Sources on F2n
p with Exponentially Small

Error . 166

10.4.5 Semi-Explicit Extractors for 2-Interleaved Sources with Linear Output Length

and Exponentially Small Error . 167

10.4.6 Extractors for 2-Interleaved Sources with Linear Min-Entropy Under the Gen-

eralized Paley Graph Conjecture . 168

10.5 Interleaved Non-Malleable Extractors . 170

10.6 Proof of Theorem 25 . 173

Chapter 11 Seedless Non-Malleable Extractors 178

11.1 Our Results . 179

11.2 An Explicit Seedless Non-Malleable Extractor for 10 Sources 180

11.2.1 Some Results from Additive Combinatorics 181

11.2.2 Some Known Extractor Constructions . 182

11.2.3 A Sum-Product Estimate . 182

xii

11.2.4 A Sum-Product Friendly Encoding . 183

11.2.5 Non-malleable extractors for functions with no fixed points 192

11.2.6 Non-malleable extractor for arbitrary functions 195

11.2.7 Proof of the sum-product estimate over F4
p . 199

11.3 An Explict Seedless (2, t)-Non-Malleable Extractor Construction 205

Chapter 12 Non-Malleable Codes 208

12.0.1 Non-malleable Codes in the Split-State Model 210

12.0.2 Our Result . 211

12.1 Multi-Tampered Non-Malleable Codes . 213

12.2 Non-malleable codes via Seedless non-malleable extractors 217

12.3 Efficient algorithms for non-malleable codes in the 10-split-state model 219

12.3.1 Tools from algebraic geometry . 220

12.3.2 A new extractor . 221

12.3.3 A generic sampling algorithm . 223

12.3.4 An efficient encoder . 225

12.4 Efficient Encoding and Decoding Algorithms for One-Many Non-Malleable Codes . . 228

12.4.1 A New Linear Seeded Extractor . 228

12.4.2 A Modified Construction of the Seedless (2, t)-Non-Malleable Extractor . . . 233

12.4.3 Efficiently Sampling from the Pre-Image of inmExt 237

Bibliography 244

Vita 261

xiii

Chapter 1

Introduction

In this thesis we study objects known as randomness extractors. Informally, an extractor is a tool

to purify a source of randomness. The need for such extractors arises out of the following two

reasons. First, randomness is widely used in various areas of computer science, e.g., algorithms,

distributed computing, cryptography, stochastic simulations of complex systems and more. Second,

most sources of randomness that are easily accessible produce bits that are biased and correlated.

It is very common that randomized algorithms are often much simpler than their (known)

deterministic counterparts, and also outperform them. In fact, in many cases such as polynomial

identity testing, it is open to find efficient deterministic algorithms for problems with simple ran-

domized algorithms. Here a major open question is if every efficient randomized algorithm has a

deterministic counterpart, or more technically whether P = BPP. Further, in cryptography, it is

possible to prove that many of the protocols become provably impossible to execute without access

to high quality sources of randomness [DOPS04].

However a major problem in practice is the lack of good quality sources of randomness.

For example, a common way operating systems collect random bits (such as Linux) is to maintain

an entropy pool. This entropy pool is typically filled by a device known as a hardware random

number generator (HRNG) that uses some physical phenomenon (e.g., radioactive phenomenon,

1

Zener diodes, clock drift) for generating randomness. There is also work showing Bitcoin [BCG15]

as a potential source of randomness. However, in most of these sources the bits produced often

follow certain patterns and at best only contain some amount of entropy. In practice, to derive

uniform bits, often a cryptographic hash function is applied to this imperfect source of randomness

and used in applications. However, there is no theoretical guarantee that the bits produced are

actually uniformly random, which can be a major issue, for example, if these bits are being used

to carry out important cryptographic protocols. Another motivation to study weak sources of

randomness comes from cryptography. For example, consider a shared key S that is uniform on n

bits and is being used for executing some cryptographic protocol. An adversary who gains partial

information about this secret can be modeled as a function f : {0, 1}n → {0, 1}m, m < n, with the

partial information being the random variable Y = f(S). Thus, the secret S conditioned on the

leak Y is now only weakly random. These applications motivate the need to construct functions

(extractors) that provably output uniform bits given access to such weak sources of randomness.

1.0.1 A Brief History of Extractors

The first work of modeling a weak source dates back to the 1950’s when von Neumann [vN51]

considered extracting random bits from a stream of independent bits with the same unknown bias.

This was considerably generalized by Blum [Blu86], who designed an explicit extractor for sources

generated by a constant sized Markov chain. Santha and Vazirani [SV86] further generalized this

model and introduced SV-sources (in [SV86], these sources are called as slightly-random sources),

where each bit in the sequence is “slightly random” and takes the value 0 with probability in the

range (δ, 1 − δ), 0 < δ < 1/2, for any conditioning of the previous bits in the sequence. They

proved that it is impossible to extract from a single SV-source and gave an efficient algorithm to

extract from O(log n log∗ n) independent SV-sources, and left as an open problem to extract from

two independent SV-sources.

Chor and Goldreich [CG88] introduced a model of weak sources called block sources, and

Zuckerman [Zuc90] generalized this to model weak sources using the notion of min-entropy. A

2

source X on n bits is said to have min-entropy at least k if for any x, Pr[X = x] ≤ 2−k.

Definition 1.0.1. The min-entropy of a source X is defined to be: H∞(X) = minx(− log(Pr[X =

x])). The min-entropy rate of a source X on {0, 1}n is defined to be H∞(X)/n. Any source X on

{0, 1}n with min-entropy at least k is called an (n, k)-source.

This is now the standard way of modeling a weak source. However, it turns out that the

class of (n, k)-sources is too general and the following simple lemma shows that it is impossible to

extract from this class. We first introduce the notion of an extractor for a class of sources.

We use statistical (or variation) distance to measure the performance of an extractor in

terms of the closeness of the output to the uniform distribution.

Definition 1.0.2. The statistical distance between two distributions D1 and D2 over some universal

set Ω is defined as |D1 −D2| = 1
2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if

|D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

Definition 1.0.3. An efficiently computable function Ext : {0, 1}n → {0, 1}m is an (deterministic)

extractor for a class of sources X with error ε if, for any source X ∈ X , |f(X)−Um| ≤ ε.

Lemma 1.0.4 ([CG88]). There cannot exist an extractor for the class of (n, n − 1)-sources with

error < 1/2.

Proof. Suppose Ext : {0, 1}n → {0, 1} is an extractor that extracts for min-entropy n−1 with error

ε < 1/2. Since |Ext−1(0)| + |Ext−1(1)| = 2n, W.lo.g, let |Ext−1(0)| ≥ 2n−1. Let X be a source

uniform on the set Ext−1(0). Clearly, the min-entropy of X is at least n − 1 but Ext is constant

on X, which contradicts the assumption that the error of Ext is less than 1/2.

To circumvent this difficulty, Chor and Goldreich suggested the problem of extracting from

two or more independent sources.

3

Definition 1.0.5 (2-source extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a

(k, ε)-two-source extractor if for independent (n, k)-sources X and Y, we have

|Ext(X,Y)−Um| ≤ ε.

Ext is said to be strong in Y if it also satisfies |(Ext(X,Y),Y) − (Um,Y)| ≤ ε, where Um is

independent from Y.

A simple probabilistic argument shows the existence of 2-source extractors for min-entropy

k ≥ log n + 2 log(1/ε) + 1. However, for applications, one is interested in efficiently constructing

such extractors. Chor and Goldreich [CG88] used Lindsey’s Lemma to show that the inner-product

function (see Theorem 2.5.3) is a 2-source extractor for min-entropy more than n/2. No further

progress was made for around 20 years, when Bourgain [Bou05b] constructed a 2-source extractor for

min-entropy 0.499n. His result was based on breakthroughs in the area of additive combinatorics.

Raz [Raz05] obtained an improvement in terms of total min-entropy, and constructed 2-source

extractors requiring one source with min-entropy more than n/2 and the other source with min-

entropy O(log n). There is also a different 2-source extractor on the Paley graph function matching

the entropy bounds of [Raz05] (see Theorem 2.5.4). Prior to work in this thesis, it was a challenging

open problem to construct a 2-source extractor that works when both sources have min-entropy

significantly smaller than n/2.

An explicit 2-source extractor directly yields explicit Ramsey graphs, a central object in

extremal combinatorics. Recall that a graph on N vertices is called a K-Ramsey graph if it does

not contain any independent set or clique of size K. In 1947, it was shown by Erdös in one of the first

applications of the probabilistic method that there exists K-Ramsey graphs for K = 2 logN . He

posed as a challenge to explicitly construct such a graph, and this has drawn a lot of attention over

the last 69 years. Frankl and Wilson [FW81] used intersection theorems to construct K-Ramsey

graphs on N vertices, with K = 2O(
√

logN log logN). This remained the best known construction for

a long time, with many other constructions [Alo98,Gro00,Bar06,Gop14] achieving the same bound.

4

Finally, subsequent works by Barak et al. [BKS+10,BRSW12] obtained a significant improvement

and gave explicit constructions of K-Ramsey graphs, with K = 22log1−α(logN)
, for some absolute

constant α.

An impressive line of work considered the problem of constructing extractors having access

to multiple independent sources. Several researchers managed to construct excellent extractors

using a constant number of sources [BIW06,Rao09a,RZ08,Li11a,Li13a,Li13b,Li15e,Coh15a], with

the best known result being a 3-source extractor construction for (log n)C min-entropy by Li [Li15e].

Raz and Yehudayoff [RY11] introduced a natural generalization of the class of independent

sources, which called interleaved sources. Roughly, the symbols from C independent source are

mixed(in some unknown order) into one long string and given as input to the extractor. Besides

being a natural generalization of independent sources, the original motivation for studying these

sources came from an application found by Raz and Yehudayoff [RY11] in proving lower bounds

for arithmetic circuits. Further, such extractors give examples of explicit functions with high best-

partition communication complexity. Using the probabilistic method, one can show that extractors

exist for C = 2 and k = Ω(log n). The construction in [RY11] works however works for k > (1−δ)n

and C = 2, where δ is a small constant.

A different line of work considered the problem of simulating randomized algorithms with

access to only weak sources of randomness [VV85, CG88, Zuc96, SSZ95, ACRT97]. This led to

the introduction of the notion of seeded extractors [NZ96]. Informally, a seeded extractor uses a

short uniform seed to extract randomness out of an (n, k)-source X (see Chapter 2 for a formal

definition). A long line of work spanning two decades culminated in excellent constructions of seeded

extractors (see [LRVW03, GUV09, DKSS09] for current optimal constructions). Further various

applications of seeded extractors were found in seemingly unrelated areas like inapproximabilty

[Zuc96, Uma99, MU02], error correcting codes [TZ04, Gur04a], expander graphs [WZ93] (see also

[NT99] for more applications).

In another line of work, Trevisan and Vadhan [TV00] introduced the problem of constructing

seedless extractors for the class of samplable sources, where the weak random source is generated

5

by a computationally bounded algorithm. The simplest sources in this model are bit-fixing sources.

Informally, a bit-fixing source is a source where some subset of the bits are fixed and the remaining

ones chosen in some random way. Such sources have applications in exposure resilient cryptography

and have been investigated in a line of work [CGH+85, KZ07a, GRS06, Rao09b]. Generalizing

oblivious bit-fixing sources (see Chapter 5 for a definition) are a class of sources called as affine

sources. Here the source is assumed to be uniform on some unknown affine subspace of Fnp of

dimension k. For p = 2, (which is the most interesting setting in applications to computer science),

the best known affine extractor until very recently worked for k ≥ n/
√

log logn [Bou07,Li11b,Yeh11]

(a recent work of Li [Li15c] improves this to k ≥ logC n using components from work in this thesis).

For larger p, Gabizon and Raz [GR08] constructed almost optimal extractors even for k = 1. Ben-

Sasson and Zewi [BSZ11] showed some connections between affine extractors and 2-source extractor

based on conjectures in additive combinatorics. In [TV00], they constructed explicit extractors for

sources generated by polynomial sized circuits based on strong complexity-theoretic assumptions.

Kamp, Rao, Vadhan and Zuckerman [KRVZ11] studied the problem of constructing extractors

for small-space sources, where the weak source is generated by a small width branching program.

Roughly, their extractor construction works for min-entropy n1−δ, for some small absolute constant

δ.

Recently, Dodis and Wichs [DW09] initiated the study of seeded non-malleable extractors

with applications to cryptography. These extractors strengthen the notion of seeded extractors in

a non-trivial way. Very informally, a non-malleable extractor has to satisfy the property that the

output of the extractor looks random even to an adversary that has access to the output of the

extractor evaluated on a correlated seed. In some more detail, suppose X is an (n, k)-source, and

A : {0, 1}d → {0, 1}d is a function such that A(y) 6= y for all y. We think of A as an adversary, and

call such functions as tampering functions. Let Y be a uniform independent seed on d bits. Then,

a non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m satisfies the property that for most

fixings of Y = y, we have nmExt(X, y), nmExt(X,A(y)) ≈ Um,nmExt(X,A(y)). It turns out that

this property is quite non-trivial to satisfy, and the first explicit construction was found by Dodis,

6

Li, Wichs and Zuckerman [DLWZ14]. Subsequent works [CRS14, Li12a, Li12b, DY13] improved

various parameters, but all these constructions required the min-entropy of the source X to be at

least 0.499n. However, existentially the work [DW09] proved the existence of such extractors for

k ≥ log n (for polynomially small error).

The main applications of such non-malleable extractors comes from the problem of privacy

amplification with an active adversary [BBR88,Mau92,BBCM95]. As a basic problem in informa-

tion theoretic cryptography, privacy amplification deals with the case where two parties want to

communicate with each other to convert their shared secret weak random source X into shared

secret nearly uniform random bits. On the other hand, the communication channel is watched by

an adversary Eve, who has unlimited computational power. To make this task possible, we assume

two parties have local (non-shared) uniform random bits. If Eve is passive (i.e., can only see the

messages but cannot change them), this problem can be solved easily by using strong seeded ex-

tractors. However, in the case where Eve is active (i.e., can change, delete and reorder messages),

the problem becomes much more complicated. The major challenge here is to design a protocol

that uses as few interactions as possible, and outputs a uniform random string R that has length

as close to H∞(X) as possible (the difference is called the entropy loss).

A 2-source variant of non-malleable extractors, called seedless non-malleable extractors, was

introduced by Cheraghchi and Guruswami [CG14b]. Here, roughly, the tampering functions act

on both X and Y. Thus, the guarantee we would want is nmExt(X,Y), nmExt(f(X), g(Y)) ≈

Um, nmExt(f(X), g(Y)), where X and Y are independent weak sources and f, g are arbitrary

tampering functions (with one of them not mapping any input to itself). Their main motivation

for initiating the study of these objects are in applications to non-malleable codes. Non-malleable

codes (introduced by Dziembowski, Pietrzak and Wichs [DPW10]) are a natural weakening of error-

detecting codes in hope to handle more severe forms of tampering on the codeword (see Section

12 for a definition). These codes also have applications in tamper-resilient cryptography [DPW10].

In [CG14b], they showed a black-box way of constructing non-malleable codes via explicit seedless

non-malleable extractors. Further, they showed the existence of such non-malleable extractors for

7

min-entropy Ω(log n). However, no known constructions of such seedless non-malleable extractors

were known prior to work in this thesis, and it was posed as an open problem in [CG14b] to

construct such an extractor even for full min-entropy (i.e., k = n).

1.0.2 Our Results

2-Source Extractors One of the main contributions of this thesis is an explicit 2-source extractor

that works for min-entropy k ≥ logC n, for some constant C. This is based on joint work with David

Zuckerman [CZ16a]. In subsequent work with Xin Li [CL16a], we improve the constant C. We

present this in Chapter 6. The construction needs material that is developed in Chapters 4 and 5.

Ramsey Graphs As a corollary of our 2-source extractor, we obtain explicit K-Ramsey graphs

on N = 2n vertices with K = 2(log logN)C for some constant C. This result was also obtained by an

independent work by Cohen [Coh16c], who constructed a weaker object called a 2-source disperser

(see Definition 2.5.2) for min-entropy logC n to obtain this result.

Seeded Non-Malleable Extractors and Privacy Amplification We give explicit construc-

tions of seeded non-malleable extractors that requires min-entropy k = Ω(log2 n/ε) and seed-length

d = O(log2 n/ε), where ε is an error parameter. In fact our construction is more general, and this

is a crucial ingredient in our 2-source extractor construction. This result is based on joint work

with Vipul Goyal and Xin Li [CGL16]. Subsequently, we improve this to k = Ω(log1+o(1) n/ε) and

seed-length d = O(log1+o(1) n/ε). This is based on joint work with Xin Li [CL16a]. This improve-

ment is crucial to obtain new results in the problem of privacy amplification, where we obtain a

protocol with almost optimal parameters (a substantial amount of research over the last 25 years

has focussed on obtaining such a protocol, and our result is nearly optimal). We present these

results in Chapter 4. A substantial amount of tools for these results are developed in Chapter 3.

The techniques in Chapter 3 crucially rely on the powerful technique of “alternating extraction”

that was introduced by Dziembowski and Pietrzak [DP07].

8

Resilient Functions An ingredient in our 2-source extractor construction are functions that have

low influence with respect to small subsets of co-ordinates. Such functions were initially studied

by Ben-Or and Linial [BL85] when they introduced the perfect information model. We obtain new

results on explicitly constructing such resilient functions and present this in Chapter 5. This is

based on joint work with David Zuckerman [CZ16a].

Small-Space Sources We give improved extractors for small space sources that work for min-

entropy k = no(1). This is based on joint work with Xin Li [CL16b]. The results are presented in

Chapter 9. This uses results from Chapter 8.

Sumset Sources We generalize the class of affine sources and study sources of the form X1+. . .+

XC where each Xi is an independent source on Fn2 (the addition being the usual vector addition).

We show how to extract when each Xi has min-entropy at least logC n. We also show applications

of sumset extractors to extract from many other weak sources that have been previously studied.

This is based on joint work with Xin Li [CL16b]. We present the results in Chapter 8. We use

some components from Chapter 3 for this construction.

Seedless Non-Malleable Extractors and Non-Malleable codes We present two construc-

tions of seedless non-malleable extractors. The first construction uses 10 sources (instead of 2,

generalizing the definition so that each source is tampered) and is based on joint work with David

Zuckerman [CZ14]. As a result, we obtain the first construction of a non-malleable code with

constant rate in a well studied “split-state” model. The second construction uses just 2 sources

and thus resolves the open question of [CG14b]. Further, this construction generalizes to handle

multiple tamperings, and using this we give the first explicit constructions of non-malleable codes

that can handle multiple attacks in the information theoretic setting. We present our result on

non-malleable extractors in Chaper 11 and our results on non-malleable codes in Chapter 12. Some

of the results uses components from Chapter 3.

9

Interleaved Sources We give improved constructions of extractors for interleaved sources. We

use Chapter 10 to present these results. The results are based on joint works with Xin Li and David

Zuckerman [CZ16b,CL16b].

Multi-Source Extractors The best known multi-source extractor (in terms of min-entropy) is

from a recent work of Cohen and Schulman [CS16] and requires O(1/δ)+O(1) independent sources,

each with min-entropy at least log1+δ(n). We improve this result and give extractors that work for

O(1) (an absolute constant) independent sources, each with min-entropy log1+o(1) n. This is based

on joint work with Xin Li [CL16a].

10

Chapter 2

Preliminaries

We use Um to denote the uniform distribution on {0, 1}m, and US to denote the uniform distribu-

tion on any set S.

For any integer t > 0, [t] denotes the set {1, . . . , t}.

We use bold capital letters for random variables and samples as the corresponding small letter,

e.g., X is a random variable, with x being a sample of X.

For an ` ×m matrix V , and any S ⊆ `, |S| = q, we use VS to denote the q ×m sub-matrix of V

corresponding to the rows indexed by S. If S = {i} is a singleton, we use Vi instead of V{i}.

A distribution D on n bits is t-wise independent if the restriction of D to any t bits is uniform.

Further D is (t, ε)-wise independent if the distribution obtained by restricting D to any t coordi-

nates is ε-close to uniform.

For any integer M > 0, let eM (x) = e
2πix
M .

2.1 Seeded Extractors

Definition 2.1.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for

any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is called a strong seeded extractor if

|(Ext(X,Ud),Ud)−(Um,Ud)| ≤ ε, where Um and Ud are independent. Further, if for each s ∈ Ud,

11

Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called a linear seeded extractor.

We recall an explicit seeded extractor construction with almost optimal parameters.

Theorem 2.1.2 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a

polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =

O(log n+ log(1/ε)) and m = (1− α)k.

For some applications we need to ensure that for each x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2)

whenever s1 6= s2. A simple way to ensure this is to concatenate the seed to the output of Ext,

though it is no longer strong. We record this formally.

Corollary 2.1.3. For any constant α > 0, and all integers n, k > 0 there exists a polynomial time

computable seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and

m = (1− α)k. Further for all x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2) whenever s1 6= s2.

We also use the following strong seeded extractor constructed by Zuckerman [Zuc07] that

achieves seed length log(n) +O(log(1
ε)) to extract from any source with constant min-entropy rate.

Theorem 2.1.4 ([Zuc07]). For all n > 0 and constants α, δ, ε > 0 there exists an efficient construc-

tion of a (k = δn, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ (1 − α)k

and D = 2d = O(n).

In some of our constructions, we require explicit linear seeded extractors with strong pa-

rameters.

Theorem 2.1.5 ([Tre01,RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists

an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and

error ε, where d = O
(

log2(n/ε)
log(k/m)

)
.

A drawback of the above construction is that the seed length is ω(log n) for sub-polynomial

min-entropy. An improved construction of Li [Li15c] achieves O(log n) seed length for even poly-

logarithmic min-entropy.

12

Theorem 2.1.6 ([Li15c]). There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤

k ≤ n and any ε ≥ 1/n2, there exists a polynomial time computable linear seeded extractor LExt :

{0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and error ε, where d = O(log n) and m ≤
√
k.

We record useful lemma which shows that seeded extractors work even when the seed is not

fully uniform, but has sufficiently large min-entropy.

Lemma 2.1.7. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor for min-entropy

k, and error ε. Let X be a (n, k)-source and let Y be a source on {0, 1}d with min-entropy d− λ.

Then,

|Ext(X,Y) ◦Y −Um ◦Y| ≤ 2λε.

Proof. Since Y is a source with min-entropy d− λ, we can assume it is uniform on a set A of size

2d−λ. Thus

|Ext(X,Y) ◦Y −Um ◦Y| = 1

2d−λ

∑
y∈A
|Ext(X, y)−Um|

≤ 1

2d−λ

∑
y∈{0,1}d

|Ext(X, y)−Um|

≤ 1

2d−λ
2dε = 2λε

where the last inequality uses the fact that Ext is a strong seeded extractor.

2.2 Conditional Min-Entropy

Definition 2.2.1. The average conditional min-entropy of a source X given a random variable W

is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

13

Lemma 2.2.2 ([DORS08]). For any ε > 0, Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥

1− ε.

Lemma 2.2.3 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥

H∞(X)− `.

We require extractors that can extract uniform bits when the source only has sufficient

conditional min-entropy.

Definition 2.2.4. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m

for min-entropy k and error ε satisfies the following property: For any source X and any arbitrary

random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 2.2.5 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a

(k + log(1/δ), ε+ δ)-seeded average case extractor.

2.3 Some Probability Lemmas

We say that a distribution D1 is ε-close to another distribution D2 if |D1 −D2| ≤ ε.

Definition 2.3.1. The collision probability of a distribution D is defined as : cp(D) = Pr[D = D′],

where D′ is independent and identicaly distributed as D.

For the sake of convenience, we make the following definition.

Definition 2.3.2. For a set A, define cp(A) to be the collision probability of the uniform distribution

on A.

The following lemma was proved in [BIW06].

14

Lemma 2.3.3. Let D be a distribution with cp(D) = 1
KL . Then D is L−1/2-close to a distribution

with min-entropy at least logK.

Definition 2.3.4. We say that a distribution D on a set S is a convex combination of distributions

D1, . . . , Dl on S if there exists non-negative constants (called weights) w1, . . . , wl with
∑l

i=1wi = 1

such that Pr[D = s] =
∑l

i=1wi · Pr[Di = s] for all s ∈ S. We use the notation D =
∑l

i=1wi ·Di

to denote the fact that D is a convex combination of the distributions D1, . . . , Dl with weights

w1, . . . , wl.

Definition 2.3.5. For random variables X and Y , we use X|Y to denote a random variable with

distribution: Pr[(X|Y) = x] =
∑

y∈support(Y) Pr[Y = y] · Pr[X = x|Y = y].

We note the following lemma which follows from the above definitions.

Lemma 2.3.6. Let X and Y be distributions on a set S such that X =
∑l

i=1wi · Xi and Y =∑l
i=1wi · Yi. Then |X − Y | ≤

∑
iwi · |Xi − Yi|.

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 2.3.7. Let X,Y be random variables such that Y takes at ` values. Then

Pry∼Y

[
H∞(X|Y = y) ≥ H∞(X)− log `− log

(
1

ε

)]
> 1− ε.

Lemma 2.3.8 ([BIW06]). Let X1, . . . ,X` be independent random variables on {0, 1}m such that

|Xi −Um| ≤ ε. Then, |
∑`

i=1 Xi −Um| ≤ ε`.

Lemma 2.3.9 ([GRS06]). Let X be a random variable taking values in a set S, and let Y be a

random variable on {0, 1}t. Assume that |(X,Y)− (X,Ut)| ≤ ε. Then for every y ∈ {0, 1}t,

|(X|Y = y)−X| ≤ 2t+1ε.

Lemma 2.3.10 ([Sha08]). Let X1,Y1 be random variables taking values in a set S1, and let X2,Y2

be random variables taking values in a set S2. Suppose that

15

1. |X2 −Y2| ≤ ε2.

2. For every s2 ∈ S2, |(X1|X2 = s2)− (Y1|Y2 = s2)| ≤ ε1.

Then

|(X1,X2)− (Y1,Y2)| ≤ ε1 + ε2.

Using the above results, we record a useful lemma.

Lemma 2.3.11. Let X1, . . . ,Xt be random variables, such that each Xi takes values 0 and 1.

Further suppose that for any subset S = {s1, . . . , sr} ⊆ [t],

(Xs1 ,Xs2 . . . ,Xsr) ≈ε (U1,Xs2 . . . ,Xsr).

Then

(X1, . . . ,Xt) ≈5tε Ut.

Proof. We prove this by induction on t. The base case when t = 1 is direct. Thus, suppose t ≥ 2.

It follows that

(Xt,X1, . . . ,Xt−1) ≈ε (U1,X1, . . . ,Xt−1).

By an application of Lemma 2.3.9, for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)− (X1, . . . ,Xt−1)| ≤ 4ε.

Further, by the induction hypothesis, we have

|(X1, . . . ,Xt−1)−Ut−1| ≤ 5(t− 1)ε.

Thus, by the triangle inequality for statistical distance, it follows that for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)−Ut−1| ≤ (5t− 1)ε.

16

Using Lemma 2.3.10 and the fact that |Xt −U1| ≤ ε, it follows that

|(X1, . . . ,Xt)−Ut| ≤ (5t− 1)ε+ ε = 5tε.

This completes the induction, and the lemma follows.

We also record the following simple lemma.

Lemma 2.3.12. Let X be a source on Fnp with min-entropy k. Let V = {v1, . . . , vn} be a collection

of vectors such that dim(span{V }) ≥ n − A. Then XV =
∑

i xivi : x ∼ X is a source with

min-entropy ≥ k −A log p.

2.4 Sampling Using Weak Sources

A well known way of sampling using weak sources uses randomness extractors. We first introduce

a graph-theoretic view of extractors. Any seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m can

also be viewed as an unbalanced bipartite graph GExt with 2n left vertices (each of degree 2d) and

2m right vertices. We use N (x) to denote the set of neighbours of x in GExt. We call GExt the

graph corresponding to Ext.

Theorem 2.4.1 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-

entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 2.4.2 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-

entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}.

17

Let X be an (n, k + k′)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k
′
,

where µR = |R|/2m.

2.5 2-Source Extractors

Definition 2.5.1 (2-source extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a

(k, ε)-two-source extractor if for any independent (n, k)-sources X and Y, we have

|Ext(X,Y)−Um| ≤ ε.

Ext is said to be strong in Y if it also satisfies |(Ext(X,Y),Y) − (Um,Y)| ≤ ε, where Um is

independent from Y.

Definition 2.5.2 (2-source Disperser). A function Disp : {0, 1}n × {0, 1}n → {0, 1}m is called a

(k, ε)-two-disperser if for any independent (n, k)-sources X and Y,

support{Ext(X,Y)} = {0, 1}.

We recall a construction of a two-source extractors based on the inner product function

[CG88, Zuc91]. This essentially is a stronger version of Lindsey’s Lemma. We include a proof for

completeness.

Theorem 2.5.3 ([CG88, Zuc91, Rao07]). For all m, r > 0, with q = 2m, n = rm, let X,Y

be independent sources on Frq with min-entropy k1, k2 respectively. Let IP be the inner product

function over the field Fq. Then, we have:

|IP(X,Y),X− Um,X| ≤ ε, |IP(X,Y), Y −Um,Y| ≤ ε

18

where ε = 2
−(k1+k2−n−m)

2 .

Proof. Let X,Y be uniform on sets A,B ⊆ Frq respectively, with |A| = 2k1 and |B| = 2k2 . Let ψ be

any non-trivial additive character of the finite field Fq. For short, we use · to denote the standard

inner product over Fq. We have

∑
y∈B
|
∑
x∈A

ψ(x · y)| ≤ (|B|)
1
2

∑
y∈Frq

∑
x,x′∈A

ψ((x− x′) · y)

 1
2

≤ |B|
1
2

 ∑
x,x′∈A

∑
y∈Frq

ψ((x− x′) · y)

 1
2

where the first inequality follows by an application of the Cauchy-Schwartz inequality. Further,

whenever x 6= x′, we have ∑
y∈Frq

ψ((x− x′) · y) = 0.

Thus, continuing with our estimate, we have

∑
y∈B
|
∑
x∈A

ψ(x · y)| ≤ |B|
1
2 (|A|qr)

1
2 = 2

n+k1+k2
2

Thus,

EY|EXψ(IP(X,Y))| ≤ 2
n−k1−k2

2

Using Lemma 2.6.1, it now follows that

|IP(X,Y),Y −Um,Y| ≤ 2
n+m−k1−k2

2

It can be similarly shown that |IP(X,Y), X − Um, X| ≤ 2
n+m−k1−k2

2 .

The following folklore result on two-source extractors is based on the Paley graph function.

The following double character sum estimate was obtained by Karatsuba [Kar71,Kar91].

19

Theorem 2.5.4 ([Kar71, Kar91]). Let p be any prime. Let χ be a non-trivial multiplicative char-

acter of F∗pn. For any subsets A,B ⊆ Fpn, the following holds: For any integer λ > 0,

∑
a∈A

∣∣∣∣∣∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤ 2λ|A|
2λ−1

2λ (|B|p
n
4λ + |B|

1
2 p

n
2λ).

The above theorem can be equivalently restated as a result on 2-source extractors.

Theorem 2.5.5. Let p be any prime. Let χ be a non-trivial multiplicative character of F∗pn. For

any δ > 0 and independent sources X,Y on Fpn with min-entropy k1, k2 respectively, satisfying

k1 ≥
(

1
2 + 3δ

)
n log p and k2 ≥ (4 log n log p)/δ, we have

Ex∼X|Ey∼Y[χ(x+ y)]| ≤ 2−δk2 .

Proof. Let X,Y be flat sources on sets A and B respectively. Thus |A| = 2k1 and |B| = 2k2 .

Setting λ = n log p
δk2

in Theorem 2.5.4 (so that |B| = 2k2 = p
n
λ), we have

Ex∼X|Ey∼Y[χ(x+ y)]| ≤ 2λ|A|−
1

2λ (p
n
4λ + |B|−

1
2 p

n
2λ)

≤ 2λ|A|−
1

2λ (p
n
4λ + 1)

< 3np−
3δn
2λ

= 2
log(3n)− 3k2δn log p

2n log p < 2−δk2 .

2.6 Abelian XOR Lemmas

The following lemma is known as Vazirani’s XOR Lemma.

Lemma 2.6.1. Let D be a distribution over ZM such that for every nontrivial additive character

20

ψ of ZM , we have |E[ψ(D)]| ≤ ε. Then, we have

|D − UM | ≤ ε
√
M.

Let σM : ZN → ZM be defined as σM (x) = x (mod M). The following general version of

the above XOR lemma was proved in [Rao07].

Lemma 2.6.2 ([Rao07]). Let D be a distribution over ZN such that for every non-trivial additive

character ψ of ZN , we have |E[ψ(D)]| ≤ ε. Then, for any M < N , we have

|σM (D)− UM | ≤ O(ε logN
√
M) +O(M/N).

We also record a more generalized form of the XOR Lemma [DLWZ14].

Lemma 2.6.3 ([DLWZ14]). Let D1, D2 be distributions over ZN such that for arbitrary characters

ψ, φ of ZN , we have |E[ψ(D1)φ(D2)]| ≤ ε, whenever ψ is nontrivial. Then, for any M < N , we

have

|(σM (D1), σM (D2))− (UM , σM (D2))| = O(ε(logN)2M) +O(M/N).

2.7 Finding Primitive Elements in Finite fields

In some of our constructions, we need access to primitive elements in finite fields. There is no

known deterministic polynomial time algorithm to find any primitive element of a finite field Fpn .

However, there are efficient algorithms known for a weaker task, where the algorithm is only required

to output a small set of elements with the guarantee that one of the elements is primitive. The

following result is due to Shoup [Sho90].

Theorem 2.7.1 ([Sho90]). Let p > 0 be any prime. For all n > 0, there exists a deterministic

procedure which takes as input n, runs in time poly(n), and outputs a set S = {a1, . . . , al}, l =

poly(n), such that S contains a primitive element of Fpn.

21

Chapter 3

Alternating Extraction and its

Applications to Breaking Correlations

1 On a very high level, many of the results in this thesis use explicit objects that break correlations

between random variables. In many of the scenarios we consider, the generic setting is the follow-

ing: Let X,X1, . . . ,Xt be correlated random variables, and let Y,Y1, . . . ,Yt be random variables

independent of {X,X1, . . . ,Xt}. The goal is to construct a function f such that

f(X,Y), f(X1,Y1), . . . , f(Xt,Yt) ≈ Um, f(X1,Y1), . . . , f(Xt,Yt).

Clearly this setting is too general, and such an f does not exist. The various objects that we

construct make more assumptions on the correlated random variables, and typically Y is either an

independent seed or a weak source with enough min-entropy. In some of the constructions even

this is not enough, and we assume access to some kind of ‘advice’.

Before we present our actual constructions, we first discuss a toy example to show that

seeded extractors are very useful tools in solving problems of this flavour. Let X,X′ be correlated

r.v’s, each on n bits, such that H̃∞(X|X′) ≥ k. In such a setting, it is easy to break the correlations

1parts of this chapter have been previously published [CGL16,CL16b,CL16a]

22

between X and X′ using an independent uniform seed Y. Let Y′ be the tampered version of Y.

We use any (k− log(1/ε), ε)-strong seeded extractor Ext and define Z = Ext(X,Y) (and similarly,

let Z′ = Ext(X′,Y′)). We prove the correctness of this construction as follows. Fix the r.v X′,

and X still has average conditional min-entropy at least k. Thus, Ext(X,Y) is 2ε-close to uniform

after this fixing, and we can also fix Y since Ext is a strong extractor. Thus, at this point Z′ is a

deterministic function of Y′, and Z is a deterministic function of X. Thus, we can fix Z′ without

affecting the distribution of Z, and hence f = Ext is a valid construction in this case.

However, in most applications we generally have much weaker guarantees on the correlated

r.v’s and hence they do not admit such simple solutions. We now introduce the technique of

alternating extraction, which informally is a protocol consisting of multiple rounds of extraction

using seeded extractors. All our explicit constructions in this chapter are based on some form of

the basic alternating extraction method.

The results in this chapter are based on joint works with Vipul Goyal and Xin Li [CGL16,

CL16b,CL16a].

3.1 The Basic Alternating Extraction Method and a New Lemma

The method of alternating extraction was introduced by Dziembowski and Pietrzak as a tool to

build intrusion resilient secret sharing schemes [DP07]. Subsequently, Dodis and Wichs [DW09]

used this method to construct objects known as “look-ahead extractors” and used this to give

improved privacy amplification protocols. Since then, this method has an been extremely useful

tool in constructing a variety of pseudorandom objects [DW09,Li13a,Li15e,Coh15b,CGL16,Li15c,

CL16b,Coh16a,Coh16b].

Alternating Extraction Assume that there are two parties, Quentin with a source Q and

a seed S0, and Wendy with a source W. The alternating extraction protocol is an interactive

process between Quentin and Wendy, and starts off with Quentin sending the seed S0 to Wendy.

Wendy uses S0 and a strong-seeded extractor Extw to extract a seed R0 = Extw(W,S0) using W,

23

and sends R0 back to Quentin. This constitutes a round of the alternating extraction protocol. In

the next round, Quentin uses a strong extractor Extq to extract a seed S1 = Extq(Q,R0) from Q

using R0, and sends it to Wendy and so on. The protocol is run for h + 1 steps, where h is an

input parameter. Thus, the following sequence of r.v’s is generated: S0,R0 = Extw(W,S0),S1 =

Extq(Q,R0), . . . ,Sh = Extq(Q,Rh−1),Rh = Extw(W,Sh). Define a look-ahead extractor

laExt(W, (Q,S)) = R1, . . . ,Rh.

We establish a useful property satisfied by the alternating extraction protocol. This strength-

ens known results on alternating extraction protocol from previous work [Li13a]. Since stating the

result technically involves a lot of parameters, we first informally describe a slightly less general

version of the result. Suppose X,X′ are correlated r.v’s, each on n bits, such that X is an (n, k)-

source. Further suppose we have access to r.v’s Y = (Q,S1),Y′ = (Q′,S′1) with both Q,Q′ on

n bits and both S1,S
′
1 on d bits, s.t {Y,Y′} is independent of {X,X′}. Further let Q be an

(n, k)-source. Using X and Y in an alternating extraction protocol for h rounds, let the output

of the look-ahead extractor be R1, . . . ,Rh. Similarly, let R′1, . . . ,R
′
h be the r.v’s output when the

alternating extraction protocol is played between X′ and Y′. Then, for any h < k/10d, Rh is close

to uniform even conditioned on {Ri : i ∈ [h− 1]}, {R′i : i ∈ [h− 1]} (with high probability).

We now state and prove this result in full generality. For clarity of presentation, we use the

notation: Z[a,b] to denote the random variable Za, . . . ,Zb.

Lemma 3.1.1. Let X be a (nw, kw)-source and let X(1), . . . ,X(t) be random variables on {0, 1}nw

that are arbitrarily correlated with X. Let Y = (Q,S1),Y(1) = (Q(1),S
(1)
1), . . . ,Y(t) = (Q(t),S

(t)
1)

be arbitrarily correlated random variables that are independent of (X,X(1),X(2), . . . ,X(t)). Sup-

pose that Q is an (nq, kq)-source, S1 is an (m,m − λ)-source, Q(1), . . . ,Q(t) are each on nq bits,

and S(1), . . . ,S(t) are each on m bits. Let Extq,Extw be strong seeded extractors that extract m

bits at min-entropy k with error ε and seed length m. Let laExt be the look-ahead extractor for

an alternating extraction protocol with parameters u,m, with Extq,Extw being the strong seeded

24

extractors used by Quentin and Wendy respectively. Let laExt(X,Y) = R1, . . . ,Ru and for j ∈ [t],

laExt(X(j),Y(j)) = R
(j)
1 , . . . ,R

(j)
u . If kw, kq ≥ k + u(t + 1)m + 2 log(1

ε), then the following holds

for each i ∈ [u]:

Ri,R[1,i−1],R
(1)
[1.i−1], . . . ,R

(t)
[1,i−1],Q,Q

(1), . . . ,Q(t) ≈εi Um,R[1,i−1],R
(1)
[1.i−1], . . . ,R

(t)
[1,i−1],Q,Q

(1), . . . ,Q(t)

where εi = O(uε+ 2λε).

Proof. We in fact prove the following stronger claim.

Claim 3.1.2. For each i ∈ [u] the following hold:

Ri,R[1,i−1],R
(1)
[1,i−1], . . . ,R

(t)
[1,i−1],S[1,i],S

(1)
[1,i], . . . ,S

(t)
[1,i],Q,Q

(1), . . . ,Q(t)

≈εi Um,R[1,i−1],R
(1)
[1,i−1], . . . ,R

(t)
[1,i−1],S[1,i],S

(1)
[1,i], . . . ,S

(t)
[1,i],Q,Q

(1), . . . ,Q(t)

and

Si+1,S[1,i],S
(1)
[1,i], . . . ,S

(t)
[1,i],R[1,i],R

(1)
[1,i], . . . ,R

(t)
[1,i],X,X

(1), . . . ,X(t)

≈εi+2ε Um,S[1,i],S
(1)
[1,i], . . . ,S

(t)
[1,i],R[1,i],R

(1)
[1,i], . . . ,R

(t)
[1,i],X,X

(1), . . . ,X(t)

where εi = 4(i−1)ε+2λε. Further, conditioned on R[1,i−1],R
(1)
[1,i−1], . . . ,R

(t)
[1,i−1],S[1,i],S

(1)
[1,i], . . . ,S

(t)
[1,i],

(a) (X,X(1), . . . ,X(t)) is independent from (Y,Y(1), . . . ,Y(t)), (b) X,Q each have average condi-

tional min-entropy at least (u−i)(t+1)m+k+2 log
(

1
ε

)
and (c) Ri,R

(1)
i , . . . ,R

(t)
i are deterministic

functions of (X,X(1), . . . ,X(t)).

Proof. We prove this claim by induction on i. Let i = 1. Since R1 = Extw(X,S1), and Extw

is a strong-seeded extractor, it follows by Lemma 2.1.7 that Extw(X,S1),S1 ≈ε1 Um,S1, where

ε1 = 2λε. Thus we can fix S1, and R1 is still ε1-close to uniform on average. We note that R1

is a deterministic function of X. Since the random variables S
(1)
1 , . . . ,S

(t)
1 ,Q,Q(1), . . . ,Q(t) are

25

deterministic functions of Y,Y(1), . . . ,Y(t) and thus uncorrelated with X, we have

R1,S1,S
(1)
1 , . . . ,S

(t)
1 ,Q,Q(1), . . . ,Q(t) ≈ε1 Um,S1,S

(1)
1 , . . . ,S

(t)
1 ,Q,Q(1), . . . ,Q(t).

We fix the random variables S1,S
(1)
1 , . . . ,S

(t)
1 . By Lemma 2.2.3, the source Q has average condi-

tional min-entropy at least kq −m(t+ 1) = k + (u− 1)m(t+ 1) + 2 log
(

1
ε

)
after this fixing. Using

Lemma 2.2.5 it follows that Extq is a (k + log
(

1
ε

)
, 2ε) strong average case extractor. We also note

that R1,R
(1)
1 , . . . ,R

(t)
1 are now deterministic functions of X,X(1), . . . ,X(t). Thus recalling that

S2 = Extq(Q,R1), we have S2,R1 ≈(2ε+ε1) Um,R1, since R1 is ε1-close to uniform and using the

fact that by Lemma 2.2.5 Extw is a (k + log
(

1
ε

)
, 2ε) strong average case extractor. Thus on fixing

R1, S2 is (2ε+ ε1)-close to Um on average and is a deterministic function of Y. since the random

variables R
(1)
1 , . . . ,R

(t)
1 are deterministic functions of X,X(1), . . . ,X(t), we thus have

S2,S1,S
(1)
1 ,S

(t)
1 ,R1,R

(1)
1 , . . . ,R

(t)
1 ,X,X(1), . . . ,X(t)

≈ε1+2ε Um,S1,S
(1)
1 ,S

(t)
1 ,R1,R

(1)
1 , . . . ,R

(t)
1 ,X,X(1), . . . ,X(t)

Further, it still holds that (X,X(1), . . . ,X(t)) is independent from (Y,Y(1), . . . ,Y(t)). This

proves the base case of our induction.

Now suppose that the claim is true for i and we will prove it for i+1. Fix the random variables

R[1,i−1],R
(1)
[1,i−1], . . . ,R

(t)
[1,i−1],S[1,i],S

(1)
[1,i], . . . ,S

(t)
[1,i]. By induction hypothesis, it follows that X,Q

each have average conditional min-entropy at least (u−i)m(t+1)+k+2 log
(

1
ε

)
after this fixing. We

now fix the random variables Ri,R
(1)
i , . . . ,R

(t)
i (these random variables are deterministic functions

of X,X(1), . . . ,X(t) by induction hypothesis). Thus by Lemma 2.2.3, the source X has conditional

min-entropy at least (u− i)(t+ 1)m+ k+ 2 log
(

1
ε

)
− (t+ 1)m = (u− i− 1)(t+ 1)m+ k+ 2 log

(
1
ε

)
after this fixing.

Since Si+1 = Extq(Q,Ri) is now independent of X and (εi + 2ε)-close to Um on average (by

induction hypothesis), it follows that Extw(X,Si+1),Si+1 ≈εi+4ε Um,Si+1. Thus on fixing Si+1, the

random variable Ri+1 = Extw(X,Si+1) is (εi + 4ε)-close to Um on average, and is a deterministic

26

function of X. We also fix the random variables S
(1)
i+1, . . . ,S

(t)
i+1. Since we have fixed the random

variables R
(1)
i , . . . ,R

(t)
i , thus S

(1)
i+1, . . . ,S

(t)
i+1 are deterministic functions of Y,Y(1), . . . ,Y(t). Hence

Ri+1 is still εi+1-close to uniform on average and a deterministic function of X after this fixing.

Thus,

Ri+1,R[1,i],R
(1)
[1,i], . . . ,R

(t)
[1,i],S[1,i+1],S

(1)
[1,i+1], . . . ,S

(t)
[1,i+1],Q,Q

(1), . . . ,Q(t)

≈εi+1 Um,R[1,i],R
(1)
[1,i], . . . ,R

(t)
[1,i],S[1,i+1],S

(1)
[1,i+1], . . . ,S

(t)
[1,i+1],Q,Q

(1), . . . ,Q(t).

The source Q has conditional min-entropy at least (u−i)(t+1)m+k+2 log
(

1
ε

)
−(t+1)m =

(u− i− 1)(t+ 1)m+ k + 2 log
(

1
ε

)
.

Recall that Si+2 = Extq(Q,Ri+1). Since Extq is a (k + log
(

1
ε

)
, 2ε) strong average case ex-

tractor, it follows that Extq(Q,Ri+1),Ri+1 ≈εi+2+2ε Um. since the random variables R
(1)
i+1, . . . ,R

(t)
i+1

are deterministic functions of X,X(1), . . . ,X(t) (recall that we have fixed S
(1)
i+1, . . . ,S

(t)
i+1), it follows

that

Si+2,S[1,i+1],S
(1)
[1,i+1], . . . ,S

(t)
[1,i+1],R[1,i+1],R

(1)
[1,i+1], . . . ,R

(t)
[1,i+1],X,X

(1), . . . ,X(t)

≈εi+1+2ε Um,S[1,i+1],S
(1)
[1,i+1], . . . ,S

(t)
[1,i+1],R[1,i+1],R

(1)
[1,i+1], . . . ,R

(t)
[1,i+1],X,X

(1), . . . ,X(t).

Also, we maintain at each step that (X,X(1), . . . ,X(t)) is independent from (Y,Y(1), . . . ,Y(t)).

This completes the proof.

3.2 The Flip-Flop Primitive

The flip-flop primitive (Algorithm 1), introduced by Cohen [Coh15a], is a particularly elegant way

of using the alternating extraction protocol. In this section, we establish a property of the flip-flip

primitive that strengthens a result proved in [Coh15a]. Before presenting the flip-flop construction

27

and our result, we first discuss a toy example which motivates this construction.

A Toy Problem Let X,X′ be correlated r.v’s such that X is an (n, k)-source. Further suppose

we have access to a uniform strong Y on d bits such that {X,X′} is independent of Y. Our goal

is to construct a deterministic function f : {0, 1}n × {0, 1}d → {0, 1}m such that

f(X,Y), f(X′,Y) ≈ Um, f(X′,Y).

We adopt the following notation for convenience: For any r.v Z = g(X,Y), where g is a deter-

ministic function, let Z′ = g(X′,Y). As a starting point for our construction of f , we could play

an alternating extraction game, say for 2 rounds, between X and Y (and similarly, in the ‘tam-

pered game’ between X′ and Y′). Let R0,R1 be the output of the look-ahead extractor. As a

preliminary candidate for f , define f(X,Y) = R1. Thus, assuming k is large enough, we know by

results from the previous section that R1 is close to uniform on average conditioned on R0,R
′
0.

However, it is not clear if R1 is close to uniform given R′1 = f(X′,Y). In fact it is not hard to

find counter-examples for this construction. Thus, maybe we could try to solve an easier problem.

Suppose we now we have access to an ‘advice’ bit b, and a tampered bit b′ 6= b, and we are aiming

to construct f : {0, 1}n × {0, 1}d × {0, 1} → {0, 1}m such that

f(X,Y, b), f(X′,Y, b′) ≈ Um, f(X′,Y′, b′).

We could now try to define f(X,Y, b) = Rb. Clearly, if b = 1 (and this b′ = 0), this works since

R1 is close to uniform on average given R′0. However, the construction does not work if b = 0. We

give a rough idea of how to fix this approach and refer the reader to Algorithm 1 for the actual

cosntruction. The idea is play 2 more rounds of alternating extraction between X and Y, where

Y is a new source derived from Y (and hence is independent of X). Let R0,R1 be the output of

the look-ahead extractor. We now define f(X,Y) = R1−b. Thus, if b = 0, clearly f(X,Y) = R1 is

close to uniform on average given f(X′,Y) = R
′
0. Further, we can show that if b = 1, since we gain

independence in the first 2 rounds of alternating extraction (i.e, R1 is close to uniform on average

28

given R′0), this carries on to the next two rounds of alternating extraction as well.

We now present the flip-flop construction, and then establish our result (Lemma 3.2.1)

which informally states that the correlations are broken even allowing multiple tamperings on both

X and Y.

Algorithm 1: flip-flop(x, y, qi, b)

Input: Bit strings x, y, qi of length nw, ny, nq respectively, and a bit b.
Output: A bit string of length nq.
Subroutine: Let Extq : {0, 1}nq × {0, 1}m → {0, 1}m be a strong seeded extrac-
tor set to extract from min-entropy k with error ε and seed length m. Let Extw :
{0, 1}nw × {0, 1}m → {0, 1}m be a strong seeded extractor set to extract from min-
entropy k with error ε and seed length d.
Let laExt : {0, 1}nw × {0, 1}nq+m → {0, 1}2m be the look ahead extractors defined in
Section 3.1 for an alternating extraction protocol with parameters m,u = 2 (recall u is
the number of steps in the protocol, m is the length of each random variable that is com-
municated between the players), and using Extq,Extw as the strong seeded extractors.
Let Ext : {0, 1}ny × {0, 1}m → {0, 1}nq be a strong seeded extractor set to extract from
min-entropy k1 with error ε.

1 Let si,1 = Slice(qi,m)
2 Let laExt(x, (qi, si,1)) = ri,0, ri,1
3 Let qi = Ext(y, ri,b)
4 Let si,1 = Slice(qi,m).
5 Let laExt(x, (qi, si,1)) = ri,1, ri,2.
6 Let qi+1 = Ext(y, ri,1−b)
7 Ouput qi+1.

Lemma 3.2.1. Let b, {bh : h ∈ [j]} be j + 1 bits such that for all h ∈ [j], b 6= bh. Let X be a

(nw, kw)-source and let {Xh : h ∈ [j]} be random variables on {0, 1}nw that are arbitrarily correlated

with X. Let Y, {Yh : h ∈ [j]} be arbitrarily correlated random variables that are independent of

(X, {Xh : h ∈ [j]}). Suppose that Y is a (ny, ky)-source, ky = ny − λ, each random variable in

{Yh : h ∈ [j]} is on ny bits. Let Qi be some function of Y on nq bits with min-entropy at least

nq − λ, and for each h ∈ [j], let Qh be an an arbitrary function of Y, {Ya : a ∈ [j]} on nq bits.

Let flip-flop be the function computed by Algorithm 1. Let flip-flop(X,Y,Qi, b) = Qi+1, and

for h ∈ [j], let flip-flop(Xh,Yh,Qh
i , b

h) = Qh
i+1. Suppose ky ≥ max{k, k1}+10

(
jnq + jm+ log

(
1
ε

))
,

29

kw ≥ k + 10
(
jm+ log

(
1
ε

))
, and nq ≥ k + 10jm+ 2 log(1

ε) + λ.

Then, with probability at least 1− ε′, where ε′ = O(2λε), over the fixing of the random vari-

ables Qi, {Qh
i : h ∈ [j]},Ri,0,Ri,1, {Rh

i,0,R
h
i,1 : h ∈ [j]},Qi, {Q

h
i : h ∈ [j]},Ri,0,Ri,1, {R

h
i,0,R

h
i,1 :

h ∈ [j]}, {Qh
i+1 : h ∈ [j]}:

• Qi+1 is ε′-close to Unq and is a deterministic function of Y

• The random variables (X, {Xh : h ∈ [j]}) and (Y, {Yh : h ∈ [j]}) are independent

• X has min-entropy at least kw − 10
(
jm+ log

(
1
ε

))
and Y has min-entropy at least ky −

10
(
jnq + jm+ log

(
1
ε

))
.

Proof. Notation: For any determinitic function f , if V = f(X,Y), let Va denote the random

variable H(Xa,Ya).

We split the proof into two cases, depending on b.

Case 1: Suppose b = 1. By Lemma 3.1.1, it follows that

Ri,1, {Rh
i,0 : h ∈ [j]},Qi, {Qh

i : h ∈ [j]}

≈ε1 Um, {Rh
i,0 : h ∈ [j]},Qi, {Qh

i : h ∈ [j]},

where ε1 = c2λε, for some constant c. Thus, we can fix {Rh
i,0 : h ∈ [j]},Qi, {Qh

i : h ∈ [j]}, and

with probability at least 1−O(ε1), Ri,1 is O(ε1)-close to Um. Note that Ri,1 is now a deterministic

function of X. Further, by Lemma 2.3.7, Y loses min-entropy at most (j + 1)nq + log
(

1
ε

)
with

probability at least 1− ε due to this fixing. Since on fixing Qi, {Qh
i : h ∈ [j]}, the random variables

{Rh
i,0 : h ∈ [j]} are deterministic function of X, {Xh : h ∈ [j]}, the source X loses min-entropy at

most jm+ log
(

1
ε

)
with probability at least 1− ε due to this fixing. We now note that the random

variables {Qh
i : h ∈ [j]} are deterministic functions of Y, {Yh : h ∈ [j]}. Thus, we fix {Qh

i : h ∈ [j]},

and by Lemma 2.3.7, Y loses min-entropy at most jnq + log
(

1
ε

)
with probability at least 1− ε due

to this fixing. Since Ext extracts from min-entropy k1, and ky was chosen large enough, it follows

that the random variable Qi is (ε+ ε1)-close to Unq with probability at least 1− O(ε1) even after

30

the fixing. Further, we fix Ri,1 since Ext is a strong seeded extractor, and by Lemma 2.3.7, X loses

min-entropy at most m+log
(

1
ε

)
with probability at least 1− ε due to this fixing. Thus Qi is now a

deterministic function of Y. We now fix the random variables {Rh
i,2 : h ∈ [j]}, noting that they are

deterministic functions of X and hence does not affect the distribution of Qi. X loses min-entropy

at most jm+ log
(

1
ε

)
with probability at least 1− ε due to this fixing.

We now note that the random variables {Rh
i,0,R

h
i,1 : h ∈ [j]} are deterministic function of

X, {Xj : j ∈ [h]} since we have fixed {Q(h)
i : h ∈ [j]}. Thus, we can fix {R(h)

i,0 ,R
(h)
i,1 : h ∈ [j]}

and X loses min-entropy at most 2jm+ log
(

1
ε

)
with probability at least 1− ε. Thus it follows by

Lemma 3.1.1 that |Ri,1,Qi − Um,Qi| < ε + O(ε1). We fix Qi and Y loses min-entropy at most

nq + log
(

1
ε

)
using Lemma 2.3.7. Finally, we note that {Qh

i+1 : h ∈ [j]} is now a deterministic

function of Y, {Yh : h ∈ [j]}. Thus, we can fix {Qh
i+1 : h ∈ [j]} variables and Y loses min-entropy

at most jnq + log
(

1
ε

)
with probability at least 1 − ε due to this fixing. Further, Ri,0 is now a

deterministic function of X. It follows that Qi+1 is O(ε1 + ε)-close to Unq since ky is chosen large

enough. We further fix Ri,1 noting that Ext is a strong extractor and X loses min-entropy at most

m+ log
(

1
ε

)
with probability at least 1− ε due to this fixing.

Case 2: Now suppose b = 0. We fix the random variables Qi, {Qh
i : h ∈ [j]}. Conditioned on

this fixing, it follows by Lemma 3.1.1 that |Ri,0 − Um| < ε1, ε1 = O(2λε), with probability at least

1 − ε. Since Ext is a strong seeded extractor (and ky is large enough) and Ri,0 is a deterministic

function of X, it follows that |Qi,Ri,0−Unq ,Ri,0| < ε+ ε1 with probability at least ε. We fix Ri,0,

and observe that Qi is now a deterministic function of Y. We can now fix {Rh
i,0,R

h
i,1 : h ∈ [j]}

since {Rh
i,1 : h ∈ [j]} is a deterministic function of X, {Xh : h ∈ [j]}, and hence does not affect the

distribution of Qi. As a result of these fixings, it is clear that (X, {Xh : h ∈ [j]}) is independent of

(Yi, {Yh : h ∈ [j]}). Further X loses min-entropy of at most 2(j + 1)m+ log
(

1
ε

)
with probability

at least 1− ε, and Y loses min-entropy of at most 2(j+ 1)nq + (j+ 1)m+ 3 log
(

1
ε

)
with probability

at least 1 − 3ε. Note that now Qi, {Qh
i : h ∈ [j]} are deterministic functions of Y, {Yh : h ∈ [j]},

31

and Qi is O(ε1)-close to Unq . By Lemma 3.1.1, it follows that

Ri,1, {R
h
i,0 : h ∈ [j]},Qi, {Q

h
i : h ∈ [j]} ≈ε2 Um, {R

h
i,0 : h ∈ [j]},Qi, {Q

h
i : h ∈ [j]}

where ε2 = c(ε1 +ε+ε), for some constant c. Thus, we can fix {Rh
i,0 : h ∈ [j]},Qi, {Q

h
i : h ∈ [j]} and

with probability at least 1−O(ε2), Ri,1 is O(ε2)-close to Um. Note that Ri,1 is now a deterministic

function of X. Further, by Lemma 2.3.7, Y loses min-entropy at most (j + 1)nq + log
(

1
ε

)
with

probability at least 1− ε due to this fixing. Since on fixing Qi, {Q
h
i : h ∈ [j]}, the random variables

{Rh
i,1 : h ∈ [j]} are deterministic functions of X, {X(h) : h ∈ [j]}, the source X loses min-entropy

at most jm + log
(

1
ε

)
with probability at least 1 − ε due to this fixing. We now note that the

random variables {Qh
i+1 : h ∈ [j]} are deterministic functions of Y, {Yh : h ∈ [j]}. Thus, we

fix {Qh
i+1 : h ∈ [j]} and by Lemma 2.3.7, Y loses min-entropy at most (j + 1)nq + log

(
1
ε

)
with

probability at least 1−ε due to this fixing. Since Ext extracts from min-entropy k1, (and ky is large

enough) it follows that random variable Qi+1 is O(ε2)-close to Unq even after the fixing. Further, we

fix Ri,1 since Ext is a strong seeded extractor, and by Lemma 2.3.7, X loses min-entropy m+log
(

1
ε

)
with probability at least 1 − ε due to this fixing. Further Qi+1 is now a deterministic function of

Y. Thus we can fix the random variables {R(h)
i,2 : h ∈ [j]} since they are deterministic function

sod X and does not affect the distribution of Qi+1. X loses min-entropy at most m+ log
(

1
ε

)
with

probability at least 1− ε due to this fixing. This completes the proof.

3.3 Correlation Breakers with Advice

In this section, we construct a primitive that breaks correlations under a weaker guarantee compared

to the flip-flop function. Informally, as motivated in the previous section, the bit b can be thought

of as advice to the flip-flop function, with the guarantee that b 6= bi for any i. Instead, now suppose

we only have access to a short string w, with the guarantee that w 6= wi. We show that it is

possible to break correlations with this weaker guarantee by chaining together a bunch of flip-

flop functions. This generalizes an object introduced by Cohen [Coh15a], which he called a local

32

correlation breaker, with our twist being that we now allow access to an advice string w. We now

describe the construction in more detail.

Algorithm 2: ACB(x, y, z)

Input: Bit strings x, y, z of length nw, ny, ` respectively.
Output: A bit string of length nq.

1 Let q1 = Slice(y, nq)
2 for h = 1 to ` do
3 qh+1 = 2laExt(x, y, qh, zh)
4 end
5 Ouput q`+1.

Lemma 3.3.1. Let z, z1, . . . , zt each be ` bit strings such that for all i ∈ [t], z 6= zi. Let

X be a (nw, kw)-source and let X1, . . . ,Xt be random variables on {0, 1}nw that are arbitrarily

correlated with X. Let Y,Y1, , . . . ,Yt be random variables on ny bits that are independent of

(X,X1,X2, . . . ,Xt). Suppose that Y is a (ny, ky)-source, ky = ny − λ.

Let ACB be the function computed by Algorithm 2. Let ACB(X,Y, z) = Q`+1, and for

h ∈ [t], let ACB(Xh,Yh, zh) = Qh
`+1. Suppose ky ≥ max{k, k1} + 20`

(
tnq + tm+ log

(
1
ε

))
, kw ≥

k + 20`
(
tm+ log

(
1
ε

))
and nq ≥ k + 10tm+ 2 log(1

ε) + λ. Then, we have

Q`+1,Q
1
`+1, . . . ,Q

t
`+1 ≈ε′ Unq ,Q1

`+1, . . . ,Q
t
`+1

where ε′` = O((2λ + `)ε).

Proof. Notation: For any function f , if V = f(X,Y), let V a denote the random variable

f(X(a),Y(a)).

For h ∈ [`], define the sets

Indh = {i ∈ [t] : zh 6= zih, Indh = [t] \ Indh,

Ind[h] = ∪hi=1Indh, Ind[h] = [t] \ Ind[h].

33

We record a simple claim.

Claim 3.3.2. For each i ∈ [t], there exists h ∈ [`] such that i ∈ Indh.

Proof. Recall that we have fixed Z,Z1, . . . ,Zt such that Z 6= Zi for any i ∈ [t]. Thus it follows that

for each i ∈ [t], there exists some h ∈ [`] such that Zh 6= Zih, and hence i ∈ Indh.

We now prove our main claim, which combined with Lemma 3.2.1 and a simple inductive

argument proves Lemma 3.3.1.

Claim 3.3.3. For any h ∈ {0, 1, . . . , `}, suppose the following holds:

With probability at least 1− εh over the fixing of the random variables {Qi : i ∈ [h]}, {Qj
i :

i ∈ [h], j ∈ [t]}, {Ri,1,Ri,2 : i ∈ [h]}, {Rj
i,1,R

j
i,2 : i ∈ [h], j ∈ [t]}, {Qi : i ∈ [h]}, {Qj

i : i ∈ [h], j ∈

[t]}, {Ri,0,Ri,1 : i ∈ [h]}, {Rj
i,0,R

(j)
i,1 : i ∈ [h], j ∈ [t]}, {Qj

i+1 : j ∈ Ind[h]}: (a) Qh+1 is εh-close to a

source with min-entropy at least nq−λ and is a deterministic function of Y (b) {Qj
h+1 : j ∈ Ind[h]}

is a deterministic function of Y, {Yj : j ∈ [t]} (c) The random variables (X, {Xj : j ∈ [t]}) and

(Y, {Yj : j ∈ [t]}) are independent (d) X has min-entropy at least kw − 10h
(
tm+ log

(
1
ε

))
>

k+10
(
tm+ log

(
1
ε

))
and Y has min-entropy at least ky−10h

(
tnq + tm+ log

(
1
ε

))
> max{k, k1}+

10
(
tnq + tm+ log

(
1
ε

))
.

Then, the following holds:

Let εh+1 = εh+c2λε for some constant c. With probability at least 1− εh+1 over the fixing of

the random variables {Qi : i ∈ [h+1]}, {Qj
i : i ∈ [h+1], j ∈ [t]}, {Ri,1,Ri,2 : i ∈ [h+1]}, {Rj

i,1,R
j
i,2 :

i ∈ [h + 1], j ∈ [t]}, {Qi : i ∈ [h + 1]}, {Qj
i : i ∈ [h + 1], j ∈ [t]}, {Ri,0,Ri,1 : i ∈ [h]}, {Rj

i,0,R
j
i,1 :

i ∈ [h + 1], j ∈ [t]}, {Qj
i+1 : j ∈ Ind[h+1]}: (a) Qh+2 is εh+1-close to Unq and is a deterministic

function of Y (b) {Qj
h+2 : j ∈ Ind[h+1]} is a deterministic function of Y, {Yj : j ∈ [t]} (c) The

random variables (X, {Xj : j ∈ [t]}) and (Y, {Yj : j ∈ [t]}) are independent (d) X has min-entropy

at least kw−10(h+1)
(
tm+ log

(
1
ε

))
and Y has min-entropy at least ky−10(h+1)

(
tm+ log

(
1
ε

))
.

Proof. We fix the random variables {Qi : i ∈ [h]}, {Qj
i : i ∈ [h], j ∈ [t]}, {Ri,0,Ri,1 : i ∈

[h]}, {Rj
i,0,R

j
i,1 : i ∈ [h], j ∈ [t]}, {Qi : i ∈ [h]}, {Qj

i : i ∈ [h], j ∈ [t]}, {Ri,0,Ri,1 : i ∈ [h]}, {Rj
i,0,R

j
i,1 :

34

i ∈ [h], j ∈ [t]}, {Qj
i+1 : j ∈ Ind[h]} such that (a), (b), (c), (d) holds (this happens with probability

at least 1−εh. We also fix the random variables {Rj

h+1,ψ1(zjh+1)
: j ∈ Ind[h]}, noting that they are de-

terministic functions of X. Thus X has min-entropy at least kw−10h
(
jm+ log

(
1
ε

))
− tm− log

(
1
ε

)
with probability at least 1− ε. Further, Q has min-entropy at least ky − 10h

(
tnq + tm+ log

(
1
ε

))
.

The claim now follows directly from Lemma 3.2.1.

To complete the proof of Lemma 3.3.1, we now note that the hypothesis of Claim 3.3.3 is

indeed satisfied when h = 0. Thus, by ` applications of Claim 3.3.3, it follows that the Q`+1 is

ε′`-close to Unq , where ε′` = O(2λε+ `ε). This follows since for all applications of Claim 3.3.3 except

the first time, Qh is εh-close to uniform, and hence the parameter λ = 0. This concludes the proof

of Lemma 3.3.1.

3.4 Handling Linear Correlations

In the above sections, we crucially use the fact that X,X1, . . . ,Xt is independent of Y,Y1, . . . ,Yt.

In this section, we show that in fact this can be relaxed and we can handle some amount of ‘linear

correlation’ among these r.v’s. We now describe the setting in more details. Let Y1, . . . ,Yt be

correlated random variables. We show that it is possible to break the correlations by just using an

additional correlated source of the form X + Z, assuming X is independent of Z,Y1, . . . ,Yt (and

Z is allowed to have arbitrary correlations with Y1, . . . ,Yt).

The main idea is to adapt the methods from the previous section with an important change.

We now use linear seeded extractors in the alternating extraction steps to exploit the linearity of

the correlations between the source and the seed in various steps of the protocol. The proofs of the

results in this section are similar to that of the Section 3.2. However, to carry out the arguments

requires more careful conditioning and a slightly subtler inductive hypothesis in some of the proofs.

We begin by proving a result similar to Lemma 3.1.1 when an alternating extraction protocol

is run between the sources W = X + Z and Q = Y, where Y and Z are arbitrarily correlated and

X is independent of (Y,Z).

35

Lemma 3.4.1. For any ε > 0 and any integers n1, n2, k, k1, t, d, h satisfying k1 ≥ k+ 2(t+ 1)d(h+

1) + log(1/ε) and n2 ≥ k + 2(t+ 1)d(h+ 1) + log(1/ε), let

• X be an (n1, k1)-source, Y = Un2 and Z be a random variable on n1 bits.

• Y1, . . . ,Yt be random variables on n2 bits each, such that X is independent of {Y,Z,Y1, . . . ,Yt}.

• S0 = Slice(Y, d) and for i ∈ [t], Si0 = Slice(Yi, d).

• LExt1 : {0, 1}n1 × {0, 1}d → {0, 1}d and LExt2 : {0, 1}n2 × {0, 1}d → {0, 1}d be (k, ε)-strong

linear seeded extractors.

• laExt(X + Z, (Y,S0)) = R1, . . . ,Rh, and for i ∈ [t], laExt(X + Z, (Yi,Si0)) = Ri
1, . . . ,R

i
h,

where laExt is executed with the linear seeded extractors LExt1,LExt2 for h rounds.

• Rj,X = LExt1(X,Sj) and Rj,Z = LExt1(Z,Sj), j ∈ [0, h].

Then,

1. for any j ≥ 0,

Sj , {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈ [0, j − 1]},

{Ri
g : g ∈ [0, j − 1], i ∈ [t]}

≈(4j+2)ε Ud, {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈ [0, j − 1]},

{Ri
g : g ∈ [0, j − 1], i ∈ [t]}.

2. for any j ≥ 0, conditioned on {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈

[0, j − 1]}, {Ri
g : g ∈ [0, j − 1], i ∈ [t]},

• X is independent of {Y,Z,Y1, . . . ,Yt}.

• Sj and {Sij : i ∈ [t]} are deterministic functions of Y.

36

• X has conditional min-entropy at least k + (t + 1)d(h + 1 − j) + log(1/ε) and Y has

conditional min-entropy at least k + 2(t+ 1)d(h+ 1− j) + log(1/ε).

3. for any j ≥ 0,

Rj ,Rj,Z, {Rg : g ∈ [0, j − 1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 1], i ∈ [t]},

{Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},Y, {Yi : i ∈ [t]},Z

≈4(j+1)ε Ud,Rj,Z, {Rg : g ∈ [0, j − 1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 1], i ∈ [t]},

{Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},Y, {Yi : i ∈ [t]},Z.

4. for any j ≥ 0, conditioned on Rj,Z, {Rg : g ∈ [0, j−1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j−1], i ∈

[t]}, {Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},

• X is independent of {Y,Z,Y1, . . . ,Yt}.

• Rj and {Ri
j : i ∈ [t]} are deterministic function of X.

• X has conditional min-entropy at least k + (t + 1)d(h + 1 − j) + log(1/ε) and Y has

conditional min-entropy at least k + 2(t+ 1)d(h− j) + log(1/ε).

Proof. We prove the lemma by induction on j. The validity of the lemma when j = 0 is direct.

Thus, suppose that the lemma holds for j − 1 for some j ∈ [h] and we prove it for j.

Fix the following random variables:

Rj−1,Z, {Rg : g ∈ [0, j − 2]}, {Ri
j−1,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 2], i ∈ [t]},

{Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}.

By induction hypothesis, it follows that

• Rj−1 is 4jε-close to Ud on average and is a deterministic function of X.

• Y has conditional min-entropy k + 2(t+ 1)d(h+ 1− j) + log(1/ε) and is independent of X.

37

• X has conditional min-entropy k + (t+ 1)d(h+ 2− j) + log(1/ε).

since Sj = LExt2(Y,Rj−1), it follows by Lemma 2.2.5 that Sj is (4j + 2)ε-close to Ud on average

conditioned on Rj−1. Thus we fix Rj−1 and observe that Sj is now a deterministic function of

Y. Next we fix {Ri
j−1 : i ∈ [t]} observing that, by induction hypothesis, they are deterministic

functions of X and hence does not affect Sj . As a result of this fixing, {Sij : i ∈ [t]} is now

a deterministic function of Y, and further X remains independent of {Y,Z,Y1, . . . ,Yt}. We

note that all the random variables fixed in this step are deterministic functions of X. Thus after

these fixings, by Lemma 2.2.3 and induction hypothesis, the conditional entropy of X is at least

k + (t + 1)d(h + 2 − j) − (t + 1)d + log(1/ε) = k + (t + 1)d(h + 1 − j) + log(1/ε). This concludes

the proof of (1) and (2).

We now prove (3) and (4). We continue to condition on the random variables that we have

fixed so far in our proof. We have,

• Sj is (4j + 2)ε-close to Ud on average and is a deterministic function of Y,

• X has average conditional min-entropy at least k + (t + 1)(h + 1 − j) + log(1/ε) and is

independent of Y,

• Y has conditional min-entropy k + 2(t+ 1)d(h+ 1− j) + log(1/ε).

Thus, it follows by Lemma 2.2.5 that Rj,X = LExt1(X,Sj) is 4(j + 1)ε-close to Ud on average

conditioned on Sj . We fix Sj and note that Rj,X is now a deterministic function of X. Next,

we fix Rj,Z which is now a deterministic function of Z and hence does not affect Rj,X. Since

LExt1 is linear seeded, it follows that Rj = Rj,X + Rj,Z and Ri
j = Ri

j,X + Ri
j,Z. Thus Rj is

εj-close to Ud on average and is a deterministic function of X. We now fix {Sij : i ∈ [t]} which

is a deterministic function of Y, and next fix {Ri
j,Z : i ∈ [t]} which is a deterministic function of

Z. Thus, these additional fixings do not affect Rj . Finally observe that X remains independent

of {Y,Z,Y1, . . . ,Yt}. We note that all the random variables fixed in this step are deterministic

functions of {Y,Z,Y1, . . . ,Yt}. Thus after these fixings, by Lemma 2.2.3, the conditional entropy

38

of Y is at least k + 2(t + 1)d(h + 1 − j) − 2(t + 1)d + log(1/ε) = k + 2(t + 1)d(h − j) + log(1/ε).

This concludes the proof of induction and hence the lemma follows.

We now instantiate the flip-flop and Advice-Correlation Breaker functions with linear seeded

extractors.

Algorithm 3: flip-flop(yi, yij , w, b)

Input: Bit strings yi, yij , w = x+ z of length n1, n2, n1 respectively, and a bit b.

Output: Bit string yij+1 of length n2.

Subroutines: Let LExt1 : {0, 1}n1 × {0, 1}d → {0, 1}d, LExt2 : {0, 1}n2 × {0, 1}d →
{0, 1}d be (k, ε)-strong linear seeded extractors. Let LExt3 : {0, 1}n1×{0, 1}d → {0, 1}n2

be a (k2, ε)-strong linear seeded extractor.
Let laExt : {0, 1}n1 × {0, 1}n2+d → {0, 1}2d be a look-ahead extractor for an alternating
extraction protocol run for 2 rounds using LExt1,LExt2 as the seeded extractors.

1 Let si0,j = Slice(yij , d), laExt(w, (yij , s
i
0,j)) = ri0,j , r

i
1,j

2 Let yi1,j = LExt3(yi, rib,j)

3 Let si0,j = Slice(yi1,j , d), laExt(w, (yi1,j , s
i
0,j)) = ri0,j , r

i
1,j

4 Output yij+1 = LExt3(yi, ri1−b,j)

Algorithm 4: ACB(yi, w, id)

Input: Bit strings yi, w = x+ z, id of length n1, n1, h respectively.
Output: Bit string yh+1 of length n2.

1 Let yi1 = Slice(y, n2)
2 for j = 1 to h do
3 yij+1 = flip-flop(yi, yij , w, id[j])

4 end
5 Output yih+1.

Theorem 3.4.2. For any ε > 0 and any integers n1, n2, k, k1, t, d, h satisfying k1 ≥ k + 8tdh +

log(1/ε), n2 ≥ k + 3td+ log(1/ε), n1 ≥ k + 10tdh+ (4ht+ 1)n2 + log(1/ε), let

• X be an (n1, k1)-source, Y1 = Un1 and Z,Y2, . . . ,Yt be random variables on n1 bits each,

such that X is independent of {Z,Y1, . . . ,Yt}.

39

• id1, . . . , idt be bit strings of length h such that for each i ∈ [t], id1 6= idi.

• Yi
h+1 = ACB(Y,X + Z, idi) for i ∈ [t] where ACB is the function computed by Algorithm 4.

Then,

Y1
h+1,Y

2
h+1, . . . ,Y

t
h+1 ≈O(hε) Un2 ,Y

2
h+1, . . . ,Y

t
h+1.

Proof. Define the following sets for j ∈ [h]:

Indj = {i ∈ [2, h] : idi[j] 6= id1[j]}, Ind≤j = ∪jg=1Indg, Ind≤j = [t] \ Ind≤j .

We prove the following lemma from which Theorem 3.4.2 is direct by observing that Ind≤h = [2, t].

Lemma 3.4.3. For each j ∈ [h],

Y1
j+1, {Yi

j+1 : i ∈ Ind≤j} ≈O(jε) Un2 , {Yi
j+1 : i ∈ Ind≤j}.

Proof. Recall that Rc,j = LExt(X + Z,Sc,j) (for any c ∈ {0, 1} and j ∈ [h]). Define Rc,j,X =

LExt(X,Sc,j) and Rc,j,Z = LExt(Z,Sc,j). Since LExt is linear seeded, it follows that Rc,j =

Rc,j,X + Rc,j,Z. Similarly, define Rc,j,X = LExt(X,Sc,j) and Rc,j,Z = LExt(Z,Sc,j).

We prove the lemma by induction on j. In fact, we prove the following stronger statement:

For every j ∈ [0, h], conditioned on the random variables: {Yi
j+1 : i ∈ Ind≤j}, {Yi

g : g ∈

[j], i ∈ [t]}, {Ri
0,j+1,Z : i ∈ Indj}, {Y

i
g : g ∈ [j], i ∈ [t]}, {Si0,g : g ∈ [j], i ∈ [t]}, {Si1,g : g ∈ [j], i ∈

[t]}, {Ri
0,g : g ∈ [j], i ∈ [t]}, {Ri

1,g : g ∈ [j], i ∈ [t]}, {Si0,g : g ∈ [j], i ∈ [t]}, {Si1,g : g ∈ [j], i ∈

[t]}, {Ri
0,g : g ∈ [j], i ∈ [t]}, {Ri

1,g : g ∈ [j], i ∈ [t]}

• Y1
j+1 is 6jε-close to Un2 on average

• X is independent of {Z,Y1, . . . ,Yt}.

• {Yi
j+1 : i ∈ [t]} is a deterministic function of {Z,Y1, . . . ,Yt}.

40

• X has conditional min-entropy at least kj,X = k+8td(h−j)+log(1/ε) and Y1 has conditional

min-entropy at least kj,Y = k + 10td(h− j) + 4tn2(h− j + 1) + log(1/ε).

The base case of the induction when j = 0 is direct. Now suppose the above holds for some

j − 1 ≥ 0, and we prove it for j.

We fix the following random variables: {Yi
j : i ∈ Ind≤(j−1)}, {Yi

g : g ∈ [j − 1], i ∈ [t]}, {Yi
g :

g ∈ [j−1], i ∈ [t]}, {Ri
0,j,Z : i ∈ Indj−1}, {Si0,g : g ∈ [j−1], i ∈ [t]}, {Si1,g : g ∈ [j−1], i ∈ [t]}, {Ri

0,g :

g ∈ [j − 1], i ∈ [t]}, {Ri
1,g : g ∈ [j − 1], i ∈ [t]}, {Si0,g : g ∈ [j − 1], i ∈ [t]}, {Si1,g : g ∈ [j − 1], i ∈

[t]}, {Ri
0,g : g ∈ [j − 1], i ∈ [t]}, {Ri

1,g : g ∈ [j − 1], i ∈ [t]}. By induction hypothesis, we have

• Y1
j is 6(j − 1)ε-close to Un2 on average.

• X is independent of {Z,Y1, . . . ,Yt}.

• {Yi
j : i ∈ [t]} is a deterministic function of {Z,Y1, . . . ,Yt}.

• X has conditional min-entropy at least kj−1,X = kj,X + 8td and Y1 has conditional min-

entropy at least kj−1,Y = kj,Y + 10td+ 4tn2.

We repeatedly use Lemma 2.2.5 when we argue about the remaining conditional min-entropy

in a random variable and do not explicitly mention this. Further, any random variable that we fix

is either a deterministic function of X or a deterministic function of {Z,Y1, . . . ,Yt}. Thus, we

always maintain that X is independent of {Z,Y1, . . . ,Yt} and again do not explicitly mention this.

We split the proof into two cases depending on the bit id1[j].

Case 1: Suppose id1[j] = 1 and hence Y
1
j = LExt3(Y1,R1

1,j). It follows that for all

i ∈ Indj , id
i[j] = 0 and Y

i
j = LExt3(Yi,Ri

0,j). Since {Yi
j : i ∈ Ind≤(j−1)} is fixed, it follows that

for all i ∈ Ind≤(j−1), Ri
0,j,X = LExt1(X,Si0,j) is a deterministic function of X. We fix the random

variables {Ri
0,j,X : i ∈ Ind≤(j−1)}, and X has conditional min-entropy at least kj,X + 7td. We now

fix S1
0,j , {Si0,j : i ∈ Ind≤(j−1)}, {Ri

0,j,Z : i ∈ [t]} and by Lemma 3.4.1, it follows that (a) R1
0,j is

(6j − 5)ε-close to uniform on average and is a deterministic function of X, (b) X has conditional

41

min-entropy at least kj,X + 7td and Y1
j has conditional min-entropy at least k + td+ log(1/ε). We

also note that for each i ∈ Ind≤(j−1), Ri
0,j = Ri

0,j,X + Ri
0,j,Z is fixed.

Next we fix {Si1,j : i ∈ Ind≤(j−1)}, observing that it is now a deterministic function of

{Yi : i ∈ [t]} and hence does not affect the distribution of R1
0,j . The conditional min-entropy of

Y1
j after this fixing is at least k+ log(1/ε). We now fix R1

0,j , {Ri
0,j : i ∈ Ind≤(j−1)} and by Lemma

3.4.1, (a) S1
1,j is (6j − 4)ε-close to uniform on average and is a deterministic function of Y1, (b)

X has conditional min-entropy at least kj,X + 6td and Y1
j has conditional min-entropy at least

k + log(1/ε) .

Continuing in a similar fashion as above, we first fix {Ri
1,j,X : i ∈ Ind≤(j−1)}, which is a

deterministic function of X. The conditional min-entropy of X after this fixing is at least kj,X+5td.

We now fix the random variables S1
1,j , {Si1,j : i ∈ Ind≤(j−1)}, {Ri

1,j,Z : i ∈ [t]}, {Yi
j : i ∈ [t]} and

by Lemma 3.4.1, we have (a) R1
1,j is (6j − 3)ε-close to uniform on average and is a deterministic

function of X, (b) X has conditional min-entropy at least kj,X + 5td.

We fix {Yi
j : i ∈ Ind≤(j−1)} which is deterministic function of {Yi : i ∈ [t]}, and R1

1,j

continues to remain close to Ud on average. We also fix {Yi
j : i ∈ Indj} observing that it is a

deterministic function of {Yi : i ∈ [t]} (since we have fixed {Ri
0,j : i ∈ [t]} and for i ∈ Indj ,

Yi
j = LExt3(Yi,Ri

0,j)). It follows that {Si0,j : i ∈ Ind≤j} is fixed and hence {Ri
0,j,Z : i ∈ Ind≤j} is

a deterministic function of Z. Thus, we fix {Ri
0,j,Z : i ∈ Ind≤j} without affecting the distribution

of R1
1,j .

The conditional min-entropy of Y1 after this fixing is at least kj,Y + 2tn2 + 4td. Thus

Y
1
j = LExt3(Y1,R1

1,j) is (6j−2)ε-close to Un2 on average conditioned on R1
1,j . We fix R1

1,j and thus

Y
1
j is now a deterministic function of Y1. We now fix {Ri

1,j,X : i ∈ Indj} which is a deterministic

function of X and note that this fixes {Ri
1,j : j ∈ Indj}. Further, since {Yi

j : i ∈ Ind≤j} is fixed, it

follows that for all i ∈ Ind≤j , R
i
0,j,X is a deterministic function of X. We fix the random variables

{Ri
0,j,X : i ∈ Ind≤j} and note that {Si1,j : i ∈ Ind≤j} is now fixed. Thus {Ri

1,j,X : i ∈ Ind≤j} is now

a deterministic of X. We fix {Ri
1,j,X : i ∈ Ind≤j} and Y

1
j continues to remain close to uniform on

average and X has conditional min-entropy at least kj,X + 2td.

42

We now fix S
1
0,j , {S

i
0,j : i ∈ Ind≤j}, {R

i
0,j,Z : i ∈ Ind≤j}, {Y

i
j : i ∈ Ind≤j} and by Lemma

3.4.1, it follows that (a) R
1
0,j is (6j−1)ε-close to uniform on average and is a deterministic function

of X, (b) X has conditional min-entropy at least kj,X + 3td. Next we fix {Ri
1,j,Z : i ∈ Ind≤j}

which a deterministic function of Z and {Yi
j+1 : i ∈ Ind≤j} is now a deterministic function of

{Yi : i ∈ Ind≤j}. Thus, we fix {Yi
j+1 : i ∈ Ind≤j} and R

1
0,j continues to remain uniform on

average. It now follows that {Ri
0,j+1,Z : i ∈ Ind≤(j)} is a deterministic function of Z, and we fix it.

The conditional min-entropy of Y1 after this fixing is at least kj,Y and thus, Y1
j+1 =

LExt3(Y1,R
1
0,j) is 6jε-close to Un2 on average conditioned on R

1
0,j . We fix R

1
0,j which is a deter-

ministic function of X and thus Y1
j+1 is now a deterministic function of Y1. Now consider any

i ∈ Ind≤j . since we have fixed R
i
0,j,Z and R

i
0,j = R

i
0,j,X + R

i
0,j,Z, it follows that R

i
0,j,X is a deter-

ministic function of X. Thus, we fix {Ri
0,j : i ∈ Ind≤j} without affecting the distribution of Y1

j+1.

X has conditional min-entropy at least kj,X + td after this fixing. Now, since Y
i
j is fixed, it follows

that S
1
1,j is fixed for each i ∈ [t]. Thus, for any i ∈ Ind≤j , R

i
1,j,X = LExt1(X,S

i
1,j) is a determin-

istic function of X. We fix {Ri
1,j,X : i ∈ Ind≤j}, and observe that Y1

j+1 remains close to uniform

on average and X has conditional min-entropy at least kj,X. Thus, {Ri
1,j : i ∈ Ind≤j} is now a

deterministic function of Z and {Yi
j+1 : i ∈ Ind≤j} is a deterministic function of {Z,Y1, . . . ,Yt}.

This concludes the proof of this case.

Case 2: Suppose id1[j] = 0 and hence Y
1
j = LExt3(Y1,R1

0,j). Since {Yi
j : j ∈ Indj−1} is

fixed, it follows that {Ri
0,j,X : i ∈ Ind≤(j−1)} and {Ri

1,j,X : i ∈ Ind≤(j−1)} are deterministic functions

of X and we fix them without affecting the distribution of Y1
j . X has conditional min-entropy at

least kj−1,X + 6td after this fixing.

We now fix S1
0,j , {Si0,j : i ∈ Ind≤(j−1)}, R1

0,j,Z, {Ri
0,j,Z : i ∈ Ind≤(j−1)} and by Lemma

3.4.1, R1
0,j is (6j − 5)ε-close to Ud on average and is a deterministic function of X. We next fix

{Ri
1,j,Z : i ∈ Ind≤(j−1)}, {Yi

j : i ∈ Ind≤(j−1)}, and {Yi
j : i ∈ Ind≤(j−1)} observing that they are

deterministic functions of {Z,Y1, . . . ,Yt} and does not affect the distribution of R1
0,j . Further,

{Ri
0,j,Z : i ∈ Ind≤(j−1)} is now a deterministic function of Z, and we fix it.

As a result of these fixings, Y1 has conditional min-entropy at least kj−1,Y + 5tdh + 2tn2.

43

Thus, Y
1
j is (6j − 4)ε-close to Un2 on average conditioned on R1

0,j . We fix R1
0,j and Y

1
j is now a

deterministic function of Y1. We now fix {Ri
0,j,X : i ∈ Ind≤(j−1)} which is a deterministic function

of X and note that this fixes {Si0,j : i ∈ Ind≤(j−1)}. Thus {Ri
1,j,X : i ∈ Ind≤(j−1)} is now a

deterministic function of X and we fix it without affecting the distribution of Y
i
j . As a result of

this fixing {Ri
1,j : i ∈ Ind≤(j−1)} is a deterministic function of Z and hence {Yi

j : i ∈ Ind≤(j−1)}

is a deterministic function of {Z,Y1, . . . ,Yt}. Next, we fix {Ri
0,j : i ∈ Ind≤(j−1)} and {Ri

1,j : i ∈

Ind≤(j−1)}, noting that they are deterministic functions of X. X has conditional min-entropy at

least kj−1,X + 2td after these fixings.

We now fix S
1
0,j , {S

i
0,j : i ∈ Ind≤(h−1)}, R

1
0,j,Z, {Ri

0,j,Zi ∈ Ind≤(h−1)} and invoking Lemma

3.4.1, it follows that R
1
0,j is (6j− 3)ε-close to uniform on average and is a deterministic function of

X. We now fix {Ri
1,j,Z : i ∈ Ind≤(j−1)} which a deterministic function of Z and note that this fixes

{Ri
1,j : i ∈ Ind≤(j−1)}. Further Y

1
j has conditional min-entropy at least k + td+ log(1/ε). We now

fix {Ri
0,j,X : i ∈ Ind≤(j−1)}, {S

i
1,j,X : i ∈ Ind≤(j−1)}, {R

i
1,j,X : i ∈ Ind≤(j−1)}, and by Lemma 3.4.1,

it follows that R
i
1,j is (6j − 1)ε-close to Ud on average and is deterministic function of X.

We now observe that {Yi
j+1 : i ∈ Ind≤j} is a deterministic function of {Z,Y1, . . . ,Yt} and

fix it without affecting the distribution of R
1
1,j . Next we fix {Ri

0,j,Z : i ∈ Ind≤j} which is now a

deterministic function of {Z,Y1, . . . ,Yt}. The conditional min-entropy of Y1 is at least kj,Y and

hence Yi
j+1 is 6jε-close to Un2 on average conditioned on R

1
1,j . We fix R

1
1,j and thus Y1

j+1 is now

a deterministic function of Y1. Thus we fix {Ri
1,j,X : i ∈ Ind≤j} and as a result {Yi

j+1 : i ∈ Ind≤j}

is now a deterministic function of {Z,Y1, . . . ,Yt}. Further X has conditional min-entropy at least

kj,X as a result of these fixings. This completes the proof of induction and the theorem follows.

3.5 Non-Malleable Independence Preserving Mergers

In this section, we construct a primitive to break correlations in an even more general setting. To

motivate the general problem, consider the following simpler setting: Let X be a 2× n matrix r.v

44

with rows X1 and X2, and let X′ be a correlated 2×nmatrix with rows X′1 and X′2. Further, suppose

we know that either (a) X1,X
′
1 ≈ Un,X

′
1 or (b) X2,X

′
2 ≈ Un,X

′
1 holds. Our goal is to break the

correlations between these matrices using access to an independent seed Y (the seed is tampered

as well to Y′). More specifically, we want to construct a function f : {0, 1}2n × {0, 1}d → {0, 1}m

such that

f(X,Y), f(X′,Y′) ≈ Um, f(X′,Y′).

Informally, we call a function that satisfies the above guarantee to be a non-malleable independence

preserving merger (NIPM). More formally, we define an NIPM in the following way.

Definition 3.5.1. A (L, t, d′, ε, ε′)-NIPM : {0, 1}Lm × {0, 1}d → {0, 1}m1 satisfies the following

property. Suppose

• X,X1, . . . ,Xt are r.v’s, each supported on boolean L×m matrices s.t for any i ∈ [L], |Xi −

Um| ≤ ε,

• {Y,Y1, . . . ,Yt} is independent of {X,X1, . . . ,Xt}, s.t Y,Y1, . . . ,Yt are each supported on

{0, 1}d and H∞(Y) ≥ d− d′,

• there exists an h ∈ [L] such that |(Xh,X
1
h, . . . ,X

t
h)− (Um,X

1
h, . . . ,X

t
h)| ≤ ε,

then

|(L, t, d′, ε, ε′)-NIPM((X,Y), (L, t, d′, ε, ε′)-NIPM(X1,Y1), . . . , (L, t, d′, ε, ε′)-NIPM(Xt,Yt)

−Um1 , (L, t, d
′, ε, ε′)-NIPM(X1,Y1), . . . , (L, t, d′, ε, ε′)-NIPM(Xt,Yt)| ≤ ε′.

Using our NIPM, we construct a standard IPM introduced in the work of Cohen and Schul-

man [CS16].

Definition 3.5.2. A (L,C, k, t, ε, ε′)-IPM : {0, 1}Lm × {0, 1}n → {0, 1}m1 satisfies the following

property. Suppose

45

• X,X1, . . . ,Xt are r.v’s, each supported on boolean L×m matrices s.t for any i ∈ [L], |Xi −

Um| ≤ ε,

• Y1, . . . ,YC is an (n, k)-source, independent of {X,X1, . . . ,Xt}.

• there exists an h ∈ [L] such that |(Xh,X
1
h, . . . ,X

t
h)− (Um,X

1
h, . . . ,X

t
h)| ≤ ε,

then

|(L,C, k, t, ε, ε′)-IPM(X,Y), (L,C, k, t, ε, ε′)-IPM(X1,Y), . . . , (L,C, k, t, ε, ε′)-NIPM(Xt,Y)

−Um1 , (L,C, k, t, ε, ε
′)-IPM(X1,Y), . . . , (L,C, k, t, ε, ε′)-IPM(Xt,Y)| ≤ ε′

The key differences between an NIPM and IPM are the following: The function IPM is

allowed to have access to multiple independent sources instead of a seed Y to break the correlation

between X and X′. Further, these independent sources are not subject to any tampering.

3.5.1 `-Non-Malleable Independence Preserving Merger

The following result presents our basic construction of an NIPM. The construction is based on

extending the technique of alternating extraction in a new (but simple) way. We refer the reader

to Chapter 4 for improved constructions of NIPM which uses the basic NIPM from this section in

a black-box way. Further using these explicit NIPM constructions, we also give improved construc-

tions of IPM (see Chapter 7).

Theorem 3.5.3. There exist constants c3.5.3, c
′
3.5.3 > 0 such that for all integers m, d, k1, ` > 0

and any ε > 0, with m ≥ d ≥ k1 > c3.5.3` log(n/ε), there exists an explicit function `-NIPM :

({0, 1}m)`×{0, 1}d → {0, 1}m1, m1 = 0.9(m−c3.5.3` log(m/ε)), such that if the following conditions

hold:

• X1, . . . ,X` are r.v’s s.t for all i ∈ [`], |Xi−Um| ≤ ε1, and X′1, . . . ,X
′
` are r.v’s with each X′i

supported on {0, 1}m.

46

• {Y,Y′} is independent of {X1, . . . ,Xt,X
′
1, . . . ,X

′
t}, s.t the r.v’s Y,Y′ are both supported on

{0, 1}d and H∞(Y) ≥ k1.

• there exists an h ∈ [t] such that |(Xh,X
′
h)− (Um,X

′
h)| ≤ ε,

then

|`-NIPM((X1, . . . ,X`),Y), `-NIPM((X′1, . . . ,X
′
`),Y

′),Y,Y′

−Um1 , `-NIPM((X′1, . . . ,X
′
`),Y

′),Y,Y′| ≤ c′3.5.3`ε

Our construction of NIPM is based on extending the method of alternating extraction in a

new way.

`-Alternating Extraction We extend the above technique by letting Quentin have access

to ` sources Q1, . . . ,Q` (instead of just Q) and ` strong-seeded extractors {Extq,i : i ∈ [`]} such

that in the i’th round of the protocol, he uses Qi to produce the r.v Si = Extq,i(Qi,Ri). More

formally, the following sequence of r.v’s is generated: S1 = Slice(Q1, d),R1 = Extw(W,S1),S2 =

Extq,2(Q2,R1), . . . ,R`−1 = Extw(Q`−1,S`−1),S` = Extq,`(Q`,R`). Define the look-ahead extrac-

tor

`-laExt((Q1, . . . ,Q`),W) = S`.

We are now ready to prove Theorem 3.5.3.

Proof of Theorem 3.5.3. We instantiate the `-look-ahead extractor described above with the follow-

ing strong seeded extractors: Let Ext1 : {0, 1}m × {0, 1}d1 → {0, 1}d1 , Ext2 : {0, 1}d × {0, 1}d1 →

{0, 1}d1 and Ext3 : {0, 1}m × {0, 1}d1 → {0, 1}m1 be explicit strong-seeded from Theorem 2.1.2

designed to extract from min-entropy m/2, k1/4,m − c3.5.3` log(m/ε) respectively, each with error

ε. Thus d1 = c2.1.2 log(m/ε).

We think of each Xi being uniform, and add back an error ε1` in the end.

For each i ∈ [`− 1], let Extq,i = Ext1, Extq,` = Ext3 and Extw = Ext2.

47

Define

NIPM((X1, . . . ,X`),Y) = laExt((X1, . . . ,X`),Y).

For any random variable V = f((X1, . . . ,X`),Y) (where f is an arbitrary deterministic function),

let V′ = f((X′1, . . . ,X
′
`),Y

′).

We first prove the following claim.

Claim 3.5.4. For any j ∈ [h− 1], conditioned on the r.v’s {Si : i ∈ [j− 1]}, {S′i : i ∈ [j− 1]}, {Ri :

i ∈ [j − 1]}, {R′i : i ∈ [j − 1]} the following hold:

• Sj is 2(j − 1)ε-close to Ud1,

• Sj ,S
′
j are deterministic functions of {Xj ,X

′
j},

• for each i ∈ [t], Xi has average conditional min-entropy at least m− 2(j − 1)d1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2(j − 1)d1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Further, conditioned on the r.v’s {Si : i ∈ [j]}, {S′i : i ∈ [j]}, {Ri : i ∈ [j − 1]}, {R′i : i ∈ [j − 1]} the

following hold:

• Rj is (2j − 1)ε-close to Ud,

• Rj ,R
′
j are deterministic functions of {Y,Y′},

• for any i ∈ [`], Xi has average conditional min-entropy at least m− 2jd1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2(j − 1)d1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Proof. We prove the above by induction on j. The base case when j = 1 is direct. Thus suppose

j > 1. Fix the r.v’s {Si : i ∈ [j − 1]}, {S′i : i ∈ [j − 1]}, {Ri : i ∈ [j − 2]}, {R′i : i ∈ [j − 2]}. Using

inductive hypothesis, it follows that

48

• Rj−1 is (2j − 3)ε-close to Ud,

• Rj−1,R
′
j−1 are deterministic functions of {Y,Y′},

• for any i ∈ [t], Xi has average conditional min-entropy at least m− 2(j − 1)d1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2(j − 2)d1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Now since Sj = Ext1(Xj ,Rj−1), it follows that Sj is 2(j − 1)ε-close to Ud1 on average

conditioned on Rj−1. We thus fix Rj−1. Further, we also fix R′j−1 without affecting the distribution

of Sj . Thus Sj ,S
′
j are now a deterministic function of Xj ,X

′
j . It follows that after these fixings,

the average conditional min-entropy of Y is at least k1 − 2(j − 2)d1 − log(1/ε)− 2d1 = k1 − 2(j −

1)d1 − log(1/ε).

Next, we have Rj = Ext2(Y,Sj), and thus fixing Sj , it follows that Rj is (2j − 1)ε-close

to uniform on average. Further, since Rj is now a deterministic function of Y, we fix S′j . As a

result of these fixings, each Xi loses conditional min-entropy at most 2d1 on average. Since at

each point, we either fix a r.v that is a deterministic function of either {X1, . . . ,X`,X
′
1, . . . ,X`} or

{Y,Y′} it follows that {X1, . . . ,X`,X
′
1, . . . ,X

′
`} remain independent of {Y,Y′}. This completes

the inductive step, and hence the proof follows.

We now proceed to prove the following claim.

Claim 3.5.5. Conditioned on the r.v’s {Si : i ∈ [h− 1]}, {S′i : i ∈ [h]}, {Ri : i ∈ [h− 1]}, {R′i : i ∈

[h]} the following hold:

• Sh is 2(h− 1)ε-close to Ud,

• Sh is a deterministic function of Xh,

• for each i ∈ [t], Xi has average conditional min-entropy at least m− 2hd1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2hd1 − log(1/ε),

49

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Proof. We fix the r.v’s {Si : i ∈ [h− 1]}, {S′i : i ∈ [h− 1]}, {Ri : i ∈ [h− 2]}, {R′i : i ∈ [h− 2]}, and

using Claim 3.5.4 the following hold:

• Rh−1 is (2h− 3)ε-close to Ud,

• Rh−1,R
′
h−1 are deterministic functions of {Y,Y′},

• for any i ∈ [t], Xi has average conditional min-entropy at least m− 2(h− 1)d1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2(h− 2)d1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Next we claim that Xh has average conditional min-entropy at least m−2(h−1)d1− log(1/ε) even

after fixing X′h. We know that before fixings any other r.v, we have Xh|X′h is ε-close to uniform on

average. Since while computing the average conditional min-entropy, the order of fixing does not

matter, we can as well think of first fixing of X′h and then fixing the r.v’s {Si : i ∈ [h − 1]}, {S′i :

i ∈ [h − 1]}, {Ri : i ∈ [h − 2]}, {R′i : i ∈ [h − 2]}. Thus, it follows that the average conditional

min-entropy of Xh is at least m− 2(h− 1)d1 − log(1/ε).

We now show that even after fixing the r.v’s X′h,Rh−1,R
′
h−1, the r.v Sh is 2(h−1)ε-close to

uniform on average. Fix X′h and by the above argument Xh has average conditional min-entropy

at least m− 2(h− 1)d1− log(1/ε). Since Sh = Ext1(Xh,Rh−1), it follows that Sh is 2(h− 1)ε-close

to uniform on average even conditioned on Rh−1. We fix Rh−1, and thus Sh is a deterministic

function of Xh. Note that S′h = Ext1(X′h,R
′
h−1) is now a deterministic function of R′h (and thus

Y′). Thus, we can fix R′h (which also fixes S′h) without affecting the distribution of Sh.

Observe that after the r.v’s Rh−1,R
′
h−1 are fixed, S′h is a deterministic function of X′h. We

only fix S′h and do not fix X′h, and note that Sh is still 2(h − 1)ε-close to uniform. Further after

these fixings, each Xi has average conditional min-entropy at least m− 2hd1− log(1/ε), and Y has

average conditional min-entropy at least k1 − 2hd1 − log(1/ε).

50

By our construction of NIPM, Theorem 3.5.3 is direct from the following claim.

Claim 3.5.6. For any j ∈ [h, `], conditioned on the r.v’s {Si : i ∈ [j − 1]}, {S′i : i ∈ [j]}, {Ri : i ∈

[j − 1]}, {R′i : i ∈ [j]} the following hold:

• Sj is 2(j − 1)ε-close to Ud,

• Sj is a deterministic function of Xj

• for each i ∈ [`], Xi has average conditional min-entropy at least m− 2jd1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2jd1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Further, conditioned on the r.v’s {Si : i ∈ [j]}, {S′i : i ∈ [j + 1]}, {Ri : i ∈ [j − 1]}, {R′i : i ∈ [j]} the

following hold:

• Rj is (2j − 1)ε-close to Ud,

• Rj is a deterministic function of Y,

• for any i ∈ [`], Xi has average conditional min-entropy at least m− 2(j + 1)d1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2(j + 1)d1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Proof. We prove this by induction on j. For the base case, when j = h, fix the r.v’s {Si : i ∈

[h− 1]}, {S′i : i ∈ [h]}, {Ri : i ∈ [h− 1]}, {R′i : i ∈ [h]}. Using Claim 3.5.5, it follows that

• Sh is 2(h− 1)ε-close to Ud,

• Sh is a deterministic function of Xh,

• for each i ∈ [`], Xi has average conditional min-entropy at least m− 2hd1 − log(1/ε),

51

• Y has average conditional min-entropy at least k1 − 2hd1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Noting that Rh = Ext2(Y,Sh), we fix Sh and Rh is 2hε-uniform on average after this fixing. We

note that Rh is now a deterministic function of Y. Since R′h is fixed, S′h+1 is a deterministic

function of X′h+1, and we fix it without affecting the distribution of Rh. The average conditional

min-entropy of each Xi after these fixings is at least m − 2(h + 1)d1 − log(1/ε). Further, we note

that our fixings preserve the independence between {X1, . . . ,X`,X
′
1, . . . ,X

′
`} and {Y,Y′}. This

completes the proof of the base case.

Now suppose j > h. Fix the r.v’s {Si : i ∈ [j − 1]}, {S′i : i ∈ [j]}, {Ri : i ∈ [j − 2]}, {R′i : i ∈

[j − 1]}. Using inductive hypothesis, it follows that

• Rj−1 is (2j − 3)ε-close to Ud,

• Rj−1 is a deterministic function of Y,

• for any i ∈ [t], Xi has average conditional min-entropy at least m− 2jd1 − log(1/ε),

• Y has average conditional min-entropy at least k1 − 2jd1 − log(1/ε),

• {X1, . . . ,X`,X
′
1, . . . ,X

′
`} is independent of {Y,Y′}.

Using the fact that Sj = Ext1(Xj ,Rj−1), we fix Rj−1 and Sj is (2j−2)ε-close to uniform on average

after this fixing. Further, Sj is a deterministic function of Xj . Since S′j is fixed, it follows that

R′j is a deterministic function of Y and we fix it without affecting the distribution of Sj . We note

that after these fixings, Y has average conditional min-entropy at least k1 − 2(j + 1)d1 − log(1/ε).

Further, we note that our fixings preserve the independence between {X1, . . . ,X`,X
′
1, . . . ,X

′
`} and

{Y,Y′}.

Now, we fix Sj and it follows that Rj is a deterministic function of Y and is (2j − 1)ε-close

to uniform on average. Further, since R′j is fixed, it follows that S′j+1 is a deterministic function of

Xj+1 and we fix it without affecting the distribution of Rj . The average conditional min-entropy

52

of each Xi after these fixings is at least m− 2(j+ 1)d1− log(1/ε). Further, we note that our fixings

preserve the independence between {X1, . . . ,X`,X
′
1, . . . ,X

′
`} and {Y,Y′}.

This completes the proof of inductive step, and hence the claim follows.

3.5.2 (`, t)-Non-Malleable Independence Preserving Merger

In this section, we generalize the construction of NIPM from Section 3.5 to handle multiple adver-

saries.

We first introduce some notation. For a random variable V supported on a × b matrices,

we use Vi to denote the random variable corresponding to the i’th row of V. Our main result in

this section is the following theorem.

Theorem 3.5.7. There exists constant c3.5.7, c
′
3.5.7 > 0 such that for all integers m, d, k1, `, t > 0

and any ε > 0, with m ≥ d ≥ k1 > c3.5.7(t + 1)` log(m/ε), there exists an explicit function t-

NIPM : {0, 1}m` × {0, 1}d → {0, 1}m1, m1 = 0.9
t (m − c3.5.7(t + 1)` log(m/ε)) such that if the

following conditions hold:

• X,X1, . . . ,Xt are r.v’s, each supported on boolean ` ×m matrices s.t for any i ∈ [`], |Xi −

Um| ≤ ε,

• {Y,Y1, . . . ,Yt} is independent of {X,X1, . . . ,Xt}, s.t Y,Y1, . . . ,Yt are each supported on

{0, 1}d and H∞(Y) ≥ k1.

• there exists an h ∈ [`] such that |(Xh,X
1
h, . . . ,X

t
h)− (Um,X

1
h, . . . ,X

t
h)| ≤ ε,

then

|(`, t)-NIPM((X,Y), (`, t)-NIPM(X1,Y1), . . . , (`, t)-NIPM(Xt,Yt),Y,Y1, . . . ,Yt

−Um1 , (`, t)-NIPM(X1,Y1), . . . , (`, t)-NIPM(Xt,Yt),Y,Y1, . . . ,Yt| ≤ c′3.5.7`ε.

53

Proof. We instantiate the `-look-ahead extractor described in Section 3.5.1 with the following

strong-seeded extractors: Let Ext1 : {0, 1}m × {0, 1}d1 → {0, 1}d1 , Ext2 : {0, 1}d × {0, 1}d1 →

{0, 1}d1 and Ext3 : {0, 1}m × {0, 1}d1 → {0, 1}m1 be explicit strong-seeded from Theorem 2.1.2 de-

signed to extract from min-entropy k1 = m/2, k2 = d/2, k3 = m− c3.5.7(t+ 1) log(m/ε) respectively

with error ε. Thus d1 = c2.1.2 log(m/ε).

The proof that this construction works is similar to the proof of Theorem 3.5.3, and we omit

it.

54

Chapter 4

Seeded Non-Malleable Extractors and

Privacy Amplification

1 Seeded non-malleable extractors were introduced by Dodis and Wichs [DW09] as a generalization

of strong-seeded extractors. Recall that a (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d →

{0, 1}m satisfies the property that for any (n, k)-source X and a typical seed s, we have Ext(X, s) ≈

Um. Informally, a non-malleable extractor nmExt satisfies the property that for a typical pair of

distinct seeds (s1, s2), we have nmExt(X, s1), nmExt(X, s2) ≈ U2m. Another way of viewing this

property is the following: Fix a tampering function A : {0, 1}d → {0, 1}d such that A has no fixed

points, i.e., A(y) 6= y for all y. Then, a non-malleable extractor satisfies the property that for a

typical seed s, the r.v nmExt(X, s) is close to uniform even conditioned on nmExt(X,A(s)). We

now present a formal definition.

Definition 4.0.1 (Non-malleable extractor). A function nmExt : {0, 1}n × {0, 1}d → {0, 1}m is

a (k, ε)-non-malleable extractor if the following holds: For any (n, k)-source X, an independent

1parts of this chapter have been previously published [CGL16,CL16a]

55

uniform seed Y on d bits and any function A : {0, 1}d → {0, 1}d with no fixed points,

|(nmExt(X,Y), nmExt(X,A(Y)),Y)− (Um,nmExt(X,A(Y)),Y)| ≤ ε.

This generalization of a seeded extractor to satisfy this ‘pairwise independence’ property is

non-trivial. For example, it is easy to prove that the innner product function IP : {0, 1}n×{0, 1}n →

{0, 1} is not a non-malleable extractor even for min-entropy n− 1. Recall that IP(x, y) =
∑

i xiyi

(where the sum is mod 2). By Lemma 2.5.3, it follows that IP is a 2-source extractor for min-

entropy > n/2. Now suppose X is a source with its first bit fixed to 1 and each of the other n− 1

bits are uniform and independent. Clearly X is an (n, n − 1)-source. Let Y be an independent

uniform seed. It is easy to see that if A(y) is the string obtained by just inverting the first bit

of y (and not changing the remaining bits), then for any y, we have IP(X, y) + IP(X,A(y)) = 1,

implying that IP(X, y) fixes the value of IP(X,A(y)).

Applications to Privacy Amplification The initial motivation for non-malleable extractors

comes from the problem of privacy amplification with an active adversary [BBR88,Mau92,BBCM95].

As a basic problem in information theoretic cryptography, privacy amplification deals with the case

where two parties want to communicate with each other to convert their shared secret weak random

source X into shared secret nearly uniform random bits. On the other hand, the communication

channel is watched by an adversary Eve, who has unlimited computational power. To make this

task possible, we assume two parties have local (non-shared) uniform random bits.

If Eve is passive (i.e., can only see the messages but cannot change them), this problem

can be solved easily by applying using strong seeded extractors. However, in the case where Eve

is active (i.e., can arbitrarily change, delete and reorder messages), the problem becomes much

more complicated. The major challenge here is to design a protocol that uses as few number of

interactions as possible, and outputs a uniform random string R that has length as close to H∞(X)

as possible (the difference is called entropy loss). A bit more formally, we pick a security parameter

s, and if the adversary Eve remains passive during the protocol then the two parties should achieve

56

shared secret random bits that are 2−s-close to uniform. On the other hand, if Eve is active, then

the probability that Eve can successfully make the two parties output two different strings without

being detected should be at most 2−s.

The results in this chapter are based on joint works with Vipul Goyal and Xin Li [CGL16,

CL16a].

4.1 Prior Work and Our Results in [CGL16]

There has been a long line of work on the problem of privacy amplification [MW97, DKRS06,

DW09, RW03, KR09, CKOR10, DLWZ14, CRS14, Li12a, Li12b, Li15d, ADJ+14]. When the entropy

rate of X is large, i.e., bigger than 1/2, there are known protocols that take only one round (e.g.,

[MW97,DKRS06]). However these protocols all have very large entropy loss. When the entropy rate

of X is smaller than 1/2, Dodis and Wichs showed that no one round protocol exists; furthermore

the length of R has to be at least O(s) smaller than H∞(X). Thus, the natural goal is to design

a two-round protocol with such optimal entropy loss. However, all protocols before the work of

[DLWZ14] either need to use O(s) rounds, or need to incur an entropy loss of O(s2). In [DW09],

Dodis and Wichs showed that explicit constructions of the non-malleable extractors can be used to

give two-round privacy amplification protocols with optimal entropy loss. Using the probabilistic

method, they also showed that non-malleable extractors exist when k > 2m+ 2 log(1/ε) + log d+ 6

and d > log(n− k+ 1) + 2 log(1/ε) + 5. However, they were not able to give explicit constructions

even for min-entropy k = n−1. The first explicit construction of non-malleable extractors appeared

in [DLWZ14], with subsequent improvements in [CRS14, Li12a, DY13, Li12b, ADJ+14]. All these

constructions require the min-entropy of the weak source to be bigger than 0.49n, and thus only give

two-round privacy amplification protocols with optimal entropy loss for such min-entropy. Together

with some other ideas, Dodis et al. also gives poly(1/δ) round protocols with optimal entropy loss

for min-entropy k ≥ δn, any constant δ > 0. This was subsequently improved by Li [Li12b] to

obtain a two-round protocol with optimal entropy loss for min-entropy k ≥ δn, any constant δ > 0.

57

In the general case, using a relaxation of non-malleable extractors called non-malleable condensers,

one of the authors [Li15d] also obtained a two-round protocol with optimal entropy loss for min-

entropy k ≥ C log2 n, some constant C > 1, as long as the security parameter s satisfies k ≥ Cs2.

For larger security parameter, the best known protocol with optimal entropy loss in [Li12b] still

takes O(s/
√
k) rounds.

In joint work with Goyal and Li [CGL16], we construct explicit non-malleable extractors

with error ε, for min-entropy k = Ω(log2 (n/ε)) and seed-length d = O(log2(n/ε)). In fact our

construction is more general and gives explicit t-non-malleable extractors (introduced in [CRS14]),

which are defined as follows.

Definition 4.1.1 (t-Non-malleable Extractor). A function t-nmExt : {0, 1}n × {0, 1}d → {0, 1}m

is a seeded t-non-malleable extractor for min-entropy k and error ε if the following holds : If X is

an (n, k)-source on and A1 : {0, 1}n → {0, 1}n, . . . ,At : {0, 1}n → {0, 1}n are arbitrary tampering

function with no fixed points, then

|t-nmExt(X,Ud), t-nmExt(X,A1(Ud)), . . . , t− -nmExt(X,At(Ud)),Ud

−Um ◦ t-nmExt(X,A1(Ud)), . . . , t− -nmExt(X,At(Ud)), Ud| < ε

We will see in Chapter 6 that these t-non-malleable extractors are a crucial component in

constructing 2-source extractors.

Theorem 1. There exists a constant c such that for all n > 0 and ε > 0, and k ≥ ct log2
(
n
ε

)
, there

exists an explicit construction of a seeded t-non-malleable extractor snmExt : {0, 1}n × {0, 1}d →

{0, 1}m, with m = Ω(k/t) and d = O(t2 log2(n/ε)).

Combining the above theorem (with t = 1) with the protocol developed in [DW09], this

immediately gives the following result about privacy amplification, which matches the best known

result in [Li15d] but has a simpler protocol.

Theorem 2. There exists a constant C such that for any ε > 0 with k ≥ C(log n + log(1/ε))2,

58

there exists an explicit 2-round privacy amplification protocol with an active adversary for (n, k)

sources, with security parameter log(1/ε) and entropy loss O(log n+ log(1/ε)).

4.2 Subsequent Work and Our Results in [CL16a]

Subsequently, Cohen [Coh16a] improved our result, and constructed non-malleable extractors with

seed length d = O(log(n/ε) log((log n)/ε)) and min-entropy k = Ω(log(n/ε) log((log n)/ε)). In

this work, he also gave another construction that worked for k = n/(log n)O(1) with seed-length

O(log n). In a follow up, Cohen [Coh16b] constructed non-malleable extractors with seed length

d = O(log n + log3(1/ε)) and min-entropy k = Ω(d). However, in terms of the general error

parameter ε, all of these results require min-entropy and seed length at least log2(1/ε), thus none

of them can be used to improve the privacy amplification protocols in [Li15d]. A recent work

by Aggarwal, Hosseini and Lovett [AHL15] obtained some conditional results. In particular, they

used a weaker variant of non-malleable extractors to construct privacy amplification protocols with

optimal entropy loss for k = Ω(log(1/ε) log n) assuming a conjecture in additive combinatorics.

Our first result is a new construction of non-malleable extractors that breaks the log2(1/ε)

barrier for min-entropy and seed length. Specifically, we have the following theorem.

Theorem 3. There exists a constant C > 0 s.t for all n, k ∈ N and any ε > 0, with k ≥

log(n/ε)2C
√

log log(n/ε), there exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n ×

{0, 1}d → {0, 1}m, where d = log(n/ε)2C
√

log log(n/ε) and m = k/2
√

log log(n/ε).

We also construct a non-malleable extractor with seed-length O(log n) for min-entropy k =

Ω(log n) and ε ≥ 2− log1−β(n) for any β > 0. Prior to this, explicit non-malleable extractors with

seed-length O(log n) either requires min-entropy at least n/poly(log n) [Coh16a] or requires ε ≥

2− log1/3(n) [Coh16b].

Theorem 4. There exists a constant C > 0 s.t for and all n, k ∈ N with k ≥ C log n, any

constant 0 < β < 1, and any ε ≥ 2− log1−β(n), there exists an explicit (k, ε)-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log n) and m = Ω(log(1/ε)).

59

Remark 4.2.1. A careful examination reveals that our seed length and min-entropy requirement

are better than those of [Coh16a, Coh16b] in all cases except the case that ε is large enough (e.g.,

ε ≥ 2− log1/3(n)), where both [Coh16b] and our results require seed length and min-entropy O(log n).

Note that given any error parameter ε, our non-malleable extractor in Theorem 3 only

requires min-entropy and seed length log1+o(1)(n/ε).

We also show how to further lower the min-entropy requirement of the non-malleable extrac-

tor in Theorem 3 at the expense of using a larger seed. We complement this result by constructing

another non-malleable extractor with shorter seed-length than in Theorem 3 at the expense of

larger entropy. We now state these results more formally.

Theorem 5. For all n, k ∈ N and any ε > 0, with k ≥ log(n/ε)22Ω(
√

log log log(n/ε))
, there ex-

ists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d =

(log(n/ε))32(log log log(n/ε))O(1)
,m = Ω(k).

Theorem 6. For all n, k ∈ N and any ε > 0, with k ≥ (log(n/ε))32(log log log(n/ε))O(1)
, there ex-

ists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d =

log(n/ε)22O(
√

log log log(n/ε))
,m = k

log(n/ε)2(log log log(n/ε))O(1) −O((log(n/ε))2).

Privacy Amplification Using Theorem 3 and the protocol in [DW09], we immediately obtain a

two-round privacy amplification protocol with optimal entropy loss, for almost all possible security

parameters.

Theorem 7. There exists a constant C > 0 such that for any security parameter s with k ≥

(s + log n)2C
√

log(s+logn), there exists an explicit 2-round privacy amplification protocol for (n, k)-

sources with entropy loss O(log n+ s) and communication complexity (s+ log n)2O(
√

log(s+logn)), in

the presence of an active adversary.

In particular, this gives us two-round privacy amplification protocols with optimal entropy

loss for security parameter s ≤ k1−α for any constant α > 0.

60

Reference Min-Entropy Seed Length

[DW09] (non-constructive) > 2m+ 2 log(1/ε) + log d+ 6 > log(n−k+1)+2 log(1/ε)+5

[DLWZ14] > n/2 n

[CRS14,Li12a,DY13] > n/2 O(log(n/ε))

[Li12b] 0.49n n

Theorem 1 Ω((log(n/ε))2) O((log(n/ε))2)

[Coh16a] Ω(log(n/ε) log((log n)/ε)) O(log(n/ε) log((log n)/ε))

[Coh16b] Ω(log n+ (log(1/ε))3) O(log n+ (log(1/ε))3)

Theorem 3 log(n/ε)2Ω(
√

log log(n/ε)) log(n/ε)2Ω(
√

log log(n/ε))

Theorem 6 log(n/ε)22Ω(
√

log log log(n/ε)) (log(n/ε))3+o(1)

Theorem 5 (log(n/ε))3+o(1)
log(n/ε)22O(

√
log log log(n/ε))

Table 4.1: A summary of results on non-malleable extractors

Instead if we use the non-malleable extractor from Theorem 5, we obtain a two-round privacy

amplification protocol with optimal entropy loss, for even smaller min-entropy (at the expense of

larger communication complexity). More formally, we have the following theorem.

Theorem 8. There exists a constant C > 0 such that for any security parameter s with k ≥

(s+ log n)22C
√

log log(s+logn)
, there exists an explicit 2-round privacy amplification protocol for (n, k)-

sources with entropy loss O(log n+s) and communication complexity (s+log n)32(log log(s+logn))O(1)
,

in the presence of an active adversary.

4.3 A Non-Malleable Extractor for log2(n/ε) min-entropy

In section, we present the construction of a seeded t-non-malleable extractor that works for min-

entropy k = Ω(t log2(n/ε)) and requires seed-length d = O(t2 log2(n/ε)). A key ingredient in this

61

construction is an explicit correlation breaker with advice constructed in Chapter 3. We first set

up the various ingredients in the construction with appropriate parameters.

Subroutines and Parameters

1. Let t be a parameter.

2. Let n1 = log
(
tn
ε

)
. Let Exts : {0, 1}n × {0, 1}n1 → {0, 1}n1 be the strong seeded extractor

from Theorem 2.1.2 set to extract from min-entropy 2n1 and error 2−Ω(n1).

3. Let C be an explicit [dα , d,
1
10]-binary linear error correcting code with encoder E : {0, 1}d →

{0, 1}
d
α . Such explicit codes are known, for example from the work of Alon et al. [ABN+92].

4. Let ExtSamp : {0, 1}n1×{0, 1}d1 → {0, 1}n2 be the strong seeded extractor from Theorem 2.1.4

set to extract from min-entropy n1
2 with error 1

20 and output length n2, such that N2D1 = d
α ,

where N2 = 2n2 and D1 = 2d1 . Let {0, 1}d1 = {s1, . . . , sD1}. Define Samp : {0, 1}n1 → [dα]D1

as: Samp(x) = (Ext(x, s1) ◦ s1, . . . ,Ext(x, sD1) ◦ sD1). By Theorem 2.1.4, we haveD1 = c1n1,

for some constant c1.

5. Let ` = n1 +D1 = (c1 + 1)n1.

6. We set up the parameters for the components used by flip-flop (computed by Algorithm 1)

as follows.

(a) Let n3 = c3t`, n4 = 10`, for some large enough constant c3.

Let Extq : {0, 1}n3 × {0, 1}n4 → {0, 1}n4 be the strong seeded extractor from Theorem

2.1.2 set to extract from min-entropy kq = n3
4 with error ε = 2−Ω(n4).

Let Extw : {0, 1}n × {0, 1}n4 → {0, 1}n4 be the strong seeded extractor from Theorem

2.1.2 set to extract from min-entropy k
2 with error ε = 2−Ω(n4).

(b) Let laExt : {0, 1}n×{0, 1}n3+n4 → {0, 1}2n4 be the look ahead extractor used by 2laExt.

Recall that the parameters in the alternating extraction protocol are set as m = n4, u =

2 where u is the number of steps in the protocol, m is the length of each random

62

variable that is communicated between the players, and Extq,Extw are the strong seeded

extractors used in the protocol.

(c) Let Ext : {0, 1}d × {0, 1}n4 → {0, 1}n3 be the strong seeded extractor from Theorem

2.1.2 set to extract from min-entropy d
2 with seed length n4 and error 2−Ω(n4).

7. Let nmExt1 be the function computed by Algorithm 2, which uses the function 2laExt set up

as above.

8. Let n5 = k
100t . Let Ext1 : {0, 1}n × {0, 1}n4 → {0, 1}n5 be the strong seeded extractor from

Theorem 2.1.2 set to extract from min-entropy k
4 with seed length n4, error 2−Ω(n4).

Algorithm 5: snmExt(x,y)

Input: Bit strings x, y, of length n, d respectively.
Output: A bit string of length n4.

1 y1 = Slice(y, n1). Compute v = Exts(x, y1).
2 Compute T = Samp(v) ⊂ [nα].
3 Let z = y1 ◦ y2 where y2 = (E(y)){T}.

4 Output Ext1(x,nmExt1(x, y, z)).

We now state our main theorem.

Theorem 4.3.1. Let snmExt : {0, 1}n×{0, 1}d → {0, 1}n5 be the function computed by Algorithm

4. Then snmExt satisfies the following property: For any ε > 0, k ≥ Ω(t log2+γ
(
n
ε

)
), and d =

O(t2 log2
(
n
ε

)
), if X is a (n, k)-source, and Y is an independent and uniform distribution on {0, 1}d,

and A1 . . . ,At are arbitrary tampering functions, such that for each i ∈ [t], Ai has no fixed points,

then the following holds:

|snmExt(X,Y), snmExt(X,A1(Y)), . . . , snmExt(X,At(Y)),Y−

Un5 , snmExt(X,A1(Y)), . . . , snmExt(X,At(Y)),Y| ≤ O(ε),

Notation: For any function H, if V = H(X,Y), let Vi denote the random variable

H(X,Ai(Y)).

63

Proof. We first prove the following claim.

Claim 4.3.2. With probability at least 1− ε, Z 6= Zi for each i ∈ [t].

Proof. Pick an arbitrary i ∈ [t]. If Y1 6= Yi
1, then we have Z 6= Zi. Now suppose Y1 = Yi

1. We fix

Y1, and note that since Exts is a strong extractor (Theorem 2.5.3), B is 2−Ω(n1)-close to Un1 .

Since Ai has no fixed points, it follows that since E is an encoder of a code with relative

distance distance 1
10 , ∆(E(Y), E(Yi)) ≥ d

10α . Let D = {j ∈
[
d
α

]
: E(Y){j} 6= E(Yi){j}}. Thus

|D| ≥ d
10α . Using Theorem 2.4.2, it follows that with probability at least 1− ε, |D ∩Samp(V)| ≥ 1,

and thus Y2 6= Y
(i)
2 (since Samp(V) = Samp(Vi)). The claim now follows by a simple union

bound.

We fix Z,Z1, . . . ,Zt such that Z 6= Zi for any i ∈ [t] (from the lemma above, this occurs

with probability 1 − ε). We note that by the Lemma 4.3.2 and Lemma 2.3.7, the source X has

min-entropy at least k − 2n1 and the source Y has min-entropy at least d− 2` with probability at

least 1− ε.

Lemma 4.3.1 now follows directly from Lemma 3.3.1 by noting that the following hold by

our choice of parameters:

• d
2 > 20`(t(n3 + n4) + log(1

ε))

• k − 2n1 ≥ n3
4 + 20`(tn4 + log(1

ε))

• n3 − 2n1 ≥ 4
3(10tn4 + 2 log(1

ε))

This concludes the proof.

4.4 Near Optimal Non-Malleable Extractors

We present an explicit construction of a non-malleable extractor with min-entropy requirement

k = (log(n/ε))1+o(1) and seed-length d = (log(n/ε))1+o(1). We also show a way of setting parameters

64

that allows for O(log n) seed-length for large enough error. The following are the main results of

this section.

Theorem 4.4.1. There exist a constant C4.4.1 > 0 s.t for all n, k ∈ N and any ε > 0, with k ≥

log(n/ε)2C4.4.1

√
log log(n/ε), there exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n ×

{0, 1}d → {0, 1}m, where d = log(n/ε)2C4.4.1

√
log log(n/ε) and m = k/2

√
log log(n/ε).

Theorem 4.4.2. There exist a constant C4.4.2 > 0 s.t for constant β > 0 and all n, k ∈ N and

any ε > 2− log1−β(n), with k ≥ C4.4.2 log n, there exists an explicit (k, ε)-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log n) and m = Ω(log(1/ε)).

We derive both the above theorems from the following theorem.

Theorem 4.4.3. There exist constants δ4.4.3, C4.4.3 > 0 s.t for all n, k ∈ N and any error parameter

ε1 > 0, with k ≥ log(k/ε1)2C4.4.3

√
log log(n/ε1) + C4.4.3 log(n/ε1), there exists an explicit (k, ε′)-non-

malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d = log(k/ε)2C4.4.3

√
log log(n/ε1) +

C4.4.3 log(n/ε1),m = δ4.4.3k/2
√

log log(n/ε1) and ε′ = C4.4.3ε1 log(n/ε1).

We first show how to derive Theorem 4.4.1 and Theorem 4.4.2 from Theorem 4.4.3.

Proof of Theorem 4.4.1. Let nmExt : {0, 1}n × {0, 1}d → {0, 1}m be the function from Theorem

4.4.3 set to extract from min-entropy k, where we set the parameter ε1 = ε/2C4.4.3n . It follows

that the error of nmExt is

C4.4.3ε1 log(n/ε1) =
ε

2n
(log n+ log(2C4.4.3n) + log(1/ε)) < ε.

Further note that for this setting of ε1, the min-entropy required and seed length are log(n/ε)2C4.4.1

√
log log(n/ε)+

C4.4.1 log(n/ε), for some constant C4.4.1.

Proof of Theorem 4.4.2. Let nmExt : {0, 1}n × {0, 1}d → {0, 1}m be the function from Theo-

rem 4.4.3 set to extract from min-entropy 2C4.4.3 log(n/ε1), where we set the parameter ε1 =

65

ε/2C4.4.3 log n. Thus, the error of nmExt is

ε1 log(n/ε1) ≤ ε

2 log n
(log n+ log(1/ε) + log(2C4.4.3 log n)) < ε.

For this setting of parameters, we note that the seed-length required by nmExt is bounded by

log((log2 n)/ε)2C4.4.3

√
log log(n logn/ε) + C4.4.3 log(n log n/ε) = O(log n).

We spend the rest of the section proving Theorem 4.4.3. A key ingredient in our construction

in an explicit non-malleable independence preserving merger with strong parameters.

4.4.1 A Recursive Non-Malleable Independence Preserving Merger

In this section, we show a recursive way of applying the (`, t)-NIPM constructed in the previous

section in order to achieve better trade-off between parameters. This object is crucial in obtaining

our near optimal non-malleable extractor construction.

Notation: For an a× b matrix V, and any S ⊆ [a], let VS denote the matrix obtained by

restricting V to the rows indexed by S.

Our main result in this section is the following theorem.

Theorem 4.4.4. For all integers m, `, L, t > 0, any ε > 0, r = d logL
log ` e and any d = (c3.5.7` log(m/ε)+

d′)(t + 2)r+1, there exists an explicit function (L, `, t)-NIPM : {0, 1}mL × {0, 1}d → {0, 1}m′,

m′ = (0.9/t)r(m− c3.5.7`(t+ 1)r log(m/ε)), such that if the following conditions hold:

• X,X1, . . . ,Xt are r.v’s, each supported on boolean L×m matrices s.t for any i ∈ [L], |Xi −

Um| ≤ ε,

• {Y,Y1, . . . ,Yt} is independent of {X,X1, . . . ,Xt}, s.t Y,Y1, . . . ,Yt are each supported on

{0, 1}d and H∞(Y) ≥ d− d′,

• there exists an h ∈ [`] such that |(Xh,X
1
h, . . . ,X

t
h)− (Um,X

1
h, . . . ,X

t
h)| ≤ ε,

66

then

|(L, `, t)-NIPM((X,Y), (L, `, t)-NIPM(X1,Y1), . . . , (L, `, t)-NIPM(Xt,Yt),Y,Y1, . . . ,Yt

−Um1 , (L, `, t)-NIPM(X1,Y1), . . . , (L, `, t)-NIPM(Xt,Yt),Y,Y1, . . . ,Yt| ≤ 2c′3.5.7Lε.

Proof. We set up parameters and ingredients required in our construction.

• For i ∈ [r], let Li = dL
`i
e.

• Let d1 = d′ + log(1/ε) + c3.5.7(t+ 1)` log(m/ε). For i ∈ [r], let di = (t+ 2)di−1.

• Let m0 = m. For i ∈ [r], define mi = 0.9i(m− ic3.5.7(t+ 1)` log(m/ε))

• For each i ∈ [r], let (`, t)-NIPMi : {0, 1}`mi × {0, 1}di → {0, 1}mi+1 be an instantiation of the

function from Theorem 3.5.7 with error parameter ε.

Algorithm 6: (L, `, t)-NIPM(x, y)

Input: x is a boolean L×m matrix, and y is a bit string of length d.
Output: A bit string of length mr.

1 Let x[0] = x.
2 for i = 1 to r do
3 Let y[i] = Slice(y, di)
4 Let x[i] be a Li ×mi matrix, whose j’th row

x[i]j = (`, t)-NIPMi(x[i− 1][(j−1)`+1,j`], y[i])

5 end
6 Ouput x[r].

We prove the following claim from which it is direct that the function (L, `, t)-NIPM computed

by Algorithm 6 satisfies the conclusion of Theorem 4.4.4. Let ε0 = ε, and for i ∈ [r], let εi =

`εi−1 + c′3.5.7`ε.

Claim 4.4.5. For all i ∈ [r], conditioned on the r.v’s {Y[j] : j ∈ [i]}, {Yg[j] : j ∈ [i], g ∈ [t]}, the

following hold:

67

• X[i],X1[i], . . . ,Xt[i] are r.v’s, each supported on boolean Li×mi matrices s.t for any j ∈ [Li],

|X[i]j −Umi | ≤ (c′3.5.7`)
iε,

• {Y,Y1, . . . ,Yt} is independent of {X[i],X[i]1, . . . ,X[i]t}.

• there exists an hi ∈ [Li] such that X[i]h|{X[i]1h, . . . ,X[i]th} is εi-close to Umi on average,

• Y has average conditional min-entropy at least d− di+1 + c3.5.7(t+ 1)` log(m/ε).

Proof. We prove this claim by an induction on i. The base case, when i = 0, is direct. Thus suppose

i ≥ 1. Fix the r.v’s {Y[j] : j ∈ [i − 1]}, {Yg[j] : j ∈ [i − 1], g ∈ [t]}. By inductive hypothesis, it

follows that

• X[i− 1],X1[i− 1], . . . ,Xt[i− 1] are r.v’s each supported on boolean Li−1×mi−1 matrices s.t

for any j ∈ [Li−1], |X[i− 1]j −Um−1| ≤ (c′3.5.7`)
i−1ε,

• {Y[i− 1],Y1[i− 1], . . . ,Yt[i− 1]} is independent of {X[i− 1],X[i− 1]1, . . . ,X[i− 1]t}.

• hi ∈ [Li] such that X[i− 1]h|{X[i− 1]1h, . . . ,X[i− 1]th} is εi−1-close to Umi−1 on average,

• Y has average conditional min-entropy at least d− di + c3.5.7(t+ 1)` log(m/ε).

Thus the r.v Y[i] = Slice(Y, di) has average conditional min-entropy at least c3.5.7(t+ 1)` log(n/ε).

Let hi ∈ [`(hi− 1) + 1, `hi], for some hi ∈ [Li]. It follows that conditioned on the r.v’s Y[i], {Yg[i] :

g ∈ [t]}, for any j ∈ [Li], |X[i]j −Um| ≤ `εi−1 + c′3.5.7`ε = εi.

Further, using Theorem 3.5.7, conditioned on Y[i], {Yg[i] : g ∈ [t]}, {Xg[i]hi : g ∈ [t]}, the

r.v X[i]hi is `εi−1 + c′3.5.7`ε-close to uniform on average.

Thus, we fix the r.v’s Y[i], {Yg[i] : g ∈ [t]}, and note that Y still has average conditional

min-entropy at least d− di + c3.5.7(t+ 1)` log(m/ε)− (t+ 1)di ≥ d− di+1 + c3.5.7(t+ 1)` log(m/ε).

This completes the proof of the inductive step, and the theorem follows.

68

4.4.2 The Non-Malleable Extractor Construction

The following function is implicit in the construction in Section 4.3. Informally, advGen takes

as input a source X and a seed Y and produces a short string such that for any r.v Y′ 6= Y,

advGen(X,Y) 6= advGen(X,Y). We record this property more formally.

Theorem 4.4.6. There exists a constant c4.4.6, C4.4.6 > 0 such that for all n > 0 and any ε > 0,

there exists an explicit function advGen : {0, 1}n × {0, 1}d → {0, 1}L, L = c4.4.6 log(n/ε) satisfying

the following: Let X be an (n, k)-source, and Y be an independent uniform seed on d bits. Let Y′

be a r.v on d bits independent of X, s.t Y′ 6= Y. If k, d ≥ C4.4.6 log(n/ε), then

• with probability at least 1− ε, advGen(X,Y) 6= advGen(X,Y′),

• there exists a function f such that conditioned on advGen(X,Y), advGen(X,Y′), f(X),

– X remains independent of Y,Y′,

– X has average conditional min-entropy at least k − C4.4.6 log(n/ε),

– Y has average conditional min-entropy at least d− C4.4.6 log(n/ε)

We are now ready to prove Theorem 4.4.3.

Proof of Theorem 4.4.3. We set up parameters and ingredients required in our construction.

• Let advGen : {0, 1}n × {0, 1}d → {0, 1}L, L = c4.4.6 log(n/ε1), be the function from Theorem

4.4.6 with error parameter ε1.

• Let d1 = (C4.4.6 + C + 1) log(n/ε1), for some large enough constant C.

• Let flip-flop : {0, 1}n ×{0, 1}d1 → {0, 1}m′ , m′ = δk, be the function computed by Algorithm

1 with error parameter ε1.

• d2 = c2.1.2 log(d/ε1), d3 = c2.1.2 log(m′/ε1).

69

• Let Ext1 : {0, 1}n × {0, 1}d2 → {0, 1}d′ , d′ = 0.9d − 2d1 − C4.4.6 log(n/ε1) be a (d − 2d1 −

C4.4.6 log(n/ε1), ε1)-strong-seeded extractor from Theorem 2.1.2.

• Let Ext2 : {0, 1}m′ × {0, 1}d3 → {0, 1}m′′ , m′′ = 0.9m′ − 2d2, be a (m′ − 2d2 − log(1/ε1), ε1)-

strong-seeded extractor from Theorem 2.1.2.

• Let ` = 2
√

logL.

• Let (L, `, 1)-NIPM : {0, 1}Lm′′ × {0, 1}d′ → {0, 1}m be the function from Theorem 4.4.4,

m = 0.9rm′ − 2c3.5.7`(t+ 1)r log(m/ε1) with error parameter ε1.

Algorithm 7: nmExt(x, y)

Input: x, y are bit string of length n, d respectively.
Output: A bit string of length m.

1 Let w = advGen(x, y).
2 Let y = y1 ◦ y2, where y1 = Slice(y, d1).
3 Let v be a L×m′ matrix, whose i’th row vi = flip-flop(x, y1, wi) (wi is the i’th bit of

the string w).
4 Let v1 = Slice(v1, d2)
5 Let y = Ext1(y, v1) = y1 ◦ y2, where y1 = Slice(y, d3).
6 Let z be a L×m′′ matrix, whose i’th row zi = Ext2(vi, y1)
7 Output z = (L, `, 1)-NIPM(z, y).

We prove in the following claims that the function nmExt constructed in Algorithm 8 satisfies the

conclusion of Theorem 4.4.3. Let A be the adversarial function tampering the seed Y, and let

Y′ = A(Y). Since A has no fixed points, it follows that Y 6= Y′.

Notation: For any random variable H = g(X,Y) (where g is an arbitrary deterministic

function), let H′ = g(X,Y′).

Claim 4.4.7. With probability at least 1− ε, W 6= W′.

Proof. Follows directly from Theorem 4.4.6.

Let f be the function guaranteed by Theorem 4.4.6.

70

Claim 4.4.8. Conditoned on the r.v’s W,W′,Y1,Y
′
1, f(X), the following hold:

• for each i ∈ [L], Vi is ε1-close to uniform,

• there exists an h ∈ [L] such that conditioned on V′h, the r.v Vh is ε1-close to uniform on

average,

• {V,V′} is independent of {Y,Y′}.

• Y has average conditional min-entropy at least d− C4.4.6 log(n/ε1)− 2d1.

Proof. Fix the r.v’s W,W′, f(X) such that W 6= W′. It follows from Theorem 4.4.6 that after

this conditioning,

• X is independent of Y,Y′,

• X has average conditional min-entropy at least k − C4.4.6 log(n/ε1),

• Y has average conditional min-entropy at least d− C4.4.6 log(n/ε1)

Thus Y1 = Slice(Y, d1) has average conditional min-entropy at least O(log(n/ε1)). The claim now

follows by applying Lemma 3.2.1.

Claim 4.4.9. Conditioned on the r.v’s W,W′,V1,V1
′
,Y1,Y

′
1Y1,Y1

′
, f(X), the following hold:

• Y has average conditional min-entropy at least d′ − 2d3 − log(1/ε).

• for each i ∈ [L], Zi is 3ε1-close to uniform on average.

• there exists h ∈ [L] such that further conditioned on Z′i, Zi is 3ε1-close to uniform on average.

• {Y,Y
′} is independent of {Z,Z′}.

Proof. Fix the r.v’s W,W′,Y1,Y
′
1, f(X). By Claim 4.4.8, we have

• for each i ∈ [L], Vi is ε1-close to uniform,

71

• there exists an h ∈ [L] such that conditioned on V′h, the r.v Vh is ε1-close to uniform on

average,

• {V,V′} is independent of {Y,Y′}.

• Y has average conditional min-entropy at least d− C4.4.6 log(n/ε1)− 2d1.

Using the fact that Ext1 is a strong extractor, it follows that we can fix V1, and Y is 2ε1-close to

uniform on average. Further, Y is a deterministic function of Y. Thus, we fix V1
′
without affecting

the distribution of Y. Now, using the fact that Ext2 is a strong extractor, we can fix Y1, and we

have for each i ∈ [L], Zi is 3ε1-close to uniform on average. Next we can fix Y1
′

without affecting

V.

We prove that conditioned on Z′i, the r.v Zi is 3ε1-close to uniform on average in the following

way. For this argument, as above we fix all r.v’s but do not yet fix Y1,Y1
′
. Instead, we first fix

V′h, and Vh has average conditional min-entropy at least m′ − 2d2. We now fix Y1, and as before

we have Zh is 3ε1-close. At this point, Z′h is a deterministic function of Y1
′
, and hence we can fix

it without affecting the distribution of Zh. This completes the proof.

Claim 4.4.10. Conditioned on Z
′
, the r.v Z is O(ε1 log(n/ε1))-close to uniform on average.

Proof. Fix the r.v’s W,W′,V1,V1
′
,Y1,Y

′
1Y1,Y1

′
, f(X). By Claim 4.4.9, the following hold:

• Y has average conditional min-entropy at least d′ − 2d3 − log(1/ε1).

• for each i ∈ [L], Zi is 3ε1-close to uniform on average.

• there exists h ∈ [L] such that further conditioned on Z′i, the r.v Zi is 3ε1-close to uniform on

average.

• {Y,Y
′} is independent of {Z,Z′}.

Let d′′ = 2d3+log(1/ε1), r = d logL
log ` e = d

√
logLe. Thus d′′ = O(log(k/ε1)), r = O(

√
log log(n/ε1)), ` =

2O(
√

log log(n/ε1)). In order to use Theorem 4.4.4, we observe that for a large enough constant C4.4.3

the following hold:

72

• Y has conditional min-entropy at least d− d′′,

• d′ ≥ (c3.5.7` log(m′′/ε1) + d′′)3r+1,

• m < (0.9)r(m′′ − c3.5.7`(t+ 1)r log(m/ε1)).

Thus the conditions of Theorem 4.4.4 are met, and hence it follows that conditioned on Z
′
, the

r.v Z is 2c′3.5.7Lε1-close to uniform on average. Recall that L = O(log(n/ε1)), and hence the claim

follows.

4.4.3 A Trade-off Between Min-Entropy and Seed Length

We prove Theorem 5 and Theorem 6 in this section. Our main tool is a new NIPM construction

which uses an even shorter seed but requires matrices with larger rows.

The main idea is to use our previous NIPM to construct a more involved NIPM, which

can be used to give explicit non-malleable extractors with either a better seed length or a better

min-entropy requirement. For simplicity and clarity, we will just assume t = 1, i.e., there is only

one tampering adversary. This is also the most interesting case for standard privacy amplification

protocols.

Note that our previous NIPM construction implies the following theorem.

Theorem 9. For all integers m,L > 0, any ε > 0, there exists an explicit (L, 1, 0, ε, ε′)-NIPM :

{0, 1}mL × {0, 1}d → {0, 1}m′, where d = 2O(
√

logL) log(m/ε),m′ = m
2
√

logL
− 2O(

√
logL) log(m/ε) and

ε′ = O(εL).

We start by proving the following lemma.

Lemma 4.4.11. For all integers m,L > 0, any ε > 0, if there is an explicit (L, 1, 0, ε, ε1)-

NIPM1 : {0, 1}mL × {0, 1}d1 → {0, 1}m1, with d1 ≤ 2r(logL)1/q
log(m/ε),m1 = m

2s(logL)1−1/q −

2O((logL)1−1/q) log(m/ε) and ε1 ≤ g(L)εL, where g(L) is a monotonic non-decreasing function

73

of L, and r, s, q are parameters, with q ∈ N, then there is an explicit (L, 1, 0, ε, ε2)-NIPM2 :

{0, 1}mL × {0, 1}d2 → {0, 1}m2, with d2 ≤ 22r1−1/(q+1)(logL)
1
q+1

log(m/ε),m2 = m

2sr
1
q+1 (logL)1−1/(q+1)

−

2O((logL)1−1/(q+1)) log(m/ε)) and ε2 ≤ 2ε1.

Proof. The idea is to use Algorithm 6, with (`, 1, 0, ε, ε′1)-NIPM1, ε′1 ≤ g(`)`ε as the simpler merger

for some parameter ` s.t. in each step, the merger acts on ` rows. Following the proof of Theorem

4.4.4, it can be shown that the seed length of NIPM2 will be

d2 = log(m/ε)2r(log `)1/q
2

2 logL
log ` .

We now choose an ` to minimize this, which gives (log `)
q+1
q = 2 logL

r , and thus the seed length is

d2 = 22r
q
q+1 (2 logL)

1
q+1

log(m/ε).

It can be verified that for this setting of parameters, the output length is

m2 =
m

(2s(logL)1−1/q
)

logL
log `

−O(` log(m/ε))

=
m

2sr
1
q+1 (logL)

q
q+1

− 2O((logL
r

)
q
q+1) log(m/ε)

=
m

2sr
1
q+1 (logL)1−1/(q+1)

− 2O((logL)
q
q+1) log(m/ε))

Finally, the error is bounded by
∑ logL

log `

i=1 g(`)ε`i < 2g(`)Lε < 2ε1.

Now, starting with the NIPM from Theorem 9, and using Lemma 4.4.11 an optimal number

of times, we have the following theorem.

Theorem 10. For all integers m,L > 0, any ε > 0, there exists an explicit (L, 1, 0, ε, ε′)-NIPM :

{0, 1}mL×{0, 1}d → {0, 1}m′, where d = 2O(
√

log logL) log(m/ε),m′ = m

L2(log logL)O(1) −O(L log(m/ε))

and ε′ = 2O(
√

log logL)Lε.

74

Proof. We start from the basic case with the (L, 1, 0, ε, ε′)−NIPM from Theorem 9. Thus q = 2, r =

O(1), s = 1. We now use Lemma 4.4.11, increasing q by one each time. Eventually, we stop at

q =
√

log logL, noticing that this minimize the seed length. It can be verified that the seed length

of the final NIPM is 2O(
√

log logL) log(m/ε), the output length is m

L2(log logL)O(1) −O(L log(m/ε)) and

the error is bounded by ε ≤ 2O(
√

log logL)Lε.

Using the NIPM from Theorem 10 in Algorithm 7, we obtain the following non-malleable

extractor with a slightly shorter seed length than Theorem 4.4.3 at the expense of requiring larger

min-entropy.

Theorem 6 (restated). For all n, k ∈ N and any ε > 0, with k ≥ (log(n/ε))32(log log log(n/ε))O(1)
,

there exists an explicit (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where

d = log(n/ε)22O(
√

log log log(n/ε))
,m = k

log(n/ε)2(log log log(n/ε))O(1) −O((log(n/ε))2).

The proof of Theorem 6 is exactly similar to Theorem 4.4.3, and we skip it.

It is not hard to modify Algorithm 7 such that the the role of the source and the seed

are swapped, in the sense that the seed to NIPM is a deterministic function of the source to the

non-malleable extractor, and the matrix is a deterministic function of the seed to the non-malleable

extractor. By this modification. we can achieve a non-malleable extractor that works for lower

slightly min-entropy than Theorem 4.4.3 at the expense of using a larger seed.

4.5 Improved t-Non-Malleable Extractors

The framework to construct non-malleable extractors in Section 4.4 can be generalized directly to

construct non-malleable extractors that can handle multiple adversaries.

In particular, Theorem 4.4.6 generalizes to the case there are t tampered variables, and

further our NIPM construction in Theorem 3.5.7 handles t adversaries. By using these versions of

the components in the above construction, the following theorem is easy to obtain. Since the proof

is similar to the proof of Theorem 4.4.3, we omit the proof of the following theorem.

75

Theorem 11. There exists a constant δ > 0 such that for all n, k, t, ` ∈ N and any ε > 0,

with r = (log log(n/ε))/(log `), k = Ω(t2r` log(n/ε)), there exists an explicit (t, k, ε)-non-malleable

extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(t(1+δ)r` log(n/ε)) and m = (δk −

`tr log(n/ε))/(2t)(logL/ log `).

76

Chapter 5

Resilient Functions and Extracting

from NOBF Sources

1 Ben-Or and Linial [BL85] first studied resilient functions when they introduced the perfect in-

formation model. In the simplest version of this model, there are n computationally unbounded

players that can each broadcast a bit once. At the end, some function is applied to the broadcast

bits. In the collective coin-flipping problem, the output of this function should be a nearly-random

bit. The catch is that some malicious coalition of players may wait to see what the honest players

broadcast before broadcasting their own bits. Thus, a resilient function is one where the bit is

unbiased even if the malicious coalition is relatively large (but not too large).

This model can be generalized to allow many rounds, and has been well studied [BL85,

KKL88,Sak89,AL93,AN93,BN96,RZ01,Fei99,RSZ02]; also see the survey by Dodis [Dod06]. Re-

silient functions correspond to 1-round protocols.

To formally define resilient functions, we introduce the notion of influence of sets on func-

tions.

Definition 5.0.1 (Influence of a set). Let f : {0, 1}n → {0, 1} be any Boolean function on variables

1parts of this chapter have been previously published [CZ16a]

77

x1, . . . , xn. The influence of a set Q ⊆ {x1, . . . , xn} on f , denoted by IQ(f), is defined to be the

probability that f is undetermined after fixing the variables outside Q uniformly at random. Further,

for any integer q define Iq(f) = maxQ⊆{x1,...,xn},|Q|=q IQ(f). More generally, let IQ,D(f) denote the

probability that f is undetermined when the variables outside Q are fixed by sampling from the

distribution D. We define IQ,t(f) = maxD∈Dt IQ,D(f), where Dt is the set of all t-wise independent

distributions. Similarly, IQ,t,γ(f) = maxD∈Dt,γ IQ,D(f) where Dt,γ is the set of all (t, γ)-wise inde-

pendent distributions. Finally, for any integer q define Iq,t(f) = maxQ⊆{x1,...,xn},|Q|=q IQ,t(f) and

Iq,t,γ(f) = maxQ⊆{x1,...,xn},|Q|=q IQ,t,γ(f).

Definition 5.0.2 (Resilient Function). Let f : {0, 1}n → {0, 1} be any Boolean function on vari-

ables x1, . . . , xn and q any integer. We say f is (q, ε)-resilient if Iq(f) ≤ ε. More generally, we

say f is t-independent (q, ε)-resilient if Iq,t(f) ≤ ε and f is (t, γ)-independent (q, ε)-resilient if

Iq,t,γ(f) ≤ ε.

Resilient functions have applications in extracting from bit-fixing sources. Roughly, a bit-

fixing source is a source where some subset of the bits are fixed and the remaining ones chosen in

some random way. Usually these remaining bits are chosen uniformly at random, but in this chapter

we also consider the case when they are chosen t-wise independently. Extraction is easier if the

fixed bits cannot depend on the random bits. Such sources are called oblivious bit-fixing sources,

and have been investigated in a line of work [CGH+85, KZ07a, GRS06, Rao09b]. The best known

explicit extractors for oblivious sources work for min-entropy at least logC(n) with exponentially

small error [Rao09b], and from arbitrary min-entropy with polynomially small error [KZ07a]. They

have applications to cryptography [CGH+85,KZ07a].

Resilient functions immediately give an extractor for the more difficult family of non-

oblivious bit-fixing sources, where the fixed bits may depend on the random bits. We formally

record this connection.

Definition 5.0.3 (Non-Oblivious Bit-Fixing Sources). A source Z on {0, 1}n is called a (q, t, γ)-

non-oblivious bit-fixing source (NOBF source for short) if there exists a subset of coordinates Q ⊆ [n]

78

of size at most q such that the joint distribution of the bits indexed by Q = [n] \ Q is (t, γ)-wise

independent. The bits in the coordinates indexed by Q are allowed to depend arbitrarily on the bits

in the coordinates indexed by Q.

Lemma 5.0.4. Let f : {0, 1}n → {0, 1} be a Boolean function such that for any t-wise independent

distribution D, |Ex∼D[f(x)] − 1
2 | ≤ ε1. Suppose for some q > 0, Iq,t(f) ≤ ε2. Then, f is an

extractor for (q, t, γ)-NOBF sources on n bits with error ε1 + ε2 + γnt.

The results in this chapter are based on joint work with David Zuckerman [CZ16a].

5.1 Our Results and Overview of Techniques

As discussed above, since resilient functions have applications in distributed computing and also

extracting from NOBF sources, it is important to have explicit constructions of such functions.

For t <
√
n, the only known function that is t-independent (q, ε1)-resilient function is the majority

function [DGJ+10,Vio14] for t = O(1) and q < n
1
2
−τ , τ > 0.

However, for larger t, there are better known resilient functions. In particular, the iterated

majority function of Ben-Or and Linial handles a larger q = O(nlog3 2) for t = n, but it is not

clear if it remains resilient for smaller t. Further, Ajtai and Linial [AL93] showed the existence of

functions that are resilient for q = O(n/ log2 n) and t = n. However, their functions are not explicit

and require time nO(n2) to deterministically construct. We note here that by a result in [KKL88],

the largest q one can hope to handle is O(n/ log n).

Our main result on resilient functions is the following.

Theorem 12. There exists a constant c such that for any δ > 0 and every large enough integer

n ∈ N, there exists an efficiently computable monotone Boolean function f : {0, 1}n → {0, 1}

satisfying: For any q > 0, t ≥ c(log n)18,

• f is a depth 4 circuit of size nO(1).

• For any (t, γ)-wise independent distribution D, |Ex∼D[f(x)]− 1
2 | ≤

1
nΩ(1) .

79

• Iq,t(f) ≤ q/n1−δ.

Our main result on extracting from bit-fixing sources is the following. We note that this

direct from Theorem 12 and Lemma 5.0.4.

Theorem 13. There exists a constant c such that for any constant δ > 0, and for all n ∈ N, there

exists an explicit extractor bitExt : {0, 1}n → {0, 1} for the class of (q, t, γ)-non-oblivious bit-fixing

sources with error n−Ω(1), where q ≤ n1−δ, t ≥ c log18(n) and γ ≤ 1/nt+1.

Subsequent Work: Meka [Mek15] built on our ideas to construct a resilient function matching

the probabilistic construction of Ajtai-Linial.

We now outline the main ideas in the proof of Theorem 12. We first show that if the

function f is monotone, in AC0 and almost unbiased, then it is enough to bound Iq(f) to show

that f satisfies the conclusions of Theorem 12. The key observation is the following simple fact:

for any set of variables Q, it is possible to check using another small AC0 circuit E if the function f

is undetermined for some setting of the variables outside Q. This crucially relies on the fact that f

is monotone. Next, using the result of Braverman [Bra10] that bounded independence fools small

AC0 circuits, we conclude that the bias of the circuit E is roughly the same when the variables

outside Q are drawn from a bounded-independence distribution, and when they are drawn from

the uniform distribution. The conclusion now follows using the bound on IQ(f).

Thus all that remains is to construct a small monotone AC0 circuit f , that is almost balanced

under the uniform distribution, and Iq(f) = o(1) for q < D1−δ. The high level idea for this

construction is to derandomize the probabilistic construction of Ajtai-Linial using extractors. The

tribes function introduced by Ben-Or and Linial [BL85] is a disjunction taken over AND’s of equi-

sized blocks of variables. The Ajtai-Linial function is essentially a conjunction of non-monotone

tribes functions, with each tribes function using a different partition and the variables in each tribes

function being randomly negated with probability 1/2, and the partitions are chosen according to

the probabilistic method. We sketch informally our ideas to derandomize this construction. For

each i ∈ [R], let P i be a equi-partition of [n], n = MB, into blocks of size B. Let P ij denote the

80

j’th block in P i. Define,

f(x) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

x`.

First, we abstract out properties that these partitions need to satisfy for f to be almost unbiased

and also (n1−δ, ε)-resilient. Informally, we show that

1. If for all i1, i2, j1, j2 with (i1, j1) 6= (i2, j2), |P i1j1 ∩ P
i2
j2
| ≤ 0.9B, then f is almost unbiased,

2. If for any set Q of size q < n1−δ, the number of partitions P i containing a block P ij such that

|P ij ∩Q| > δB/2 is o(R), then f is (n1−δ, ε)-resilient.

An ingredient in the proof of (1) is Janson’s inequality (see Theorem 5.3.22).

It is important that unlike in Ajtai-Linial and earlier modifications [RZ01], we don’t need

to negate variables, and thus f is monotone.

The second property seems related to the property of extractors captured in Theorem 2.4.1.

However, it is not obvious how to use such extractors to construct these partitions. We construct a

family of equi-partitions from a seeded extractor Ext : {0, 1}r × {0, 1}b → {0, 1}m as follows. Each

Pw corresponds to some w ∈ {0, 1}r. One block of Pw is Pw~0 = {(y,Ext(x, y)) : y ∈ {0, 1}b}. The

other block are shifts of this, i.e., for any s ∈ {0, 1}m, define Pws = {(y,Ext(x, y)⊕ s) : y ∈ {0, 1}b}.

This gives R = 2r partitions of [n] with n = 2m+b.

For any good enough extractor, we show that (2) is satisfied using a basic property of

extractors and an averaging argument. To show that the partitions satisfy (1), we need an additional

property of the extractor, which informally requires us to prove that the intersection of any two

arbitrary shifts of neighbors of any two distinct nodes w1, w2 ∈ {0, 1}r in GExt is bounded. This

essentially is a strong variant of a design extractor of Li [Li12a]. We show that Trevisan’s extractor

has this property. This completes the informal sketch of our resilient function construction. We

note that our actual construction is slightly more complicated and is a depth 4 circuit. The extra

layer enables us to simulate each of the bits x1, . . . , xn having Pr[x1 = 1] close to 1, which we need

to make f almost unbiased.

81

5.2 Monotone Constant-Depth Resilient Functions are t-Independent

Resilient

We show if f is a constant depth monotone circuit, then in order to prove an upper bound for

Iq,t,γ(f), it is in fact enough to upper bound Iq(f), which is a simpler quantity to handle.

Theorem 5.2.1. There exists a constant b > 0 such that the following holds: Let C : {0, 1}n →

{0, 1} be a monotone circuit in AC0 of depth d and size m such that |Ex∼Un [C(x)]− 1
2 | ≤ ε1. Suppose

q > 0 is such that Iq(C) ≤ ε2. If t ≥ b(log(5m/ε3))3d+6, then Iq,t(C) ≤ ε2+ε3 and Iq,t,γ(C) ≤ ε2+ε3+

γnt. Further, for any distribution D that is (t, γ)-wise independent, |Ex∼D[C(x)]− 1
2 | ≤ ε1+ε3+γnt.

An important ingredient in the our proof is a result Braverman [Bra10], which was recently

refined by Tal [Tal14].

Theorem 5.2.2 ([Bra10] [Tal14]). Let D be any t = t(m, d, ε)-wise independent distribution on

{0, 1}n. Then for any circuit C ∈ AC0 of depth d and size m,

|Ex∼Un [C(x)]−Ex∼D[C(x)]| ≤ ε

where t(m, d, ε) = O(log(m/ε))3d+3.

We also recall a result about almost t-wise independent distributions.

Theorem 5.2.3 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there

exists a t-wise independent distribution that is ntγ-close to D.

Proof of Theorem 5.2.1. The bound on Ex∼D[C(x)] is direct from Theorem 5.2.2 and Theorem 7.3.4.

We now proceed to prove the influence property.

Consider any set Q of variables, |Q| = q. Let Q = [n] \ Q. We construct a function

EQ : {0, 1}n−q → {0, 1} such that EQ(y) = 1 if and only if C is undetermined when xQ is set to y.

82

Thus, it follows that

Ey∼Un−q [EQ(y)] = Pry∼Un−q [EQ(y) = 1] = IQ(C) ≤ ε2.

Let D be any t-wise independent distribution. We have,

Ey∼D[EQ(y)] = Pry∼D[EQ(y) = 1] = IQ,D(C).

Thus to prove that IQ,D(C) ≤ ε2 + ε3, it is enough to prove that

|Ey∼Un−q [EQ(y)]−Ey∼D[EQ(y)]| ≤ ε3. (5.1)

We construct EQ as follows: Let C0 be the circuit obtained from C by setting all variables in Q to 0.

Let C1 be the circuit obtained from C by setting all variables in Q to 1. Define EQ := ¬(C0 = C1).

Since C is monotone, EQ satisfies the required property. Further EQ can be computed by a circuit

in AC0 of depth d+ 2 and size 4m+ 3. It can be checked that the depth of EQ can be reduced to

d+ 1 by combining two layers. Thus (5.1) now directly follows from Theorem 5.2.2. The bound on

IC,t,γ(q) follows from an application of Theorem 7.3.4.

5.3 Monotone Boolean Functions in AC0 Resilient to Coalitions

The main result in this section is an explicit construction of a constant depth monotone circuit f

which is resilient to coalitions and is almost balanced under the uniform distribution. This is the

final ingredient in our construction of a 2-source extractor.

Theorem 5.3.1. For any δ > 0, and every large enough integer n, there exists a polynomial time

computable monotone Boolean function f : {0, 1}n → {0, 1} satisfying:

• f is a depth 4 circuit in AC0 of size nO(1).

•
∣∣Ex∼Un [f(x)]− 1

2

∣∣ ≤ 1
nΩ(1) .

83

• For any q > 0, Iq(f) ≤ q/n1−δ.

We first prove Theorem 12, which follows easily from the above theorem.

Proof of Theorem 12. Let f : {0, 1}n → {0, 1} be the function from Theorem 5.3.1 such that for

any q > 0, Iq(f) ≤ q/n1− δ
2 . Also we have that f is monotone and is a depth 4 AC0 circuit.

Fix ε3 = 1/n. Thus by Theorem 5.2.1, it follows that there exists a constant b such that for

any t ≥ b(log(5n/ε3))18, q > 0 ,

Iq,t,γ(f) ≤ ε3 +
q

n1− δ
2

≤ q

n1−δ .

Further, using Theorem 5.2.1, for any t-wise independent distribution D, we have

∣∣∣∣Ex∼D[f(x)]− 1

2

∣∣∣∣ ≤ 1

n
+

1

nΩ(1)
.

The remainder of this section is used to prove Theorem 5.3.1. Our starting point is the work

of Ajtai and Linial [AL93], who proved the existence of functions computable by linear sized depth

3 circuits in AC0 that are (Ω(n/ log2 n), ε)-resilient. However, this construction is probabilistic,

and deterministically finding such functions requires time nO(n2). Further these functions are not

guaranteed to be monotone (or even unate). We provide some intuition of our construction in the

introduction.

We initially construct a depth 3 circuit which works, but then the inputs have to be chosen

from independent Bernoulli distributions where the probability p of 1 is very different from 1/2.

By observing that we can approximate this Bernoulli distribution with a CNF on uniform bits, we

obtain a depth 4 circuit which works for uniformly random inputs.

84

5.3.1 Our Construction and Key Lemmas

Construction 1: Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be a strong-seeded extractor set to extract

from min-entropy k = 2δr with error ε ≤ δ/4, b = δ1m, δ1 = δ/20, and output length m = δr.

Assume that Ext is such that ε > 1/M δ1 . Let R = 2r, B = 2b, M = 2m and K = 2k. Let s = BM .

Thus s = M1+δ1 .

Let {0, 1}r = {v1, . . . , vR}. We define a collection ofR equi-partitions of [s], P = {P v1 , . . . , P vR}

as follows: Let GExt be the bipartite graph corresponding to Ext and let N (x), for any x ∈ {0, 1}r,

denote the neighbours of x in GExt. For some v ∈ {0, 1}r, let N (v) = {z1, . . . , zB}. For each

w ∈ {0, 1}m, the set {(j, zj ⊕ w) : j ∈ {0, 1}b} is defined to be a block in P v, where ⊕ denotes the

bit-wise XOR of the two strings. Note that P v indeed forms an equi-partition of [s] with M blocks

of size B.

Define the function fExt : {0, 1}s → {0, 1} as:

fExt(y) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

y`.

Let

γ =
lnM − ln ln(R/ ln 2)

B
.

We prove the following lemmas from which the proof of Theorem 5.3.1 is straightforward.

We first introduce some definitions.

Definition 5.3.2 ((n, τ)-Bernoulli distribution). A distribution on n bits is an (n, τ)-Bernoulli

distribution, denoted by Ber(n, τ), if each bit is independently set to 1 with probability τ and set to

0 with probability 1− τ .

Lemma 5.3.3. Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be the extractor used in Construction 1. For

any constant ε1 > 0, let (1 − B−ε1)γ ≤ p1 ≤ γ. Then there exists a constant δ > 0 such that for

any q > 0,

Iq,Ber(s,1−p1)(fExt) ≤
q

s1−δ .

85

The following generalizes the notion of a design extractor which was introduced by Li [Li12a].

Definition 5.3.4 (Shift-design extractor). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong-seeded

extractor. Let n = 2d. If for any distinct x, x′ ∈ {0, 1}n, and arbitrary y, y′ ∈ {0, 1}m

|{(h,Ext(x, h)⊕ y) : h ∈ {0, 1}d} ∩ {(h,Ext(x′, h)⊕ y′) : h ∈ {0, 1}d}| ≤ (1− η)n,

then Ext is called an η-shift-design extractor.

Lemma 5.3.5. Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be the extractor used in Construction 1.

Suppose Ext is a 1
10 -shift-design extractor. For any constant ε1 > 0, let (1 − B−ε1)γ ≤ p1 ≤ γ.

Then, the following holds:

∣∣∣∣Ey∼Ber(s,1−p1)[fExt(y)]− 1

2

∣∣∣∣ ≤ B−Ω(1).

Lemma 5.3.6. Let TExt : {0, 1}r × {0, 1}b → {0, 1}m be the Trevisan extractor from Theorem

2.1.5 with parameters as in Construction 1. Then, TExt is a 1
10 -shift-design extractor.

Lemma 5.3.7. Suppose γ < 9/10. Then for any ν > 0, there exists an explicit size h monotone

CNF C on h bits, where h = O
(

1
ν ln

(
1
ν

))
, such that γ − ν ≤ Prx∼Uh

[C(x) = 0] < γ.

We first show how to derive Theorem 5.3.1 from the above lemmas.

Proof of Theorem 5.3.1. Let TExt : {0, 1}r × {0, 1}b → {0, 1}m be the Trevisan extractor from

Theorem 2.1.5 with parameters as in Construction 1: k = 2δr,m = δr, δ1 = δ/20 and ε = 2−δ2
√
r

where δ2 is chosen appropriately such that the seed length of TExt from Theorem 2.1.5 is (for some

constant λ)

b =
λ log2(r/ε)

log(k/m)
=
λ log2(r/2−δ2

√
r)

log 2
= λ(δ2

2r + log2 r + 2δ2

√
r log r) = δ1δr = δ1m.

Thus, indeed M−δ1 < ε < δ/4.

86

We now fix the parameter r as follows. Let the parameter ν in Lemma 5.3.7 be set to γ/Bε1 ,

where ε1 = δ/4 and let C be the size h monotone CNF circuit guaranteed by Lemma 5.3.7, where

h < B1+2ε1 . Thus, (1−B−ε1)γ ≤ Prx∼Uh
[C(x) = 0] < γ.

Choose the largest integer r such that for m = δr, we have n′ = sh = BMh < n. It follows

that for this choice of r, n′ = Ω(n). We construct our function on n′ bits. The size of the coalition

is at most n1−δ = (n′)1−δ′ , where δ′ = δ − o(1). Thus, we may assume n = n′ = BMh and δ = δ′.

Thus n = BMh < M1+δ1+(1+2ε1)δ1 and B = nΩ(1).

We now use Construction 1 and construct the function fTExt : {0, 1}s → {0, 1}, where we

instantiate Ext with extractor TExt as set up above. Let f be the function derived from fTExt

by replacing each variable yi by a copy of the monotone CNF C set up above. Since TExt is a

polynomial time function, fTExt can be constructed in polynomial time. Thus f is computable by

a polynomial time algorithm. Further, f is an O(RMBh) = nO(1) sized monotone circuit in AC0

of depth 4.

We observe that,

s1− δ
2 = (MB)1− δ

2

> (MB)(1+ δ
2)(1−δ)

> (MB3)1−δ (since M δ/2 > B2)

≥ (MBh)1−δ = n1−δ.

This calculation and Lemma 5.3.7 yields that

In1−δ(f) ≤ I
s1−

δ
2 ,Ber(s,1−p1)

(fTExt).

Using Lemma 5.3.3, it follows that

Iq,Ber(s,1−p1)(fExt) ≤
q

s1− δ
2

<
q

n1−δ .

87

We now bound the bias of f . By Lemma 5.3.6, we have that TExt is a 1
10 -shift-design

extractor. Thus by Lemma 5.3.5, we have

∣∣∣∣Ey∼Ber(s,1−p1)[fTExt(y)]− 1

2

∣∣∣∣ ≤ B−Ω(1) = n−Ω(1).

Finally, using Lemma 5.3.7, it follows that

∣∣∣∣Ex∼Un [f(x)]− 1

2

∣∣∣∣ ≤ 1

nΩ(1)

.

Proof of Lemma 5.3.6. To prove that TExt is a 1
10 -shift-design extractor, we first recall the con-

struction of the Trevisan extractor TExt : {0, 1}r × {0, 1}b → {0, 1}m.

For any input y ∈ {0, 1}r, we describe the construction of the Trevisan extractor [Tre01,

RRV02] to obtain the first bit of the output since this is enough for the purpose of this proof. Fix

an asymptotically good binary linear error correcting code C′ with constant relative rate α, block

length r = (r + 1)/α, and relative distance 1
2 − β, where β < ε. Further assume that C′ contains

the all 1’s string ~1. Let {v1, . . . , vr+1} be a basis of C ′ with vr+1 = ~1. Let C be the binary linear

code generated by {v1, . . . , vr} i.e., C = span{v1, . . . , vr}. It follows that C does not contain ~1,

has relative rate α(1 − 1
r) > 0.9α and relative distance 1

2 − β. Let Enc : {0, 1}r → {0, 1}r be the

encoding function of C.

Further fix a subset S1 ⊂ [b] of size log(r̄). Then the first bit of the output of TExt on input

y and seed z is the bit at the zS1 ’th coordinate of the string cy = Enc(y). Thus, as we cycle over

all seeds z, each bit of the string cy appears equally often.

For any x ∈ {0, 1}r, define

T 0
x = {(h,TExt(x, h)[1]) : h ∈ {0, 1}b}, T 1

x = {(h,TExt(x, h)[1] ⊕ 1) : h ∈ {0, 1}b}.

Let x, x′ be any two distinct r bit strings. It follows by our argument above, and the fact that C ′

88

is a linear code with distance 1
2 − β containing ~1 that |T b1x ∩ T

b2
x′ | ≤ (1

2 + β)B < 0.9B for any two

bits b1 and b2.

Let y, y′ ∈ {0, 1}m. Let the first bit of y be b1 and the first bit of y′ be b2. Thus,

|{(h,TExt(x, h)⊕ y) : h ∈ {0, 1}b} ∩ {(h,TExt(x′, h)⊕ y′) : h ∈ {0, 1}b}| ≤ |T b1x ∩ T
b2
x′ | ≤ 0.9B.

Proof of Lemma 5.3.7. Let h2 = dlog (2/ν)e, and let h1 be the largest integer such that (1 −

2−h2)h1 ≥ 1− γ. Thus,

(1− γ) ≤ (1− 2−h2)h1 ≤ (1− γ)/(1− 2−h2)

< (1− γ)(1 + 21−h2)

≤ (1− γ)(1 + ν)

< 1− γ + ν

and h1 = O(2h2).

Define

C(x) =

h1∧
g1=1

h2∨
g2=1

xg1,g2 .

and h = h1h2 = O(h22h2) = O
(

1
ν log

(
1
ν

))
.

Thus Prx∼Uh
[C(x) = 0] = 1− (1− 2−h2)h1 , and hence

γ − ν ≤ Prx∼Uh
[C(x) = 0] ≤ γ.

We now proceed to prove Lemma 5.3.3 and Lemma 5.3.5.

89

For convenience, define

f iExt(y) =
∨

1≤j≤M

∧
`∈P ij

y`

where i ∈ {0, 1}r. Further, let

p2 = (1− p1)B, p3 = (1− p2)M .

We record two easy claims.

Claim 5.3.8. For any i ∈ {0, 1}r, j ∈ {0, 1}m, Pry∼Ber(s,1−p1)[
∧
`∈P ij

y` = 1] = (1− p1)B = p2.

Claim 5.3.9. For any i ∈ {0, 1}r, Pry∼Ber(s,1−p1)[f
i
Ext(y) = 0] = (1− p2)M = p3.

We frequently use the following inequality.

Claim 5.3.10. For any n > 1 and 0 ≤ x ≤ n, we have

e−x
(

1− x2

n

)
≤
(

1− x

n

)n
≤ e−x.

We also frequently use the following bounds.

Claim 5.3.11. The following inequalities hold: Let ε2 = ε1/2. Then,

1. lnR−ln ln 2
M

(
1− 1

Bε2

)
≤ p2 ≤ lnR−ln ln 2

M

(
1 + 1

Bε2

)
≤ r

M .

2. 1
2R ≤

(
ln 2
R

) (
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2
R

) (
1 + r

Bε2

)
≤ 0.9

R .

Proof. We have,

p2 = (1− p1)B ≥ (1− γ)B ≥ e−γB(1− γ2B) (by Claim 5.3.10)

≥ lnR− ln ln 2

M

(
1− r2

B

)
(since γ < (lnM)/B < r/B)

90

We now upper bound p2. We have,

p2 ≤ (1− γ(1−B−ε1))B ≤ e−γB(1−B−ε1) (by Claim 5.3.10)

<

(
lnR− ln ln 2

M

)
MB−ε1 <

(
lnR− ln ln 2

M

)
eδrB

−ε1

≤ lnR− ln ln 2

M

(
1 +

r

Bε1

)

Thus,
lnR− ln ln 2

M

(
1− 1

Bε2

)
≤ p2 ≤

lnR− ln ln 2

M

(
1 +

1

Bε2

)
,

since ε2 = ε1/2.

Estimating similarly as above, we have

p3 = (1− p2)M

≥
(

1−
(

lnR− ln ln 2

M

)(
1 +

1

Bε2

))M
≥

(
1− (lnR− ln ln 2)2

M

(
1 +

1

Bε2

)2
)(

ln 2

R

)
e
−(lnR−ln ln 2)

Bε2 (by Claim 5.3.10)

≥
(

1− 2r2

M

)(
ln 2

R

)
e−r/B

ε2

≥
(

1− 2r2

M

)(
ln 2

R

)(
1− r

Bε2

)
≥
(

1− 2r

Bε2

)(
ln 2

R

)
.

91

Finally, we have

p3 ≤
(

1−
(

lnR− ln ln 2

M

)(
1− 1

Bε2

))M
≤
(

ln 2

R

)1−B−ε2

(by Claim 5.3.10)

≤
(

ln 2

R

)
2r/B

ε2 ≤
(

ln 2

R

)(
1 +

r

Bε2

)
.

Thus, (
ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)1− r
B

≤
(

ln 2

R

)(
1 +

r

Bε2

)
.

5.3.2 Proof of Lemma 5.3.3 : Bound on Influence of Coalitions on fExt

We now proceed to bound the influence of coalitions of variables on fExt.

Claim 5.3.12. For any i ∈ {0, 1}r and q ≤ s1−δ, Iq,Ber(s,1−p1)(f
i
Ext) ≤

1
R .

Proof. Let Q be any set of variables of size q, q ≤ s1−δ. There are at most q blocks of P i which

contain a variable from Q. By Claim 5.3.8, it follows that the probability that for a y sampled from

Ber(s, 1− p1), there is no ANn gate at depth 1 in f iExt which outputs 1 is at most

(1− p2)M−q ≤ p1− s
1−δ
M

3

≤ p3(2R)
s1−δ
M (since p3 > 1/(2R) by Claim 5.3.11)

≤ p3e
r/Mδ/2

(since s = M1+δ1 < M1+ δ
2 /2)

<
1

R
(since p3 < 0.9/R by Claim 5.3.11)

Thus the influence of Q is bounded by 1
R .

Definition 5.3.13. For any i ∈ {0, 1}r and j ∈ {0, 1}m, define a block P ij to be bad with respect

92

to a subset of variables Q if |P ij ∩Q| ≥ 2εB. Further call a partition P i bad with respect to Q if it

has a block which is bad. Otherwise, P i is good.

Claim 5.3.14. Consider any subset of variables Q of size q. If q ≤ s1−δ, then there are less than

KM bad partitions with respect to Q.

Proof. Suppose to the contrary that there are at leastKM bad partitions. It follows by an averaging

argument that there exists j ∈ {0, 1}m such that the number of bad blocks among the {P ij : i ∈

{0, 1}r} is at least K. Define the function Extj(x, y) = Ext(x, y)⊕ j. Observe that Extj is a seeded

extractor for min-entropy k with error ε.

Let Nj(x) denote the set of neighbours of x in the graph corresponding to Extj . It follows

that |{|Nj(x) ∩ Q| ≥ 2εB|}| ≥ K. We note that q/M = s1−δ/M = (MB)1−δ/M < 1/M δ/19 < ε,

since ε > 1/M δ1 = 1/M δ/20 > 1/M δ/19. Thus, we have

|{|Nj(x) ∩Q| ≥ (ε+ µQ)B}| ≥ K,

where µQ = q/M . However this contradicts Theorem 2.4.1. Thus the number of bad blocks is

bounded by KM .

Claim 5.3.15. Let P i be a partition that is good with respect to a subset of variables Q, |Q| = q.

If q ≤ s1−δ, then IQ,Ber(s,1−p1)(f
i
Ext) ≤

q
2Rs1−δ

.

Proof. We note that there are at least M − q blocks in P i that do not have any variables from Q.

Each of the remaining blocks have at most 2εB variables from Q. An assignment of x leaves f iExt

undetermined only if: (a) there is no ANn gate at depth 1 in f iExt which outputs 1 and (b) There

is at least one block with a variable from Q such that the non-Q variables are all set to 1. These

two events are independent. Further, by Claim 5.3.12, the probability of (a) is bounded by 1/R.

We now bound the probability of (b). If there are h variables of Q in P ij , the probability that the

93

non-Q variables are all 1’s is exactly (1− p1)B−h. Thus the probability of event (b) is bounded by

q(1− p1)B(1−2ε) = qp1−2ε
2

≤ qr

M1−2ε
(since p2 < r/M by Claim 5.3.11)

=
qr

M1− δ
2

(since ε < δ/4)

<
q

M1− 2δ
3

(using r = Mo(1))

<
q

2s1−δ (since s = M1+δ1 < M1+ δ
4).

Thus for any q ≤ s1−δ,

Iq,Ber(s,1−p1)(fExt) ≤
KM

R
+

q

2s1−δ =
1

R1−3δ
+

q

2s1−δ <
q

s1−δ .

5.3.3 Proof of Lemma 5.3.5: Bound on the Bias of fExt

We now proceed to show that fExt is almost balanced. For ease of presentation, we slightly abuse

notation and relabel the partitions in Construction 1 as P 1, . . . , PR, where for any i ∈ [R], P i

corresponds to the partition P vi with vi being the r bit string for the integer i− 1.

Claim 5.3.16. There exists a small constant ε3 > 0 such that for any i ∈ {0, 1}r, Pry∼Ber(s,1−p1)[f
i
Ext(y) =

1] = 1− α
R , where 1− 1

Bε3 ≤
α

ln 2 ≤ 1 + 1
Bε3 .

Proof. nirectly follows from Claim 5.3.11.

We now estimate the probability Pry∼Ber(s,1−p1)[fExt(y) = 0]. This is not direct since the

f iExt’s are on the same set of variables, and can be correlated in general. Towards estimating this,

we introduce some definitions.

94

Definition 5.3.17. Let P i, P j be two equi-partitions of [s] with blocks of size B. Then (P i, P j) is

said to be pairwise-good if the size of the intersection of any block of P i and any block of P j is at

most 0.9B.

Definition 5.3.18. Let P 1, . . . , PR be equi-partitions of [s] with blocks of size B. A collection of

partitions P = {P 1, . . . , PR} is pairwise-good if for any distinct i, j ∈ {0, 1}r, (P i, P j) is pairwise-

good.

Lemma 5.3.19. If P is pairwise-good, then |Ey∼Ber(s,1−p1)[fExt(y)]− 1
2 | ≤

1
BΩ(1) .

Lemma 5.3.20. The set of partitions P = {P 1, . . . , PR} in Construction 1 is pairwise-good.

It is clear that the above two lemmas directly imply that |Ey∼Ber(s,1−p1)[fExt(y)]− 1
2 | ≤

1
BΩ(1) .

Proof of Lemma 5.3.20. Let P i1j1 and P i2j2 be any two blocks such that i1 6= i2. We need to prove

that |P i1j1 ∩ P
i2
j2
| ≤ 0.9B. Recall that P i1j1 = {(z,Ext(i1, z) ⊕ j1) : z ∈ {0, 1}b}, and similarly

P i2j2 = {(z,Ext(i2, z) ⊕ j2) : z ∈ {0, 1}b}. The bound on |P i1j1 ∩ P
i2
j2
| now directly follows from the

fact that Ext is a 1
10 -shift-design extractor.

Proof of Lemma 5.3.19. Let P = {P 1, . . . , PR} be pairwise-good.

Recall that

p3 = Pry∼Ber(s,1−p1)[f
i
Ext(y) = 0] =

α

R
.

Let y be sampled from Ber(s, 1− p1). Let Ei be the event f iExt(y) = 0. We have,

p = Pry∼Ber(s,1−p1)[fExt(y) = 0] = Pr

 ∨
1≤i≤R

Ei

 .
For 1 ≤ c ≤ R, let

Sc =
∑

1≤i1<...<ic≤R
Pr

 ∧
1≤g≤c

Eig

 .

95

Using the Bonferroni inequalities, it follows that for any even a ∈ [R],

a∑
c=1

(−1)(c−1)Sc ≤ p ≤
a+1∑
c=1

(−1)(c−1)Sc. (5.2)

Towards proving a tight bound on p using (5.2), we prove the following lemma.

Lemma 5.3.21. There exist constants β1, β2 > 0 such that for any c ≤ sβ1, and arbitrary 1 ≤ i1 <

. . . < ic ≤ R, the following holds:

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Eig

 ≤ (α
R

)c(
1 +

1

Mβ2

)
.

To prove the above lemma, we recall Janson’s inequality [Jan90, BS89]. We follow the

presentation in [AS92].

Theorem 5.3.22 (Janson’s Inequality [Jan90,BS89,AS92]). Let Ω be a finite universal set and let

O be a random subset of Ω constructed by picking each h ∈ Ω independently with probability ph.

Let Q1, . . . , Q` be arbitrary subsets of Ω, and let Ei be the event Qi ⊆ O. Define

∆ =
∑

i<j:Qi∩Qj 6=∅

Pr [Ei ∧ Ej] , n =
∏̀
i=1

Pr
[
Ei
]
.

Assume that Pr[Ei] ≤ τ for all i ∈ [`]. Then

n ≤ Pr
[∧
Ei
]
≤ ne

∆
1−τ .

Proof of Lemma 5.3.21. We set β1 = 1/90 with foresight. Without loss of generality suppose ig = g

for g ∈ [c]. We use Janson’s inequality with Ω = [s], and O constructed by picking each h ∈ [s]

with probability 1 − p1. Further let Ei,j be the event that P ij ⊆ O. Intuitively, O denotes the set

96

of coordinates in y that are set to 1 for a sample y from Ber(s, 1− p1). With this interpretation,

the event f iExt(y) = 0 exactly corresponds to the event
∧

1≤j≤M Ei,j . Thus, we have

Pr

 ∧
1≤g≤c

Eg

 = Pr

 ∧
i∈[c],j∈{0,1}m

Ei,j

 .
We now estimate n,∆, γ to apply Janson’s inequality. For any i ∈ [c], j ∈ {0, 1}m, we have

Pr[Ei,j] = Pr[P ij ⊆ O] = (1− p1)B = p2. Note that τ = p2 <
1
2 . Further

n =
∏

i∈[c],j∈{0,1}m
Pr
[
Ei,j
]

= (1− p2)Mc = pc3 =
(α
R

)c
.

Finally, we have

∆ =
∑

i1<i2∈[c],j1,j2∈{0,1}m:P
i1
j1
∩P i1j1 6=∅

Pr[Ei1,j1 ∧ Ei2,j2]

We observe that any P ij can intersect at most B blocks of another partition P i
′
. Thus, the total

number of blocks that intersect between two partitions P i and P j is bounded by MB = s. Further,

recall that P is pairwise-good. Thus it follows that for any distinct i1, i2 ∈ [c], and j1, j2 ∈ {0, 1}m,

|P i1j1 ∩ P
i2
j2
| ≤ 0.9B. Thus, |P i1j1 ∪ P

i2
j2
| ≥ 1.1B and hence for any i1 < i2 ∈ [c], j1, j2 ∈ {0, 1}m,

Pr[Ei1,j1 ∧ Ei2,j2] ≤ (1− p1)
11B
10 = p

11
10
2 .

By Claim 5.3.11, p2 ≤ r
M . Thus,

∆ ≤
(
c

2

)
sp

11
10
2 <

s1+2β1r2

M
11
10

=
(MB)1+2β1r2

M
11
10

=
B1+2β1r2

M
1
10
−2β1

=
M δ1(1+2β1)r2

M
1
10
−2β1

<
r2

M
1
20
−3β1

.

97

Recall β1 = 1/90. It follows that

∆ < M−β
′
,

where β′ = 1/70 .

Invoking Janson’s inequality, we have

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Eg

 ≤ (α
R

)c
e2M−β

′
≤
(

1 +
3

Mβ′

)(α
R

)c
.

This concludes the proof.

Fix a = sβ3 (assume that a is even), β3 = min{β1/2, β2/1000}, where β1, β2 are the constants

in Lemma 5.3.21.

The following lemma combined with (5.2) proves a tight bound on p (recall that p =

Pry∼Ber(s,1−p1)[fExt(y) = 0]).

Claim 5.3.23. e−α − 1
Mβ2/2

≤
∑a

c=1(−1)c−1Sc <
∑a+1

c=1 (−1)c−1Sc ≤ e−α + 1
Mβ2/2

.

Proof. For any c ≤ a+ 1, using Lemma 5.3.21, we have

(
R

c

)(α
R

)c
≤ Sc ≤

(
R

c

)(α
R

)c(
1 +

1

Mβ2

)
.

We have,

(
R

c

)(α
R

)c
≤ Rc

c!

αc

Rc

=
αc

c!

98

and

(
R

c

)(α
R

)c
=
R(R− 1) . . . (R− c+ 1)

Rc
αc

c!

≥
(

1− a2

R

)
αc

c!
(by Weierstrass product inequality)

≥
(

1− 1

R1−β2

)
αc

c!

by our choice of a.

Thus, for any c ≤ a, we have

∣∣∣∣Sc − αc

c!

∣∣∣∣ ≤ 1

Mβ2
(5.3)

It also follows that

Sa+1 ≤
1

a!
+

1

Mβ2
<

2

Mβ2
, (5.4)

using a = sβ3 .

Finally, by the classical Taylor’s theorem, we have∣∣∣∣∣e−α −
a∑
c=1

(−1)c−1α
c

c!

∣∣∣∣∣ < 1

a!
<

1

Mβ2
. (5.5)

Claim 5.3.23 is now direct from the inequalities (5.3), (5.4), (5.5) and the fact that aM−β2 ≤

M−β2/2.

The next claim is a restatement of Lemma 5.3.19.

Claim 5.3.24. |p− 1
2 | ≤ B

−Ω(1), where p = Pry∼Ber(s,1−p1)[fExt(y) = 0].

99

Proof. Using (5.2) and Claim 5.3.23, we have

|p− e−α| ≤ 1

Mβ2/2
.

Recall that from Claim 5.3.16, we have

ln 2

(
1− 1

Bε3

)
≤ α ≤ ln 2

(
1 +

1

Bε3

)
.

Thus, ∣∣∣∣e−α − 1

2

∣∣∣∣ ≤ 2

Bε3

and hence, we have ∣∣∣∣p− 1

2

∣∣∣∣ ≤ 3

Bε3
.

100

Chapter 6

Two-Source Extractors and Ramsey

Graphs

1 An extractor Ext : {0, 1}n → {0, 1}m is a deterministic function that takes input from a weak

source with sufficient min-entropy and produces nearly uniform bits. Unfortunately, it is impossible

to extract even 1 bit for sources with min-entropy n− 1. To circumvent this difficulty, Santha and

Vazirani [SV86], and Chor and Goldreich [CG88] suggested the problem of designing extractors for

two or more independent sources, each with sufficient min-entropy. When the extractor has access

to just two sources, it is called a two-source extractor. An efficient two-source extractor could be

quite useful in practice, if just two independent sources of entropy can be found.

Definition 6.0.1 (Two-source extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a

(k, ε)-two-source extractor if for any independent (n, k)-sources X and Y, we have

|Ext(X,Y)−Um| ≤ ε.

Note that for m = 1, this corresponds to an N ×N matrix with entries in {0, 1} such that

1parts of this chapter have been previously published [CZ16a,CL16a]

101

every K ×K submatrix has 1/2± ε fraction of 1’s, where N = 2n and K = 2k.

6.1 Prior Work and Our results

Chor and Goldreich [CG88] used Lindsey’s Lemma to show that the inner-product function is

a 2-source extractor for min-entropy more than n/2. However, no further progress was made for

around 20 years, when Bourgain [Bou05b] broke the “half-barrier” for min-entropy, and constructed

a 2-source extractor for min-entropy 0.499n. This remains the best known result prior to this work.

Bourgain’s extractor was based on breakthroughs made in the area of additive combinatorics.

Raz [Raz05] obtained an improvement in terms of total min-entropy, and constructed 2-

source extractors requiring one source with min-entropy more than n/2 and the other source with

min-entropy O(log n). A different line of work investigated a weaker problem of designing dispersers

for two independent sources due to its connection with Ramsey graphs. We discuss this in Section

6.2.

The lack of progress on constructing two-source extractors motivated researchers to use more

than two sources with the best known result due to Li [Li13a], where he showed how to extract

from 3 sources, each with polylogarithmic min-entropy. We discuss this line of work in more detail

in Chapter 7. Thus, in summary, despite much attention and progress over the last 30 years,

it remained open to explicitly construct two-source extractors for min-entropy rate significantly

smaller than 1/2.

In joint work with Zuckerman [CZ16a], we construct an explicit two-source extractor for

polylogarithmic min-entropy.

Theorem 14. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial time

computable construction of a 2-source extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1} for min-entropy

at least logC(n) and error n−Ω(1).

The constant C in the above theorem can be taken to be 75. This was improved to C = 19

by Meka [Mek15]. Subsequently in joint work with Li [CL16a], we improve this to 14 (see Section

102

6.5 for more details). By an argument of Barak [Rao09b], every 2-source extractor is also a strong

2-source extractor with similar parameters. Thus the extractor 2Ext in Theorem 14 is also a strong

2-source extractor.

An open problem here is to improve the error to negligible since this is important useful

for applications in cryptography and distributed computing. For example, several researchers have

studied whether cryptographic or distributed computing protocols can be implemented if the play-

ers’ randomness is defective [DO03,GSV05,KLRZ08,KLR09]. Kalai et al. [KLRZ08] used C-source

extractors to build network extractor protocols, which allow players to extract private randomness

in a network with Byzantine faults. A better 2-source extractor with negligible error would im-

prove some of those constructions. Kalai, Li, and Rao [KLR09] showed how to construct a 2-source

extractor under computational assumptions, and used it to improve earlier network extractors in

the computational setting; however, their protocols rely on computational assumptions beyond the

2-source extractor, so it would not be clear how to match their results without assumptions.

If we allow the 2-source extractor to run in time poly(n, 1/ε), then our technique in fact

generalizes to obtain arbitrary error ε. In particular, we have the following theorem.

Theorem 15. There exists a constant C > 0 such that for all n ∈ N and any ε > 0, there exists a

2-source extractor 2Ext : {0, 1}n×{0, 1}n → {0, 1} computable in time poly(n, 1/ε) for min-entropy

at least logC(n/ε) and error ε.

Recently, Li [Li15a] extended the construction in [CZ16a] to achieve an explicit strong

2-extractor with output length kα bits, for some small constant α. By our observation above,

this immediately implies a 2-source extractor for min-entropy k ≥ logC
′
n, for some large enough

constant C ′, with output length Ω(k); in fact, the output can be k bits.

6.2 Ramsey Graphs

Definition 6.2.1 (Ramsey graphs). A graph on N vertices is called a K-Ramsey graph if does not

contain any independent set or clique of size K.

103

It was shown by Erdös in one of the first applications of the probabilistic method that

there exists K-Ramsey graphs for K = 2 logN . By explicit, we mean a polynomial-time algorithm

that determines whether there is an edge between two nodes, i.e., the running time should be

polylogarithmic in the number of nodes.

Frankl and Wilson [FW81] used intersection theorems to construct K-Ramsey graphs on

N vertices, with K = 2O(
√

logN log logN). This remained the best known construction for a long

time, with many other constructions [Alo98, Gro00, Bar06] achieving the same bound. Gopalan

[Gop14] explained why approaches were stuck at this bound, showing that apart from [Bar06],

all other constructions can be seen as derived from low-degree symmetric representations of the

OR function. Finally, subsequent works by Barak et al. [BKS+10,BRSW12] obtained a significant

improvement and gave explicit constructions of K-Ramsey graphs, with K = 22log1−α(logN)
, for some

absolute constant α.

We also define a harder variant of Ramsey graphs.

Definition 6.2.2 (Bipartite Ramsey graph). A bipartite graph with N left vertices and N right

vertices is called a bipartite K-Ramsey graph if it does not contain any complete K ×K-bipartite

sub-graph or empty K ×K sub-graph.

Explicit bipartite K-Ramsey graphs were known for K =
√
N based on the Hadamard

matrix. This was slightly improved to o(
√
N) by Pudlak and Rődl [PR04], and the results of

[BKS+10,BRSW12] in fact constructed bipartite K-Ramsey graphs, and hence achieved the bounds

as mentioned above.

The following lemma is easy to obtain (see e.g.,[BRSW12]).

Lemma 6.2.3. Suppose that for all n ∈ N there exists a polynomial time computable 2-source

extractor Ext : {0, 1}n × {0, 1}n → {0, 1} for min-entropy k and error ε < 1/2. Let N = 2n and

K = 2k. Then there exists an explicit construction of a bipartite K-Ramsey on N vertices.

Thus, Theorem 14 implies the following.

104

Theorem 16. There exists a constant C > 0 such that for all large enough n ∈ N, there exists

an explicit construction of a bipartite K-Ramsey graph on 2N vertices, where N = 2n and K =

2(log logN)C .

The constant C in [CZ16a] can be taken to be 75. This was improved to C = 11 by Meka

[Mek15], and subsequently improved in [CL16a] to 8 (see Section 6.5).

Given any bipartite K-Ramsey graph, a simple reduction gives a K/2-Ramsey graph on N

vertices [BKS+10]. As an immediate corollary, we have explicit constructions of Ramsey graphs

with the same bound.

Corollary 6.2.4. There exists a constant C > 0 such that for all large enough n ∈ N, there exists

an explicit construction of a K-Ramsey graph on N vertices, where N = 2n and K = 2(log logN)C .

Independent work: In independent work2, Cohen [Coh16c] used the challenge-response mech-

anism introduced in [BKS+10] with new advances in constructions of extractors to obtain a two-

source disperser for polylogarithmic min-entropy. Using this, he obtained explicit constructions of

bipartite-Ramsey graphs with K = 2(log logN)O(1)
, which matches our result and thus provides an

alternate construction.

6.3 An Outline of Our 2-Source Extractor Construction

To motivate our construction, first, let’s try to build a 1-source extractor (even though we know

it is impossible). Let X be an (n, k)-source, where k = polylog(n). Let Ext be a strong seeded

extractor designed to extract 1 bit from min-entropy k with error ε. Since, for (1−ε)-fraction of the

seeds, the extractor output is close to uniform, a natural idea is to do the following: cycle over all

the seeds of Ext and concatenate the outputs to obtain a D-bit string Z where most individual bits

are close to uniform. Note that since the seed length of Ext is O(log n), D = poly(n). At this point,

we might hope to take majority of these D bits of Z to obtain a bit is close to uniform. However,

2Cohen’s work appeared before our work on 2-source exttractors [CZ16a]. When his paper appeared, we had an
outline of the proof but had not filled in the details.

105

the output of Ext with different seeds may be correlated in arbitrary ways (even if individually the

bits are close to uniform), so this approach doesn’t work.

We try to fix this approach by introducing some independence among the uniform bits. For

example, if we obtain a source Z such that D − D0.49 bits are uniform, and further these bits

are (almost) constant-wise independent, then it is known that the majority function can extract

an almost-uniform bit (see Lemma 7.3.3). In an attempt to obtain such a source, we use explicit

t-non-malleable extractors from Chapter 4. Let nmExt be a (t, k, ε)-non-malleable extractor that

outputs 1 bit with seed-length d, and let D = 2d. We show in Lemma 6.4.3, that there exists a

large subset of seeds S ⊂ {0, 1}d, |S| ≥ (1−O(
√
ε))D, such that for any t distinct seeds s1, . . . , st

in S, |nmExt(X, s1), . . . ,nmExt(X, st) − Ut| ≤ O(t
√
ε). Thus, we could use our earlier idea of

cycling through all seeds, but now using an explicit non-malleable extractor instead of a strong-

seeded extractor. We use the explicit t-non-malleable extractor constructed in Chapter 4 (see

Theorem 1)). This construction requires min-entropy k = Ω(t log2(n/ε)) and seed-length d =

O(t2 log2(n/ε)). Thus, we could cycle over all the seeds of nmExt, and produce a string Z of length

D = 2O(t2 log2(n/ε)), such that the i’th bit of Z, Zi = nmExt(X, i). Further, except for at most

O(
√
εD) bits in Z, the remaining bits in Z follow a (t, O(t

√
ε))-wise independent distribution. We

could now try to set parameters such that the majority function extracts a bit from Z. However, it

is easy to check that
√
εD > D1−δ, for any constant δ > 0. Since the majority function can handle

at most
√
D bad bits, this idea fails.

Our next idea is to look for functions that can handle larger number of “bad bits” to extract

from Z. This exactly corresponds to the notion of resilient functions studied in Chapter 5 and we

note that Z is non-oblivious bit-fixing sources. Thus, our idea is to use the explicit (log(D))O(1)-

independent (D1−δ, D−Ω(1))-resilient functions from Theorem 12 in Chapter 5.

Recall that Z = nmExt(X, 1) ◦ . . . ◦ nmExt(X, D) is a (q, t, γ)-NOBF source on D bits,

where q =
√
εD, γ = O(

√
εt) and D = 2O(t2 log2(n/ε)). We set t = logO(1)(D), and thus we require

H∞(X) = log(O(1))(n/ε). As we observed before, q > D1−δ for any δ > 0. Thus, we cannot directly

apply the resilient function f from Theorem 12 on Z to extract an almost bit. (A more important

106

issue in directly applying f to Z is that while using Lemma 5.2.1, we have to bound the term γDt

in the error, which is clearly greater than 1 for the current parameters.) We note that it is not

surprising that f cannot extract from Z since we just used 1 source up to this point.

We now use the second independent source Y to sample a pseudorandom subset T of

coordinates from [D], |T | = D′ = nO(1), such that the fraction of bad bits ZT (the projection

of Z to the coordinates in T) remains almost the same as that of Z (with high probability). A well

known way of using a weak source to sample a pseudorandom subset was discovered by Zuckerman

[Zuc97], and uses a seeded extractor, with the size of the sample being the total number of seeds and

fraction of bad bits increases at most by the error of the extractor (with high probability). Thus

using known optimal constructions of seeded extractors with seed-length d′ = O(log(n/ε′)), we have

D′ = (n/ε′)O(1). Thus Zt is (q, t, γ)-NOBF source on D′ bits, where q = (
√
ε + ε′)D′, γ = O(

√
εt).

Further, the incurred error on applying f (from Theorem 12) on Zt is (D′)−Ω(1) + γ(D′)t (using

Lemma 5.2.1). By choosing δ to be a small enough constant, the term ε′D′ can be made smaller than

(D′)1−δ/2. Further, by choosing ε small enough (n−(logn)O(1)
), we can ensure that

√
εD′ < (D′)1−δ/2

and γD′ = (D′)−Ω(1). This completes the description of our 2-source extractor.

6.4 Reduction to an NOBF Source

The main result in this section is a reduction from the problem of extracting from two independent

(n, k)-sources to the task of extracting from a single (q, t, γ)-NOBF source on nO(1) bits. We

formally state the reduction in the following theorem.

Theorem 6.4.1. There exist constants δ, c′ > 0 such that for every n, t > 0 there exists a polynomial

time computable function reduce : {0, 1}n × {0, 1}n → {0, 1}D, D = nO(1), satisfying the following

property: if X,Y are independent (n, k)-sources with k ≥ c′t4 log2 n, then

Pry∼Y[reduce(X, y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1)

where q = D1−δ and γ = 1/Dt+1.

107

Li had earlier proved a similar theorem with q = D/3, and his methods would extend to

achieve a similar bound as we achieve.

The δ we obtain in Theorem 6.4.1 is a small constant. Further, it can be shown that for our

reduction method, it is not possible to achieve δ > 1/2. Thus, we cannot use the majority function

as the extractor for the resulting (q, t, γ)-NOBF source.

The reduction in Theorem 6.4.1 is based on explicit constructions of non-malleable extractors

from Chapter 4.

In the following lemma, we reduce extracting from two independent sources to extracting

from a (q, t, γ)-NOBF source using non-malleable extractors and seeded extractors in a black-box

way. Theorem 6.4.1 then follows by plugging in explicit constructions of these components.

Lemma 6.4.2. Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be a (t, k, ε1)-non-malleable extractor and

let Ext : {0, 1}n × {0, 1}d2 → {0, 1}d1 be a seeded extractor for min-entropy k/2 with error ε2. Let

{0, 1}d2 = {s1, . . . , sD2}, D2 = 2d2. Suppose that Ext satisfies the property that for all y ∈ {0, 1}n,

Ext(y, s) 6= Ext(y, s′) whenever s 6= s′. Define the function:

reduce(x, y) = nmExt(x,Ext(y, s1)) ◦ . . . ◦ nmExt(x,Ext(y, sD2)).

If X and Y are independent (n, k)-sources, then

Pry∼Y[reduce(X, y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1),

where q = (
√
ε1 + ε2)D2 and γ = 5t

√
ε1.

We prove a lemma about t-non-malleable extractors from which Lemma 6.4.2 is easy to

obtain.

Lemma 6.4.3. Let nmExt : {0, 1}n × {0, 1}d → {0, 1} be a (t, k, ε)-non-malleable extractor. Let

{0, 1}d = {s1, . . . , sD}, D = 2d. Let X be any (n, k)-source. There exists a subset R ⊆ {0, 1}d,

108

|R| ≥ (1−
√
ε)D such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε Ut.

Proof. Let

BAD = {r ∈ {0, 1}d : ∃ distinct r1, . . . , rt ∈ {0, 1}d,

∀i ∈ [t] ri 6= r, s.t |(nmExt(X, r), nmExt(X, r1), . . . ,nmExt(X, rt))−

(U1,nmExt(X, r1), . . . ,nmExt(X, rt))| >
√
ε}

We define adversarial functions f1, . . . , ft as follows. For each r ∈ BAD, set fi(r) = ri, i = 1, . . . , t

(the fi’s are defined arbitrarily for r /∈ BAD, only ensuring that there are no fixed points). Let Y

be uniform on {0, 1}d. It follows that

|(nmExt(X,Y),nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)))−

(U1,nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)))| ≥
√
ε

2d
|BAD|

Thus |BAD| ≤
√
ε2d using the property that nmExt is a (k, t, ε)-non-malleable extractor. Define

R = {0, 1}d \BAD. Using Lemma 2.3.11, it follows that R satisfies the required property.

Proof of Lemma 6.4.2. Let R ⊆ {0, 1}d1 be such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε1 Ut.

It follows by Lemma 6.4.3 that |R| ≥ (1−√ε1)D1.

Define Samp(y) = {Ext(y, s1), . . . ,Ext(y, sD2)} ⊂ {0, 1}d1 . Using Theorem 2.4.2, we have

Pr
y∼Y

[|Samp(y) ∩R| ≤ (1−
√
ε1 − ε2)D2] ≤ 2−k/2. (6.1)

109

Consider any y such that |Samp(y) ∩R| ≥ (1−√ε1 − ε2)D2, and let Zy = reduce(X, y). Since the

output bits of nmExt corresponding to seeds in Samp(y) ∩ R are (t, 5t
√
ε1)-wise independent, we

have that Zy is a ((
√
ε1 + ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits.

Thus using (6.1), it follows that with probability at least 1−2−k/2 over y ∼ Y, reduce(X, y)

is a ((
√
ε1 + ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits.

Proof of Theorem 6.4.1. We derive Theorem 6.4.1 from Lemma 6.4.2 by plugging in explicit non-

malleable extractors and seeded extractors as follows:

1. Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be an explicit (t, k, ε1)-non-malleable extractor from

Theorem 1. Thus d1 = c1t
2 log2(n/ε1), for some constant c1. Such an extractor exists as long

as k ≥ λ1t log2(n/ε1) for some constant λ1.

2. Let Ext : {0, 1}n×{0, 1}d → {0, 1}d1 be the extractor from Corollary 2.1.3 set to extract from

min-entropy k/2 with error ε2. Thus d = c2 log(n/ε2) for some constant c2. Let D = 2d =

(n/ε2)c2 . Such an extractor exists as long as k ≥ 3d1.

3. We choose ε1, ε2, δ such that the following hold:

• (
√
ε1 + ε2)D ≤ D1−δ.

• √ε1 ≤ 1/(5tDt+1).

• δ′ = δc2 < 9/10.

To satisfy the above requirements, we pick ε1, ε2 as follows: Let ε2 = 1/nC2 where C2 is fixed

such that ε2D ≤ D1−δ/2. Thus, we need to ensure that

ε2 ≤ 1/(2Dδ). Substituting D = (n/ε2)c2 and simplifying, we have

ε2 ≤ εc2δ2 /2nc2δ

i.e., ε1−c2δ2 ≤ 1/2nc2δ

i.e., ε2 ≤ 1/(2n)δ
′/(1−δ′).

110

We note that 1− δ′ > 1/10. Thus, we can choose C2 = 10.

We now set ε1 = 1/nC1t, where we choose the constant C1 such that
√
ε1 ≤ 1/(5tDt+1).

Simplifying, we have

ε1 ≤
ε
2c2(t+1)
2

25t2n2c2(t+1)
≤ 1

25t2n2c2(C2+1)(t+1)
≤ 1

n23c2(t+1)
.

Thus, we can choose C1 = 24c2.

4. We note that for the above choice of parameters, nmExt and Ext indeed work for min-entropy

k ≥ c′t4 log2 n, for some large constant c′.

5. Let {0, 1}d = {s1, . . . , sD}.

Define the function:

reduce(x, y) = nmExt(x,Ext(y, s1)) ◦ . . . ◦ nmExt(x,Ext(y, sD)).

Let X and Y be independent (n, k)-sources. By Lemma 6.4.2, it follows that

Pry∼Y[reduce(X, y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1),

where q = (
√
ε1 +ε2)D and γ = 5t

√
ε1. Theorem 6.4.1 now follows by our choice of parameters.

6.5 Wrapping Up the Proofs of Theorem 13 and Theorem 14

Proof of Theorem 13. Let f : {0, 1}n → {0, 1} be the explicit function constructed in Theorem 12

satisfying: For any q > 0, t ≥ c(log n)18 (c is the constant from Theorem 12) and γ ≤ 1/nt+1,

• Iq(f) ≤ q/n1− δ
2

• For any (t, γ)-wise independent distribution D,
∣∣Ex∼D[f(x)]− 1

2

∣∣ ≤ 1
nΩ(1) .

111

Using Lemma 5.0.4, it follows that f is an extractor for (n1−δ, t, γ)-non-oblivious bit-fixing sources

with error 1/nΩ(1).

Proof of Theorem 14. Let reduce : {0, 1}n×{0, 1}n → {0, 1}D be the function from Theorem 6.4.1

with t = c(log n)18, where c is the constant from Theorem 13. Set the constant C = 74 and C1 = c′,

where c′ is the constant from Theorem 6.4.1. We note that D = nO(1).

Let bitExt : {0, 1}D → {0, 1} be the explicit extractor from Theorem 13 set to extract from

(q, t, γ)-non-oblivious bit-fixing source on D bits with error 1
nΩ(1) , where q = D1−δ and γ ≤ 1/Dt+1.

Define

2Ext(x, y) = bitExt(reduce(x, y)).

Let X and Y be any two independent (n, k)-sources, where k ≥ C1(log n)C . We prove that

|(2Ext(X,Y),Y)− (U1,Y)| ≤ 1

nΩ(1)
.

Let Z = reduce(X,Y). Theorem 6.4.1 implies that with probability at least 1−n−ω(1) (over y ∼ Y),

the conditional distribution Z|Y = y is a (q, t, γ)-non-oblivious bit-fixing source on M bits. Thus,

for each such y,

|bitExt(reduce(X, y))−U1| ≤
1

nΩ(1)
.

Thus, we have

|(2Ext(X,Y),Y)− (U1,Y)| ≤ 1

nω(1)
+

1

nΩ(1)
.

6.6 Achieving Smaller Error

We show that it is indeed possible to achieve an extractor with smaller error at the expense of

increasing the running time of the extractor. We achieve this by slightly modifying the construction

in Theorem 14.

112

Informally, we now use the sources X and Y to generate a much longer string Z with the

property that most of the bits are t-wise independent. This allows us to achieve smaller error in

the reduction, and now applying the extractor for (q, t, γ)-sources developed in Theorem 13, the

result follows.

Theorem 6.6.1 (Theorem 15 restated). There exists a constant C > 0 such that for all n ∈ N and

any ε > 0, there exists a 2-source extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1} computable in time

poly(n, 1/ε) for min-entropy at least logC(n/ε) and error ε.

Proof sketch. We provide the details of the construction and omit the proof since it is very similar

to the proof of Theorem 14.

We set up the required ingredients as follows:

• Let t = b(log(5D/ε))18, where b is the constant from Theorem 5.2.1.

• Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be a (t, k, ε1)-non-malleable extractor from Theorem

1. Thus d1 = c1t
2 log2(n/ε1), for some constant c1. For such an extractor to exists, we require

k ≥ λ1t log2(n/ε1).

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}d1 be the seeded extractor from Theorem 2.1.3 set to

extract from min-entropy k/2 with error ε2. Thus, d = c2 log(n/ε2), for some constant c2.

Let D = 2d = (n/ε2)c2 . Such an extractor exists for k ≥ 3d1.

• Choose δ > 0, such that δ′ = δc2 < 9/10.

• Let f : {0, 1}D → {0, 1} be the function from Theorem 5.3.1 such that f is Iq(f) ≤ q/D1− δ
2

and
∣∣Ev∼UD

[f(v)]− 1
2

∣∣ ≤ D−β for some small constant β.

• Pick ε1, ε2 such that the following inequalities are satisfied:

– D = (n/ε2)c2 ≥ max{1/ε1/β, 1/ε2/δ},

– ε2 ≤ D−δ/2 = (ε2/n)δ
′
,

113

–
√
ε1 ≤ 1

5tDt+1 .

Thus, we can pick ε2 = min{nε
1
c2β , nε

2
c2δ , 1/nδ

′/(1−δ′)} and ε1 = 1/(5tDt+1).

• With this setting of parameters, we require k ≥ (log(n/ε))c
′
, where c′ is a large enough

constant, for nmExt and Ext to work.

Let {0, 1}d2 = {r1, . . . , rD2}. Define

reduce(x, y) = nmExt(x,Ext(y, r1)) ◦ . . . ◦ nmExt(x,Ext(y, rD2))

and

2Ext(x, y) = f(reduce(x, y)).

Using arguments similar to the proof of Theorem 14, it can be shown that 2Ext is an extractor for

min-entropy k with error O(ε). Further, the extractor runs in time poly(n, 1/ε).

6.7 Towards Optimal Ramsey Graphs

Since one of the motivations to study 2-source extractors is the connection to Ramsey graphs

and to meet Erdős’ challenge to explicitly construct O(logN)-Ramsey graphs on N vertices, it

is interesting to see if the above framework can be pushed to meet this goal. After our work in

[CZ16a], Meka [Mek15] improved one of the components in the above construction. In joint work

with Xin Li [CL16a], we construct an improved t-non-malleable extractor (see Theorem 11, Chapter

4). Using these components in the framework developed, the following results are easy to obtain

by suitably optimizing parameters.

Theorem 17. There exists a constant C > 0 such that for any δ > 0 and for all n, k ∈ N

with k ≥ C(log n)2
√

6(1+δ)+3 and any constant ε < 1
2 , there exists an efficient polynomial time

computable 2-source extractor min-entropy k with error ε that outputs 1 bit.

114

Theorem 18. There exists a constant C > 0 such that for any δ > 0 and for all n, k ∈ N with

k ≥ C(log(n))4
√

5(1+δ)+5, there exists an efficient polynomial time computable 2-source extractor

min-entropy k with error n−Ω(1) and output length Ω(k).

Thus Theorem 17 implies K-Ramsey graphs on N = 2n vertices, with K = 2(log logn)7.899
.

This currently stands as the best known explicit construction of a Ramsey graph.

115

Chapter 7

Multi-Source Extractors

1 In Chapter 6 we studied the problem of extracting from 2 independent sources. As we saw, the

best known 2-source extractor requires min-entropy roughy log8 n (for constant error). Recall that

any explicit (k, ε)-2-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1} (for any ε < 1/2) implies a

2k-Ramsey graph on N = 2n vertices. Thus achieving min-entropy k = log n + O(1) immediately

implies an explicit O(logN)-Ramsey graph matching Erdős’ challenge from the 1940’s. However

based on the current methods to construct 2-source extractors (see Chapter 6), it looks like a

challenging task to even achieve min-entropy O(log n).

In this chapter we study a relaxed version of the problem, and allow the extractor access to

multiple independent source. We formally define a multi-source extractor.

Definition 7.0.1. A function iExt : ({0, 1}n)C → {0, 1}m is an extractor for C independent sources

with min-entropy k and error ε if for any independent (n, k)-sources X1, . . . ,XC , we have

|iExt(X1, . . . ,XC) = Um| ≤ ε.

An impressive line of work studied this problem and constructed extractors with excellent

parameters [BIW06,BKS+10,Rao09a,BRSW12,RZ08,Li11a,Li13b,Li13a,Li15e,Coh15a]. However,

1parts of this chapter have been previously published [CL16a]

116

the smallest entropy these constructions can achieve is (log n)2+δ for any constant δ > 0 [Li13a],

which uses O(1/δ) +O(1) sources. In a very recent work, Cohen and Schulman [CS16] managed to

break this “quadratic” barrier, and constructed extractors for O(1/δ) +O(1) sources, each having

min-entropy at least (log n)1+δ.

The results in this chapter are based on joint work with Xin Li [CL16a].

7.1 Our Result and Overview of techniques

Our main result in this section is the following.

Theorem 7.1.1. There exists a constant C > 0 s.t for all n, k ∈ N and any constant ε > 0, with

k ≥ 2C
√

log log(n) log n, there exists an explicit function Ext : ({0, 1}n)C → {0, 1}, such that

|Ext(X1, . . . ,XC)−U1| ≤ ε.

On a high level, we follow a framework introduced by Cohen and Schulman [CS16], and

improve a key component of their construction which allows us to achieve the improved result. The

first step in [CS16] is to use O(1) (an absolute constant) independent sources and transform it into

a collection of r matrices such that at least r−r0.49 of these matrices are ‘good’ and follow a certain

independence property. In particular, for any good matrix X and any distinct t of the other good

matrices X1, . . . ,Xt, there exists a row index h such that (Xh,X
1
h, . . . ,X

t
h) ≈ (Um,X

1
h, . . . ,X

t
h),

where t = O(1) is some parameter. The next idea is to use an independence preserving merger

(IPM), which by definition, uses a few additional sources and transforms these matrices into a r.v

Z on r bits such that at least r − r0.49 bits of Z are almost t-wise independence. By using our

explicit non-malleable independence preserving merger construction (NIPM) from Chapter 3, we

show how to construct an improved IPM which uses just 1 additional source (this is the step where

[CS16] uses an additional O(1/δ) sources). It is known that the majority function [DGJ+10,Vio14]

is an extractor for Z (see Lemma 7.3.3), which completes the construction. Therefore, we obtain

117

a multi-source extractor for an absolute constant number of (n, log1+o(1) n)-sources, which outputs

one bit with constant (or slightly sub-constant) error.

We first present our IPM construction in the next section, and use this to improve upon the

results on multi-source extractors obtained in [CS16] in Section 7.3.

7.2 An Independence Preserving Merger Using a Weak Source

An important ingredient in our construction is an explicit construction of an independence pre-

serving merger. We use the (L, `, t)-NIPM constructed in the Section 4.4.1 to merge the r.v’s

X,X1, . . . ,Xt, each supported on boolean L ×m matrices, with the guarantee that there is some

h ∈ [L] s.t Xh is uniform on average conditioned on {Xg
h : g ∈ [t]} using an independent (n, k)-

source Y (instead of a seed as in the previous section). Our construction improves the construction

of an IPM by Cohen and Schulman [CS16], and further uses just 1 independent source.

Recall that for any a × b matrix V, and any S ⊆ [a], we use VS to denote the matrix

obtained by restricting V to the rows indexed by S.

Our main result in this section is the following theorem.

Theorem 7.2.1. For all integers m, `, L, t > 0, any ε > 0, r = d logL
log ` e and any k ≥ 2c3.5.7` log(m/ε)(t+

2)r+2, there exists an explicit function (L, `, t)-IPM : {0, 1}mL × {0, 1}n → {0, 1}m′′, m′′ =

(0.9/t)r+1(m − c3.5.7`(t + 1)r log(m/ε) − c2.1.2(t + 2) log(n/ε))), such that if the following condi-

tions hold:

• X,X1, . . . ,Xt are r.v’s, each supported on boolean L×m matrices s.t for any i ∈ [L], |Xi −

Um| ≤ ε,

• Y is an (n, k)-source, independent of {X,X1, . . . ,Xt}.

• there exists an h ∈ [`] such that |(Xh,X
1
h, . . . ,X

t
h)− (Um,X

1
h, . . . ,X

t
h)| ≤ ε,

118

then

|(L, `, t)-IPM(X,Y), (L, `, t)-IPM(X1,Y), . . . , (L, `, t)-NIPM(Xt,Y)

−Um′′ , (L, `, t)-IPM(X1,Y), . . . , (L, `, t)-IPM(Xt,Y)| ≤ 3c′3.5.7Lε.

Proof. We set up parameters and ingredients required in our construction.

• Let d = 0.8k, d′ = c2.1.2 log(m/ε), d1 = c2.1.2 log(n/ε).

• Let Ext1 : {0, 1}n×{0, 1}d1 → {0, 1}d be a (k, ε)-strong-seeded extractor from Theorem 2.1.2.

• Let Ext2 : {0, 1}m × {0, 1}d′ → {0, 1}m′ , m′ = 0.9(m − c2.1.2(t + 1) log(n/ε)), be a (m −

c2.1.2(t+ 1) log(n/ε), ε)-strong-seeded extractor from Theorem 2.1.2.

• Let (L, `, t)-NIPM : {0, 1}Lm′ × {0, 1}d → {0, 1}m′′ be the function from Theorem 4.4.4 with

error parameter ε.

Algorithm 8: (L, `, t)-IPM(x, y)

Input: x is a boolean L×m matrix, and y is a bit string of length n.
Output: A bit string of length m′′.

1 Let w = Slice(x1, d1)
2 Let z = Ext1(y, w).
3 Let v = Slice(z, d′).
4 Let v be a L×m′-matrix, whose i’th row is given by vi = Ext2(xi, v).
5 Output z = (L, `, t)-NIPM(v, z).

We begin by proving the following claim.

Claim 7.2.2. Conditioned on W, {Wg : g ∈ [t]}, the following hold:

• Z is ε-close to Ud,

• Z, {Zg : g ∈ [t]} is independent of X, {Xg : g ∈ [t]},

• For each i ∈ [L], Xi has average conditional min-entropy at least m− (t+ 2) log(n/ε),

119

• Xh|{Xg
h : g ∈ [t]} has average conditional min-entropy at least m− (t+ 2)d1 log(n/ε).

Proof. Since Ext1 is a strong extractor, we can fix W, and Z is ε-close to Ud on average. Further,

Z is now a deterministic function of X1. Thus, we can fix {W1, . . . ,Wt}, without affecting the

distribution of Z. Since Wi is on d1 bits, and without any prior conditioning since X|{Xg
h : g ∈ [t]}

is ε-close to uniform on average, it follows that conditioned on {Xg
h : g ∈ [t]},W, {Wg : g ∈ [t]},

the r.v Xh has average conditional min-entropy m− (t+ 1)d1 log(n/ε)− log(1/ε).

Claim 7.2.3. Conditioned on W, {Wg : g ∈ [t]},V, {Vg : g ∈ [t]}, the following hold:

• {Z,Z1, . . . ,Zt} is independent of {X,X1, . . . ,Xt},

• {V,V1
, . . . ,V

t} is a deterministic function of {X,X1, . . . ,Xt},

• For each i ∈ [L], Vi is 2ε-close to uniform,

• Vh|{V
g
h : g ∈ [t]} is 2ε-close to uniform on average.

• Z has average conditional min-entropy at least d− (t+ 2) log(m/ε).

Proof. Fix W, {Wg : g ∈ [t]}. Thus, by Claim 7.2.2, we have

• Z is ε-close to Ud,

• Z, {Zg : g ∈ [t]} is independent of X, {Xg : g ∈ [t]},

• For each i ∈ [L], Xi has average conditional min-entropy at least m− (t+ 2) log(n/ε),

• Xh|{Xg
h : g ∈ [t]} has average conditional min-entropy at least m− (t+ 2) log(n/ε).

Since each Xi has average conditional min-entropy at least m − (t + 2) log(n/ε), it follows

that each Vi is 2ε-close to uniform and Ext2 is a strong extractor, it follows that Vi is 2ε-close to

Ud on average even conditioned on {V,V1, . . . ,Vt}. After this fixing, Z has average conditional

min-entropy at least d− (t+ 2) log(n/ε).

120

We now prove that Vh|{V
g
h : g ∈ [t]} is 2ε-close to uniform on average. First, we fix the

r.v’s W, {Wg : g ∈ [t]} (at this point no other r.v’s are fixed). As before, we have Xh|{Xg
h : g ∈ [t]}

has average conditional min-entropy kx ≥ m − (t + 2) log(n/ε). Thus, we fix {Xg
h : g ∈ [t]}. Now

since Ext2 is a strong extractor, Vh is uniform on average even conditioned on V. We fix V, and

thus Vh is a deterministic function of Xh. Further, {Vg
h : g ∈ [t]} is a deterministic function of

{Vg : g ∈ [t]}, and hence a deterministic function of Z, {Zg : g ∈ [t]}. Thus, we can fix {Vg
h : g ∈ [t]}

without affecting the distribution of Vh. This completes the proof of our claim.

The correctness of the function IPM is direct from the next claim.

Claim 7.2.4. Conditioned on {Zg : g ∈ [t]}}, the r.v Z is 3Lε-close to uniform on average.

Proof. Fix the r.v’s W, {Wg : g ∈ [t]},V, {Vg : g ∈ [y]}. We observe that the following hold:

• Z, {Zg : g ∈ [t]} is independent of Y, {Yg : g ∈ [t]},

• For each i ∈ [L], Vi is 2ε-close to uniform,

• Vh|{V
g
h : g ∈ [t]} is 2ε-close to uniform on average.

• Z has average conditional min-entropy at least d− (t+ 2) log(m/ε).

The claim is now direct from Theorem 4.4.4 by observing that by our choice of parameters, the

following hold:

• d ≥ (c3.5.7` log(m/ε) + d′′)(t+ 2)r+1, where d′′ = (t+ 2) log(m/ε),

• Z has average conditional min-entropy at least d− d′′,

• m′′ ≤ (0.9/t)r(m′ − c3.5.7`(t+ 1)r log(m/ε)).

This completes the proof of the claim, and hence Theorem 7.2.1 follows.

121

7.3 The Extractor Construction

We recall a reduction by Cohen and Schulman [CS16]. Informally, they used a constant number

of independent sources to transform into a sequence of matrices such that a large fraction of these

matrices follow a certain t-wise independence property. For our purposes, we need to slightly modify

this construction. The length of the rows (the parameter m in the following theorem) in the work of

[CS16] can be set to c log(n/ε), for any constant c. Using another additional source and extracting

from it using each row as seed (using any optimal strong-seeded extractor), the length of each row

can be made Ω(k).

We state the theorem from [CS16] with this modification.

Theorem 7.3.1 ([CS16]). There exist constants α > 0 and and c7.3.1 such that for all n, t ∈ N, and

for any ε, δ > 0, there exists an polynomial time computable function f : ({0, 1}n)C → ({0, 1}Lm)r,

where C = 7/α, L = O(t log n), r = n3/α,m = Ω(k), such that the following hold: Let X1, . . . ,XC

be independent (n, k) sources, k = c7.3.1t log(t) log(n log t/ε). Then there exists a subset S ⊂ [r],

|S| ≥ r − r
1
2
−α and a sequence of L×m matrices Y1, . . . ,Yr such that:

• f(X1, . . . ,XC) is 1/r-close to Y1, . . . ,Yr,

• for any i ∈ [L] and g ∈ S, Yg
i is ε-close to Um,

• for any g ∈ S, and any distinct i1, . . . , it in S \ {g}, there exists an h ∈ [L] such that

Yg
h|{Y

j
h : j ∈ [r] \ {g}} is ε-close to uniform.

We are now ready to present our extractor construction. By composing Theorem 7.3.1 with

our independence preserving merger from Section 7.2, we have the following result.

Theorem 7.3.2. There exists a constant α > 0 such that for all n, t ∈ N, and for any ε, δ > 0,

there exists an polynomial time computable function reduce : ({0, 1}n)C+1 → {0, 1}r, where C =

7
α + 1, r = n3/α, such that the following hold: Let X1, . . . ,XC be independent (n, k) sources, k ≥

2
√

log t+log logn log(k/ε)(t+2)O(
√

log t+log logn)+c7.3.1t log(t) log(n log t/ε), and let Z = reduce(X1, . . . ,XC+1).

122

Then there exists a subset S ⊂ [r], |S| ≥ r − r
1
2
−α such that ZS is n−Ω(1)-close to a (t, γ7.3.2)-wise

independent distribution, where γ7.3.2 = O(εt log n).

Proof. Let f : ({0, 1}n)C → ({0, 1}Lm)r be the function from Theorem 7.3.1 with ε7.3.1 = ε,m = βk

for some constant β > 0. Thus L = O(t log n). Let (L, `, t)-IPM : ({0, 1}Lm)t×{0, 1} be the function

from Theorem 7.2.1, with ` = 2
√

logL = 2O(
√

log t+log logn) and error parameter ε7.2.1 = ε. Define

reduce(x1, . . . , xC+1) = (L, `, t)-IPM(f(x1, . . . , xC), xC+1).

We note that k > c7.3.1t log(t) log(n log t/ε). Thus, using Theorem 7.3.1, it follows that there exists

a subset S ⊂ [r], |S| ≥ r − r
1
2
−α and a sequence of L×m matrices Y1, . . . ,Yr such that:

• f(X1, . . . ,XC) is 1/r-close to Y1, . . . ,Yr,

• for any i ∈ [L] and g ∈ S, Yg
i is ε-close to Um,

• for any g ∈ S, and any distinct i1, . . . , it in S \ {g}, there exists an h ∈ [L] such that

Yg
h|{Y

j
h : j ∈ [r] \ {g}} is ε-close to uniform.

We now work with the sources Y1, . . . ,Yr, and add an error of 1/r in the end. The theorem is now

direct using Theorem 7.2.1 and observing that the following hold by our setting of parameters:

• k ≥ 2c3.5.7` log(k/ε)(t+ 2)
d logL

log `
e+1

,

• m = βk ≥ 2
√

logL(c3.5.7`(t+ 1)r log(m/ε) + c2.1.2(t+ 2) log(n/ε)).

Our multi-source extractor in Theorem 7.1.1 is now easy to obtain using a result on the

majority function.

123

Theorem 7.3.3 ([DGJ+10,Vio14,CS16]). Let Z be a source on r bits such that there exists a subset

S ⊂ [r], |S| ≥ r − r
1
2
−α such that ZS is t-wise independent. Then,

∣∣∣∣Pr[Majority(Z) = 1]− 1

2

∣∣∣∣ ≤ O(log t

t
+ r−α

)
.

We also recall a result about almost t-wise independent distributions.

Theorem 7.3.4 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there

exists a t-wise independent distribution that is ntγ-close to D.

Thus, we have the following corollary.

Corollary 7.3.5. There exists a constant c such that the following holds: Let Z be a source on r

bits such that there exists a subset S ⊂ [r], |S| ≥ r − r
1
2
−α such that ZS is (t, γ)-wise independent.

Then,

|Pr[Majority(Z) = 1]− 1

2
| ≤ c

(
log t

t
+ r−α + γrt

)
.

Proof of Theorem 7.1.1. Set t to a large enough constant such that c log t
t < ε/2. Let α be the

constant from Theorem 7.3.2, r = n3/α and C = 7
α + 1. Let reduce be the function from Theorem

7.3.2 with parameter t7.3.2 = t, r7.3.2 = r, and the error parameter ε7.3.2 set such that the parameter

γ7.3.2 ≤ 1
rt+1 . This can be ensured by setting ε = n−C

′
for a large enough constant C ′.

Define

Ext(x1, . . . , xC) = Majority(f(x1, . . . , xC)).

Let Z = f(X1, . . . ,XC). We note that with this setting of parameters, there exists some

constant C ′′ such that any k ≥ 2C
′′√log logn log(n) is sufficient for the conclusion of Theorem 7.3.2

to hold. Thus, Z is a source on r bits such that there exists a subset S ⊂ [r], |S| ≥ r − r
1
2
−α for

which ZS is (t, γ)-wise independent. Theorem 7.1.1 is now direct from Corollary 7.3.5.

124

Chapter 8

Extractors for Sumset Sources

1 This chapter is based on , we introduce and study a new model of weak sources which we call

sumset sources. Informally, this is the class of sources which are the sum (XOR) of independent

sources. This further reduces the assumptions made on weak sources, and provides a unified

framework for designing extractors for many well studied classes of sources. We then construct

explicit extractors for sumset sources and apply them to other classes of sources studied before.

In several cases we obtain substantial improvements over previous constructions. We now formally

define sumset sources.

Definition 8.0.1. For any two strings x, y ∈ {0, 1}n, define x + y to be the bit wise XOR of the

two strings.

Definition 8.0.2 ((n, k, C)-sumset source). A weak source X is called an (n, k, C)-sumset source

if X = X1 + . . .+ XC , where X1, . . . ,XC are independent (n, k)-sources.

A well known extractor for this class of sources is based on the Paley graph function (see

Theorem 2.5.4) and works for the sum of 2 independent sources, with one source having min-entropy

at least > n/2 and the other having min-entropy > log n. On the other extreme, the work of Kamp

et al. [KRVZ11] shows how to extract when X is a sum of exponentially many sources when the

1parts of this chapter have been previously published [CL16b]

125

sum of the min-entropies of these sources is large enough. To the best of our knowledge, there is

no other known explicit construction for 2 ≤ C ≤ 2O(n).

The results in this chapter are based on joint work with Xin Li [CL16b].

Our main result is an explicit construction of an extractor for the sum of a constant number

of independent sources, each containing polylogarithmic min-entropy.

Theorem 19. There exist constants c, C > 0 and a small constant β > 0 such that for all n ∈ N

and k ≥ logc n, there exists a polynomial time computable extractor for (n, k, C)-sumset sources,

with error n−Ω(1) and output length kβ.

8.1 Relations and Applications to Other Sources

Independent Sources

The class of independent sources is clearly a special case of sumset sources. That is, if we view

the joint distribution of several independent sources as one source X, then X is also a sumset

source. Thus, our construction in Theorem 19 also gives an extractor for a constant number of

independent sources with polylogarithmic min-entropy. If we can improve the construction and

obtain an explicit extractor for (n, k, 2)-sumset sources with k ≥ logc n, then this will also match

the two source extractors in [CZ16a,Li15b].

Affine Sources

An affine source X on n bits with entropy k is the uniform distribution over some unknown affine

subspace of dimension k in {0, 1}n (viewing {0, 1}n as Fn2 2). This model generalizes oblivious bit-

fixing sources (where some of the bits are uniform and independent, while others are fixed) and thus

has received attention for its applications to cryptography. Affine extractors have also been used

by Viola [Vio14] to construct extractors for sources generated by NC0 and AC0 circuits. Further,

2In general, affine sources can be defined on any field Fq, but in this paper we focus on F2.

126

good affine extractors imply the best known circuit lower bounds [DK11,FGHK15].

Using the probabilistic method, one can show that affine extractors exist for entropy k =

O(log n). However until recently, the best known explicit constructions for affine extractor was

due to Bourgain [Bou07], who using sophisticated techniques from additive combinatorics and

gave an explicit extractor for min-entropy at least δn, for any constant δ. This construction was

subsequently slightly improved to entropy n/
√

log logn by Yehudayoff [Yeh11] and Li [Li11b]. In

a very recent work, Li [Li15c] constructed the first explicit affine extractors for polylogarithmic

entropy.

We note that an affine source is also a special case of sumset source, since an affine subspace

of dimension k can be written as the sum of C affine subspaces of dimension k/C. Thus, as a

direct corollary of our extractor for sumset sources, we also obtain extractors for affine sources with

polylogarithmic min-entropy, matching the recent work of Li [Li15c].3

Corollary 8.1.1. There exists a constant c > 0 and a small constant β > 0 such that for all

n, k ∈ N with k ≥ logc n, there exists a polynomial time computable extractor for affine sources in

{0, 1}n with entropy k. The extractor has error n−Ω(1) and output length kβ.

Proof. Let X be an affine source with min-entropy k. Let v1, . . . , vk be a basis of X and b be the

shift vector. Let C be the constant in Theorem 19. For i ∈ [C], define the source Xi to be the

uniform distribution on the linear subspace spanned by v(i−1)k/C+1 . . . , vik/C for i = 2, · · · , C, and

define X1 to be the uniform distribution on the affine subspace spanned by v1 . . . , vk/C with shift

vector b. Thus X =
∑C

j=1 Xi, where each Xi has min-entropy k/C and the Xi’s are independent.

Thus X is a (n, k/C,C)-sumset source, and we can now apply Theorem 19.

Small-Space Sources

We study small-space sources in Chapter 9 and refer the reader to this chapter for more details.

3The extractor construction is essentially the same as in [Li15c], but the analysis is different.

127

Interleaved Sources

We study interleaved sources in Chapter 10 and refer the reader to this chapter for more details.

Total Entropy Independent Sources and Somewhere Entropy Independent Sources

We study these sources in Chapter 9 and refer the reader to this chapter for more details.

8.2 Overview of Techniques

On a very high level, our extractor follows the same spirit of our 2-source extractor construction

in Chapter 6. That is, we first convert our sumset source into a (N δ, t, γ)-NOBF source on N bits

(see Chapter 5 for a definition of NOBF sources) , where N = nO(1), t = kα, γ < 1/N t+1, for some

constants 0 < δ, α < 1. We will then apply extractors for this source constructed in Chapter 5.

To obtain such a non-oblivious bit-fixing source, it suffices to use two independent sources

as shown in Chapter 6. More specifically, if we have a somewhere random source4 with N rows such

that N −N δ rows are uniform, then it is not hard to show that we can use an explicit correlation

breaker from Chapter 3 (Theorem 3.4.2), we obtain an NOBF source with at least N −N δ ‘good’

bits that are kα-wise independent.

Now the problem is how to obtain the somewhere random source. The standard way is to

use a seeded extractor with seed length O(log n) (so that to keep the running time polynomial in n)

and try all possible values of the seed. Each seed will give an output and we can then concatenate

the output to form a matrix. This does indeed give us a somewhere random source, however there

are now two problems. First, we cannot just use any seeded extractor with seed length O(log n).

This is because we need to apply the seeded extractor to the sum of several independent sources,

and we need to keep the “sum” structure carefully for the purpose of alternating extraction later.

If we just use any seeded extractor, then after applying the extractor the “sum” structure may not

4A somewhere random source is a matrix of random variables such that at least one row is uniform.

128

be preserved. Therefore, here again we need to use a linear seeded extractor. Luckily, we do have

linear seeded extractors with seed length O(log n), due to a construction in [Li15c].

Second, just doing this is not enough, since the error of the somewhere random source is

not good enough for our purpose. Specifically, in order to apply the extractor for non-oblivious

bit-fixing source we need the error to be negligibly small, while the error we obtained from a seeded

extractor with seed length O(log n) is only polynomially small. Note this is different from the affine

extractor construction in [Li15c], as in the case of affine sources one can show that if we use a

linear seeded extractor, then most of the rows in the somewhere random source actually have error

0. However for general weak random sources the best error one can hope for (even with a linear

seeded extractor) is 1/poly(n) if the seed length is O(log n).

To get around this, we use a sampling method (similar to a technique seen in Chapter 6).

Specifically, they first used an extractor (or a non-malleable extractor) with large seed length to

achieve small error from one source, and then use another independent source to sample from the

rows of the somewhere random source to bring down the number of rows. The first idea would be

to try the same idea here in our construction. That is, if X is the sum of two independent sources,

then one can take two linear seeded extractors Ext1,Ext2 such that Ext1 has large seed length,

Ext2 has seed length O(log n) and output length the same as the seed length of Ext1, and compute

Ext1(X,Ext2(X, r)) for every possible choice r of Ext2’s seed. However, the problem now is that

the sampling procedure becomes correlated, and even with linear seeded extractors we do not know

how to analyze it.

We thus turn to another approach, used by Li in his multi-source extractor [Li13a]. The

idea is that, assume that X = X1 + · · ·+XC is the sum of some constant C number of independent

sources (instead of just two independent sources). Then if we apply a linear seeded extractor to

X, by the property of the extractor for every fixed seed the output will also be the XOR of C

independent outputs from each Xi. If every output is ε-close to uniform for some error ε, then

the error after the XOR will be reduced to roughly εC . Thus, if we take C to be a large enough

constant, this error will be much smaller than 1/N where N is the number of rows in the somewhere

129

random source. At this point we can use a union-bound type argument to show that the somewhere

random source is actually NεC = 1/poly(n)-close to another somewhere random source where a

large fraction of the rows are truly uniform. Thus we can switch to the new somewhere random

source and only introduce an error of 1/poly(n).

8.3 The Extractor Construction

In this section we construct explicit extractors for (n, k, C)-sumset sources where k = polylog(n)

and C is a large enough constant.

Theorem 8.3.1 (Theorem 19 restated). There exists constants c, C > 0 and a small constant

β1 > 0 such that for all n ∈ N, there exists a polynomial time computable extractor for (n, k, C+1)-

sumset sources, k ≥ logc(n), with error n−Ω(1) and output length kβ1.

We use the rest of the section to prove Theorem 8.3.1. We claim that the function computed

by Algorithm 9 is the required extractor. We first set up the parameters and ingredients used by

Algorithm 9.

• Let β = 1/20, t = kβ, ε = 1/n2.

• Let c = (λ+ 1)/β.

• Let LExt : {0, 1}n×{0, 1}d → {0, 1}n1 , n1 =
√
k, be the linear seeded extractor from Theorem

2.1.6 set extract from min-entropy k with error ε. Thus d = c1 log n, for some constant c1.

Let D = 2d = nc1 .

• Let C = c1 + 2, k′ = d2, ε1 = 1/D2t = 1/n2tc1 , n2 = k4β, k′′ = n2
2 = k8β, δ = (2c1 − 1)/2c1.

• Let LExt1 : {0, 1}n1 × {0, 1}d1 → {0, 1}d1 and LExt2 : {0, 1}n2 × {0, 1}d1 → {0, 1}d1 be

instantiations of the linear seeded extractor from Theorem 2.1.5, both set to extract from min-

entropy k′ with error ε1. Thus, d1 = O(log2(k/ε1)) = O(t2 log2 n) and d2 = O(log2(k/ε1)) =

O(t2 log2 n). Finally let LExt3 : {0, 1}n1×{0, 1}d3 → {0, 1}n2 be an instantiation of the linear

130

seeded extractor from Theorem 2.1.5 set to extract from min-entropy k′′ with error ε1. Thus,

d3 = O(log2(n1/ε1)) = O(t2 log2 n). Let ACB be the function computed by Algorithm 4 using

these linear seeded extractors.

• Let bitExt : {0, 1}D → {0, 1}m, m = tα, be the extractor from Theorem 13 set to extract

from (q, t, γ)-non-oblivious sources where q = Dδ and γ = 1/Dt+1.

Algorithm 9: SUMExt(x)

Input: A bit string x = x1 + . . .+ xC+1, where each xi is a bit string of length n.
Output: A bit string of length m.

1 Let w be the n1 ×D boolean matrix whose ith row wi is given by LExt(x, si).

2 Let v be the n2 ×D boolean matrix whose ith row vi is given by ACB(wi, x, si).
3 Let r be the first column of the matrix v. Output bitExt(r).

We prove the following claims about the random variables computed in Algorithm 9 from

which Theorem 8.3.1 is direct.

Claim 8.3.2. V is 1/nO(1)-close to a somewhere-random source V′ containing a subset R of rows,

|R| ≥ D −Dδ such that the joint distribution of any t distinct rows in R is γ-close to Utm.

Proof. Since LExt is a strong seeded extractor, it follows that for any j ∈ [C], there exists a subset

Sj ⊂ {0, 1}d, |Sj | ≥ (1−
√
ε)D, such that for any s ∈ Sj LExt(X, sj) is

√
ε-close to Un1 . Thus, by

a union bound, it follows that there exists a set S ⊂ {0, 1}d,

|S| ≥ (1− C
√
ε)D > D −Dδ,

(the inequality follows by our choice of parameters) such that for any si ∈ S, LExt(Xj , si) is
√
ε-close to Un1 for each j ∈ [C].

Since LExt is linear seeded, it follows that for any i ∈ [D], it follows that Wi = LExt(X, si) =(∑C
j=1 LExt(Xj , si)

)
+LExt(XC+1, si). Thus if si ∈ S, then by Lemma 2.3.8,

(∑C
j=1 LExt(Xj , si)

)
is εC/2-close to Un1 . Using a hybrid argument, it follows that W is DεC/2-close to a D×n1 matrix

131

W, whose ith row W
i

is equal to Wi if si /∈ S, and otherwise is given by Yi + LExt(XC+1, si),

where Yi follows the distribution Un2 . We note that the Yi’s can be arbitrarily correlated.

Thus, V is DεC/2-close to a D × n2-matrix V such that if si ∈ S, then the ith row V
i

is

given by ACB(Yi + LExt(XC+1, si),X, si).

Now consider any subset {si1 , . . . , sit} ⊂ S of size t. We claim that

(V
i1 , . . . ,V

it
) ≈O(tdε) Utm.

We fix the random variable {LExt(XC+1, si1), . . . ,LExt(XC+1, sit)}. As a result of this fixing,

XC+1 has min-entropy at least k − tn1 − log(1/ε) > k/2 with probability at least 1 − ε. Let

Z =
∑C

j=1 Xj .

Thus,

(V
i1 , . . . ,V

it
) = (ACB(Y1 + a1,XC+1 + Z, si1), . . . ,ACB(Yt + at,XC+1 + Z, sit)),

where a1, . . . , at are some constants.

We now invoke Theorem 3.4.2 noting that the following conditions hold by our choice of

parameters:

• XC+1 is independent of {Z,Y1, . . . ,Yt}.

• Each sig is a distinct bit string of length d.

• k/2 ≥ k′ + 8td1d+ log(1/ε).

• n2 ≥ k′ + 3td1 + log(1/ε).

• n1 ≥ k′ + 10td1d+ (4td+ 1)n2 + log(1/ε).

Thus,

(ACB(Y1 + a1,XC+1 + Z, si1), . . . ,ACB(Yt + at,XC+1 + Z, sit)) ≈O(dtε1) Utm.

132

We note that by our choice of parameters, the following inequalities hold:

• dtε1 < 1/Dt+2.

• εC/2D ≤ 1/n2.

The claim now follows from the fact the above argument holds for any arbitrary size t subset of S

and the fact that V is εC/2D-close to V.

Claim 8.3.3. V′ is 1/nO(1)-close to Um.

Proof. Follows directly from Claim 8.3.2 and Theorem 13.

Remark 8.3.4. It is not hard to see that the results in this section generalize to sumset sources

over any field, i.e., sources of the form X =
∑C

i=1 Xi, where each Xi is a source on Fnq for some

prime power q, where for a, b ∈ Fnq , a+ b denotes the standard vector addition.

133

Chapter 9

Extractors for Small-Space Sources

1 Trevisan and Vadhan [TV00] introduced the problem of constructing seedless extractors for

the class of samplable sources, where the weak random source is generated by a computation-

ally bounded algorithm. They constructed explicit extractors for such sources based on strong but

plausible complexity-theoretic assumptions. Subsequently, Kamp et al. [KRVZ11] studied the prob-

lem of constructing seedless extractors for small-space sources, where the weak source is generated

by a small width branching program. We define this model more formally below.

Definition 9.0.1. [KRVZ11] A space s source X is generated by taking a random walk on a

branching program of length n and width 2s, where each edge of the branching program is labelled

with a transition probability and a bit. Thus a bit of the source is generated for each step taken on

the branching program, and the source X is the concatenation of all the bits.

As observed in [KRVZ11], the model of small space sources generalizes many previously

studied sources, including von Neumann’s source of independent coin flips with unknown bias

[vN51], the finite Markov chain model studied by Blum [Blu86], a generalization of bit-fixing sources

known as symbol-fixing sources [KZ07b], and sources consisting of many independent sources.

However, the class of affine sources appears not to be related to small space sources.

1parts of this chapter have been previously published [CL16b]

134

Using the probabilistic method, one can show that error ε extractors exist for space s

sources with min-entropy k ≥ 2s+log s+O(log(n/ε)). However, previously the best known explicit

extractor for space s sources is from the work of Kamp et al. [KRVZ11], which requires min-entropy

k ≥ γn and space s ≤ γ3n, where γ > n−δ for some small universal constant δ. In other words,

their extractor requires almost linear min-entropy even for sources with space as small as 1, while

we know from the probabilistic method that for space O(log n) sources one can hope to construct

extractors for min-entropy O(log n). In addition, the techniques used in [KRVZ11] start out by

reducing to the so called total-entropy independent sources, and it can be shown that this reduction

has a fundamental bottleneck and cannot possibly go below min-entropy
√
n.

9.1 Our Result and Overview of Techniques

The results in this chapter are based on joint work with Xin Li [CL16b].

We show how to extract from space s sources when k ≥ 2log0.5+α(n)s1+10α, for any constant

α > 0. Thus for s = no(1), we only need min-entropy no(1). This significantly improves previous

results in terms of min-entropy requirement, and in particular break the
√
n min-entropy barrier.

Theorem 20. For any constant α > 0 and for all n, k, s ∈ N with k ≥ 2log0.5+α(n)s1+10α, there

exists a polynomial time computable extractor for space s sources on n bits with min-entropy at

least k, with error n−Ω(1) and output length kα.

We obtain our result by showing a reduction from the task of extracting from small-space

sources to the problem of extracting from sumset sources. We briefly describe the reduction below

and refer the reader to Section 9.2 for more details. Our extractor follows immediately from the

reduction.

Note that as observed in [KRVZ11], if we partition a small space source into several blocks,

and condition on the event that the branching program generating the source reaches some specific

vertices at the end of each block, then the small space source becomes a convex combination

of independent sources. This conditioning reduces the min-entropy of the source, but since the

135

branching program has small width we would expect that there is still much entropy left. However,

the problem is that the entropy could now be distributed in these blocks in some arbitrary way,

with the only guarantee being a lower bound on the total amount of entropy. This is referred to as

a total entropy source as in [KRVZ11]. The problem with the approach in [KRVZ11] is that one has

to use a fixed partition of the source, so that the blocks can be used as inputs to an extractor for

independent sources. This introduced a bottleneck of entropy
√
n, since if the block size is smaller

than
√
n then it could be the case that each block has entropy 1, while if the block size is larger

than
√
n then it could be the case that all entropy is concentrated in just one block.

We get around this obstacle by not relying on a fixed partition of the source. Instead, we

show that when the min-entropy satisfies k ≥ 2log0.5+α(n)s1+10α, the small space source is actually

2−k
Ω(1)

-close to a convex combination of (n, kα, C)-sumset sources. On a high level, we show this

reduction as follows. We first partition the small space source into some `� C blocks with `s� k,

and we condition on the fixing of the states of the random walk at the end of each block. This

leaves us ` independent blocks such that their total min-entropy is roughly k− `s. Now if for some

particular fixing, there are at least C blocks with min-entropy at least kα, then under this fixing the

source is an (n, kα, C)-sumset source. If not, then our key observation is that most of the entropy

(indeed, k − `s− `kα = k − o(k) entropy) will be concentrated in at most C − 1 blocks. Therefore

at least one block has min-entropy (k − o(k))/(C − 1). Thus, for this block the entropy rate will

be increased by a factor of roughly `/C. We can then fix all other blocks and repeat the argument

for this block. Specifically, we further divide the block into ` blocks and condition on the fixing of

the intermediate states. Then for any particular fixing, either it is an (n, kα, C)-sumset source or

the entropy rate of one block gets increased again by a factor of `/C. We note that the entropy

rate cannot be larger than 1, so we know at some point it has to be an (n, kα, C)-sumset source.

Therefore the original source is a convex combination of sumset sources. Notice here the partitions

are not fixed, but rather can be different for different fixings of the states.

We also consider a generalization of small space sources, where the underlying branching

program produces bits of the source in an unkown (but oblivious) order. This is discussed in Section

136

9.3. We also obtain new results on extracting from total-entropy sources and somewhere entropy

sources (see Section 9.4).

9.2 A Reduction from Small-Space Sources to Sumset Sources

In this section, we show that a small-space source is close to a convex combination of sumset sources.

The idea is argue that either partitioning the source leads to a sumset source or results in increase

in min-entropy rate of one of the partitions. Thus by repeating this argument, it must be that at

some point we reach a sumset source, since otherwise we end up with a source with min-entropy

rate more than 1.

Lemma 9.2.1. For any constant α > 0 and any constant integer C ≥ 2, any space s source on n

bits with min-entropy k ≥ 2log0.5+α(n)s1+10α is 2−k
Ω(1)

-close to a convex combination of (n, k′, C)-

sumset sources, where k′ = kα.

We note that Theorem 20 now directly follows from the explicit sumset extractor constructed

in Chapter 8 (Theorem 19) and Lemma 9.2.1.

Proof of Lemma 9.2.1. Let ` = kα/2, ε1 = 2−k
α
, kth = kα be fixed parameters that we set with

foresight. Let X be a space s source on n bits with min-entropy at least k. We partition X into `

equi-sized blocks of length n1 = n/`. Let Xi, denote the i’th block where i ∈ [`] (thus Xi is a source

on n/` bits). We now condition on the initial state of small-space branching program at each of

these blocks, and let ki denote the min-entropy in Xi after this conditioning. Observe that Xi’s

are now independent sources. It follows from Lemma 2.3.7 that with probability at least 1− ε1,

∑̀
i=1

ki ≥ k − `s− log(1/ε1). (9.1)

Consider any such good fixing of the states such that the above inequality holds. The proof now

goes via analysing two cases. Since we iterate this argument, each time with a new source, let

137

X1 = X and k(1) = k.

Case 1: |{i ∈ [`] : ki ≥ kth}| ≥ C. The proof is direct in this case. For simplicity, suppose

X1, . . . ,XC each have min-entropy at least kα. We fix the sources XC+1, . . . ,X`. Now, for each

i ∈ [C], define the source Yi on n bits whose projection onto the the i’th block is Xi and the

rest of the co-ordinates are fixed to 0. It follows that X = η +
∑C

i=1 Yi (for some constant string

η ∈ {0, 1}n) and hence is a (n, k′, C)-sumset source. Thus X is at distance at most ε1 from a convex

combination of such sumset sources.

Case 2: |{i ∈ [`] : ki ≥ kth}| < C. Using (9.1), it follows that there exists distinct C−1 partitions,

say i1, . . . , iC−1 such that
C−1∑
j=1

kij ≥ k(1) − `(s+ kα)− log(1/ε1).

Thus, by an averaging argument, it follows that there exists some j ∈ [C − 1], such that

kij ≥
k(1) − `(s+ kα)− log(1/ε1)

C − 1
.

Hence the source Xij (on n1 = n/` bits) has min-entropy rate

k(1) − `(s+ kα)− log(1/ε1)

C − 1
· `
n

Thus, using the fact that k(1) > (skα/2 + 2kα+α)1+α, the min-entropy rate of Xij is at least
k(1)`

2nC ,

and hence
H∞(Xij)

n1
≥ `

2C
· H∞(X1)

n
.

We now repeat the argument (i.e, analyzing the Cases 1 and 2) with X1 replaced by X2 =

Xij (and we fix all other sources). However, for different iterations of the argument, we do not

change values of the parameters `, ε, kth, and they are fixed to kα, 2−k
α

and kα respectively, where

k = H∞(X).

Suppose, if possible, that for h iterations of this argument, each time we end up in Case 2.

138

Thus, we now have a source Xh on n/`h bits with min-entropy rate at least (`
2C)h · kn . To derive a

contradiction using the fact that the min-entropy rate is at most 1, we require

•
(
`

2C

)h · kn > 1,

• n
`h
≥ kα

• k
(2C)h

> (skα/2 + 2k2α)1+α.

(The first condition is to ensure that the min-entropy rate is more than 1, the second condition

ensures that the length of the source Xh is large enough and finally the third condition is a lower

bound the min-entropy of Xh, which is required when we apply our argument on Xh−1.)

Pick h = 1+ logn−log k
log `−log(2C) . It is easy to check that the first condition holds. Further the second

and third conditions follow from the fact that k > s1+10α2log0.5+α(n). Thus, it must be that in at

most h iterations of the argument, we are in Case 1 and hence X is close to a convex combination

of (n, k′, C)-sumset sources. We note that the statistical distance to the convex combination is at

most O
(
ε1

logn
log k

)
.

9.3 Any-Order Small-Space-Sources

Consider the following natural generalization of small-space sources.

Definition 9.3.1 (Any-Order-Small-Space-Sources). An any-order-space s source X on [r]n is

generated by an r-way branching program of length n and width 2s and a permutation t : [n]→ [n]

in the following way: The r-way branching program is a layered graph with n + 1 layers and a

single start vertex. Each edge is labeled with a variable Xj, a probability value and a symbol in

[r]. Further all edges between the ith and (i+ 1)th layer are labelled with same variable Xt(i). The

output of the source is a random walk starting from the start vertex, assigning the symbol on the

edge to the corresponding variable and finally outputting the generated string.

139

It is easy to see that the reduction in the above section generalizes to the class of any-order

small-space sources. Thus, we have the following theorem.

Theorem 21. For any constant α > 0 and for all n, k, s ∈ N with k ≥ 2log0.5+α(n)s1+10α, there

exists a polynomial time computable extractor for the class of any-order space s sources on n bits

with min-entropy at least k, with error n−Ω(1) and output length kα.

9.4 Total Entropy and Some-Where Entropy Sources

As an intermediate model to extract from small space sources, [KRVZ11] introduced the above

mentioned total entropy independent sources. This is a collection of r independent sources of length

` such that the total min-entropy of all r sources is at least k. By the probabilistic method,

one can show that error ε extractors exist for total min-entropy k independent sources as long as

k ≥ max{`, log log(r/ε)}+log r+2 log(1/ε)+O(1).2 Essentially, k can be as small as `+log r+O(1).

However, the best known extractors in [KRVZ11] are far from this. Specifically, the extractors there

need to have either k ≥ Ω(r`) or k ≥ (2` log r)C for some constant C > 1.

We substantially improve these results by constructing a new extractor that only requires

min-entropy O(`) + polylog(r`), which comes close to the probabilistic bound. In particular, we

have the following result.

Theorem 9.4.1. There exist constants c, C > 0 and a small constant β > 0 such that for all

r, `, k ∈ N with k ≥ C(` + logc(r`)), there exists a polynomial time computable extractor for r

independent sources over {0, 1}` with total min-entropy k, with error (r`)−Ω(1) and output length

kβ.

To prove the theorem we show the following lemma.

Lemma 9.4.2. For any t, C ∈ N, let X1, · · · ,Xr ∈ ({0, 1}`)r be r independent sources over {0, 1}`

2Note that k > ` is necessary, otherwise the entropy could be contained in just one source, making extraction
impossible.

140

with total min-entropy k ≥ C(`+ t). Then there exists a partition of the r sources into C disjoint

subsets Y1, · · · ,YC such that each Yi has min-entropy at least t.

Proof. We prove the lemma by induction on C. For the case where C = 1, one can view the whole

set X1, · · · ,Xr as a partition Y1, and it is clear that Y1 has min-entropy k ≥ `+t > t. Now suppose

the lemma holds for some C ∈ N, we show that it holds for C + 1.

First notice that for two independent sources X,Y, we have that H∞(X ◦Y) = H∞(X) +

H∞(Y). Now, consider the smallest i such that X1 ◦ · · · ◦Xi has min-entropy at least t. We know

such an i exists because X1 ◦ · · · ◦Xr has min-entropy at least k ≥ (C + 1)(`+ t) > t. Since i is the

smallest, we know that X1 ◦ · · · ◦Xi−1 has min-entropy at most t. Note that Xi has min-entropy at

most `, thus X1 ◦· · ·◦Xi has min-entropy at most t+`. Next, since X1 ◦· · ·◦Xr has min-entropy at

least k ≥ (C+1)(`+ t), we know that Xi+1 ◦ · · · ◦Xr has min-entropy at least k− (t+ `) = C(t+ `).

Now we can apply the induction hypothesis and we see that there exists a partition of Xi+1 · · ·Xr

into C disjoint subsets such that each subset has min-entropy at least t. Put in X1 ◦ · · · ◦Xi we

get C + 1 disjoint subsets.

By setting t = logc(r`) and combining the lemma with Theorem 19, we immediately obtain

Theorem 9.4.1.

In order to extract from total entropy independent sources, [KRVZ11] actually argues that

since the total entropy is at least k, some of the independent sources will have entropy at least k′

(the relation between k and k′ depends on the number of sources). Therefore, total entropy sources

reduce to independent sources where some of them have a certain amount of min-entropy. We call

such sources somewhere entropy independent sources.

Definition 9.4.3. An (n, k, `)-somewhere-C source consists of ` independent sources X1, . . . ,X`,

each on n bits, such that at least C of the Xi’s have min-entropy at least k.

Note that C here needs to be at least 2. In this context, our extractor for sumset sources

from Theorem 19 actually gives an extractor for an (n, k, `)-somewhere-C source with k ≥ logc n

141

for some constants C, c > 1, and outputs kΩ(1) bits. Note that the number of sources ` here is

irrelevant since we can just take the sum of the sources and fix any other source that does not have

min-entropy k.

In fact, we can use a simpler method to get a slightly stronger result. We show that we can

extract from (n, k, `)-somewhere 2 sources for k = polylog(n) and any integer ` (with the extractor

running in time poly(n, `)).

Theorem 9.4.4. There exists a constant c > 0 and a small constant β > 0 such that for all

n, k, ` ∈ N with k ≥ logc n, there exists an extractor computable in time poly(n, `) for (n, k, `)-

somewhere-2 sources, with error n−Ω(1) and output length Ω(k).

Proof. Let 2Ext : {0, 1}n × {0, 1}n → {0, 1}m, m = k/10 be the 2-source extractor from Theorem

14 set to extract from min-entropy k/2 with error ε = 1/nΩ(1). Define the function Ext : {0, 1}`n →

{0, 1}m as

Ext(x1, . . . , x`) =
∑

1≤i<j≤`
2Ext(xi, xj).

We claim that for any (n, k, `)-somewhere 2-source X = {X1, . . . ,X`},

|Ext(X)−Um| ≤ ε.

We prove this in the following way. Since the function Ext is symmetric, we can assume without

loss of generality that the sources X1 and X2 have min-entropy at least k each. Fix the sources

X3, . . . ,X`. Thus, after this fixing

Ext(X1,X2, x3 . . . , x`) = 2Ext(X1,X2) +

∑̀
j=3

2Ext(X1, xj)

+

∑̀
j=3

2Ext(X2, xj)

+ s,

for some constant s ∈ {0, 1}m. Now, we observe that A =
(∑`

j=3 2Ext(X1, xj)
)

is a random

variable on {0, 1}m and is deterministic function of X1. Thus, we fix A, and using Lemma 2.3.7, X1

has min-entropy at least 0.9k−m with probability 1−2−k
0.1

. Similarly, B =
(∑`

j=3 2Ext(X2, xj)
)

142

is a random variable on {0, 1}m and is deterministic function of X2. Thus, we fix B, and X2 has

min-entropy at least 0.9k −m with probability 1− 2−k
0.1

. Thus, after this fixing

Ext(X) = 2Ext(X1,X2) + s′,

for some constant s′ ∈ {0, 1}m. Further X1 and X2 are still independent, each with min-entropy

at least 0.8k (with probability at least 1− 2−k
Ω(1)

). The result now follows since 2Ext is a 2-source

extractor for min-entropy k/2.

143

Chapter 10

Extractors for Interleaved Sources

1

Raz and Yehudayoff [RY11] introduced a natural generalization of the class of independent

sources, which we call interleaved sources. To formally define this class of sources, we introduce

some notation. Let σ : [n]→ [n] be any permutation. For any string w ∈ {0, 1}n, define the string

s = wσ ∈ {0, 1}n such that sσ(i) = wi for i = 1, . . . , n.

Definition 10.0.1 (Interleaved Sources). Let X1, . . . ,XC be independent (n, k)-sources on {0, 1}n

and let σ : [Cn]→ [Cn] be any permutation. Then Z = (X1 ◦ . . . ◦XC)σ is an (n, k, C)-interleaved

source.

Besides being a natural generalization of independent sources, the original motivation for

studying these sources came from an application found by Raz and Yehudayoff [RY11] in proving

lower bounds for arithmetic circuits. Further, such extractors give examples of explicit functions

with high best-partition communication complexity.

Using the probabilistic method, one can show that extractors exist for (n, k, C)-interleaved

sources with C = 2 and k = O(log n). However the known constructions are far from this in

terms of entropy requirement. The construction in [RY11] works for (n, k, C)-interleaved sources

1parts of this chapter have been previously published [CZ16b]

144

for k > (1− δ)n and C = 2, where δ is a small constant.

10.1 Our Results and Applications

The results in this chapter are based on joint works with Xin Li and David Zuckerman [CZ16b,

CL16b].

Note that an (n, k, C)-interleaved source is also a special case of an (n, k, C)-sumset source,

by naturally extending each source in the definition to have bits 0 in all other positions. Using

our extractor for sumset sources from Chapter 8, we thus substantially improve previous results in

terms of min-entropy requirement for a large enough constant C. In particular, we obtain explicit

extractors that work for the interleaving of a constant number of independent sources, each with

polylogarithmic min-entropy.

Theorem 22. There exist constants c, C > 0 and a small constant β > 0 such that for all n, k ∈ N

with k ≥ logc n, there exists a polynomial time computable extractor for (n, k, C)-interleaved sources,

with error n−Ω(1) and output length kβ.

Proof. Suppose X on Cn is an interleaving of the independent sources X1, . . . ,XC (each on n

bits). Define independent sources Y1, . . . ,YC , each on Cn bits, such that Yi matches X on the

co-ordinates belonging to the source Xi, and Yi is fixed to 0 everywhere else. Hence X =
∑C

1 Yi

and thus, X is a (Cn, k, C)-sumset source. The result now follows from Theorem 19.

However note that this does not yield extractors for (n, k, 2)-interleaved sources since C (in

the above theorem) is a large constant.

To extract from (n, k, 2) sources, we develop a simple technique that yields explicit extractors

that work for lower min-entropy rates. In particular, our method yields explicit extractors for min-

entropy rate 0.51 for two interleaved sources, when the sources are over a finite field of large enough

(constant) characteristic.

145

We show how to convert any two-source extractor that is a function of the sum of its inputs

into an extractor for a 2-interleaved source. Our method of converting a two-source extractor into

an extractor for interleaved sources is based on explicit constructions of certain combinatorial sets,

which we call (r, s)-spanning sets. These spanning sets are essentially subspace-evasive sets with

different parameters than studied earlier (see Section 10.2.1 for more details). It turns out that the

columns of parity check matrices of linear codes with good erasure list-decodability form spanning

sets with good parameters. We discuss this in detail later.

Next, we observe that an existing two-source extractor from [CG88] is a function of the

sum of the inputs. This leads to our construction of an extractor for 2-interleaved sources with

one source having min-entropy at least (1− α)n and the other source having min-entropy at least

λ log n (for some α, λ > 0). In particular, we have the following theorem.

Theorem 23. For some δ > 0 and any λ > 0, there exists an explicit function ext : {0, 1}2n →

{0, 1}m, m = λ log n, such that if X, Y are independent sources on Fn2 with min-entropy k1, k2

respectively satisfying k1 > (1− δ)n and k2 > 35 max{log n,m}, t : [2n]→ [2n] is any permutation,

then

|ext((X ◦Y)t) ◦X− Um ◦X| = n−Ω(1).

Next, we show that for any large enough constant prime p, if the 2-interleaved source is on

[p]2n, we can extract when one source has min-entropy rate at least 0.51 and the other source has

min-entropy rate at least c log n/n.

Theorem 24. There exists c > 0 such that for any δ, λ > 0 and any prime p > 2
c
δ , there exists an

explicit function extp : F2n
p → {0, 1}m, m = λ log n, such that if X and Y are independent sources on

Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2+δ)n log p and k2 >

5
δ max{log n log p,m},

t : [2n]→ [2n] is any injective map, then

|extp((X ◦Y)t) ◦X− Um ◦X| = n−Ω(1).

146

We give various related constructions achieving different tradeoffs between min-entropy,

error, and output length. This is summarized in Table 10.1.

We show that random sets are (r, s)-spanners with high probability (see Lemma 10.3.10). By

our proof technique, any improved construction of an (r, s)-spanning set matching the probabilistic

method will yield extractors for 2-interleaved sources on {0, 1}2n that have essentially the same

min-entropy requirement as the standard (non-interleaved) setting.

10.1.1 Best-Partition Communication Complexity

Since Yao introduced communication complexity in 1978 Yao [Yao79], there has been an extensive

amount of research done on various models of communication (see [KN97] for formal definitions and

background). We recall the definition of the randomized best-partition communication complexity

of an arbitrary function f : [R]2n → {0, 1}, which generalizes the usual setting where the partition

of inputs is known.

Let Alice and Bob be two players who want to collectively compute f following a protocol

Π and having access to a common random string r. Fix an arbitrary partition of the set [2n] into

2 subsets of equal size, say S and T . For arbitrary x, y ∈ [R]n, Alice is given x and Bob receives y

and the goal is to compute f(z) with probability at least 1− ε, where z ∈ [R]2n such that zS = x

and zT = y.

For any protocol Π, the randomized communication cost of f with respect to an equi-

partition S, T ⊂ [2n] denoted by RεΠ,S,T (f), is defined to be the maximum communication between

Alice and Bob over all inputs x, y in the scenario described above. The best-partition communica-

tion complexity of f , denoted by Rbest,ε(f) is defined as:

Rbest,ε(f) = min
Π
{ min
S,T :|S|=|T |=n,
S∪T=[2n]

RεΠ,S,T (f)}.

Lower bounds on the best-partition communication complexity of f implies lower bounds

147

on branching programs computing f [AM86] and also imply time/space tradeoffs for VLSI circuits

[Len90].

Raz and Yehudayoff [RY11] proved the following lower bound.

Theorem 10.1.1 ([RY11]). For some β > 0, there exists an explicit function f : {0, 1}2n → {0, 1}

such that the randomized best-partition communication complexity of f with error ε = 1
2 − 2−βn is

at least βn.

The constant β in the above theorem is, however, extremely small and arises from arguments

in additive combinatorics. A similar bound also follows from their work for inputs on [R]2n (for

any constant R) and it appears nontrivial to use their techniques to obtain bounds for larger β.

Our Results

We obtain the following result.

Theorem 25. There exists c > 0 such that for any δ, γ > 0 and any prime p > 2
c
δ , there exists

an explicit function f : [p]2n → {0, 1} such that the randomized best-partition communication

complexity of f with error ε = 1
2 − p

−γn is at least (1
4 − δ − γ)n log p.

We prove this using a well known technique of lower bounding randomized communication

complexity by discrepancy. Our explicit function is the 1-bit extractor constructed in Theorem

10.4.7. However, we need to analyze the error of the extractor more carefully to obtain the above

bound. We prove Theorem 25 in Section 10.6.

10.1.2 Interleaved Non-Malleable Extractors

We introduce the natural generalization of non-malleable extractors in the interleaved model.

We first recall the definition of a non-malleable extractor.

Definition 10.1.2 (Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m is a non-

malleable extractor for min-entropy k and error ε if the following holds: If X is a source (on [R]n)

148

with min-entropy k, and f : [R]n → [R]n is any function with no fixed points, then

|nmExt(X ◦ U[R]n) ◦ nmExt(X ◦ f(U[R]n)) ◦ U[R]n − Um ◦ nmExt(X ◦ f(U[R]n) ◦ U[R]n | ≤ ε.

The first explicit construction of a non-malleable extractors was given in [DLWZ14], with

subsequent improvements of parameters achieved in [CRS12, Li12b]. However these constructions

require min-entropy > 0.49n. In a recent work [CGL16], the min-entropy required was improved

to O(log2 n).

We initiate the study of non-malleable extractors in the interleaved model, where the ex-

tractor is guaranteed to work even when symbols from the source X and tampered seed U[R]n arrive

to the non-malleable extractor in a fixed but unknown interleaved order.

We formally define interleaved non-malleable extractors.

Definition 10.1.3 (Interleaved Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m

is a non-malleable extractor in the any-order model for min-entropy k and error ε if the following

holds: If X is a source (on [R]n) with min-entropy k, f : [R]n → [R]n is any function with no fixed

points and t : [2n]→ [2n] is any permutation, then

|nmExt((X ◦ U[R]n)t) ◦ nmExt((X ◦ f(U[R]n))t) ◦ U[R]n − Um ◦ nmExt((X ◦ f(U[R]n))t) ◦ U[R]n | ≤ ε,

where Um is independent of U[R]n.

In the above definition, when the seed has some min-entropy instead of being uniform, we

say that the interleaved non-malleable extractor is weak-seeded.

Our Results

We give the first explicit construction of an interleaved non-malleable extractor. Further our non-

malleable extractor is weak-seeded.

149

Theorem 26. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2
λ
δ ,

there exists an explicit function nmExt : F2n
p → {0, 1}m, m = O(log n), such that if X, Y are

independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and

k2 > cm, t : [2n]→ [2n] is any permutation and f : Fnp → Fnp is any function with no fixed points,

then

|nmExt((X ◦Y)t) ◦ nmExt((X ◦ f(Y))t) ◦Y − Um ◦ nmExt((X ◦ f(Y))t) ◦Y| = n−Ω(1).

As before, if we are allowed to run the non-malleable extractor in sub-exponential time, we

can extract Ω(n) bits with error 2−Ω(n). See Theorem 10.5.4 for more details.

10.2 Outline of Constructions

10.2.1 Extractors for 2-Interleaved Sources

Our extractor for interleaved sources exploits the existence of good 2-source extractors which are

functions of X + Y. To do this, we encode our source in a new way. Our encoding is based on

explicit constructions of certain combinatorial sets, which we call spanning vectors.

Definition 10.2.1. A set of vectors S ⊆ F¯̀
p is (r, s)-spanning if the span of any r vectors of S has

dimension at least s.

Note that this is the same as a subspace-evasive set: Any (s − 1)-dimensional subspace

contains at most (r−1) vectors in the set. However our parameters are quite different than studied

previously [Gur11,DL12].

Our explicit constructions of spanning vectors are based on using the columns of a parity

check matrix of a linear codes with good erasure list-decodability. Informally, an (e, L)-erasure list-

decodable code C satisfies the property that at most L codewords agree on any particular subset

of coordinates of size n− e. This property can then be used to lower bound the rank of any subset

of e columns of the parity check matrix of C. We refer the reader to Section 10.3 for more details.

150

We define the following encoding based on spanning vectors.

Definition 10.2.2. For any (r, s)-spanning set S = {v1, . . . , v`} ⊆ F¯̀
p of size `, the function

enc : F`p → F¯̀
p defined as

enc(z) =
∑̀
i=1

zivi

is called an (r, s)-encoding from F`p to F¯̀
p.

Consider the following setting: Let Z = (X ◦Y)t be any 2-interleaved source on {0, 1}2n,

where X and Y are arbitrary independent sources on {0, 1}n with min-entropy k1 and k2 respec-

tively, and t : [2n]→ [2n] is any permutation.

Our first step is to use an (n, s)-encoding enc from F2n
2 to Fn̄2 to encode Z. Thus,

enc(Z) = X′ + Y′,

where

X′ =
n∑
i=1

Xivt(i), Y′ =
n∑
i=j

Yjvt(n+j).

where S = {v1, . . . , v2n} is an (n, s)-spanning set of vectors.

The idea is to argue that the independent sources X′ and Y′ (on {0, 1}n̄) have enough min-

entropy. Since (by construction) the span of the set of vectors {vt(1), . . . , vt(n)} has dimension at least

s, Lemma 2.3.12 implies that H∞(X′) = k′1 ≥ k1 − (n− s). Similarly H∞(Y′) = k′2 ≥ k2 − (n− s).

We now associate Fn̄2 with F2n̄ . A character sum estimate of Karatsuba2 [Kar71, Kar91]

implies that for any nonprincipal multiplicative character χ of F∗2n̄ ,

EX′ |EY′ [χ(X′ + Y′)]| ≤ 2−δk
′
2

whenever: k1 ≥ (1
2 + 3δ)n̄+ (n− s) and k2 ≥ 4

δ log n̄ log p+ (n− s).
2this character sum was also used in [CG88] for constructing explicit two-source extractors.

151

Suppose k1 and k2 satisfy these conditions.

We then follow a standard approach and define the function:

ext(Z) = logg(X
′ + Y′) (mod M),

where M = 2δk
′
2/2 and g is a primitive element of F2n̄ . Using a version of the Abelian XOR lemma

(see Lemma 2.6.2), it follows that ext is an extractor with output length δk′2/2 and error 2−Ω(k′2).

Further the extractor is strong in the source X. However, the running time of this extractor is

subexponential since it involves computing discrete logs over finite fields. This gives us a semi-

explicit extractor construction.

To get a polynomial time extractor, we compute discrete log over a smaller multiplicative

subgroup of F∗2n̄ . Let M |2n̄ − 1 and M = nλ for any constant λ (we show in Theorem 10.4.2 that

we can ensure that there is always such an M). Define the function:

ext1(Z) = enc(Z)
2n̄−1
M .

Thus ext1(Z) is a distribution on the multiplicative subgroup G = {x
2n̄−1
M : x ∈ F∗2n̄} (of F∗2n̄) of

size M (in fact ext1(Z) is a distribution on G ∪ {0}, but Pr[ext1(Z) = 0] = 2−Ω(n) and hence we

ignore this and add this to the error). Let g be a generator of G. It now follows by using the

character sum estimate of Karatsuba [Kar71] that the function:

ext(Z) = logg(ext1(Z))

is an extractor.

We need to find a generator g of G efficiently. For this, we use an efficient algorithm of

Shoup [Sho90] for finding a small set of elements such that one of them is a primitive element of

F2n̄ . We use a straightforward method to find g from this set in polynomial time. We achieve

output length of λ log n and error n−Ω(1). The extractor is strong in the source X.

152

Reducing the Min-Entropy Rate For some c and any δ > 0, let p > 2
c
δ be any prime. When

the source Z = (X ◦Y)t is on [p]2n, we can reduce the min-entropy rate requirement of the source

X to (1
2 + δ). The construction follows the same outline as above (using (n, s)-encodings from F2n

p

to Fn̄p), and the improvement is achieved by using the fact that over alphabet [p], we can construct

(n, n)-spanning sets in Fn̄p with n̄ = n(1 + δ
5) (using explicit codes from [GI02]). The output length

of the extractor obtained is λ log n (for any constant λ) and achieves error n−Ω(1). Further the

extractor is strong in the source X.

Improving the Output Length We improve the output length of the above extractor to Ω(n)

when both sources X and Y (on [p]n) have min-entropy at least (1
2 + δ)n log p. Our construction is

as follows. Let SExt be an explicit strong seeded extractor for linear min-entropy with linear output

length and polynomially small error with seed seed length O(log n), for example from the work of

[GUV09]. Let Z[n] denote the projection of Z to the first n coordinates and let extp denote the

extractor constructed in the previous paragraph (for 2-interleaved sources on [p]2n). Our extractor

is the following function:

extp,long(Z) = SExt(Z[n], extp(Z)).

We sketch the proof of correctness. Without loss of generality, suppose that X has more symbols

in Z[n] than the source Y. Let S ⊆ [n] be the coordinates of X which are in Z[n] and let XS denote

the projection of X to the coordinates indexed by S. Let T ⊂ [n] be the coordinates of Y which

are in Z[n] and let YT denote the projection of Y to the coordinates indexed by T . Further, we

use XS ◦YT to denote Z[n]. Note that, by assumption |S| ≥ n
2 and |T | ≤ n

2 . It follows by Lemma

2.3.7 that Y|YT is close to a source with min-entropy > δn log p
2 with probability 1− 2−Ω(n). Also

note that XS has min-entropy ≥ δn log p.

Consider such a good fixing YT = yT . Since X and Y|YT = yT have enough min-entropy,

it follows that even under this fixing, W = extp(Z) is close to uniform. We now use the property

that extp is strong with respect to the source XS , i.e.,

|(XS ,W)− (XS , Ud)| ≤ n−Ω(1).

153

Using a probability lemma from [Sha06], it follows that for any W = w,

|XS − (XS |(W = w))| ≤ n−Ω(1),

(using that w is of length O(log n)).

Hence, SExt(XS◦YT ,W)|YT = yT is n−Ω(1)-close to the convex combination:
∑

w Pr[(W |YT =

yT) = w]SExt(XS ◦YT , w)|YT = yT . Since as observed above, W |YT = yT is n−Ω(1)-close to Ud,

it follows that SExt(XS ◦YT ,W)|YT = yT is n−Ω(1)-close to SExt(XS ◦ yT , Ud). The correctness

now follows using the fact that SExt is a seeded extractor for linear min-entropy.

Probabilistic Method We show in Lemma 10.3.10, that a random set S ⊂ Fn2 of size 2n is an

(n, n− 2
√
n)-spanning set with high probability. Thus, using the proof technique described above,

any explicit construction of such a set will yield explicit extractors for 2-interleaved sources on

{01}2n when one source has min-entropy at least 0.51n and the other source has min-entropy at

least cn
1
2 . We leave it as an interesting open problem to explicitly construct such a set S.3

We give formal proofs of the above extractor constructions and other related constructions

in Section 10.4.

10.2.2 Interleaved Non-Malleable Extractors

For some c > 0 and any δ > 0, let p > 2
c
δ be any prime. Let X be a source on [p]n with min-entropy

k1 and Y be a weak- eed on [p]n with min-entropy k2. Let f : [p]n → [p]n be any function with

no fixed points. Thus the non-malleable extractor has access to Z = (X ◦ Y)t for an artitrary

permutation t : [2n]→ [2n]. Let Zf denote the tampered source (X ◦ f(Y))t.

We show that the extractor extp constructed for 2-interleaved sources (described in the

previous section) is also non-malleable. We prove it in the following way. Recall the construction

3This is related to finding explicit constructions of binary erasure list-decodable codes with almost optimal pa-
rameters. See Section 10.3 for more details.

154

of extp:

enc(Z) =

2n∑
i=1

Zivi, ext1(Z) = enc(Z)
pn̄−1
M , extp(Z) = logg(ext1(Z)),

where S = {v1, . . . , v2n} is an (n, n)-spanning set in Fn̄p , M = poly(n), n̄ = n(1 + δ
5) and g is a

generator of the multiplicative subgroup G = {x
2n̄−1
M : x ∈ F∗2n̄}.

Since extp is a distribution on ZM , it follows by a version of the Abelian XOR lemma proved

in [DLWZ14] that to prove non-malleability, it is enough to prove the bound:

|E[ψa(extp(Z))ψb(extp(Zf))]| ≤ n−Ω(1),

for all additive characters ψa and ψb (of ZM) such that ψa is nontrivial. When ψb is the trivial

character, the above quantity can be bounded by the fact that extp is an extractor for 2-interleaved

sources. Thus, suppose both ψa and ψb are nontrivial.

It follows that

|E[ψa(extp(Z))ψb(extp(Zf))]| = |E[χa(enc(Z))χb(enc(Zf))]|

where χa and χb are nonprincipal multiplicative characters of F∗2n̄ .

Further, Z =
∑n

i=1 Xivt(i) +
∑n

j=1 Yjvt(j) and Zf =
∑n

i=1 Xivt(i) +
∑n

j=1 f(Y)jvt(j). Thus,

Z = X′ + Y′, Zf = X′ + f ′(Y′),

where X′ =
∑n

i=1 Xivt(i), Y′ =
∑n

i=j Yjvt(n+j) and f ′ = L ◦ f ◦ L−1, L being the one-one linear

map L(z) =
∑n

i=1 zivt(n+i). Thus,

|E[ψa(extp(Z))ψb(extp(Zf))]| = |E[χa(X
′ + Y′)χb(X

′ + f ′(Y′))]|.

Using the work of Dodis et al. [DLWZ14], we can prove the required upper bound on the quantity

on the right hand side if f ′ does not have any fixed points. We indeed show that f ′ has no fixed

155

points (by using the fact that L is one-one and f has no fixed points). This completes the proof

sketch. The non-malleable extractor outputs λ log n bits (for any constant λ) and achieves error

n−Ω(1). See Section 10.5 for more details.

Notation

For any permutation t : [n] → [n], define the string w = (s)t ∈ [R]n such that wi = st(i) for

i = 1, . . . , n. Further for any t ⊂ [n], let sT denote the |T | length string that is the projection of s

onto the coordinates indexed by T .

For any x ∈ [p]n1 , y ∈ [p]n2 and disjoint subsets S, T ⊂ [n1 + n2] with |S| = n1, |T | = n2, we define

z = xS ◦ yT such that zS = x and zT = y.

10.3 Constructing Spanning Vectors

A key ingredient in our extractor construction are explicit constructions of spanning vectors. Recall

that a set of vectors S ⊆ F¯̀
p is (r, s)-spanning if the span of any r vectors of S has dimension at

least s (see Definition 10.2.1). Our constructions of spanning vectors are simple and are based on

explicit linear codes. Recall that a linear code of block length n, dimension k and distance d over

any field F is a k dimensional subspace over F with the number of zero coordinates of any vector

in this subspace being at most n− d. The relative rate of the code is k/n and the relative distance

is d/n.

We show that the columns of the parity check matrix of any linear code with good erasure

list-decoding radius (defined below) can be used as a spanning set.

Definition 10.3.1 (Erasure List-Decoding Radius [Gur03]). We say that a linear code [n, k, d] code

C over a finite field F is (e, L)-erasure list-decodable if for every for every r ∈ Fn−e and T ⊆ [n] of

size n− e, |{c ∈ C : cT = r}| ≤ L.

We now establish a simple connection between erasure list-decodable codes and spanning

156

sets.

Lemma 10.3.2. Let C be a linear [n, k, d] code over a finite field F, which is (e, L)-earasure list-

decodable. Let H be parity check matrix of C, and let S be the set of columns of H. Then S ⊂ Fn−k

is a (r, s)-spanning set of size n, with r = e and s = e− log|F|(L).

Proof. Since C is (e, L)-erasure list-decodable, it follows that the size of the null space of any e

columns of the parity check matrix H is at most L. By the rank-nullity theorem, it follows that

the rank of the sub-matrix of H restricted to these e columns is at least e − log|F|(L). Thus by

definition, the set of columns of H form a (e, e− log|F|(L))-spanning set.

The following lemma relates the minimum distance of a code to its erasure list-decoding

radius, and can be seen as an analogue of the Johnson bound for erasure list-decoding.

Lemma 10.3.3 ([Gur04b]). Let C be a code with block length n and relative distance δ over an alpha-

bet of size q. Then for any ε > 0, C is a (e, L)-erasure list-decodable code, where e =
(

q
q−1 − ε

)
δn

and L = q
(q−1)ε .

Combining the above results, the following lemma is immediate.

Lemma 10.3.4. For any δ > 0, let C be a binary linear code with relative distance 1
4 + δ, and block

length 2n. Then the columns of the parity check matrix of H form a (r, s)-spanning set, with r = n

and s = n− log
(

1
δ

)
.

Proof. Using Lemma 10.3.3, it follows that C is (n, 1
δ)-erasure list-decodable. Now applying Lemma

10.3.2, the lemma follows directly.

A similar result follows for the case of q-ary linear codes.

Lemma 10.3.5. For any δ > 0, let C be a linear code with relative distance q−1
2q + δ and block

length 2n over a finite field of size q. Then the columns of the parity check matrix of H form a

(r, s)-spanning set, with r = n and s = n− log
(

q
(q−1)δ

)
.

157

To instantiate the above results, we recall some explicit code constructions. Using standard

code concatenation, there are known constructions of binary linear codes achieving the Zyablov

bound.

Theorem 10.3.6. For any ε, γ > 0, there exists an explicit construction of a binary linear code

with relative distance δ = 1
4 + ε and relative rate R ≥ max0<r<1−H(δ+ε) r

(
1− δ

H−1(1−r)−ε

)
.

Over larger alphabets, the following explicit codes were constructed in the work of Gu-

ruswami and Indyk [GI02].

Theorem 10.3.7 ([GI02]). There exists c > 0 such that for every γ > 0 and any prime p > 2
c
γ

there is an efficient construction of a linear code C ⊂ Fnp with relative distance δ = 1
2 −

1
4p and rate

R = 1
2 − γ.

Using the above codes, we now have explicit constructions of spanning sets.

Lemma 10.3.8. There exist constants γ > 0 and c such that for any n, there exists an explicit

(n, n− c)-spanning set S ⊂ F2n̄ of size 2n, where n̄ = 2n(1− γ).

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
2 from Theorem 10.3.6

for relative distance 1
4 + δ, for some small constant δ. Let S = {v1, . . . , v2n} be the set of columns

of H. Thus S ⊂ Fn̄2 , n̄ = 2n(1− γ), γ being the relative rate of the code. Applying Lemma 10.3.4,

the result is now immediate.

Lemma 10.3.9. There exists c > 0 such that for any γ > 0 and any prime p > 2
c
γ , there is

an efficient construction of an explicit set (n, n − C)-spanning set S ⊂ F2n̄ of size 2n, where

n̄ = n(1 + 2γ) and C = 2c
γ .

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
p from Theorem 10.3.7

with relative distance 1
2 −

1
4p and rate 1

2 − γ . Let S = {v1, . . . , v2n} be the set of columns of H.

The result now follows by Lemma 10.3.5.

158

We show that random sets are (r, s)-spanning sets with overwhelmingly high probability.

Guruswami’s existence proof of subspace evasive [Gur11] targets different parameters and does not

apply here. This lemma is more related to the existence of good erasure list-decodable codes.

Lemma 10.3.10. Let S be a random subset of Fn2 of size 2n. Then,

Pr[S is not a (n, n− 2
√
n)-spanning set] ≤ 2−n.

Proof. Let t > 0. Consider any subset R ⊂ S, |R| = n. By standard arguments, it follows that

Pr[dim(span(R)) ≤ n− t] ≤
(
n

t

)
(2−t)t ≤

(n
2t

)t
.

Thus,

Pr[∃ R ⊂ S, |R| = n with dim(span(R)) ≤ n− t] ≤
(

2n

n

)(n
2t

)t
≤ 22n−t2+t logn

The lemma follows by setting t = 2
√
n+ 1.

10.4 Extractors for 2-Interleaved Sources

10.4.1 Extractors for 2-Interleaved Sources on {0, 1}2n

Our extractor constructions are based on encoding the interleaved-sources using spanning vectors.

Recall that any (r, s)-encoding from F`p → F¯̀
p is defined in the following way: For any (r, s)-spanning

set S = {v1, . . . , v`} ⊆ Fn̄p , the function enc : F`p → F¯̀
p defined as

enc(z) =
n∑
i=1

zivi

is an (r, s)-encoding from F`p → F¯̀
p.

The following is a key lemma in our extractor constructions.

159

Lemma 10.4.1 (Main Lemma). Fix any δ > 0. Let p be any prime and let Z = (X ◦Y)t be any

2-interleaved source on F2n
p , where X and Y are independent sources on Fnp with min-entropy k1

and k2 respectively, and t : [2n] → [2n] is any permutation. Also suppose χ is any nonprincipal

multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding from F2n
p to Fn̄p . Then,

EX|EY[χ(enc(Z))]| ≤ 2−δ(k2−(n−s) log p),

whenever

• k1 ≥ (1
2 + 3δ)n̄ log p+ (n− s) log p, and

• k2 ≥ 4 log n̄ log p
δ + (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.

We have,

χ(enc(Z)) = χ

(
2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +

n∑
j=1

Yjvt(n+j)

Define the following independent sources:

X′ =
n∑
i=1

xivt(i) : x ∼ X, Y′ =
n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 2.3.12, it follows that: k′1 = H∞(X′) ≥ k1− (n− s) log p and k′2 = H∞(Y′) ≥

k2 − (n− s) log p.

160

Thus, we have

EX|EY[χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y

χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′

∣∣EY′
[
χ
(
X′ + Y′

)]∣∣
= 2−δk

′
2

where the last inequality follows using Theorem 2.5.5.

Using the above main lemma, we construct extractors for 2-interleaved sources on F2n
2 .

Theorem 10.4.2. For some δ > 0 and any λ > 0, there exists an explicit function ext : {0, 1}2n →

[M], M = nλ, such that if X and Y are independent sources on Fn2 with min-entropy k1, k2 respec-

tively satisfying k1 > (1 − δ)n and k2 > 35 max{log n, logM}, t : [2n] → [2n] is any permutation,

then

|ext((X ◦Y)t) ◦X− UM ◦X| = 2−Ω(k2).

Proof. Let H be the parity check matrix of a code C ⊂ F2n
2 with relative distance = 1

4 + δ1 (for

some small constant δ1) and constant rate R, where we fix R as follows. Let RZ be the rate of

the code from Theorem 10.3.6. Let ε1 << RZ be a small constant. We choose R in the interval

[RZ − ε1, RZ] such that n̄ = 2n(1−R) is divisible by integer m, m = λ log n. Since 2RZε1n >> m,

we can indeed find such an R. Fix M = 2m − 1. We note that M |2n̄ − 1. Set δ = R
6 .

Let S = {v1, . . . , v2n} be the set columns of H. By Lemma 10.3.8, S is (n, n−C)-spanning,

for some constant C. We interpret each vi as being an element in the field F2n̄ . Consider the

multiplicative subgroup:

G = {x
2n̄−1
M : x ∈ F∗2n̄}.

A generator g of G can be found efficiently in the following way: Using Theorem 2.7.1, we

can efficiently construct a set S = {a1, . . . , al}, l = poly(n), such that one of the ai’s, say aj , is a

161

primitive element of F2n̄ . Let S′ = {a
2n̄−1
M

1 , . . . , a
2n̄−1
M

l }. We note that a
2n̄−1
M

j ∈ S′ is an element of

order M . Thus, it is enough to enumerate over the elements in S′ and compute the order of each

element. Since the order of any element in S′ is bounded by M = poly(n), the search procedure

can be implemented efficiently.

Let Z = (X ◦Y)t. For any z ∈ F2n
2 , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
2n̄−1
M , ext(z) = logg(ext1(z)).

We note that ext1 and ext are efficiently computable functions. Further note that enc is an

(n, n− C)-encoding from F2n
2 to Fn̄2 .

Using the above lemma, we prove the following claim.

Claim 10.4.3. Let ψ(x) = eM (βx), β 6= 0 (mod M), be any nontrivial character of the additive

group ZM .

Then,

EX |EY[ψ(ext2((X ◦Y)t))]| ≤ 2−δk2 .

We note that Theorem 10.4.2 follows directly from Claim 10.4.3 by using Lemma 2.6.1.

Thus it is enough to prove Claim 10.4.3.

Proof of Claim 10.4.3. We have,

ψ(ext(z)) = eM (β logg(ext1(z)))

= χ (enc(z)) ,

where χ(x) = eM (β logg(x)) is a nonprincipal multiplicative character of F∗2n̄ of order

M
gcd(M,β) .

162

Thus, we have

EX |EY[ψ(ext2((X ◦Y)t))]| = Ex∼X |Ey∼Y [χ (enc(Z))]|

≤ 2−δk2 ,

where the inequality follows from Lemma 10.4.1.

It is direct from the above theorem, that if we insist that the output of the above extractor

is a bit string, we have the following result.

Theorem 10.4.4 (Theorem 23 restated). For some δ > 0 and any λ > 0, there exists an explicit

function ext : {0, 1}2n → {0, 1}m, m = λ log n, such that if X, Y are independent sources on Fn2 with

min-entropy k1, k2 respectively satisfying k1 > (1− δ)n and k2 > 35 max{log n,m}, t : [2n] → [2n]

is any permutation, then

|ext((X ◦Y)t) ◦X− Um ◦X| = n−Ω(1).

10.4.2 Extracting from 2-Interleaved Sources on F2n
p

If the sources X and Y are on Fnp (for some large enough prime p), we can reduce the min-entropy

rate requirement of the source X to about 1
2 .

Theorem 10.4.5 (Theorem 24 restated). There exists c > 0 such that for any δ, λ > 0 and any

prime p > 2
c
δ , there exists an explicit function extp : F2n

p → {0, 1}m, m = λ log n, such that if X and

Y are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p

and k2 >
5
δ max{log n log p,m}, t : [2n]→ [2n] is any injective map, then

|extp((X ◦Y)t) ◦X− Um ◦X| = n−Ω(1).

163

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 10.3.9. Further,

as in the proof of Theorem 10.4.2, we choose the rate of the code in Lemma 10.3.9 such that m|n̄

and m = λ logp n. Thus we can ensure that n̄ ≤ n(1 + δ
5).

Let M = nλ. For any z ∈ F2n
p , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. The proof now follows using Lemma 10.4.1 and

Lemma 2.6.1.

10.4.3 Improving the Output Length

The output length of the extractor in Theorem 10.4.5 is Ω(log n). We improve the output length

to Ω(n) bits when the min-entropy rate of both the sources (on Fnp) are slightly more than 1
2 .

A general technique to improve the output length extractors was introduced by Shaltiel

[Sha06]. In particular, Shaltiel showed that the function:

SExt(X, 2ext(X,Y)) ◦ SExt(Y, 2ext(X,Y))

is 2-source extractor with longer output length, where 2ext is a 2-source extractor with short output

length and SExt is a seeded extractor set to appropriate parameters.

However this does not work in our case since it requires access to the individual sources X

and Y. Surprisingly, we show that the construction: SExt(((X ◦Y)t)[n], 2extp((X ◦Y)t)) can be

proved to be an extractor.

Theorem 10.4.6. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there exists an

explicit function extp,long : F2n
p → {0, 1}m, m = Ω(n), such that if X and Y are independent sources

on Fnp with min-entropy k1, k2 respectively satisfying k1 > (1
2 + δ)n log p and k2 > (1

2 + δ)n log p,

164

t : [2n]→ [2n] is any injective map, then

|extp,long((X ◦Y)t)− Um| = n−Ω(1).

Proof. Let SExt be the seeded-extractor from Theorem 2.1.2 with parameters β = δ, α = δ/2 and

ε = n−Ω(1). Let the seed length of SExt with this setting of the parameters be d = λ log n. Let

Z = (X ◦Y)t. Define

extp,long(Z) = SExt(Z[n], extp(Z)),

where extp is the extractor from Theorem 10.4.5 designed to extract from 2-interleaved sources with

one source at min-entropy k1 ≥ (1
2 + δ)n log p and the other source with min-entropy k2 ≥ δn log p

2

with error εp = n−2λ and output length mp = λ log n.

Let S = {i ∈ [n] : Zi = Xi} and T = {j ∈ [n] : Zj = Yj}. Also let S̄ = [n] \ S and

T̄ = [n] \ T . Without loss of generality, we can assume that |S| ≥ n
2 . It follows from Lemma 2.3.7

that there exists a set Goody such that for any yT ∈ Goody, YT̄ |YT = yT is 2−Ω(n)-close to a source

with entropy more than δn log p
2 , and Pr[Yt ∈ Goody] > 1− 2−Ω(n).

Let yT ∈ Goody. It follows by the setting of extp that

|(extp(Z|YT = yT) ◦XS − Um ◦XS | ≤ n−2λ.

Using Lemma 2.3.9, it follows that

|XS − (XS |(extp(Z|YT = yT) = e))| ≤ n−λ+1. (10.1)

Let pyT = Pr[YT = yT] and let pe|yT = Pr[extp(Z|YT = yT) = e].

165

Using the above estimates, we have

|extp,long(Z)− Um| ≤
∑
yT

pyT |SExt(XS ◦ yT , extp(Z|YT = yT))− Um|

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , extp(Z|YT = yT))− Um|

+ 2−Ω(n)

≤
∑

yT∈Goody

pyT

(∑
e

pe|yT |SExt(XS ◦ yT , e)− Um|+ n−λ+1

)
+ 2−Ω(n)

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , Ud)− Um|

+ n−Ω(1)

= n−Ω(1).

where the last line follows from the fact that XS has min-entropy at least δn log p.

10.4.4 One Bit Extractors for 2-Interleaved Sources on F2n
p with Exponentially

Small Error

Note that all our extractor constructions so far have polynomially small error if we insist that the

output of the extractor is a bit string. Here we show how to achieve exponentially small error for

2-interleaved sources on Fp, for any large enough prime. However we can output only 1 bit.

Theorem 10.4.7. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there

exists an explicit function ext1bit : F2n
p → {0, 1}, such that if X and Y are independent sources on

Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and k2 > (5 log n log p)/δ,

t : [2n]→ [2n] is any injective map, then

|ext1bit((X ◦Y)t) ◦X− U1 ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 10.3.9. Define

166

the functions:

enc(z) =
2n∑
i=1

zivi, ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ . The proof now follows using Lemma 10.4.1.

10.4.5 Semi-Explicit Extractors for 2-Interleaved Sources with Linear Output

Length and Exponentially Small Error

We note that the extractors constructed so far have either achieved linear output length or ex-

ponentially small error, but not both simultaneously. We show that if we allow the extractors to

run in sub-exponential time, then we can indeed construct such extractors. (Note that the trivial

algorithm to find such an extractor runs in doubly exponential time.) The non-polynomial running

time comes from having to compute the discrete logarithm. To reduce the running time, we can in

fact use a heuristic algorithm for finding discrete logarithm [BGJT14], which runs in time nO(logn)

on fields of small characteristics under plausible assumptions.

Theorem 10.4.8. For some δ > 0, there exists a semi-explicit function ext : {0, 1}2n → {0, 1}m,

such that if X and Y are independent sources on Fn2 with min-entropy k1, k2 respectively satisfying

k1 > (1− δ)n and k2 >
10
δ max{log n,m}, t : [2n]→ [2n] is any permutation, then

|ext((X ◦Y)t) ◦X− Um ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n−C)-spanning set in Fn̄2 constructed using Lemma

10.3.8. Let m = δk2
2 . For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = logg(enc(z)), ext(z) = ext1(z) (mod 2m)

where g is a generator of F∗2n̄ . The proof now follows using Lemma 10.4.1 and Lemma 2.6.2.

Using the (n, n−C)-spanning sets from Lemma 10.3.9 to encode the sources, we obtain the

167

following theorem using Lemma 10.4.1.

Theorem 10.4.9. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there exists

a semi-explicit function ext : F2n
p → {0, 1}m, such that if X, Y are independent sources on Fnp

with min-entropy k1, k2 respectively satisfying k1 > (1
2 + δ)n log p and k2 >

5
δ max{log n log p,m},

t : [2n]→ [2n] is any permutation, then

|ext((X ◦Y)t) ◦X− Um ◦X| = 2−Ω(k2).

10.4.6 Extractors for 2-Interleaved Sources with Linear Min-Entropy Under the

Generalized Paley Graph Conjecture

In this section, we show how to construct extractors for sources with linear min-entropy under the

widely believed Generalized Paley Graph Conjecture.

Generalized Paley Graph Conjecture. Let χ be any non-principal multiplicative character of

F∗pn. For any constant δ > 0, and arbitrary subsets A,B ⊆ Fpn satisfying |A|, |B| > pδn, we have

∣∣∣∣∣∣
∑

a∈A,b∈B
χ(a+ b)

∣∣∣∣∣∣ ≤ p−γ(δ)n|A||B|.

Assuming the above conjecture, we obtain the following improved version of Lemma 10.4.1.

Lemma 10.4.10. Assume the Generalized Paley graph Conjecture. Fix any δ > 0 and any prime

p. Let Z = (X◦Y)t be any 2-interleaved source on F2n
p , where X and Y are independent sources on

Fnp with min-entropy k1 and k2 respectively, and t : [2n] → [2n] is any permutation. Also suppose

χ is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding from

F2n
p to Fn̄p . Then, there exists γ = γ(δ) such that

EX|EY[χ(enc(Z))]| ≤ p−γn,

whenever

168

• k1 ≥ δn̄ log p+ (n− s) log p, and

• k2 ≥ δn̄ log p+ (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.

We have,

χ(enc(Z)) = χ

(
2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)

Define the following independent sources:

X′ =

n∑
i=1

xivt(i) : x ∼ X, Y′ =

n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 2.3.12, it follows that: H∞(X′) ≥ k1 − (n− s) log p and H∞(Y′) ≥ k2 − (n−

s) log p.

Thus, we have

EX|EY[χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y

χ
 n∑
i=1

xivt(i) +
n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′

∣∣EY′
[
χ
(
X′ + Y′

)]∣∣
≤ p−γn

where the last inequality follows using the Generalized Paley Graph Conjecture.

Using the above lemma, we have the following theorem.

169

Theorem 10.4.11. Assume the Generalized Paley Graph Conjecture. For any δ, λ > 0, there

exists an explicit function extconjecture : {0, 1}2n → {0, 1}m, m = λ log n, such that if X and Y are

independent sources with min-entropy δn each, and t : [2n]→ [2n] is any permutation, then

|extconjecture((X ◦Y)t)− Um| = n−Ω(1).

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n−C)-spanning set in Fn̄p constructed using Lemma

10.3.8. Further, as in the proof of Theorem 10.4.2, we choose the rate of the code in Lemma 10.3.9

such that m|n̄ and m = λ log n. Let M = nλ. For any z ∈ F2n
2 , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
2n̄−1
M : x ∈ F∗2n̄}. The proof now follows using Lemma 10.4.10 and

Lemma 2.6.1.

We note that assuming the above conjecture, the output length of the above extractor can

be improved to Ω(n) if both X and Y have min-entropy rate more than 1
4 by using the proof

method of Theorem 10.4.6.

10.5 Interleaved Non-Malleable Extractors

In this section, we show that the proof technique developed in constructing extractors for 2-

interleaved sources can be used to construct non-malleable extractors in the interleaved model.

Theorem 10.5.1. There exists λ1 > 0 such that for any δ, λ2 > 0, c > c(δ) and any prime

p > 2
λ1
δ , there exists an explicit function nmExt : F2n

p → {0, 1}m, m = λ2 log n, such that if X, Y

are independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p

and k2 > cmax{m, log n}, t : [2n] → [2n] is any injective map and f : Fnp → Fnp is any function

170

with no fixed points, then

|nmExt((X ◦Y)t) ◦ nmExt((X ◦ f(Y))t) ◦Y − Um ◦ nmExt((X ◦ f(Y))t) ◦Y| = n−Ω(1).

To prove the above theorem, we recall a character sum estimate of Dodis et al. [DLWZ14].

Theorem 10.5.2. For any δ > 0 and η < 1
2 , suppose S and T are non-empty subsets of Fq

satisfying |S| > q
1
2

+δ and |T | > max{(1
η)

7
δ , (log q)8}. Let f : Fq → Fq be any arbitrary function

with no fixed points. For arbitrary multiplicative characters χa and χb, such that χa is nonprincipal,

we have ∑
y∈T

∣∣∣∣∣∑
x∈S

χa(x+ y)χb(x+ f(y))

∣∣∣∣∣ < η|S||T |.

Proof of Theorem 10.5.1. We use encoding based on spanning vectors. In particular, let S =

{v1, . . . , v2n} be an explicit (n, n−C)-spanning set in Fn̄p constructed using Lemma 10.3.9. Further,

as in the proof of Theorem 10.4.2, we choose the rate of the code in Lemma 10.3.9 such that m|n̄

and m = λ2 logp n. Let M = nλ2 . For any z ∈ F2n
p , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. We prove the following claim.

Claim 10.5.3. Let ψa and ψb be arbitrary characters of the additive group ZM such that ψa is

nontrivial. Then,

Ey∼Y |Ex∼X[ψa(nmExt((X ◦Y)t))ψb(nmExt((X ◦ f(Y))t))]| = n−Ω(1).

Before proving this claim, we note that Theorem 10.5.1 follows directly from Claim 10.5.3

by using Lemma 2.6.3.

Proof of Claim 10.5.3. Let t([n]) = T1 and t([n+1, 2n]) = T2. Since S is (n, n)-spanning, it follows

171

that the set {vi : i ∈ T1} consists of linearly independent vectors. Similarly {vj : j ∈ T2} is a set of

linearly independent vectors.

Let ψa(x) = eM (ax), where a 6= 0 (mod M). Also let ψb(x) = eM (bx). If b = 0 (mod M),

the claim follows from Lemma 10.4.1. Thus suppose b 6= 0 (mod M).

We have,

ψa(nmExt((X ◦Y)t) = eM (a logg(ext1((X ◦Y)t)))

= χa

 n∑
i=1

Xivt(i) +

n∑
j=1

Yjvt(n+j)

= χa

(
X′ + Y′

)
where χa(x) = eM (a logg(x)) is a nonprincipal multiplicative character of F∗pn̄ of order M

gcd(M,a) ,

X′ =
∑n

i=1 xivt(i) : x ∼ X and Y′ = L(Y), L : Fnp → Fn̄p being the injective linear map:

L(y) =
n∑
j=1

yjvt(n+j).

Further,

ψb(nmExt((X ◦ f(Y))t) = eM (b logg(ext1((X ◦Y)t)))

= χb

 n∑
i=1

Xivt(i) +
n∑
j=1

f(Y)jYt(n+j)

= χb

(
X′ + f ′(Y′)

)
where f ′ = L ◦ f ◦ L−1 and χb(x) = eM (b logg(x)) is a nonprincipal multiplicative character of F∗pn̄

of order M
gcd(M,b) .

We claim that f ′ has no fixed points. This can be proved in the following way. Suppose

f ′(x) = x for some x. This implies that f(L−1(x)) = L−1(x) and hence f(w) = w for w = L−1(x).

172

This contradicts our assumption on f . Thus f ′ has no fixed points.

It now follows from Theorem 10.5.2 that

Ex′∼X′ |Ey′∼Y′ [χa(x
′ + y′)χb(x

′ + f ′(y′))]| = n−Ω(1).

If we allow the non-malleable extractor to run in sub-exponential time, then using the

proof method of the above theorem, it can be shown that the extractor from Theorem 10.4.9 is

non-malleable. Thus, we have the following result.

Theorem 10.5.4. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2
λ
δ ,

there exists a semi-explicit function nmExt : F2n
p → {0, 1}m, m = Ω(n), such that if X, Y are

independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and

k2 > cmax{m, log n}, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any function with no

fixed points, then

|nmExt((X ◦Y)t) ◦ nmExt((X ◦ f(Y))t) ◦Y − Um ◦ nmExt((X ◦ f(Y))t) ◦Y| = 2−Ω(k2).

We note that under the Generalized Paley Graph Conjecture, we can reduce the min-entropy

requirement of the source X in Theorem 10.5.1 to βn, for any constant β > 0.

10.6 Proof of Theorem 25

We briefly recall some definitions from communication complexity. We refer the reader to [KN97]

for more background. For convenience, we define boolean functions with range {−1, 1} (instead of

{0, 1}).

173

Definition 10.6.1. Let f : [p]2n → {−1, 1} be any function. Fix any equi-partition of [2n] into

subsets S, T . For any rectangle R and probability distribution µ on [p]2n, denote

Discµ,RS,T (f) = |Pr
µ

[f(xS , yT) = 1 and (x, y) ∈ R]− Pr
µ

[f(xS , yT) = −1 and (x, y) ∈ R]|.

Definition 10.6.2. The discrepancy of f : [p]2n → {−1, 1} with respect to an equi-partition of [2n]

into S, T and distribution µ on [p]2n is defined as:

DiscµS,T (f) =

{
max
R

(
Discµ,RS,T (f)

)}
.

Definition 10.6.3. The maximal-equipartition discrepancy of f : [p]2n → {0, 1} with respect to a

distribution µ on [p]2n is defined as:

Discµbest(f) = max
S,T :|S|=|T |=n,
S∪T=[2n]

{
DiscµS,T (f)

}
.

The following theorem provides a method to lower bound randomized best-paritition com-

munication complexity of f using its maximal-equi-partition discrepancy. A proof can be found in

[KN97].

Theorem 10.6.4. For every function f : [p]2n → {−1, 1}, every probability distribution µ on [p]2n

and every ε ≥ 0,

Rbest,
1
2
−ε(f) ≥ log

(
2ε

Discµbest(f)

)
.

We now prove Theorem 25.

Proof of Theorem 25. We show that the explicit extractor from Theorem 10.4.7 is the required

function. Recall the construction of the extractor.

Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p constructed using Lemma

10.3.9, n̄ = n(1 + 2δ).

174

Define the functions:

enc(z) =

2n∑
i=1

zivi, ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ .

We claim that the randomized best partition discrepancy of ext with error 1
2 − p

−γn is at

least (1
4 − δ − γ)n log p.

Let µ be the uniform distribution on [p]2n.

Claim 10.6.5. For any equi-partition of [2n] into disjoint subsets S and T ,

log

(
1

DiscµS,T (ext)

)
≥
(

1

4
− δ
)
n log p.

We note that the proof of Theorem 25 is direct from Claim 10.6.5 by using Theorem 10.6.4.

Proof of Claim 10.6.5. Fix any rectangle R = X × Y , for arbitrary subsets X,Y ⊆ [p]n. We use

X to denote the flat distribution supported on the sets X (and similarly ley Y denote the flat

distribution on Y). We have,

Discµ,RS,T (ext) =
|X||Y |
p2n

|Ex∈X,y∈Y[QR (enc(xS ◦ yT))]|

We note that if |X| ≤ p
3n
4 or |Y | ≤ p

3n
4 , the claim follows easily.

Thus suppose |X|, |Y | > p
3n
4 . Define the distribution Z = (X ◦Y)π, where π : [2n] → [2n]

is a permutation defined in the following way: Let S = {s1, . . . , sn} and T = {t1, . . . , tn} such that

s1 ≤ . . . ≤ sn and t1 ≤ . . . ≤ tn. For any i ∈ [n], define π(i) = si and for any j ∈ [n+ 1, 2n], define

π(j) = tj (thus, π([n]) = S and π([n+ 1, 2n]) = T).

We note that enc is an (n, n)-encoding from F2n
p → Fn̄p . Thus,

enc(Z) = X′ + Y′,

175

where X′ and Y′ are independent sources on Fn̄p with H∞(X′) = log(|X|) and H∞(Y′) = log(|Y |).

Using Theorem 2.5.4, with λ = 1, we have

∣∣E[QR
(
X′ + Y′)

)
]
∣∣ ≤ 2

(pn̄

|X||Y|

) 1
2

+

(
p
n̄
2

|X|

) 1
2

Thus,

Discµ,RS,T (ext) ≤ 2

(
|X||Y |
p2n

)(pn̄

|X||Y |

) 1
2

+

(
p
n̄
2

|X|

) 1
2

≤ 2

(
|X|

1
2 |Y |

1
2

p2n− n̄
2

+
|X|

1
2

pn−
n̄
4

)
≤ 2(p−(n− n̄

2
) + p−

n
2

+ n̄
4)

Since the above estimate holds for any arbitrary rectangle R, we have

log

(
1

DiscµS,T (ext)

)
≥
(

1

4
− δ
)
n log p.

176

p k1 k2 Output
Length

Error Reference Remarks

2 ≥ (1− β)n ≥ (1− β)n γn,
γ < β

2−Ω(n) [RY11] Not strong

2 ≥ (1− α)n ≥ 35λ log n λ log n n−α Theorem 23 Strong in X

2 ≥ (1− α)n ≥ 35λ log n Output
in ZM ,
M = nλ

2−Ω(k2) Theorem 24 Strong in X

any p > 2
c
δ ≥ (1

2 +
δ)n log p

≥ c1(δ, λ, p) log n λ log n n−α Theorem
10.4.5

Strong in X

any p > 2
c
δ ≥ (1

2 +
δ)n log p

≥ (1
2 + δ)n log p Ω(n) n−α Theorem

10.4.6
Not strong

any p > 2
c
δ ≥ (1

2 +
δ)n log p

≥ c2(δ, λ, p) log n 1 bit 2−Ω(k2) Theorem
10.4.7

Strong in X

any p > 2
c
δ ≥ (1

2 +
δ)n log p

≥ c1(δ, λ, p)λ log n Ω(k2) 2−Ω(k2) Theorem
10.4.9

Semi-
explicit
construc-
tion

2 ≥ γn, any
constant γ

≥ γn λ log n n−α Theorem
10.4.11

Assuming
General-
ized Paley
Graph
Conjecture

Table 10.1: Results on Extractors for 2-Interleaved Sources. The setting is as follows: Z = (X◦Y)t
is an arbitrary 2-interleaved source on [p]2n, where X and Y are independent sources on [p]n

(for some prime p) with min-entropy k1 and k2 respectively, and t : [2n] → [2n] is an arbitrary
permutation. Let α be a small enough constant and c a large enough constant. Also let λ > 1 be
any constant. We also list the result of [RY11] in Table 10.1.

177

Chapter 11

Seedless Non-Malleable Extractors

1 Cheraghchi and Guruswami [CG14b] introduced seedless non-malleable extractors as a natural

generalization of seeded non-malleable extractors (see Chapter 4 for more details on seeded non-

malleable extractors). They also showed a way to construct non-malleable codes from efficient

constructions of such seedless non-malleable extractors. Informally, non-malleable codes are a

generalization of error-detecting codes to handle a much larger class of tampering functions (rather

than just bit erasure or modification). We refer the reader to Chapter 12 for more details and our

results on non-malleable codes. Thus apart from a natural notion, the applications to non-malleable

codes provides further motivation for explicitly constructing seedless non-malleable extractors.

Definition 11.0.1 (Seedless C-Non-Malleable Extractor). A function nmExt : ({0, 1}n)C →

{0, 1}m is a seedless C-non-malleable extractor for min-entropy k and error ε if it satisfies the

following property: Let X1, . . . ,XC be independent (n, k)-sources and for each i ∈ [C], let fi :

{0, 1}n → {0, 1}n be arbitrary tampering functions, such that at least one fi has no fixed points.

Then,

|nmExt(X1, . . . ,XC), nmExt(f1(X1), . . . , fC(XC))−Um,nmExt(f1(X1), . . . , fC(XC))| < ε.

1parts of this chapter have been previously published [CZ14,CGL16]

178

In [CG14b], it was left as an open problem to construct a seedless C-non-malleable extractor

even for k = n, for any C = o(n).

Using the probabilistic method, Cheraghchi and Guruwsami [CG14b] showed the existence

of seedless 2-non-malleable extractor for k = Ω(log n) and ε = 2−Ω(k) with m = Ω(k). However

giving explicit constructions turns out to be tricky, even for k = n, and there were no known

constructions prior to work in this thesis. More specifically, it appears nontrivial to extend existing

constructions of seeded non-malleable extractors when both sources are tampered. For example,

for sources on Fp, the 2-source extractor from Lemma 2.5.4: χ(x + y), where χ is the quadratic

character was shown to be a seeded non-malleable extractor [DLWZ14]. However it fails to work

against tampering functions f(x) = x+ 1 and g(y) = y − 1, even for full entropy.

11.1 Our Results

The results in this chapter are based on joint works with Vipul Goyal, Xin Li, and David Zuckerman

[CZ14,CGL16]. We provide two different constructions of seedless non-malleable extractors, which

rely on very different set of techniques.

Our first construction however requires access to 10 sources but has the advantage the the

output length is Ω(k) and error 2−Ω(n). In fact, as we will see in Chapter 12, we use this extractor

to give the first explicit constructions of non-malleable codes with constant rate. This construction

relies on techniques from the area of additive combinatorics.

Theorem 27. For some δ > 0 there exists a polynomial time construction of a (k, ε)-seedless non-

malleable extractor for 10 independent sources nmExt : ({0, 1}n)10 → {0, 1}m with k = (1 − δ)n,

ε = 2−Ω(n) and m = Ω(k).

We present the proof of Theorem 27 in Section 11.2.

Our second construction resolves the open problem posed by Cheraghchi and Guruswami,

and gives explicit non-malleable extractors for 2 sources. However, the output length of this ex-

tractor is polynomially small. An advantage of this construction is that it generalizes to handle

179

multiple tamperings, which yields generalized non-malleable codes. This construction is based on

techniques developed in Chapter 3, and in particular the construction is very similar to the seeded

non-malleable extractor construction in Theorem 1. To present our result in full generality, we

introduce seedless (C, t)-non-malleable extractors.

Definition 11.1.1 (Seedless (C, t)-Non-Malleable Extractor). A function nmExt : ({0, 1}n)C →

{0, 1}m is a seedless C-non-malleable extractor for min-entropy k and error ε if it satisfies the

following property: Let X1, . . . ,XC be independent (n, k)-sources. Further, for each i ∈ [C], j ∈ [t],

let fi,j : {0, 1}n → {0, 1}n be an arbitrary tampering function, such that for each j ∈ [t], at least

one fi,j has no fixed points. Then,

|nmExt(X1, . . . ,XC), nmExt(f1,1(X1), . . . , f1,C(XC)), . . . ,nmExt(ft,1(X1), . . . , ft,C(XC))

−Um, nmExt(f1,1(X1), . . . , f1,C(XC)), . . . ,nmExt(ft,1(X1), . . . , ft,C(XC))| < ε.

The following is the second main result of this chapter.

Theorem 28. There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ, there exists an

efficient seedless (2, t)-NM extractor at min-entropy n − nγ with error 2−n
Ω(1)

and output length

m = nΩ(1).

We present the construction in Theorem 28 in Section 11.3.

11.2 An Explicit Seedless Non-Malleable Extractor for 10 Sources

We prove Theorem 27 in this section. We first introduce some tools which are used in our con-

struction.

Notation For a vector v ∈ Fnp , we use ΠS(v) to denote the projection of v to the coordinates

indexed by the elements in S ⊂ [n]. We extend the action of ΠS to sets in the obvious manner. We

use Πi for Π{i}.

180

11.2.1 Some Results from Additive Combinatorics

We recall some well known results from additive combinatorics. We refer the reader to the excellent

book by Tao and Vu [TV06] for more details.

Definition 11.2.1. For vectors v, w ∈ Fnp , where v = (v1, . . . , vn) and w = (w1, . . . , wn), we define

v � w = (v1w1, . . . , vnwn)

Definition 11.2.2. For subsets A,B ⊆ Fnp , define the sets :

A+B = {a+ b : a ∈ A, b ∈ B}

A�B = {a� b : a ∈ A, b ∈ B}

Observation 11.2.3. (F∗p)n is a group under the operation �.

Lemma 11.2.4 (Plünnecke-Ruzsa). Let A,B be finite subsets in an additive group G. Then

|A+A| ≤ |A+B|4

|A||B|2

Lemma 11.2.5 (Plünnecke-Ruzsa). Let A be a finite subset of any additive group G. Then

|A−A| ≤
(
|A+A|
|A|

)3

|A|

Lemma 11.2.6 (Balog-Szemerédi-Gowers lemma [BS94,Gow98]). Let A,B be finite subsets of an

additive group G and let |A|1−ρ1 ≤ |B| ≤ |A|1+ρ1. If cp(A + B) ≥ |A|−(1+ρ2−ρ1), then there exists

subsets A′ ⊆ A, B′ ⊆ B such that |A′| ≥ |A|1−10ρ2, |B′| ≥ |B|1−10ρ2, and |A′ +B′| ≤ |A|1+ρ1+10ρ2.

181

11.2.2 Some Known Extractor Constructions

We recall some known results on multi-source extractors and non-malleable extractors. We recall

a 3-source extractor constructed in [Rao09a].

Theorem 11.2.7 ([Rao09a]). For every n and and constant δ > 0 there exists an explicit function

3ext : {0, 1}n → {0, 1}m, m = Ω(n), such that if X1,X2,X3 are independent (n, δn) sources then

|3Ext(X1,X2,X3)− Um| < 2−Ω(n)

Explicit constructions of seeded non-malleable extractors follow from works of [DLWZ14]

and [Li12b]. The output length in [DLWZ14] relies on an unproven but widely believed conjecture

on primes while the output length in [Li12b] is unconditional. Further, either of the non-malleable

extractors from [DLWZ14] or [Li12b] is also a strong 2-source extractor.

Theorem 11.2.8 ([DLWZ14, Li12b]). Let δ > 0 be a constant. For all n, there exists an explicit

function snmExt : {0, 1}n×{0, 1}n → {0, 1}m, m = Ω(n), satisfying: Suppose X,Y are independent

sources on {0, 1}n with min-entropy k1, k2 respectively.

1. If (k1 + k2) ≥ (1 + δ)n, then

|snmExt(X,Y),X−Um,X| < 2−Ω(n), |snmExt(X,Y),Y −Um,Y| < 2−Ω(n)

2. If k1, k2 > (1− δ)n and f is any tampering function with no fixed points, then

|snmExt(X,Y), snmExt(X, f(Y))−Um, snmExt(X, f(Y))| < 2−Ω(n)

11.2.3 A Sum-Product Estimate

We recall a sum-product theorem over prime fields follows from [BKT04,BGK06,Kon03].

182

Theorem 11.2.9 (Sum-product over prime fields). Let Fp be any prime field and let A ⊂ Fp be

any non-empty subset such that |A| < p1−δ for some constant δ > 0. Then there exists a constant

τ = τ(δ) > 0, such that

|A+A|+ |A ·A| ≥ |A|1+τ

An analogue of Theorem 11.2.9 over Fp×Fp was proved by Bourgain in [Bou05a]. We extend

this to sets over F4
p in the following theorem and use it in our proof of Theorem 3. It is stated in a

convenient way.

Theorem 11.2.10. There exists τ0 > τ1 > 0 such that the following holds: Let A be a subset of

F4
p satisfying |A ∩ (F∗p)4| ≥ |A|2 . Suppose that for any subset A1 ⊆ A satisfying |A1| ≥ p−τ1 |A|, the

following conditions holds.

1. Π{1,2}(A1) ≥ p1+τ0 and Π{3,4}(A1) ≥ p1+τ0.

2. A1 * P , where P is a 2-dimensional linear subspace of F4
p of the form

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Then there exists a constant τ > 0 (depending on τ0, τ1) such that if |A| < p7/3−τ1, then

|A+A|+ |A�A| > pτ |A|

We present the proof of Theorem 11.2.10 in Section 11.2.7. The proof of Theorem 11.2.10

closely follows and extends the arguments in the sum-product estimate over F2
p proved by Bourgain.

Definition 11.2.11. We call a set A satisfying the conclusion of Theorem 11.2.10 to be sum-product

friendly. We call a flat distribution sum-product friendly if its support is sum-product friendly.

11.2.4 A Sum-Product Friendly Encoding

Let τ, τ0, τ1 be the constants from Theorem 11.2.10. Let p be any prime satisfying : pτ0 > 16.

183

Define enc : Fp → F2
p in the following way.

enc(x) = (x, x4 + x2 + x)

Lemma 11.2.12. Let S1, S2 ⊂ Fp be subsets of size p1−δ, p > 3. Define the distribution

Xf,1,2 = (enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : x1 ∼ S1, x2 ∼ S2

where f1, f2 are arbitrary functions.

Then Xf,1,2 is O(p−δ)-close to a convex combination of at most 4 flat distributions supported

on sets of the form

Ti = {(enc(x1) + enc(x2), enc(f1(x1) + enc(f2(x2))) : (x1, x2) ∈ Gi},

where Gi ⊂ F2
p and |Gi| = |Ti| ≥ p2−3δ.

Proof. Let T ⊂ F4
p denote the support of Xf,1,2. We partition T into at most 4 parts in the following

way.

For any t ∈ T , let s(t) ⊂ F2
p be the set of all (x1, x2) ∈ S1 × S2 such that (enc(x1) +

enc(x2), enc(f1(x1)) + enc(f2(x2))) = t. Let r(x) denote the cardinality of the set s(x).

We claim that for any t ∈ T , 1 ≤ r(x) ≤ 4. The upper bound follows from the following

calculation. Let t = (t1, t2, t3, t4) ∈ F 4
p . Thus for any (x1, x2) ∈ s(t), we have

x1 + x2 = t1

x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2 = t2

Substituting for x2, we have

x4
1 + (t2 − x1)4 + q(x1, t1, t2) = 0

184

where q(x1, t1, t2) has degree at most 2 in x1. Thus x1 must satisfy a polynomial of degree exactly 4.

For each fixing of x1, notice that x2 also gets fixed. Thus r(t) ≤ 4 for all t ∈ T .

For i ∈ [4], we define the sets

Ti = {t ∈ T : r(t) = i}

Thus the Ti’s form a partition of T .

Define sets Gi ⊂ F2
p, i ∈ [4], such that for all t ∈ Ti, |Gi ∩ s(t)| = 1. In other words Gi is

constructed by picking exactly one element from s(t) for each t ∈ Ti. Thus |Gi| = |Ti|.

We note that for any t ∈ Ti, Pr[Xf,1,2 = t] = i
|S1||S2| and hence

Pr[Xf,1,2 ∈ Ti] =
i|Gi|
|S1||S2|

Thus we have

Xf,1,2 =

4∑
i

wi ·
(
(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∼ Gi

)

where wi = i|Gi|
|S1||S2| .

For some i, if |Gi| < p2−3δ then wi ≤ i · p−δ. Thus Xf,i,j is 9 · p−δ-close to a distribution

X′f,i,j defined as

X′f,1,2 =

4∑
i

w′i ·
(
(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∼ Gi

)
where we set w′i’s as follows. Set w′i = 0 for all i such that wi < i · p−δ. Pick a j such that

wj ≥ j · p−δ and set w′j = wj +
∑

i:wi<i·p−δ wi. For the remaining unset w′i’s, set it equal to wi.

Lemma 11.2.13. Choose a small δ1 > τ0. Let f1, f2 be functions with maximum pre-image

size bounded by pδ1. Further assume f1 has no fixed points. Define the set A = {enc(x1) +

185

enc(x2), enc(f1(x1)) + enc(f2(x2)) : (x1, x2) ∈ G} where G ⊂ F2
p is a subset of size at least p1+10δ1.

Then the set A ⊂ F4
p is sum-product friendly.

Proof. We begin by noting that p1+9δ1 < |A| << p7/3.

We need the following claim.

Claim 11.2.14. Define the set B = {(enc(y1) + enc(y2), enc(g1(y1)) + enc(g2(y2))) : (y1, y2) ∈ H}

where H ⊂ F2
p is a subset of size at least p1+10δ1 and g1, g2 are tampering functions with pre-image

size bounded by pδ1. Then following inequalities hold :

• |B ∩ ({0} × F3
p)| ≤ p

• |B ∩ (Fp × {0} × F2
p)| ≤ 4.p

• |B ∩ (F2
p × {0} × Fp)| ≤ p1+δ1

• |B ∩ (F3
p × {0})| ≤ 4p1+δ1

Proof. We have,

B = {(y1 +y2, y
4
1 +y2

1 +y1 +y4
2 +y2

2 +y2, g1(y1)+g2(y2), g1(y1)4 +g1(y1)2 +g1(y1)+g2(y2)4 +

g2(y2)2 + g2(y2)) : (y1, y2) ∈ H}.

We prove the inequality:

|B ∩ (F3
p × {0})| ≤ 4p1+δ1

The other inequalities follow using similar arguments.

Fix y1 to some value in Fp. We note that g2(y2) is the root of a monic degree 4 polynomial

and hence has at most 4 choices. Thus y2 can take at most 4pδ1 values by using the bound on the

pre-image size of g2. The inequality now follows by observing that y1 can take at most p values.

Using Claim 11.2.14, we have |A ∩ (F∗p)4| ≥ (1− p−7δ1)|A| > 1
2 |A|.

186

Consider any subset A1 ⊆ A such that |A1| ≥ p−τ1 |A|. It follows that there exists G1 ⊆ G

such that

A1 = {(enc(x1) + enc(x2), enc(f1(x1)) + enc(f2(x2))) : (x1, x2) ∈ G1}

Thus |A1| > p1+8δ1 . We also note that |G1| ≥ |A1| > p1+8δ1 .

We note that |Π1,2(A1)| = |A1| > p1+τ0 . Further |Π3,4(A1)| > |A1|p−2δ1 > p1+6δ1 > p1+τ0 .

The final part of the proof is to bound the intersection of A1 with any 2-dimensional linear

space P of the forms specified in Theorem 11.2.10.

Suppose A1 ⊂ P = {(y1, y2, c1y1, c2y2) : y1, y2 ∈ Fp}. Thus we have for all (x1, x2) ∈ G1:

f1(x1) + f2(x2) = c1(x1 + x2)

f1(x1)4 + f1(x1)2 + f1(x1) + f2(x2)4 + f2(x2)2 + f2(x2) = c2(x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2)

Fix x2 = α such that (x1, α) ∈ G1 for all x1 ∈ S1 ⊂ Fp, |S1| ≥ |G1|
p ≥ p

8δ1 . Let f2(α) = β. We thus

have for all x1 ∈ S1,

f1(x1) = c1x1 + c1α− β (11.1)

f1(x1)4 + f1(x1)2 + f1(x1) + β4 + β2 + β = c2(x4
1 + x2

1 + x1 + α4 + α2 + α) (11.2)

(11.3)

Thus for all x ∈ S1, the following holds:

(c1x1 + c1α− β)4 + (c1x1 + c1α− β)2 + (c1x1 + c1α− β) + β4 + β2 + β

−c2(x4
1 + x2

1 + x1 + α4 + α2 + α) = 0 (11.4)

To derive a contradiction, we split it into the following cases.

• c1 6= 0 , c1α− β 6= 0

187

In this case notice that the LHS of (11.4) is of degree at least 3 and at most 4 in x1 and hence

can have at most 4 roots, which is a contradiction since |S1| ≥ p8δ1 > 4.

• c1 = 0

In this case we see that from (11.1), f1 is constant on S1 which contradicts the assumption

that f1 has pre-image size at most pδ1 .

• c1α− β = 0, c1 6= 0

Thus (11.4) simplifies to

c4
1x

4
1 + c2

1x
2
1 + c1x1 + β4 + β2 + β − c2(x4

1 + x2
1 + x1 + α4 + α2 + α) = 0 (11.5)

We see that this is at least a linear equation and at most a degree 4 equation in x1 (and thus

a contradiction, as argued above) unless c4
1 = c2

1 = c1 = c2. Thus c1 = 1 (since c1 6= 0). But

by (11.1), we then have f1(x1) = x1 for all x1 ∈ S1. This contradicts the fact that f1 has no

fixed points.

This contradicts our assumption that A1 ⊆ {(y1, y2, c1y1, c2y2) : y1, y2 ∈ Fp}.

Now suppose A1 ⊆ P = {(y1, y2, c2y2, c1y1) : y1, y2 ∈ Fp}. We arrive at a contradiction

using similar arguments as above. We have for all (x1, x2) ∈ G1

f1(x1) + f2(x2) = c2(x4
1 + x2

1 + x1 + x4
2 + x2

2 + x2)

f1(x1)4 + f1(x1)2 + f1(x1) + f2(x2)4 + f2(x2)2 + f2(x2) = c1(x1 + x2)

Fix x2 = α such that (x1, α) ∈ G1 for all x1 ∈ S1 ⊂ Fp, |S1| ≥ |G1|
|p| ≥ p

8δ1 . Let f2(α) = β. We thus

188

have for all x ∈ S1,

f1(x1) = c2(x4
1 + x2

1 + x1 + α4 + α2 + α)− β (11.6)

f1(x1)4 + f1(x1)2 + f1(x1) + β4 + β2 + β = c1(x1 + x2) (11.7)

(11.8)

It follows that for all x ∈ S1,

(
c2(x4

1 + x2
1 + x1 + α4 + α2 + α)− β

)4
+
(
c2(x4

1 + x2
1 + x1 + α4 + α2 + α)− β

)2
+(

c2(x4
1 + x2

1 + x1 + α4 + α2 + α)− β
)

+ β4 + β2 + β − c1(x1 + α) = 0

(11.9)

We note that (11.9) is a degree 16 equation in x1 (and hence a contradiction since p8δ1 > 16)

unless c2 = 0. But if c2 = 0 then from (11.6) we have f1 is constant on S1 which contradicts our

assumption that f1 has pre-image size at most pδ1 . This completes our proof that A is sum-product

friendly.

In the following lemmas, we shall abuse notation and for any set A, we will also use A to

denote the flat distribution with support A.

Choose δ1 small enough such that for a sum-product friendly set A of size p2−5·103δ1 we have

|A + A| + |A � A| > |A|p5·104δ1 . This can be ensured by choosing δ1 = 10−5 · τ , where τ is the

constant from Theorem 11.2.10.

Lemma 11.2.15. Let G1, G2, G3 ⊂ F2
p be subsets of size at least p2−δ1. Let f1, . . . , f6 be functions

with pre-image size at most p10δ1. Further assume f1 has no fixed points. For i ∈ [3] define the

sets Ai = {(enc(x2i−1) + enc(x2i), enc(f2i−1(x2i−1)) + enc(f2i(x2i))) : (x2i−1, x2i) ∈ Gi}. Then

A1 �A2 +A3 is O(p−δ1)-close to a distribution with min-entropy (2 + 10δ1) log p.

To prove the above lemma, we borrow ideas from [BIW06] and use the proof technique

189

developed in their work.

We begin by proving the following lemmas.

Lemma 11.2.16. Let A ⊂ (Fp∗)4, p2−300δ1 ≤ |A| < p2 be such that any subset A′ ⊆ A of size

greater than p2−5·103δ1 is sum-product friendly. Supose that for some B ⊂ (F∗p)4, we have |A�B| ≤

p2+300δ1, p2−300δ1 ≤ |B| < p2. Then for any C ⊂ (F∗p)4 such that p2−δ1 ≤ |C| < p2, we have

cp(A+ C) ≤ p−(2+12δ1).

Proof. Since |A � B| ≤ p2+300δ1 , using Lemma 11.2.4 we have |A � A| ≤ |A|p2400δ1 . Suppose

there is some set C such that |C| > p2−δ1 and cp(A + C) > p−(2+12δ1). Using Lemma 11.2.6 with

ρ1 = 200δ1 and ρ2 = 220δ1, it follows that there exists sets A′ ⊆ A, C ′ ⊆ C, |A′ + C ′| ≤ p2+5·103δ1

and |A′|, |C ′| > p2−5·103δ1 . Using Lemma 11.2.4, we get that |A′ + A′| ≤ |A′|p4·104δ1 . We also

have |A′ � A′| ≤ |A � A| ≤ |A′|p104δ1 . By our choice of δ1, this contradicts A′ being sum-product

friendly.

Switching the roles of addition and multiplication gives the following.

Lemma 11.2.17. Let A ⊂ (Fp∗)4, p2−300δ1 ≤ |A| < p2 be such that any subset A′ ⊆ A of size

at least p2−5·103δ1 is sum-product friendly. Let B ⊂ (F∗p)4 be a set such that |A + B| ≤ p2+300δ1,

p2−300δ1 ≤ |B| < p2. Then for any C ⊂ (F∗p)4 such that p2−δ1 ≤ |C| < p2, we have cp(A � C) ≤

p−(2+12δ1).

We say that a set is plus-friendly if it satisfies the conclusion of Lemma 11.2.16. Similarly

we say that a set is times-friendly if it satisfies the conclusion of Lemma 11.2.17.

Lemma 11.2.18. Let A1 ⊂ F4
p be the set defined in Lemma 11.2.15. Then A1 = A+ ∪ A× ∪ A11

such that the following hold:

1. A+ is empty or plus-friendly

2. A× is empty or times-friendly

190

3. |A11| ≤ |A1|p−δ1

Proof of Lemma 11.2.18. We start out by replacing A1 by A1 ∩ (F∗p)4. We can do this without loss

of generality since as observed in the proof of Lemma 11.2.13, |A1 ∩ (F∗p)4| > (1 − p−δ1)|A1| and

hence we add the set A1 \ (F∗p)4 to A11.

Note that by Lemma 11.2.13, any subset of A1 of size at least p2−5·103δ1 is sum-product

friendly. Let A× = A1 and A+ = ∅. We maintain the invariance that A+ is either plus-friendly or

empty. If A× is times-friendly then we are done. Else there exists some B of size at least p2−δ1

such that cp(A× � B) > p−(2+12δ1). Using Lemma 11.2.6 with ρ1 = 2δ1 and ρ2 = 14δ1, we have

that there exists sets A′ ⊆ A×, B′ ⊆ B, |A′ � B′| ≤ p2+284δ1 and |A′|, |B′| ≥ p2−282δ1 . Thus, by

Lemma 11.2.16, A′ is plus-friendly. We remove A′ from A× and add it to A+. Further it can be

proved that unions of disjoint plus-friendly sets are also plus-friendly. We iterate as above till A×

is times-friendly or |A×| ≤ |A1|p−δ1 .

Proof of Lemma 11.2.15. By Lemma 11.2.18 we have A1 = A+ ∪ A× ∪ A′. Using Claim 11.2.14,

we have |A2 ∩ (F∗p)4| > (1 − p−δ1)|A2| and |A3 ∩ (F∗p)4| > (1 − p−δ1)|A3|. Thus A1 � A2 + A3 is

O(p−δ1)-close to a convex combination of distributions of the form:

1. A+ � a2 +A3, a2 ∈ A2 ∩ (F∗p)4

2. A× �A2 + a3, a3 ∈ A3 ∩ (F∗p)4

By Lemma 11.2.16 and Lemma 11.2.17, we thus have that A1 � A2 + A3 is O(p−δ1)-close to a

distribution with collision probability at most p−(2+12δ1). Thus by using Lemma 2.3.3, we have

that A1 �A2 +A3 is O(p−δ1)-close to a distribution with min-entropy (2 + 10δ1) log p.

Theorem 11.2.19. Let X1, . . . ,X8 be independent sources on Fp with min-entropy (1 − δ) log p.

Let f1, f2, . . . , f8 be arbitrary functions such that at least one of the fi’s has no fixed points. Further

suppose that the pre-image of each fi is bounded by p10δ. Define the source

Xf,i,j = enc(Xi) + enc(Xj), enc(fi(Xi)) + enc(fj(Xj))

191

Then Xf,1,2�Xf,3,4+Xf,5,6�Xf,7,8 is O(p−δ)-close to a distribution with min-entropy (2+10δ) log p.

Proof. Without loss of generality suppose f1 has no fixed points. For all i ∈ [3], using Lemma

11.2.12 we have that Xf,2i−1,2i is O(p−δ)-close to a convex combination of at most 4 flat distributions

Aij of the form (enc(x2i−1) + enc(x2i), enc(f1(x2i−1) + enc(f2(x2i))) : (x2i−1, x2i) ∼ Gij where

Gij ⊂ F2
p, |Gij | ≥ p2−3δ.

With probability 1 − O(p−δ) over fixing of the sources X7,X8, we have Xf,1,2 � Xf,3,4 +

Xf,5,6 � xf,7,8 is O(p−δ)-close to a convex combination of at most 43 distributions of the form

A1j1 ·A2j2 +α·A3j3 , α ∈ (F∗p)4. Since f1 has no fixed points, by Lemma 11.2.15 with δ1 = 3δ, we have

that A1j1�A2j2 +α�A3j3 is O(p−δ)-close to a distribution with min-entropy (2+10δ) log p. Hence,

Xf,1,2 �Xf,3,4 + Xf,5,6 �Xf,7,8 is O(p−δ)-close to a distribution with min-entropy (2 + 10δ) log p.

11.2.5 Non-malleable extractors for functions with no fixed points

In this section we prove a special case of Theorem 3 where we have a restriction on the fixed points

of the tampering functions. We use this result in the proof of Theorem 3.

Theorem 11.2.20. There exists a constant δ > 0 such that for every n there exists an explicit

function nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, such that if X1,X2, . . . ,X8 are independent

(n, (1 − δ)n)-sources, X9 an independent (2n, 2(1 − δ)n)-source and f1, f2, . . . , f9 are arbitrary

tampering functions such that there exists j ∈ [8] such that fj has no fixed points, then

|nmExt(X1, . . . ,X9),nmExt(f1(X1), . . . , f9(X9))− Um, nmExt(f1(X1), . . . , f9(X9))| < 2−Ω(n)

Proof. We view each Xi, i ∈ [8], as a source on Fp for a prime p satisfying 2n < p < 2n+1. If

pτ0 ≤ 16, we do a brute-force search for nmExt (in constant time). Thus assume pτ0 > 16.

Let snmExt : {0, 1}2n×{0, 1}2n → {0, 1}m, m = Ω(n), be the seeded non malleable extractor

192

from Theorem 11.2.8. Define the functions

ext1(x1, x2, . . . , x8) =

1∑
i=0

(
enc(x4i+1) + enc(x4i+2)

)
�
(
enc(x4i+3) + enc(x4i+4)

)
nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

We show that nmExt satisfies the conclusion of Theorem 11.2.20.

Let Si ⊂ Fp be the support of the flat source Xi for all i ∈ [8]. Also let S9 ⊂ {0, 1}2n be the

support of X9. We partition each Si into Si0 and Si1 based on the pre-image of fi as follows.

Si0 = {s ∈ Si : |f−1
i (s) ∩ Si| ≤ p20δ}, Si1 = Si \ Si1.

Let Xij be the flat source on Sij for j = 0, 1.

We thus have

|nmExt(X1, . . . ,X9),nmExt(f1(X1), . . . , f9(X9))− Um, nmExt(f1(X1), . . . , f9(X9))| (11.10)

≤
∑

I∈{0,1}9
wI · |nmExt(X1I(1), . . . ,X9I(9)),nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um,nmExt(f1(X1I(1)), . . . , f9(X9I(9)))| (11.11)

where wI =
∏9
i=1

(
|SiI(i)
|Si|

)
.

We bound each term in (11.11). In particular we show that

wI · |nmExt(X1I(1), . . . ,X9I(9)),nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um,nmExt(f1(X1I(1)), . . . , f9(X9I(9)))| < 2−Ω(n) (11.12)

for each I ∈ {0, 1}9. Since there are 29(= constant) such terms in (11.11), we get the required

bound on (11.10).

We now prove (11.12). Fix any I ∈ {0, 1}9. The following two cases can occur.

193

1. Suppose for some j ∈ [9], |SjI(j)| ≤ p−δ|Sj |. Then wI < p−δ and hence the bound in (11.12)

follows.

2. Thus suppose |SiI(i)| ≥ p−δ|Sj | for all i ∈ [9].

Define the random variables :

W I = ext1(X1I(1), . . . ,X8I(8)), V I = ext1(f1(X1I(1)), . . . , f8(X8I(8)))

We prove that the following holds.

Pr
v∼VI

[(WI |VI = v) is O(p−δ)-close to a distribution with min-entropy at least 10δ log p] ≥ 1− p−δ

(11.13)

The following two cases arise depending on I.

(a) Suppose I(j) = 0 for all j ∈ [8]. It follows from Theorem 11.2.19 that (WI ,VI) is

p−δ-close to a source with min-entropy (2 + 20δ) log p. Using Lemma 2.3.7, we have that

Pr
v∼VI

i

[(WI
i |VI

i = vi) is O(p−δ)-close to a distribution with min-entropy at least 10δ log p] ≥ 1−p−δ

(b) Suppose there exists some j ∈ [8] such that I(j) = 1. Consider fixing fj(XjI(j)) and all

XiI(i), i ∈ [8] \ {j}. Without loss of generality suppose j = 1.

Under this fixing W I has min-entropy at least 20δ log p unless sources X3I(3),X4I(4) are

fixed such that enc(x3I(3)) + enc(x4I(4)) /∈ (F ∗p)2. But it follows from Claim 11.2.14 that

Pr[enc(X3) + enc(X4) /∈ (F∗p)2] < p−δ. Thus,

Pr
v∼V I

[(W I |V I = v) is O(p−δ)-close to a distribution with min-entropy at least 20δ log p] = 1

This completes the proof of (11.13).

194

We continue with the proof of (11.12). For each i ∈ [C ′], define the set

GoodI = {v ∈ support(VI) : (WI |VI = v) is O(p−δ)-close to a distribution with

min-entropy at least 10δ log p}

It follows from (11.13) that Prv∼VI [v ∈ GoodI] > 1− p−δ.

It follows from Theorem 11.2.8 that snmExt is a strong 2-source extractor for independent

sources on 2n bits with entropies k1, k2 respectively satisfying k1 + k2 ≥ (2 + δ)n.

Thus we have,

|snmExt(W I ,X9I(9)), V
I ,X9I(9) − Um, V I ,X9I(9)|

≤ (Pr[VI /∈ GoodI]) + 2−Ω(n) + p−δ ≤ 2p−δ + 2−Ω(n) = 2−Ω(n)

Since nmExt(f1(X1I(1)), . . . , f9(X9,I(9))) is a deterministic function of the random variables

V I and X9I(9), the bound in (11.12) is now immediate.

11.2.6 Non-malleable extractor for arbitrary functions

We now prove a slightly stronger version of Theorem 28.

Theorem 11.2.21 (Theorem 28 restated, stronger version). There exists a constant δ > 0 such that

for every n there exists an explicit function nmExt : ({0, 1}n)8 × {0, 1}2n → {0, 1}m, m = Ω(n),

such that if X1,X2, . . . ,X8 are independent (n, (1−δ)n)-sources, X9 an independent (2n, 2(1−δ)n)-

source and f1, f2, . . . , f9 are arbitrary tampering functions, such that at least one of the fi’s have

no fixed points. Then

|nmExt(X1, . . . ,X9), nmExt(f1(X1), . . . , f9(X9))−Um, nmExt(f1(X1), . . . , f9(X9))| ≤ 2−Ω(n).

195

Proof. We view each Xi, i ∈ [8], as a source on Fp for a prime p satisfying 2n < p < 2n+1. We

assume pτ0 > 16 (else we do a constant time brute-force search for nmExt).

Let snmExt : {0, 1}2n×{0, 1}2n → {0, 1}m, m = Ω(n), be the seeded non-malleable extractor

from Theorem 11.2.8.

Define the functions

ext1(x1, x2, . . . , x8) =
1∑
i=0

(
enc(x4i+1) + enc(x4i+2)

)
�
(
enc(x4i+3) + enc(x4i+4)

)
nmExt(x1, . . . , x9) = snmExt(ext1(x1, . . . , x8), x9)

We need the following claims.

Claim 11.2.22. Let Y1, . . . ,Y8 be sources on Fp with min-entropy (1−2δ)·log p. Then ext1(Y1, . . . ,Y8)

is 2−Ω(n)-close to a source with min-entropy (1− 2δ) · 2 log p.

Proof. We claim that enc(Y1) + enc(Y2) is a source with min-entropy 2(1 − 2δ) log p − 2. This

follows from the fact that (y1 + y2, y
4
1 + y2

1 + y1 + y2 + y2
2 + y2) = (a, b) has at most 4 solutions

in (y1, y2). Also it follows from Claim 11.2.14 that Pr[enc(Y3) + enc(Y4) /∈ (F∗p)2] < p−δ. Thus

ext1(Y1, . . . ,Y8) is p−δ-close to a source with min-entropy 2(1− 2δ) log p− 2.

Claim 11.2.23. Let Y1, . . . ,Y8 be independent (n, (1 − 2δ)n)-sources and Y9 an independent

(2n, 2(1− 2δ)n)-source . Then

|nmExt(Y1, . . . ,Y9)− Um| < 2−Ω(n)

Proof. Follows directly from Claim 11.2.22 and Theorem 11.2.8.

For each i ∈ [8], let Si ⊂ Fp be the support of the (flat) source Xi. Let S9 ⊂ {0, 1}2n be the

support of X9. We partition each Si into Si0 and Si1 such that fi has no fixed points in Si1. Thus

Si0 = {s ∈ Si : fi(s) = s}, Si1 = Si \ Si0

196

Let Xij be the flat source that is supported on Sij , i = 1, .., 9, j = 0, 1. Let f Ii denote fi with its

domain restricted to the set SiI(i). Thus f Ii is a function from SiI(i) to Fp.

For any 0-1 vector I, let I(i) denote the i’th co-ordinate in I. Let wI =
∏9
i=1

|SiI(i)|
|Si| for

I ∈ {0, 1}9.

Recall that to prove Theorem 11.2.21, we need to show the following bound.

|nmExt(X1, . . . ,X9), nmExt(f1(X1), . . . , f9(X9))−Um,nmExt(f1(X1), . . . , f9(X9))| < 2−Ω(n)

(11.14)

We have

(11.14) ≤
∑

I∈{0,1}9\{~0}

wI · |nmExt(X1I(1), . . . ,X9I(9)), nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))−

Um,nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))|

(11.15)

We prove the following claim.

Claim 11.2.24. For every I ∈ {0, 1}9 \ {~0} the following holds:

wI · |nmExt(X1I(1), . . . ,X9I(9)),nmExt(f1(X1I(1)), . . . , f9(X9I(9)))−

Um,nmExt(f I1 (X1I(1)), . . . , f
I
9 (X9I(9)))| < 2−Ω(n) (11.16)

We use the above claim to conclude (11.14).

Proof of (11.14) using Claim 11.2.24. Note that there are 29 − 1 terms in RHS of (11.15). Each

term is bounded by 2−Ω(n) using Claim 11.2.24. We can thus bound LHS of (11.14) by 2−Ω(n).

Proof of Claim 11.2.24. Fix some I ∈ {0, 1}9 \ {~0}.

197

We split the proof into the following cases.

1. If for some i ∈ [9], |SiI(i)| < p−δ|Si|, then wI < p−δ and hence the bound in (11.16) follows.

2. Thus suppose |SiI(i)| ≥ p−δ|Si| for all i ∈ [9]. We consider the following cases.

(a) Suppose there exists some j ∈ [8] such that I(j) = 1. In this case we use Theorem

11.2.20 to conclude the bound in (11.16).

(b) Suppose for all i ∈ [8], I(i) = 0. We note that I(9) = 1 since I 6= ~0. Thus all f Ii , i ∈ [8],

are the identity functions over their respective domains and f I9 has no fixed points.

Using Claim 11.2.22, we have ext1(X1I(1), . . . ,X8I(8)) is 2−Ω(n)-close to a source Z with

min-entropy (1− 2δ) · 2n.

Define the random variable: WI = ext1(X1I(1), . . . ,X8I(8)).

Thus we have

|nmExt(X1I(1), . . . ,X9I(9)),nmExt(f1(X1I(1)), . . . , f9(X9I(9)))

−Um,nmExt(f1(X1I(1)), . . . , f9(X9I(9)))|

= |snmExt(W I ,X9I(9)), snmExt(W I , f I9 (X9I(9)))−Um, snmExt(W I , f I9 (X9I(9)))|

≤ |snmExt(Z,X9I(9)), snmExt(Z, f I9 (X9I(9)))−Um, snmExt(Z, f I9 (X9I(9)))|+ 2−Ω(n)

Note that Z and X9I(9) are independent sources on {0, 1}2n, each with min-entropy rate

> (1− 2δ) and f I9 has no fixed points. Thus by Theorem 11.2.8, we have

|snmExt(Z,X9I(9)), snmExt(Z, f I9 (X9I(9)))− Um, snmExt(Z, f I9 (X9I(9)))| ≤ 2−Ω(n)

Thus, the bound in (11.16) follows.

This completes the proof of Claim 11.2.24.

198

11.2.7 Proof of the sum-product estimate over F4
p

We closely follow the proof of the sum-product estimate by Bourgain in [Bou05a] and prove Theorem

11.2.10, which we restate.

Theorem 1.9. There exists τ0 > τ1 > 0 such that the following holds: Let A be a subset of F4
p

satisfying |A ∩ (F∗p)4| ≥ |A|
2 . Suppose that for any subset A1 ⊆ A satisfying |A1| ≥ p−τ1 |A|, the

following conditions holds.

1. Π{1,2}(A1) ≥ p1+τ0and Π{3,4}(A1) ≥ p1+τ0.

2. A1 * P , where P is a 2-dimensional linear subspace of F4
p of form

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Then there exists some constant τ > 0 (depending on τ0, τ1) such that if |A| < p7/3−τ1, then

|A+A|+ |A�A| > pτ |A|

We introduce some notations.

Definition 11.2.25. Let S ⊆ Fnp be any set of vectors. Define S�2 = S�S and S�(k+1) = S�k�S

for k ≥ 2.

We prove Theorem 11.2.10 using the following lemmas.

Lemma 11.2.26. Let B be any subset of F4
p such that |Π{1,2}(B)| ≥ p1+τ0 and |Π{3,4}(B)| ≥ p1+τ0.

Then one of the following holds.

1. There exists constant k = k(τ0) such that |kB�k| ≥ p7/3 or

2. B ⊆ P where P is a 2-dimensional linear subspace of F4
p of the form

199

(a) {(x1, x2, c1x1, c2x2) : x1 ∈ Fp, x2 ∈ Fp} or

(b) {(x1, x2, c2x2, c1x1) : x1 ∈ Fp, x2 ∈ Fp}.

Lemma 11.2.27. Let B ⊂ (F∗p)4 such that |B| ≥ p1+τ0 and |B + B| + |B � B| ≤ pτ |B|. Fix any

k > 0. Then, there is a subset B1 of B such that

1. |B1| ≥ p−τ1 |B| and

2. |kB�k1 | ≤ pτ1 |B1|

where τ1 = p3k2
τ .

Proof of Theorem 11.2.10. We replace A with its intersection with (F∗p)4. Choose τ small enough

such for k = k(τ0) (where k(τ0) is the constant from Lemma 11.2.26), it holds that: p3k2
τ <

τ1. Suppose that |A + A| + |A � A| ≤ pτ |A|. Using Lemma 11.2.27, there exists a subset A1,

|A1| ≥ p−τ1 |A|, such that |kA�k1 | ≤ |A|pτ1 . Further, we have that A1 satisfies the hypothesis

of Lemma 11.2.26. Suppose, conclusion (1) of Lemma 11.2.26 holds. This implies that |A| ≥

p7/3−τ1 which contradicts our assumption on the size of A. Further, from the assumptions on the

structure of A1, we see that conclusion (2) in Lemma 11.2.26 cannot hold. Thus, it must be that

|A+A|+ |A�A| > pτ |A|.

Lemma 11.2.27 follows directly from Lemma 4 in [Bou05a] by noticing that their proof works

over (F∗p)4 as well. Hence we do not present the proof of Lemma 11.2.27.

Thus we focus on proving Lemma 11.2.26.

We require the following lemma which was proved by Bourgain [Bou05a].

Lemma 11.2.28. For any B ⊆ F2
p such that |B| ≥ p1+τ0 there exists a constant k = k(τ0) such

that |kB�k| = p2.

We now proceed to prove Lemma 11.2.26.

200

Proof of Lemma 11.2.26. Let Bij denote Π{i,j}(B). Using Lemma 11.2.28, there exists some k0

such that |kB�k12 | = p2, |kB�k34 | = p2 for k ≥ k0. We split the proof into two cases.

1. Suppose there exists some k ≥ k0 such that |kB�k| > p2.

Thus, it must be the case that the projection map Π{1,2} is not one-one on kB�k. Thus there

exists b, b′ ∈ kB�k such that Π{1,2}(b) = Π{1,2}(b
′) but Π{3,4}(b) 6= Π{3,4}(b

′). Consider the

set

kB�k − (b− b′)kB�k = {
(
x1, x2, x3 − (b3 − b′3)y3, x4 − (b4 − b′4)y4

)
:

(x1, x2, x3, x4) ∈ kB�k, (y1, y2, y3, y4) ∈ kB�k}

Notice that (x1, x2) takes all values of F2
p since |Π{1,2}(kB�k)| = p2. Similarly (y3, y4) takes

all values of Fp×Fp since |Π{3,4}(kB�k)| = p2. Further, at least one of (b3− b′3) or (b4− b′4) is

non zero. Without loss of generality, suppose b3 − b′3 6= 0. Then, for any fixing of x ∈ kB�k,

Π3(x− (b− b′)kB�k) = Fp and hence |kB�k − (b− b′)kB�k| ≥ p3.

We observe that

kB�k − (b− b′)kB�k ⊆ kB�k − (kB�k − kB�k)kB�k ⊆ k′B�k′ − k′B�k′

, where k′ = 3k2. Using Lemma 11.2.5 with A = k′B�k
′

and recalling that |k′B�k′ | > p2, we

have

|k′B�k′ + k′B�k
′ | ≥

(
|k′B�k′ − k′B�k′ ||k′B�k′ |2

)1/3

> (p3p4)1/3 = p7/3

Setting a new k = 2k′, we have |kB�k| ≥ p7/3.

201

2. Suppose |kB�k| = p2 for all k ≥ k0. Thus in particular we have

|k0B
�k0 + k0B

�k0 | = |k0B
�k0 |

and

|k0B
�k0 � k0B

�k0 | = |k0B
�k0 |

Thus k0B
�k0 must be a 2-dimensional affine subspace of F4

p.

Let k0B
�k0 = {z + λv + µw : λ, µ ∈ Fp}, z, v, w ∈ F4

p . To complete the argument, we prove

the following claims about the structure of z, v, w.

Claim 11.2.29. We can assume v = (1, 0, α1, α2) and w = (0, 1, β1, β2) such that

span{(α1, α2), (β1, β2)} = F2
p

Proof. The proof follows from the observation that Π{1,2}(k0B
�k0) = Π{3,4}(k0B

�k0) = F2
p.

Claim 11.2.30. Let v = (1, 0, α1, α2) and w = (0, 1, β1, β2). Then αiβi = 0 for i ∈ [2].

Further z = 0.

We show how to complete the proof of Lemma 11.2.26, before proving the above claim.

Proof of Lemma 11.2.26 using Claim 11.2.29 and Claim 11.2.30. Since we have α1β1 = 0,

suppose α1 = 0. It follows from Claim 11.2.29 and Claim 11.2.30 that β1 6= 0, α2 6= 0 and

β2 = 0.

Thus k0B
�k0 = {z + λv + µw : λ, µ ∈ Fp} = {(λ, µ, β1µ, α2λ) : λ, µ ∈ Fp}.

Fix any y = (y1, y2, y3, y4) ∈ k0B
�(k0−1) ∩ (F∗p)4. Note that there exists such a y since

B ∩ (F∗p)4 6= ∅ and k0B
�k0 ∩ (F∗p)4 6= ∅.

202

For any x = (x1, x2, x3, x4) ∈ B, since x� y ∈ k0B
�k0 = {(λ, µ, β1µ, α2λ) : λ, µ ∈ Fp}, there

exists λ, µ such that the following relations hold :

x4 = y−1
4 α2x1y1, x3 = y−1

3 β1x2y2

Thus

B ⊆ {(x1, x2, c2x2, c1x1) : x1, x2 ∈ Fp}

where c1 = y−1
4 α2y1, c2 = y−1

3 β1y2.

For the case when α1 6= 0 (and hence β1 = 0), we use an identical argument to derive that

B ⊆ {(x1, x2, c1x1, c2x2 : x1, x2) ∈ Fp}.

We conclude by proving Claim 11.2.30.

Proof of Claim 11.2.30. Let S = (k0B
�k0)� (k0B

�k0). Recall that k0B
�k0 = {z + λv + µw :

λ, µ ∈ Fp} where v = (1, 0, α1, α2), w = (0, 1, β1, β2) and |S| = |k0B
�k0 | = p2. Thus for each

i ∈ [4],

Πi(S) = {πi(λ1, λ2, µ1, µ2) : λ1, λ2, µ1, µ2 ∈ Fp}

203

where

π1(λ1, λ2, µ1, µ2) = π1(λ1, λ2) = (z1 + λ1)(z1 + λ2)

= λ1λ2 + (λ1 + λ2)z1 + z2
1

π2(λ1, λ2, µ1, µ2) = π2(µ1, µ2) = (z2 + µ1)(z2 + µ2)

= µ1µ2 + (µ1 + µ2)z2 + z2
2

π3(λ1, λ2, µ1, µ2) = (λ1α1 + µ1β1 + z3)(λ2α1 + µ2β1 + z3)

= λ1λ2α
2
1 + µ1µ2β

2
1 + α1β1(λ1µ2 + λ2µ1)+

(λ1 + λ2)α1z3 + (µ1 + µ2)β1z3 + z2
3

π4(λ1, λ2, µ1, µ2) = (λ1α2 + µ1β2 + z4)(λ2α2 + µ2β2 + z4)

= λ1λ2α
2
2 + µ1µ2β

2
2 + α2β2(λ1µ2 + λ2µ1)+

(λ1 + λ2)α2z4 + (µ1 + µ2)β2z4 + z2
4

• We prove αiβi = 0, for i = 1, 2. Suppose not. Let α1β1 6= 0.

Fix λ2 = a2 6= −z1 and let λ1 = a1 6= λ2 and let π1(a1, a2) = a. Note that π1(a1, a2) =

π(b1, a2) iff a1 = b1. Thus |{π1(x, a2) : x ∈ Fp \ {a2}}| = p− 1.

We claim that for any such fixing of λ1 = a1, λ2 = a2, there exists µ1, µ2 such that

π2(µ1, µ2) = b and π3(a1, a2, µ1, µ2) = c for at least O(p2) pairs (b, c) ∈ F2
p. Suppose

π2(µ1, µ2) = µ1µ2 + (µ1 + µ2)z2 + z2
2 = b

π3(a1, a2, µ1, µ2) = β2
1µ1µ2 + γ1µ1 + γ2µ2 + γ3 = c

where γ1, γ2, γ3 ∈ Fp are constants (does not depend on µ1, µ2) . By our choice of λ1, λ2,

we have that γ1 6= γ2 and hence the above system of equations has at most two pairs

of values of (µ1, µ2) which satisfy it. Since (µ1, µ2) takes p2 values, there at least p2/2

distinct pairs (b, c) such that there (π2(µ1, µ2), π3(λ1, λ2, µ1, µ2)) = (b, c).

Thus we have shown that there exists λ1, λ2, µ1, µ2 such that (π1(λ1, λ2), π2(µ1, µ2), π3(λ1, λ2, µ1, µ2)) =

204

(a, b, c) for at least 1
2(p− 1)p2 distinct tuples (a, b, c) ∈ F3

p, which is a contradiction since

|S| = p2. Thus α1β1 = 0. A similar argument implies that α2β2 = 0.

• We now prove z = 0. Suppose α1 = 0. Thus β1 6= 0, α2 6= 0 and β2 = 0. We again fix

λ2 = a2 6= −z1 and let λ1 = a1 6= λ2. Let (b, c) ∈ F2
p. We bound the number of (µ1, µ2)

such that (π2(µ1, µ2), π3(a1, a2, µ1, µ2) = (b, c). We have the following equations.

µ1µ2 + (µ1 + µ2)z2 + z2
2 = b

β2
1µ1µ2 + β1z3(µ1 + µ2) + γ0 = c

We see that the number of solutions of the above pair of equations is bounded by 2

unless z3 = β1z1. It follows that if z3 6= β1z2, there exists (λ1, λ2, µ1, µ2) such that

(π1(λ1, λ2), π2(µ1, µ2), π3(λ1, λ2, µ1, µ2)) = (a, b, c) for at least 1
2(p− 1)p2 distinct tuples

(a, b, c) ∈ F3
p, which is a contradiction. Thus suppose z3 = β1z2.

Using an identical argument (but now fixing µ1, µ2 appropriately in π2 and arguing

about the range of π1 and π4 upon varying λ1, λ2), we get that z4 = α2z1. Thus

z = (z1, z2, β1z2, α2z1) = z1 · (1, 0, 0, α2) + z2 · (0, 1, β1, 0) = z1 · v + z2 · w ∈ span{v, w}.

Hence we can take z = 0.

11.3 An Explict Seedless (2, t)-Non-Malleable Extractor Construc-

tion

The result in this section is based on [CGL16]. The extractor construction is similar to the seeded

t-non-malleable in Section 4.3. Thus, we present the construction and omit the proof.

Subroutines and Parameters

1. Let γ be a small enough constant and C a large one. Let t = nγ/C .

205

2. Let n1 = nβ1 , β1 = 10γ. Let IP : {0, 1}n1 × {0, 1}n1 → {0, 1}n2 , n2 = n1
10 , be the strong

two-source extractor from Theorem 2.5.3.

3. Let C be an explicit [nα , n,
1
10]-binary linear error correcting code with encoder E : {0, 1}n →

{0, 1}
n
α . Such explicit codes are known, for example from the work of Alon et al. [ABN+92].

4. Let Samp : {0, 1}n2 →
[
n
α

]
be the sampler from Theorem 2.4.2. Let the number of samples

tSamp = nβ2 . Thus, β2 ≤ β1.

5. Let ` = 2(nβ1 + nβ2). Thus ` ≤ n11γ .

6. We set up the parameters for the components used by flip-flop (computed by Algorithm 1)

as follows.

(a) Let n3 = nβ3 , n4 = nβ4 , with β3 = 100γ and β4 = 50γ.

Let Extq : {0, 1}n3 × {0, 1}n4 → {0, 1}n4 be the strong seeded linear extractor from

Theorem 2.1.5 set to extract from min-entropy kq = n3
4 with error ε = 2−Ω(nγq), γq = β4

2 .

Thus, by Theorem 2.1.5, we have that the seed length dq = O
(

log2(n3/ε)
log(kq/n4)

)
= O(n2γq) =

n4.

Let Extw : {0, 1}n × {0, 1}n4 → {0, 1}n4 be the strong linear seeded extractor from

Theorem 2.1.5 set to extract from min-entropy kw = n
2 with error ε = 2−Ω(nγq).

(b) Let laExt : {0, 1}n × {0, 1}n3 → {0, 1}2n4 be the look ahead extractor used by 2laExt

(recall that the parameters in the alternating extraction protocol are set as m = n4, u =

2 where u is the number of steps in the protocol, m is the length of each random

variable that is communicated between the players, and Extq,Extw are the strong seeded

extractors used in the protocol.).

(c) Let Ext : {0, 1}n×{0, 1}n4 → {0, 1}n3 be the linear strong seeded extractor from Theorem

2.1.5 set to extract from min-entropy n
2 with seed length n4 and error 2−Ω(nβ4/2).

7. Let ACB be the function computed by Algorithm 9, which uses the function flip-flop set up

as above.

206

Algorithm 10: nmExt(x,y)

Input: Bit strings x, y, each of length n.
Output: A bit string of length n4.

1 Let x1 = Slice(x, n1), y1 = Slice(y, n1). Compute v = IP(x, y).
2 Compute T = Samp(v) ⊂ [nα].
3 Let z = x1 ◦ x2 ◦ y1 ◦ y2 where x2 = (E(x)){T}, y2 = (E(y)){T}.

4 Output ACB(x, y, z).

By following along the lines of the proof of Theorem 4.3.1, it is easy to obtain the following result.

Theorem 11.3.1. Let nmExt be the function computed by Algorithm 3. Then nmExt is a seedless

(2, t)-non-malleable extractor with error 2−n
Ω(1)

.

207

Chapter 12

Non-Malleable Codes

1 Error-correcting codes encode a message m into a longer codeword c enabling recovery of m even

after part of c is corrupted. We can view this corruption as a tampering function f acting on

the codeword, where f is from some small allowable family F of tampering functions. The strict

requirement of retrieving the encoded message m imposes restrictions on the kind of tampering

functions that can be handled. Unique decoding is limited by the minimum distance of the code-

word, and various bounds are known in the case of list decoding. Hence, many natural classes of

tampering functions cannot be handled in this framework.

One might hope to achieve a weaker goal of only detecting errors, possibly with high prob-

ability. Cramer et al. [CDF+08] constructed one such class of error-detecting codes, known as

Algebraic Manipulation Detection codes (AMD codes), where the allowable tampering functions

consist of all functions of the form fa(x) = a+x. However error detection is impossible with respect

to the family of constant functions. This follows since one cannot hope to detect errors against a

function that always outputs some fixed codeword.

Dziembowski, Pietrzak and Wichs [DPW10] introduced non-malleable codes as a natural

generalization of error-detecting codes. Informally, a non-malleable code with respect to a tam-

1parts of this chapter have been previously published [CZ14,CGL16]

208

pering function family F is equipped with a randomized encoder Enc and a deterministic decoder

Dec such that Dec(Enc(m)) = m and for any tampering function f ∈ F the following holds: for

any message m, Dec(f(Enc(m))) is either the message m or is ε-close (in statistical distance) to a

distribution Df independent of m. The parameter ε is called the error.

We now formally define non-malleable codes. We need to define the following function.

copy(x, y) =

x if x 6= same?

y if x = same?

copy(t)((x1, . . . , xt), (y1, . . . , yt)) = (copy(x1, y1), . . . , copy(xt, yt))

Definition 12.0.1 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k∪{⊥}

be functions such that Enc is a randomized function (i.e. it has access to a private randomness)

and Dec is a deterministic function. We say that (Enc,Dec) is a coding scheme with block length n

and message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (the probability is over the

randomness in Enc).

Let Fn denote the set of all functions mapping n-bit strings to n-bit strings.

Definition 12.0.2 (Non-malleable codes). A coding scheme (Enc,Dec) with block length n and

message length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn

and error ε if for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is

independent of the randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε

The rate of a non-malleable code C is given by k
n .

As an easy example, suppose the tampering function family at hand is Fconstant, consisting

of all constant functions, fc(x) = c for all x. We can use any coding scheme and for any tampering

209

function fc ∈ Fconstant, we may take Dfc to be Dec(c) with probability 1.

Note that there cannot exist a code with block length n which is non-malleable with respect

to Fn (recall this is family of all functions from n bits to n bits). This follows since the tampering

function could then use the function Dec to decode the message m, get a message m′ by flipping

all the bits in m, and use the encoding function to pick any codeword in Enc(m′).

Therefore, it is natural to restrict the size of the family of tampering functions. It follows

from the works in [DPW10, CG14a] that there exists non-malleable codes with respect to any

tampering function family of size bounded by 22δn with rate close to 1− δ and error 2−Ω(n), for any

constant δ > 0. The bounds obtained in these works are existential, and some progress has been

made since then in giving explicit constructions against useful classes of tampering functions.

12.0.1 Non-malleable Codes in the Split-State Model

An important and well studied family of tampering functions (which is also relevant to the current

work) is the family of tampering functions in the C-split-state model, for C ≥ 2. In this model,

each tampering function f is of the form (f1, . . . , fC) where fi ∈ Fn/C , and for any codeword

x = (x1, . . . , xC) ∈ ({0, 1}n/C)C we define (f1, . . . , fC)(x1, . . . , xC) = (f1(x1), . . . , fC(xC)). Thus

each fi independently tampers a fixed partition of the codeword. Non-malleable codes in this model

can also be viewed as non-malleable secret sharing. This is because the strings (x1, . . . , xC) can be

seen as the shares of s and tampering each share individually does not allow one to “maul” the

shared secret s.

There has been a lot of recent work on constructing explicit and efficient non malleable codes

in the C-split-state model. Since C = 1 includes all of Fn, the best one can hope for is C = 2. A

Monte-Carlo construction of non-malleable codes in this model was given in the original paper on

non-malleable codes [DPW10] for C = 2 and then improved in [CG14a]. However, both of these

constructions are inefficient. For C = 2, these Monte-Carlo constructions imply existence of codes

of rate close to 1
2 and corresponds to the hardest case. On the other extreme, when C = n, it

corresponds to the case of bit tampering where each function fi acts independently on a particular

210

bit of the codeword.

The best known explicit construction of non-malleable codes in the C-split-state model for

the case when C = 2 is due to the work of Aggarwal, Dodis and Lovett [ADL14], who construct a

code with rate = Ω(n−6/7) and error = 2−Ω(n−1/7). Their proof of non-malleability uses methods

from additive combinatorics. The drawback of this construction is the polynomially small rate of

the code.

12.0.2 Our Result

The results in this chapter are based on joint works with Vipul Goyal, Xin Li, and David Zuckerman

[CZ14,CGL16].

Our main result on non-malleable codes is for the model of C-split-state adversaries when

C = 10. We give explicit constructions of non-malleable codes in this model with rate = Ω(1) and

error = 2−Ω(n). In particular, we have the following result.

Theorem 29. For all n > 0 there exists an explicit construction of efficient non-malleable codes

on {0, 1}n in the 10-split-state model with constant rate and error = 2−Ω(n).

We note that the best known non-malleable code in the O(1)-split-state prior to this work

was the non-malleable code in the 2-split-state model from [ADL14], which as mentioned above,

has rate Ω(n−6/7) and error is 2−Ω(n−1/7). Thus we give the first explicit construction of constant

rate non-malleable codes in the split-state model for a fixed integer C that do not rely on any

unproven assumptions; in fact, this is the first for C = o(n). We further obtain optimal error.

For the case of bit tampering (C = n), the best known explicit constructions of non-malleable

codes were given in the work of [CG14b] with rate = (1−o(1)) and error = 2−Ω(n−1/7). We improve

upon the error and obtain the following result.

Theorem 30. For all n > 0 there exists an explicit construction of efficient non-malleable codes

on {0, 1}n in the bit tampering model with rate = (1− o(1)) and error = 2−Ω(n).

211

We obtain Theorem 30 from the following observation. The construction against bit tam-

pering in [CG14b] uses a possibly sub-optimal rate non-malleable code against bit-tampering in

its construction and shows a way to improve the rate to (1 − o(1)) while maintaining the error

bound. The sub-optimal rate non-malleable code used was the code from [ADL14] which resulted

in the sub-optimal error bound of 2−Ω(n−1/7). By plugging in our non-malleable code construction

from Theorem 29 as the sub-optimal non-malleable code in the construction of [CG14b], we deduce

Theorem 30.

Subsequent Work: Aggarwal et al. [ADKO15] constructed explicit non-malleable codes

in the 2-split model with constant rate and optimal error. A crucial part of their contruction is our

10-split-state non-malleable code from Theorem 29.

Other Results on Non-Malleable Codes Apart from the previous work stated above,

there has been other work in constructing non-malleable codes. However they did not improve the

parameters achieved in [ADL14] in the C-split model for C = o(n). Before the work of [ADL14],

the only unconditional efficient non-malleable code in the C-split-state model, for C = o(n), was by

Dziembowski, Kazana, and Obremski [DKO13]. However, they could encode only 1 bit messages.

In the model of global tampering, Agrawal et al. [AGM+14] constructed efficient non-

malleable codes with rate 1 − o(1) against the family of permutations. There were also some

conditional results. Liu and Lysyanskaya [LL12] constructed efficient constant rate non-malleable

codes in the split-state model against computationally bounded adversaries. Their proof of non-

malleability relies on the existence of robust public-key cryptosystems and existence of robust

non-interactive zero-knowledge proof systems for some language in NP. They also use the common

reference string (CRS) assumption which roughly states that one has access to an untampered

random string. The work of Faust et al. [FMVW13] constructed almost optimal non-malleable

codes against the class of polynomial sized circuits in the CRS framework. [CCP12, CCFP11,

CKM11,FMNV14] considered non-malleable codes in other models.

212

12.1 Multi-Tampered Non-Malleable Codes

We introduce the notion of non-malleable codes that can handle multiple tamperings in the infor-

mation theoretic setting.

Definition 12.1.1 (One-Many Non-malleable codes). A coding scheme (Enc,Dec) with block length

n and message length k is a non-malleable code with respect to a family of tampering functions

F ⊂ (Fn)t and error ε if for every (f1, . . . ft) ∈ F , there exists a random variable D~f
on ({0, 1}k ∪

{same?})t which is independent of the randomness in Enc such that for all messages s ∈ {0, 1}k,

it holds that

|(Dec(f1(X)), . . . ,Dec(ft(X)))− copy(t)(D~f
, s)| ≤ ε

where X = Enc(s). We refer to t as the tampering degree of the non-malleable code.

Thus one-many non-malleable codes is a natural more robust version of the well studied

notion of non-malleable codes, and can be used in all applications of non-malleable codes in tamper-

resilient cryptography with this stronger form of security.

An expert in cryptography by now would have noticed this is analogous to the well studied

notion of one-many non-malleable commitments [PR08]. Even though both notions deal with

related concerns, we note non-malleable codes and non-malleable commitment are fundamentally

different objects with the latter necessarily based on complexity assumptions. To start with, we

prove a simple impossibility result for one-many non-malleable codes (whereas for one-many non-

malleable commitments, a corresponding positive result is known [PR08]).

Lemma 12.1.2. One-many non-malleable codes which work for any arbitrary tampering degree

and ε < 1/4 cannot exist for a large class of tampering functions.

Proof. The class of tampering functions which we consider are the ones where each function is

allowed to read any one bit Xi of its choice from the input code X, and output a fresh encoding

of Xi. Most natural tampering functions (including split state ones [DPW10, CG14a]) considered

213

in the literature fall into this class. Assume that the encoded value s has at least 4 possibilities

(length 2 bits or higher). The case of a single bit s is discussed later.

Recall that n is the length of the code. We set t = n. Let X = Enc(s) be the input codeword

where s is chosen at random. We consider n tampering functions where Fi simply reads Xi and

outputs a fresh encoding Wi = Enc(Xi). Now consider (Dec(f1(X)), . . . ,Dec(fn(X))). Observe

that this is exactly the bits of the string X. If the distinguisher applies the decode procedure on

X, it will recover s. Now consider any possible output (d1, . . . , dn) of D~f
. Now note that there

cannot exist di which is same?. This is because otherwise it will be replaced by s (see Definition

12.1.1) which is at least 2 bits while Dec(Wi) is just a single bit. This in turn implies that the value

copy(D~f
, s) (from Definition 12.1.1) is independent of s and X. Thus a distinguisher (given access

to s) can easily have an advantage exceeding ε.

For a single bit s, we modify our tampering functions to encode two bits: Wi = Enc(Xi||0).

Then again we can argue that neither of di will be same? since then it will be replaced by s which is

only one bit. This in turn again implies that copy(D~f
, s) is independent of s and X. This concludes

the proof.

We also introduce a natural generalization which we call many-many non-malleable codes.

This refers to the situation where the adversary is given multiple codewords as input.

Definition 12.1.3 (Many-Many Non-malleable codes). A coding scheme (Enc,Dec) with block

length n and message length k is a non-malleable code with respect to a family of tampering functions

F ⊂ (Fn)t and error ε if for every (f1, . . . ft) ∈ F , there exists a random variable D~f
on ({0, 1}k ∪

{same?i}i∈[u])
t which is independent of the randomness in Enc such that for all vector of messages

(s1, . . . , su), si ∈ {0, 1}k, it holds that

|(Dec(f1(~X)), . . . ,Dec(ft(~X)))− copy(D~f
, (s1, . . . , su))| ≤ ε

Where Xi = Enc(si) and ~X = (X1, . . . , Xu)

214

The following lemma relates one-many non-malleable codes to many-many non-malleable

codes. This lemma is analogous to a similar lemma for non-malleable commitments [PR08].

Lemma 12.1.4. One-many non-malleable codes with tampering degree t and error ε are also many-

many non-malleable codes for tampering degree t and error uε (where u is as in Definition 12.1.3).

Proof. This proof relies on a simple hybrid argument and the fact that all sources X1, . . . ,Xu

are independent. We only provide a proof sketch here. Assume towards contradiction that there

exists a one-many code with error ε, which, under the many-many tampering adversary has error

higher than u.ε. That is, the adversary ~(f) is given as input (X1, . . . ,Xu) which are encodings of

(s1, . . . , su) respectively. This is referred to as the hybrid 0. Now consider the following hybrid

experiment. In the i-th hybrid experiment, the code Xi is changed to be an encoding of 0 (as

opposed to be an encoding of si). We claim that in this experiment, the error changes by at most

ε. This is because otherwise we can construct a one-many tampering adversary with error higher

than ε. To construct such an adversary ~(f i), each f ij has Xkk 6=i hardcoded in it and takes Xi as

input. This would show an adversary against which one-many non-malleable codes have an error

higher than ε.

By the time we reach (u − 1)-th hybrid experiment, the error could only have reduced by

at most (u − 1)ε. However in the (u − 1)-th hybrid experiment, the error can at most be ε since

it corresponds to the one-many setting. Hence, the error in the hybrid 0 could have been at most

u.ε. This concludes the proof.

Our main result is the following.

Theorem 31. There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ, there exists an

efficient construction of one-many non-malleable codes in the 2-split state model with tampering

degree t, relative rate nΩ(1)/n, and error 2−n
Ω(1)

.

215

Relation to Continuous Non-Malleable Codes A primitive related to one-many non-malleable

codes that we introduce, known as continuous non-malleable codes, was introduced by Faust et

al. [FMNV14]. Informally, in a continuous non-malleable code, the codewords are allowed to be

tampered multiple times (without allowing fresh encoding of the message), with the additional

guarantee that the tampering experiment stops (called “self destruct”) whenever an error message

is detected. This model is weaker than the notion we consider since we do not allow for such a

self-destruct option. However the work of [FMNV14] allows for unbounded number of tamperings.

On the other hand, their constructions are based on computational assumptions while ours are

purely information-theoretic.

The work of Jafargholi and Wichs [JW15] studied variants of continuous non-malleable

codes, depending on whether the tampering is persistent (i.e., the new tampering is on the current

tampered version of the codeword) or non-persistent (i.e., the tampering is always on the original

codeword). Further [JW15] considered variants depending on whether the self-destruct option is

available.

It was shown in [FMNV14] that continuous non-malleable codes against unbounded tamper-

ing in the non-persistent model cannot exist in the information theoretic setting. Subsequently, the

work of [JW15] proved the existence of continuous non-malleable codes against unbounded tam-

pering in the persistent model (with self-destruct) in the information theoretic setting. Following

this, in a recent work Aggarwal, Kazana and Ombreski [AKO15] provided explicit constructions of

such codes.

Thus, our result on one-many non-malleable codes can be interpreted as an explicit construc-

tion of continuous non-malleable codes in the non-persistent model (without self-destruct) against

a bounded tampering in the information-theoretic model. We note that as implied by the result

of [FMNV14], one cannot hope to handle unbounded tampering in this model in the information

theoretic setting.

216

12.2 Non-malleable codes via Seedless non-malleable extractors

Seedless non-malleable extractors were introduced by Cheraghchi and Guruswami in [CG14b],

where it was shown that explicit constructions of such extractors can be used to construct non-

malleable codes2.

The following theorem generalizes a result of Cheraghchi and Gursuswami [CG14b].

Theorem 12.2.1. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a polynomial time computable

seedless (2, t)-non-malleable extractor for independent sources at min-entropy n− nγ with error ε.

Then there exists an explicit non-malleable code with an efficient decoder in the (2, t)-split-state

model with block length = 2n, rate = m
2n and error = 2(m+2)t(ε+ 2−n

γ
).

Proof. Let A1 = (f1, g1), . . . ,At = (ft, gt) be arbitrary 2-split-state adversaries. We partition

{0, 1}n in two different ways based on the fixed points of the tampering functions.

For any R ⊆ [t], define

W (R) = {x ∈ {0, 1}n : fi(x) = x if i ∈ R, and fi(x) 6= x if i ∈ [t] \R}.

Similalry, for any S ⊆ [t], define

V (S) = {y ∈ {0, 1}n : gi(y) = y if i ∈ S, and gi(y) 6= y if i ∈ [t] \ S}.

Thus the sets W (R), R ⊆ [t] defines a partition of {0, 1}n. Similarly V(S), S ⊆ [t] defines a partition

of {0, 1}n. For R,S ⊆ [t], let X(R) be a random variable uniform on W(R), and Y(S) be a random

variable uniform on V(S).

Let Un4 be uniform on {0, 1}n4 and independent of XR,YS , for all R,S ⊆ [t].

Define

D
(R,S)
~f,~g

= (Un4 , Z
(R,S)
1 , . . . , Z

(R,S)
t)

2the encoder of the resulting non-malleable code may still be inefficient. Informally, to make the encoder efficient,
one needs to sample from the pre-image of any output of the extractor. See Section 12.4 for more details.

217

where we define the random variable

Z
(R,S)
i =

nmExt(fi(X

(R)), gi(Y
(S))) if i ∈ [t] \ (R ∩ S)

same? if i ∈ R ∩ S

Define the distribution:

D~f,~g
=
∑
R,S

αR,SD
(R,S)
~f,~g

, where αR,S = |W (R,S)||V (R,S)|

22n .

We first prove the following claim.

Claim 12.2.2. Let

∆R,S = αR,S |nmExt(X(R),Y(S)),nmExt(f1(X(R)), g1(Y(S))), . . . ,

nmExt(ft(X
(R)), gt(Y

(S)))−D(R,S)
~f,~g
|.

Then, for every R,S ⊆ [t], ∆R,S ≤ 2−n
γ

+ ε.

Proof. If |W(R)| ≤ 2n−n
γ
, it follows that αR,S ≤ 2−n

γ
, and hence the claim follows. Thus, assume

that H∞(X(R)) ≥ n− nγ . Using a similar argument, we can assume that H∞(Y(S)) ≥ n− nγ .

Let R ∩ S = [t] \ (R ∩ S) = {i1, . . . , ij}. It follows that for any c ∈ R ∩ S, at least one the

following is true: (1) fc has no fixed points on W (R) (2) gc has no fixed points on V (S). Thus, using

the fact nmExt (2, t)-non-malleable extractor, we have

|nmExt(X(R),Y(S)),nmExt(fi1(X(R)), gi1(Y(S))), . . . ,nmExt(fij (X
(R)), gij (Y

(S)))

−Un4 , nmExt(fi1(X(R)), gi1(Y(S))), . . . ,nmExt(fij (X
(R)), gij (Y

(S)))| ≤ ε

The claim now follows by observing that for each c ∈ R ∩ S, fc and gc are the identity functions

on the sets W(R) and V(S) respectively.

218

Let X,Y be independent and uniformly random on {0, 1}n. Thus, we have

|nmExt(X,Y),nmExt(A1(X,Y)), . . . ,nmExt(At(X,Y))

−Un4 , copy(t)(D~f,~g
,Un4)| =

∑
R,S⊆[t]

∆R,S ≤ 22t(ε+ 2−n
γ
).

We now define the non-malleable code in the following way: For any message s ∈ {0, 1}m, the

encoder Enc(s) outputs a uniformly random string from the set nmExt−1(s) ⊂ {0, 1}Cn. For any

codeword c ∈ {0, 1}Cn, the decoder Dec outputs nmExt(c). It follows that for any t-tuple of

messages : (s1, . . . , st) ∈ ({0, 1}m)t, we have

|(Dec(f1(~X)), . . . ,Dec(ft(~X)))− copy(D~f,~g
, (s1, . . . , st))| ≤ 2mt|nmExt(X,Y),nmExt(A1(X,Y)),

. . . ,nmExt(At(X,Y))−Un4 , copy(t)(D~f,~g
,Un4)|

≤ 2mt+2t(ε+ 2−n
γ
).

Remark 12.2.3. Thus, note that to construct efficient non-malleable codes using a seedless non-

malleable extractor nmExt, we also need to sample efficiently from a distribution that is almost

uniform on nmExt−1(s) for any message s.

12.3 Efficient algorithms for non-malleable codes in the 10-split-

state model

In this section we prove efficiency of the non-malleable codes in the 10-split-state model that follow

via the non-malleable extractor construction in Section 11.2 (using Theorem 12.2.1). Recall that

for any message s, its encoding is a uniform element from nmExt−1(s) and for any codeword c, the

decoded message is nmExt(c). Thus the efficiency of the decoder follows from the fact that nmExt

is a polynomial time function.

219

We construct an efficient algorithm which takes as input a message s ∈ {0, 1}n and samples

from a distribution that is 2−Ω(n)-close to uniform on nmExt−1(s) and use this as our encoder.

This is indeed sufficient, since we only add an exponentially small error when we use this algorithm

instead of sampling uniformly from nmExt−1(s).

Our sampling algorithm is based on the following observations.

• The uniform distribution on the set nmExt−1(s) is a convex combination of uniform distri-

butions on algebraic varieties of low degree.

• Sampling almost uniformly from such algebraic sets can be done efficiently [CS09].

• Further, obtaining the weights in the convex combination reduces to approximately counting

the size of such algebraic sets for which there are efficient algorithms [HW98]. However,

the number of distributions in the convex combination can be exponentially large. To get

around this difficulty, we use the method of rejection sampling. The proof of correctness of

the algorithm relies on estimates on the number of rational points on algebraic varieties.

12.3.1 Tools from algebraic geometry

Let g ∈ Fp[x1, . . . , xc] and let H ⊆ Fcp be its set of zeroes. We call H the algebraic hypersurface

defined by g.

The following version of the Lang-Weil bound for hypersurfaces in Fcp was proved by Cafure

and Matera [CM06].

Theorem 12.3.1 (Lang-Weil bound). Let c, d be constant integers and let p be a large prime.

Let H ⊂ Fcp be a hypersurface defined by a degree d polynomial. Then there exists an integer s,

0 ≤ s ≤ d, such that

||H| − spc−1| ≤ O(sign(s) · pc−
3
2 + pc−2)

where sign(s) = 1 if s > 0 and sign(0) = 0.

220

Lemma 12.3.2 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let g(x1, . . . , xc) be a non-zero multi-

variate polynomial of degree d with coefficients in Fp. Then the hypersurface H ⊂ Fcp defined by g

is of size at most dpc−1.

We need some previous work on efficient sampling and approximate counting of algebraic

varieties.

Theorem 12.3.3 ([CS09]). Let c, k, d be constant integers such that c > k and let p be a prime.

There exists an efficient randomized algorithm A1 such that the following holds:

Let g1, . . . , gk ∈ Fp[x1, . . . , xc] be arbitrary polynomials of degree at most d and let S ⊆ Fcp
be the set of common zeroes of g1, . . . , gk. A1 takes as input the description of g1, . . . , gk and a

parameter δ and outputs a sample from a distribution which is O(1/p1−δ)-close to the uniform

distribution on S. The worst-case running time of A1 is bounded by poly(log p).

Theorem 12.3.4 ([HW98]). Let c, k, d > 0 be constant integers and let p be a prime. There exists

an efficient randomized algorithm A2 such that the following holds:

Let g1, . . . , gk ∈ Fp[x1, . . . , xc] be arbitrary polynomials of degree at most d and let S ⊆ Fcp be

the set of common zeroes of g1, . . . , gk. A2 takes as input the description of g1, . . . , gk and outputs

an integer v such that
1

|S|
· |v − |S|| < O(p−1/2)

The worst-case running time of A2 is bounded by poly(log p).

12.3.2 A new extractor

In the construction of the seedless non-malleable extractor nmExt in Section 11.2, we needed a

seeded non-malleable extractor snmExt (with some additional properties, see Theorem 11.2.8). We

carefully choose snmExt such that it is easy to sample almost uniformly from nmExt−1(s). The

main idea is to pick snmExt such that nmExt−1(s) is a convex combination of algebraic varieties

of low degree over a field with large characteristic. Thus, the constructions in [Li12b] look to be a

221

good choice for the seeded non-malleable extractor. However, for this choice, we face the following

difficulty:

Let σM : Fp → ZM be defined as σM (x) = x (mod M). nmExt is of the form σM ◦ext2◦ext1,

where ext1 : F10
p → F4

p, ext2 : F2
q → Fq, and p, q are primes satisfying p2 ≤ q ≤ 2p2 (and interpreting

the output of ext1 as an element in F2
q). Changing the characteristic of the field destroys the low

degree properties of the function ext2 ◦ ext1.

To fix this, we construct a new extractor for ext2 (satisfying the conditions of Theorem

11.2.8) which allows us to work over the same field as ext1. The extractor is a variation of a

construction by Bourgain [Bou05b]. The proof is easy to obtain by using ideas from [Bou05b,Li12b],

and we omit it.

Theorem 12.3.5. Let p be a prime. Define the functions ext2 : (F2
p) × (F2

p) → Fp and snmExt :

(F2
p)× (F2

p)→ ZM in the following way:

ext2((x1, x2), (y1, y2)) =

2∑
j=1

(xjyj + x2
jy

2
j), snmExt(x, y) = σM (ext2(x, y))

where σM (x) = x (mod M). Suppose X,Y are independent sources on F2
p with min-entropies k1, k2

respectively.

1. If (k1 + k2) ≥ (2 + δ) log p, then

|snmExt(X,Y) ◦ X− UM ◦ X| < p−Ω(1), |snmExt(X,Y) ◦ Y − UM ◦ Y| < p−Ω(1)

2. If k1, k2 > (2− δ) log p and f is any tampering function with no fixed points, then

|snmExt(X,Y) ◦ snmExt(X, f(Y))− UM ◦ snmExt(X, f(Y))| < p−Ω(1).

222

12.3.3 A generic sampling algorithm

We construct an algorithm for almost uniformly sampling from certain structured sets.

Theorem 12.3.6. Let S1, S2, and S3 be finite sets. For arbitrary functions g : S2 → S3, h : S1 →

S2, there exists a sampling algorithm B which takes as input z ∈ S3 and a parameter ε ≥ ε0, runs

in time poly(log(|S1| · |S2|), log(1
ε)), and outputs a sample from a distribution that is O(ε)-close to

uniform on the set (g ◦ h)−1(z), if the following conditions hold:

1. There exists an algorithm B1, which takes as input z ∈ S3, runs in time poly(log(|S2|)), and

outputs a sample from a distribution that is uniform on the set g−1(z).

2. There exists an algorithm B2, which takes as input y ∈ S2 and ε, runs in time poly(log(|S1|), log(1
ε)),

and outputs a sample from a distribution that is ε-close to uniform on the set h−1(y).

3. There exists an algorithm B3, which takes as input y ∈ S2 and ε, runs in time poly(log(|S1|), log(1
ε)),

and outputs an approximation Ay for |h−1(y)| with a multiplicative error of at most ε, i.e.,

1− ε ≤ Ay
|h−1(y)| ≤ 1 + ε.

4. There exist constants β > 0 and λ ≥ 1, and an efficiently computable value max such that

for all ε ≥ ε0 the following holds: There exists a subset S′2 ⊆ S2 such that for all y ∈ S′2,

max
λ ≤ |h

−1(y)| ≤ max. Further, 1
|(g◦h)−1(z)|

∑
y∈S2\S′2

|h−1(y)| ≤ ε and
|S′2|
|S2| > β.

Proof. The idea is to use the method of rejection sampling.

Algorithm B (given input z ∈ S3 and error parameter ε):

1. Use B1 to sample y from g−1(z). Compute an approximation Ay for |h−1(y)| with error ε using

algorithm B3. If Ay < max ·(1
λ − ε), reject y. Else accept y with probability wt(y) =

Ay
max .

Iterate this step till some y is accepted. If no sample is accepted after O(log 1
ε) iterations,

accept the next sample.

2. Once y is accepted, sample from h−1(y) using B2 (with error ε).

223

Proof of correctness of Algorithm B: Consider any subset T ⊆ (g ◦ h)−1(z). Let pT,1 be the

probability that some element from T is picked by B in one iteration.

Then:

pT,1 =
∑

y∈g−1(z)

1

|g−1(z)|
·
(
|h−1(y)|

max
± ε
)
·
(
|T ∩ h−1(y)|
|h−1(y)|

± ε
)

The above expression is derived in the following way: Consider any y ∈ g−1(z). Let Ay be the

approximation of |h−1(y)| computed by algorithm B3. The probability of y being picked by B1

is 1
|g−1(z)| . The probability that this y is accepted is given by

Ay
max = |h−1(y)|

max ± ε. Further, if y is

accepted, |T∩h
−1(y)|

|h−1(y)| ±ε is the probability that some element from the set T is picked by algorithm B2

(since B2 samples from a distribution ε-close to uniform on h−1(y)).

It follows that,

|pT,1 −
|T |

max ·|g−1(z)|
| = O(ε)

Let N = |(g ◦ h)−1(z)|. The probability that an iteration of Step (1) fails to accept a sample is:

preject =

(
1− N

max ·|g−1(z)|

)
±O(ε)

Let k = O(log 1
ε). The probability pT that some element from T is picked by B in at most

k iterations is given by:

pT = pT,1

k−1∑
i=0

(preject)
i

=

(
|T |

max ·|g−1(z)|
±O(ε)

)
·
k−1∑
i=0

(
1− N

max ·|g−1(z)|
±O(ε)

)i

Thus,

∣∣∣∣pT − |T |N
∣∣∣∣ ≤ (1− N

max ·|g−1(z)|

)k
+O(ε)

≤ e−
Nk

max ·|g−1(z)| +O(ε) = O(ε)

224

where the equality in the last step follows from the fact that N
max ·|g−1(z)| = O(1) (by Condition (4)

in the hypothesis).

The probability that no sample is accepted by B in k iterations is bounded by:

(
1− N

max ·|g−1(z)|

)k
+O(ε) = O(ε)

Let B(z, ε) denote the output distribution of algorithm B. Thus,

|B(z, ε)− U(g◦h)−1(z)| = max
T⊆(g◦h)−1(z)

∣∣∣∣Pr[B(z, ε) ∈ T]− |T |
N

∣∣∣∣
≤
∣∣∣∣pT +O(ε)− |T |

N

∣∣∣∣ = O(ε)

12.3.4 An efficient encoder

We recall the seedless non-malleable extractor constructed in Theorem 3.

Let enc : Fp → F2
p be defined as enc(x) = (x, x4 + x2 + x).

Then nmExt : F10
p → ZM is defined to be:

nmExt(x1, . . . , x10) = ext3(ext2(ext1(x1, . . . , x10)))

where, ext1 : F10
p → F4

p, ext2 : F4
p → Fp, and ext3 : Fp → ZM are defined in the following way:

ext1(x1, . . . , x10) =
(1∑
i=0

(enc(x4i+1) + enc(x4i+2))� (enc(x4i+3) + enc(x4i+4)), x9, x10

)

ext2(y1, y2, z1, z2) =
2∑
j=1

(yjzj + y2
j z

2
j), ext3(w) = σM (w) = w (mod M)

We set M = pδ such that the error in the extractor nmExt is ε = p−2δ. Note that, as discussed

225

before, we use the extractor from Subsection 12.3.2 for ext2 in nmExt instead of the constructions

in [DLWZ14,Li12b].

An efficient encoder for the constructed non-malleable codes in the 10-split-state model

follows from the following theorem.

Theorem 12.3.7. There exists a randomized algorithm which takes as input z ∈ ZM and a param-

eter ε > O(p−1/2) and samples from a distribution O(ε)-close to uniform on the set (nmExt)−1(z).

The worst case running time of the algorithm is bounded by poly(log p, log(1
ε)).

We prove Theorem 12.3.7 using the following lemma.

Lemma 12.3.8. For s ∈ ZM , let Ts = ext−1
3 (s) ⊂ Fp and S = nmExt−1(s). For a ∈ Fp, define

Wa = (ext2 ◦ ext1)−1(a) ⊂ F10
p . Define Is = {a ∈ Ts : |Wa|

p9 ≤ 0.9} and W =
⋃
a∈IsWa.

Then
|W |
|S|

< p−(1−δ),
|Is|
|Ts|

<
18

19

Proof of Theorem 12.3.7 assuming Lemma 12.3.8. We show that for g = ext3 and h = ext2 ◦ ext1,

all the conditions of Theorem 12.3.6 are satisfied.

1. It is easy to uniformly sample from g−1(z).

2. An efficient algorithm for almost uniformly sampling from h−1(y) follows from Lemma 12.3.3.

3. An efficient algorithm for approximately counting h−1(y) follows from Lemma 12.3.4.

4. Using Lemma 12.3.8, we have that for at least (1/19)th fraction of the y’s in g−1(z),

0.9p9 < |h−1(y)| ≤ 18p9.

Define I = {y ∈ g−1(z) : |h−1(y)| ≤ 0.9p9}. It follows from Lemma 12.3.8 that:

1

|(g ◦ h)−1(z)|
∑
y∈I
|h−1(y)| < p−(1−δ)

226

Thus by Theorem 12.3.6, there exists an efficient algorithm to sample almost uniformly from the

set (nmExt)−1(z).

Proof of Lemma 12.3.8. We begin by proving some claims.

Claim 12.3.9. For any s ∈ ZM ,

p10−δ(1− p−δ) < |nmExt−1(s)| < (p10−δ)(1 + p−δ)

Proof. Let X1, . . . ,X10 be uniform on Fp. Using the fact that nmExt is an extractor for independent

sources with error at most ε = p−2δ, we have |Pr[nmExt(X1, . . . ,X10) = s]− 1
M | < ε. The bound

on |nmExt−1(s)| now follows.

Claim 12.3.10. For any a ∈ Fp, let Wa = (ext2 ◦ext1)−1(a) ⊂ F10
p . Then there exists a polynomial

g ∈ Fp[x1, . . . , x10] of degree at most 18 with coefficients in Fp such that Wa is the set of zeroes of g.

Proof. Define g(x1, . . . , x10) = ext2 ◦ ext1(x1, . . . , x10)− a.

For a ∈ Fp, define Na = |Wa|. Note that |Ts| = p1−δ.

Using Claim 12.3.9, we have

p10−δ − p10−2δ ≤
∑
a∈Ts

Na ≤ p10−δ + p10−2δ

It follows from Lemma 12.3.2 and Claim 12.3.10 that for any a ∈ Fp, Na ≤ 18p9. Further, Theorem

12.3.1 and Claim 12.3.10 imply that if Na < 0.9p9 for some a ∈ Fp, then Na < Cp8 for some

constant C.

Thus,

p10−δ − p10−2δ ≤ |Is| · Cp8 + (|Ts| − |Is|) · 18p9 (12.1)

for some constant C.

227

Since |Is| ≤ |Ts| = p1−δ, |Is| · Cp8 ≤ Cp9−δ. It follows that,

p1−δ − o(1) ≤ 18(|TS | − |Is|) (12.2)

Rearranging, we have
|Is|
|Ts|
≤ 17

18
+ o(1) <

18

19

Further,
|W |
|S|

<
1

|S|
· |Is| · Cp8 ≤ C · p9−δ

p10−δ − p10−2δ
< p−(1−δ).

12.4 Efficient Encoding and Decoding Algorithms for One-Many

Non-Malleable Codes

In this section, we construct efficient algorithms for almost uniformly sampling from the pre-image

of any output of a modified version of the (2, t)-non-malleable extractor constructed in Section

11.3. Combining this with Theorem 12.2.1 and Theorem 11.3.1 gives us efficient constructions of

one-many non-malleable codes in the 2-split state model, with tampering degree t = nΩ(1), relative

rate nΩ(1)/n and error 2−n
Ω(1)

.

A major part of this section is on modifying the components used in the construction of

nmExt (Algorithm 10) so that the overall extractor is much simpler to analyze as a function, and

this enables us to develop efficient sampling algorithms from the pre-image. We present the modified

extractor construction in Section 12.4.2. However, we first need to solve a simpler problem.

12.4.1 A New Linear Seeded Extractor

A crucial sub-problem that we have to solve is almost uniformly sampling from the pre-image of a

linear seeded extractor in polynomial time. Towards this, we recall a well known property of linear

228

seeded extractors.

Lemma 12.4.1 ([Rao09b]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded extractor for

min-entropy k with error ε < 1
2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X, u)−Um| > 0] ≤ ε.

Definition 12.4.2. For any seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m, any s ∈ {0, 1}d and

r ∈ {0, 1}m, we define:

• Ext(·, s) : {0, 1}n → {0, 1}m to be the map Ext(·, s)(x) = Ext(x, s).

• Ext−1(r) to be the set {(x, y) ∈ {0, 1}n × {0, 1}d : Ext(x, y) = r}.

• Ext−1(·, s) to be the set {x : Ext(x, s) = r}.

We now present a natural way of sampling from pre-images of linear seeded extractors.

Claim 12.4.3. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded extractor for min-entropy

k with error ε < 2−1.5m. For any r ∈ {0, 1}m, consider the following efficient sampling procedure S

which on input r does the following: (a) Sample s ∼ Ud, (b) sample x uniformly from the subspace

Ext(·, s)−1(r). (c) Output (x, s). Let Dr be the distribution uniform on Ext−1(r), and let S(r)

denote the distribution produced by S on input r.

Then,

|S(r)−Dr| ≤ 2−Ω(m)

Proof. Define the sets:

Good = {s ∈ {0, 1}d : rank(Ext(·, s)) = m}, Bad = {0, 1}d \Good.

229

It follows by Lemma 12.4.1 that |Good| ≥ (1−ε)2d. Thus, for any s ∈ Good, |Ext(·, s)−1(r)| = 2n−m.

Thus, we have ∑
s∈Good

|Ext−1(·, s)(r)| ≥ 2d+n−m−1.

Further, for any s′ ∈ Bad, |Ext−1(·, s′)(r)| ≤ 2n, and hence

∑
s′∈Bad

|Ext−1(·, s′)(r)| ≤ ε2d+n < 2d+n−1.5m.

Thus | ∪s′∈bad Ext−1(·, s′)(r)| < 2−0.5m|Ext−1(r)|. It now follows that

|S(r)−Dr| ≤ 2−0.4m

We note that ε must be o(2−m) for the above sampling procedure to work with low enough

error. However, this would require a seed length of d = O(m2) (by Theorem 2.1.5). For each step

of the alternating extraction protocol the seed length then goes down by a quadratic factor, which

is insufficient for our application.

To get past this difficulty, we construct a new strong linear seeded extractor for high min-

entropy sources with the seed length close to the output length with the property that the size

of the pre-image of any output is the same for any fixing of the seed. Algorithm 11 provides this

construction.

Parameters and Subroutines:

1. Let δ > 0 be any constant. Let d = nδ. Let d = d1 + d2, where d1 = nδ1 , δ > 10δ1. Let

m = d/2.

2. Let Samp : {0, 1}d1 → [n]t, t = d2, be an (µ, θ, γ) averaging sampler with distinct samples,

such that µ = (δ−2τ)
log(1/τ) , θ = τ

log(1/τ) and γ = 2−Ω(d1), τ = 0.05.

230

3. Let IP : {0, 1}d2 × {0, 1}d2 → {0, 1}
d
2 be the strong 2-source extractor from Theorem 2.5.3.

Algorithm 11: iExt(x,s)

Input: Bit strings x, s of length n, d respectively.
Output: A bit string of length m.

1 Let s1 = Slice(s, d1). Let s2 be the remaining d2 bits of s.
2 Let T = Samp(s1) ⊂ [n]. Let x1 = x{T}.

3 Output IP(x1, s2).

Informally the construction of iExt is as follows. Given a uniform seed S, we use a slice S1

of S to sample co-ordinates from the weak source X, and then apply a strong 2-source extractor

(based on the inner product function) to the source X1 (which is the projection of X to the sampled

co-ordinates) and the remaining bits S2 of S to extract d
2 uniform bits.

The correctness of this procedure relies on the fact that by pseudorandomly sampling co-

ordinates of X and projecting X to these co-ordinates, the min-entropy rate is roughly the preserved

for most choices of the uniform seed [Zuc97,Vad04,Li12a]. Thus, we can fix S1, and the strong two-

source extractor IP now receives two independent inputs S2 and X2 with almost full min-entropy.

Thus, the output is close to uniform. Further we show that the number of linear constraints on the

source X is the same for any fixing of the seed. This allows us to show that size of the pre-image

of any particular output is the same for any fixing of the seed. We now formally prove these ideas.

We need the following theorem proved by Vadhan [Vad04].

Theorem 12.4.4 ([Vad04]). Let 1 ≥ δ ≥ 3τ > 0. Let Samp : {0, 1}r → [n]t be an (µ, θ, γ)

averaging sampler with distinct samples, such that µ = (δ−2τ)
log(1/τ) and θ = τ

log(1/τ) . If X is a (n, δn)

source, then the random variable (Ur,X{Samp(Ur)}) is (γ + 2−Ω(τn))-close to (Ur,W) where for

every a ∈ {0, 1}r , the random variable W |Ur = a is a (t, (δ − 3τ)t)-source.

Lemma 12.4.5. Let iExt be the function computed by Algorithm 11. If X is a (n, 0.9n) source

and S is an independent uniform seed on {0, 1}d, then the following holds:

|iExt(X, S), S −Um, S| < 2−n
Ω(1)

.

231

Further for any r ∈ {0, 1}m and any s ∈ {0, 1}d, |iExt(·, s)−1(r)| = 2n−m.

Proof. Using Theorem 12.4.4, it follows that X1 is 2−n
Ω(1)

-close to a source with min-entropy at

least 0.8n for any fixing of S1. Further, we note that after fixing S1, S2 and X1 are independent

sources. We now think of X1,S2 as sources in {0, 1}d2+1 by appending a 1 to both the sources, so

that S2 6= ~0, and then apply the inner product map. This results in an entropy loss of only 1. It

now follows by Theorem 2.5.3 that

|iExt(X, S), S −Um, S| < 2−n
Ω(1)

.

It is easy to see that for any fixing of the seed S = s, iExt(·, s) is a linear map. Let X

be uniform on n bits. We note that for any fixing of S2 = s2, X1 lies in a subspace of dimension

d2 −m over F2. Further, the bits outside T have no restrictions placed on them. Thus the size of

iExt(·, s)−1(r) is exactly 2d2−m+n−d2 = 2n−m. This completes the proof of the lemma.

Based on the above lemma, we construct an efficient procedure for sampling uniformly from

the pre-image of the function iExt.

Claim 12.4.6. Let iExt : {0, 1}n × {0, 1}d → {0, 1}m be the function computed by Algorithm 11.

Then there exists a polynomial time algorithm Samp1 that takes as input r ∈ {0, 1}m, and samples

from a distribution that is uniform on iExt−1(r).

Proof. It follows by Lemma 12.4.5 that for any fixing of the seed s, the size of the set iExt(·, s)−1(r)

is exactly 2n−m. Thus we can use the following strategy: (a) Sample s ∼ Ud (b) Sample x uniformly

random from the subspace iExt(·, s)−1(r) (c) Output (x, s). It follows that each element in iExt−1(r)

is picked with probability exactly 1
2d
· 1

2n−m . Thus the output of our sampling procedure is indeed

uniform on iExt−1(r).

232

12.4.2 A Modified Construction of the Seedless (2, t)-Non-Malleable Extractor

We first describe the high level ideas involved in modifying the construction of nmExt (Algorithm

3), before presenting the formal construction.

• We use the linear seeded extractor iExt (Algorithm 11) for any seeded extractor used in the

construction of nmExt.

• Next we divide the sources X and Y into blocks of size n1−δ respectively for a small constant

δ. Since each of X and Y have almost full min-entropy, we now have two block sources, where

each block has almost full min-entropy conditioned on the previous blocks. The idea is to use

new blocks of X and Y for each round of alternating extraction in nmExt.

To implement this however, we need some care. Recall that the alternating extraction protocol

is run for two rounds between either X and Qh, or X and Qh in the function 2laExt. The

idea now is to run these two of alternating extraction by dividing Qh into two blocks, and

using two new partitions of X (each round being run by using a block from either X or Qh).

Now to generate these Qh’s, we use a O(t) blocks of Y, and for each block apply the strong

seeded extractor iExt, using as seed the output of the alternating extraction from the previous

step, and finally concatenate the outputs. This works because these O(t) blocks form a block

source, and using the same seed to extract from all the blocks is a well known technique of

extracting from block sources.

• By appropriate setting of the lengths of the seeds in the alternating extraction, we ensure that

each block of X and Y still has min-entropy rate 1−o(1) even after fixing all the intermediate

seeds, the random variables Qh,Qh and their tampered versions. This can be ensured since

each of these variables are of length at most nδ1 for some small constant δ1, and the number

of adversaries is also nΩ(1)).

• The above modification is almost sufficient for us to successfully sample from the pre-image of

any output. One final modification is to use a specific error correcting code (the Reed-Solomon

233

code over a field of size n + 1 with characteristic 2) in the initial step of the construction,

when we encode the sources and sample bits from it. We give some intuition as to why this is

necessary. Since we are using linear seeded extractors in the alternating extraction, by fixing

the seeds we impose linear restrictions on the blocks of X and Y. Now, if we fix the output

of the initial sampling step (the random variable Z in Algorithm 3), we are imposing more

linear constraints on the blocks (assuming we are using a linear code). Now, it is not clear

if the constraints imposed by the linear seeded extractor is independent from the constraints

imposed by Z, and thus for different fixings of the Z and the seeds the size of the pre-image

of any output of the non-malleable extractor may be different.

To get past this difficulty, our idea is to first partition X and Y into slightly smaller blocks

(which does not affect the correctness of the extractor) such that at least half of the blocks are

unused by the alternating extraction steps. Now, we show that by using the Reed-Solomon

code over F = F2log(n+1) to encode the sources, fixing Z imposes linear constraints involving

the variables from these unused blocks, and we show that this is sufficient to argue that it

is linearly independent of the restrictions imposed by the alternating extraction part. We

provide complete details of the sampling algorithms in Section 12.4.3.

We now proceed to present the extractor construction. Recall that if Za,Za+1, . . . ,Zb are

random variables, we use Z[a,b] to denote the random variable Za, . . . ,Zb.

Subroutines and Parameters (used by Algorithm 12, Algorithm 13, Algorithm

14)

1. Let γ be a small enough constant and C a large one. Let t = nγ/C .

2. Let n1 = nβ1 , β1 = 10γ. Let n2 = n − n1. Let IP1 : {0, 1}n1 × {0, 1}n1 → {0, 1}n3 , n3 = n1
10

be the strong two-source extractor from Theorem 2.5.3.

3. Let F be the finite field F2log(n+1) . Let n4 = n2
log(n+1) . Let RS : Fn4 → Fn be the Reed-Solomon

code encoding n4 symbols of F to n symbols in F (we overload the use of RS, using it to

234

denote both the code and the encoder). Thus RS is a [n, n4, n − n4 + 1]n error correcting

code.

4. Let Samp : {0, 1}n3 → [n]n5 be a (µ, 1
10 , 2

−nΩ(1)
) averaging sampler with distinct samples. By

using the strong seeded extractor from Theorem 2.1.2, we can set n5 = nβ2 , β2 < β1/2.

5. Let ` = 2(n1 + n5 log n) < 4nβ1 . Thus ` ≤ n11γ .

6. Let n6 = 50Ct`. Let IP2 : {0, 1}n6 × {0, 1}n6 → {0, 1}2nq , nq = 10Ct`, be the strong two-

source extractor from Theorem 2.5.3.

7. Let n7 = n− n1 − n6. Let nx = n7
8` . Let ny = n7

16Ct` . Thus nx, ny ≥ n1−15γ .

8. Let d1 = 80`.

9. Let iExt1 : {0, 1}nx × {0, 1}d1 → {0, 1}d2 , d2 = 40`, be the extractor computed by Algorithm

11.

10. Let iExt2 : {0, 1}nq × {0, 1}d2 → {0, 1}d3 , d3 = 20`, be the extractor computed by Algorithm

11.

11. Let iExt3 : {0, 1}nx × {0, 1}d3 → {0, 1}d4 , d4 = 10` be the extractor computed by Algorithm

11.

12. Let iExt4 : {0, 1}ny × {0, 1}d4 → {0, 1}d5 , d5 = 5`, be the extractor computed by Algorithm

11.

13. Let Ext : {0, 1}4Ctny ×{0, 1}d4 → {0, 1}2nq be defined in the following way. Let v1, . . . , v4t be

strings, each of length ny. Define Ext(v1 ◦ . . . ◦ v4Ct, s) = iExt4(v1, s) ◦ . . . ◦ iExt4(v4Ct, s).

Theorem 12.4.7. Let inmExt be the function computed by Algorithm 13. Then inmExt is a

seedless (2, t)-non-malleable extractor with error 2−n
Ω(1)

.

235

Algorithm 12: inmExt(x,y)

Input: Bit strings x, y, each of length n.
Output: A bit string of length m.

1 Let x1 = Slice(x, n1), y1 = Slice(y, n1). Compute ν = IP1(x, y).
2 Let x2, y2 be n2 length strings formed by cutting x1, y1 from x, y respectively.
3 Let T = Samp(ν) ⊂ [n].
4 Interpret x2, y2 as elements in Fn4 .
5 Let x2 = RS(x2), y2 = RS(y2).
6 Let x1 = (x2){T}, y1 = (y2){T}, interpreting x2, y2 ∈ Fn.

7 Let z = x1 ◦ x1 ◦ y1 ◦ y1, where z is interpreted as a binary string.
8 Interpret x2, y2 as binary strings.
9 Output inmExt1(x2, y2, z).

Algorithm 13: inmExt1(x2, y2, z)

1 Let x3 = Slice(x2, n6), y3 = Slice(y2, n6). Let w, v be the remaining parts of x2, y2

respectively.
2 Let IP2(x3, y3) = (q1,1, q1,2), where each of q1,1, q1,2 is of length nq.
3 Let w1, . . . , w8` be an equal sized partition of the string w into 8` stings.
4 Let v1, . . . , v16t` be an equal sized partition of the string v into 16Ct` stings.
5 for h = 1 to ` do
6 (qh+1,1, qh+1,2) = 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, h, z{h})

7 end
8 Ouput (q`+1,1, q`+1,2).

The proof of the above theorem is essentially the same as that the construction in Section

11.3, and we omit it. The correctness of inmExt follows directly from the proof of Theorem 11.3.1,

and the correctness of the extractor iExt (Lemma 12.4.5), the fact that by our choice of parameters

each block of X and Y still has min-entropy rate at least 0.9 after appropriate conditioning of the

intermediate random variables and their tampered versions, and the fact that using the RS in place

of a binary error correcting code does not affect correctness of the procedure.

236

Algorithm 14: 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, h, b)

1 Let sh,1 = Slice(qh,1, d1), rh,1 = Ext1(w4h−3, sh,1), sh,2 = Ext2(qh,2, rh,1),
rh,2 = Ext3(w4h−2, sh,2).

2 if b = 0 then
3 Let rh = Slice(rh,1, d4).
4 else
5 Let rh = rh,2
6 end
7 Let Ext(v[8C(h−1)t+1,8(h−1)t+4Ct], rh) = (qh,1, qh,2), where both qh,1, qh,2 are of length nq.

8 Let sh,1 = Slice(qh,1, d1), rh,1 = Ext1(w4h−1, sh,1), sh,2 = Ext2(qh,2, rh,1),
rh,2 = Ext3(w4h, sh,2).

9 if b = 0 then
10 Let rh = rh,2.
11 else
12 Let rh = Slice(rh,1, d4).
13 end
14 Let Ext(v[8C(h−1)t+4Ct+1,8Cht], rh) = (qh+1,1, qh+1,2), where both qh+1,1, qh+1,2 are of

length nq.
15 Ouput (qh+1,1, qh+1,2).

12.4.3 Efficiently Sampling from the Pre-Image of inmExt

Since the construction of the non-malleable extractor inmExt (Algorithm 12, Algorithm 13, Algo-

rithm 14) is composed of various sub-parts and sub-functions, we first argue about the invertibility

of these parts and then show a way to compose these sampling procedure to sample almost uniformly

from the pre-image of inmExt. We refer to all the variables, sub-routines and notations introduced

in these algorithms while developing the sampling procedures. Unless we state otherwise, by a

subspace we mean a subspace over F2.

We first show how to sample uniformly from the pre-image of 2ilaExt (Algorithm 14), since

it is a crucial sub-part of inmExt. We have the following claim.

Claim 12.4.8. For any fixing of the variables {s1,i, r1,i, s1,i, r1,i : i ∈ {1, 2}}, and any b ∈ {0, 1}

237

define the set:

2ilaExt−1(q2,1, q2,2) = {(x3, y3, v[1,4Ct], w[1,4]) ∈ {0, 1}2n6+4Ctny+4nx :

2ilaExt(v[1,4Ct], w[1,4], q1,1, q1,2, b) = (q2,1, q2,2)}

There exists an efficient algorithm Samp2 that takes as input q2,1, q2,2, b, {s1,i, r1,i, s1,i, r1,i : i ∈

{1, 2}}, and samples uniformly from 2ilaExt−1(q2,1, q2,2).

Further, the set 2ilaExt−1(q2,1, q2,2) is a subspace over F2 of dimension d1, and its size does

not depend on the inputs to Samp2.

Proof. The general idea is that by fixing the seeds in the alternating extraction, each block of w

takes values independent of the fixing of the other blocks of w and the qi,j ’s, and similarly the qi,j ’s

takes values independent of each other and the blocks of w. We now formally prove this intuition.

Since, s1,1 is a slice of q1,1 it follows that q1,1 is restricted to the subspace of size 2nq−d1 .

Since r1,1 = iExt1(w1, s1,1), it follows that w1 is restricted to the set iExt1(·, s1,1)−1(r1,1). Further,

it follows by Lemma 12.4.5 that this is a subspace of size 2nx−d2 . Similar arguments show that q1,2

is restricted to the subspace of dimension 2nq−d3 , and w2 is restricted to a subspace of dimension

2nx−d4 . Further, we note that each of these variables have no correlation.

By repeating this argument for the next two rounds of alternating extraction, it follows that

q1,1 is restricted to a subspace of size 2nq−d1 , w3 is restricted to a subspace of size 2nx−d2 , q1,2 is

restricted to a subspace of size 2nq−d3 , and w4 is restricted to a subspace of size 2nx−d4 .

Further since (q2,1, q2,2) = Ext(v[4Ct+1,8t], r1) = iExt4(v4Ct+1, r1) ◦ . . . ◦ iExt4(v8Ct, r1), it

follows by an application of Lemma 12.4.5 that for any fixed q2,1, v[4Ct+1,6t] is restricted to a subspace

of size 22Ct(ny−d5). A similar argument shows that for any fixed q2,2, v[6Ct+1,8Ct] is restricted to a

subspace of size 22Ct(ny−d5).

Finally, since IP1(x3, y3) = (q1,1, q1,2), it follows that for any fixed x3, q1,1, q1,2, the variable

y3 lies in a subspace of size 2n6−log(2nq) since by fixing the variables x3, q1,1, q1,2, we are restricting

238

y3 to a subspace of dimension
(

n6
log(2nq)

− 1
)

over the field F2log(2nq) .

It is clear from the arguments that we did not use any specific values of the inputs given to

the algorithm Samp1 (including the value of the bit b) to argue about the size of 2ilaExt−1(q2,1, q2,2).

Also note that each of x3, y3, v[1,4Ct], w[1,4] is restricted to some subspace. Since 2ilaExt−1(q2,1, q2,2)

is the cartesian product of these subspaces, it follows that it is a subspace over F2. Thus the lemma

now follows since we can efficiently sample from a given subspace.

Using arguments very similar to the above claim, we obtain the following result.

Claim 12.4.9. For any h ∈ {2, . . . , `}, any fixing of the variables {sh,i, rh,i, sh,i, rh,i : i ∈ {1, 2}},

and any b ∈ {0, 1} define the set:

2ilaExt−1(qh+1,1, qh+1,2) = {(v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h]) ∈ {0, 1}8Ctny+4nx :

2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], q1,1, q1,2, b) = (qh+1,1, qh+1,2)}.

There exists an efficient algorithm Samph+1 that takes as input qh+1,1, qh+1,2, b, {sh,i, rh,i, sh,i, rh,i :

i ∈ {1, 2}}, and samples uniformly from 2ilaExt−1(qh+1,1, qh+1,2).

Further, 2ilaExt−1(qh+1,1, qh+1,2) is a subspace over F2, and its size does not depend on the

inputs to Samph+1.

We now show a way of efficiently sampling from the pre-image of the function inmExt1

(Algorithm 13).

Claim 12.4.10. For any string α ∈ {0, 1}`, and any fixing of the variables {sh,i, rh,i, sh,i, rh,i : h ∈

[`], i ∈ {1, 2}} define the set:

inmExt−1
1 (q`+1,1, q`+1,2) = {(x2, y2) ∈ {0, 1}2n2 : inmExt1(x2, y2, α) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm1
that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈

239

{1, 2}}, α, q`+1,1, q`+1,2, and samples uniformly from inmExt−1
1 (q`+1,1, q`+1,2).

Further, inmExt−1
1 (q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the

inputs to Sampnm1
.

Proof. We observe that once we fix all the seeds {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, for different

h ∈ [`], the blocks (v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h]) can be sampled independently. Thus,

by using the algorithms {Samph+1 : h ∈ `} from Claim 12.4.8 and Claim 12.4.9, we sample the

variable x3, y3, w[1,4], v[1,4Ct], {v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h] : h ∈ [`]}.

Finally, since Ext(v[8C(`−1)t+4Ct+1,8C`t], r`) = (q`+1,1, q`+1,2), it follows by the arguments in

Lemma 12.4.8, that the block v[8C(`−1)t+4Ct+1,8C`t)] is restricted to a subspace of size 24Ct(ny−d5).

Thus, we can efficiently sample this block as well.

Further the variable w[4`+1,8`] is unused by the algorithm inmExt1, and hence takes all values

in {0, 1}4`nx . Similarly the variable v[8C`t+1,16C`t] is unused by the algorithm inmExt1 and hence

takes all values in {0, 1}8Ct`. Thus, we sample these variables as uniform strings of the appropriate

length.

Since x2, y2 are concatenations of the various blocks sampled above, we can indeed sample

efficiently from a distribution uniform on {(x2, y2) ∈ {0, 1}2n2 : inmExt(x, y, α) = (q`+1,1, q`+1,2)}.

Further since by Claim 12.4.8 and Claim 12.4.9, the size of the pre-images of each of the blocks gen-

erated do not depend on the inputs (and is also a subspace), it follows that 2inmExt−1
1 (q`+1,1, q`+1,2)

is a subspace, and its size does not depend on the inputs to Sampnm1
.

We now proceed to construct an algorithm to uniformly sample from the pre-image of any

output of the function inmExt (Algorithm 12), which will yield the required efficient encoder for

the resulting one-many non-malleable codes.

Claim 12.4.11. For any fixing of the variable z = x1◦x1◦y1◦y1 and the variables {sh,i, rh,i, sh,i, rh,i :

240

h ∈ [`], i ∈ {1, 2}}, define the set:

inmExt−1(q`+1,1, q`+1,2) = {(x, y) ∈ {0, 1}2n : inmExt(x, y) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈

{1, 2}}, z, q`+1,1, q`+1,2, and samples uniformly from inmExt−1(q`+1,1, q`+1,2).

Further, inmExt−1(q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the

inputs to Sampnm.

Proof. We fix the variables x1 and y1. Let T = Samp(ν) = {t1, . . . , tn5}. We now think of x2 as an

element in Fn4 , F = F2log(n+1) . Let x2 = (x2,1, . . . , x2,n4), where each x2,i is in F. Recall that the

n4 × n generator matrix G of the code RS is the following:

G =

1 1 · · · 1

α1 α2 · · · αn
...

...
. . .

...

αn4−1
1 αn4−1

2 · · · αn4−1
n

where α1, . . . , αn are distinct non-zero field elements of F.

Let

GT =

1 1 · · · 1

αt1 αt2 · · · αtn5

...
...

. . .
...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5

Since x1 = RS(x2){T}, we have the following identity:

(
x2,1 · · · x2,n4

)
GT = x1 (12.3)

Thus, for any fixing of x1, the variable x2 is restricted to a subspace of dimension (n4 − n5) over

241

the field F.

Now, let j ∈ [n4] be such that (x2,1, . . . , x2,j) is the string (x3, w[1,4`]), and (x2,j+1, . . . , x2,n4)

is the string w[4`+1,8`]. Clearly, (n4−j) log n = 4`nx, and thus by our choice of parameters it follows

that j = n4 − 4`nx
logn = n4

2 + n6
log(n+1) <

2n4
3 < n4 − n5.

We further note since any n5 × n5 sub-matrix of GT has full rank (since it is the Vander-

monde’s matrix), it follows by the rank-nullity thorem that any j × n5 sub-matrix of GT has null

space of dimension exactly j − n5. Thus for any λ ∈ Fn5 , the equation:

(
x2,j+1 · · · x2,n4

)
αjt1 αjt2 · · · αjtn5

...
...

. . .
...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5

 = x1 + λ (12.4)

has exactly |F|(j−n5) solution.

Thus, for any fixing of the variables, x2,1, . . . , x2,j , equation (1) has exactly |F|j−n5 solutions.

In other words, for any fixing of x3, w[1,4`], x1, the variable w[4`+1,8`] is restricted to a subspace, and

the size of the subspace does not depend on the fixing of x3, w[1,4`], x1. Using, a similar argument, we

can show that for any fixing of y3, v[1,8Ct`], y1, the variable v[8Ct`+1,16Ct`] is restricted to a subspace,

and the size of the subspace does not depend on the fixing of y3, v[1,8Ct`], y1.

Now consider any fixing of the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, z. As

proved in the Claim 12.4.10, we can efficiently sample the variables x3, w[1,4`], y3, v[1,8Ct`]. By the

above argument, the variables v[4`+1,8`] and w[8Ct`+1,16Ct`] now lie in a subspace, and hence we can

efficiently sample these variables as well. Thus we have an efficient procedure Sampnm for uniformly

sampling (x, y) from the set inmExt−1(q`+1,1, q`+1,2) .

It also follows by Claim 12.4.10, that the total size of the pre-image of the variables

x3, w[1,4`], y3, v[1,8Ct`] does not depend on z or the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}.

Further, for any fixing of x3, w[1,4`], y3, v[1,8Ct`], z, as argued above, the variables v[4`+1,8`] and

w[8Ct`+1,16Ct`] now lie in a subspace, whose size does not depend on the fixed variables. Thus,

242

overall the size of the total pre-image of x, y does not depend on the inputs to Sampnm.

We now state the main result of this section.

Theorem 12.4.12. There exists an efficient procedure that given an input (q`+1,1, q`+1,2) ∈ {0, 1}nq×

{0, 1}nq , samples uniformly from the set {(x, y) : inmExt(x, y) = (q`+1,1, q`+1,2)}.

Proof. We use the following simple strategy.

1. Uniformly sample the variables z, {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}},

2. Use the variables sampled in Step (1) as input to the algorithm Sampnm to sample (x, y).

The correctness of this procedure follows directly from Claim 12.4.11, since it was proved that for

any fixing of the variables of Step 1, the size of pre-image of inmExt is the same.

243

Bibliography

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction

of asymptotically good low-rate error-correcting codes through pseudo-random graphs.

IEEE Transactions on Information Theory, 38:509–516, 1992.

[ACRT97] A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Weak random

sources, hitting sets, and bpp simulations. In Foundations of Computer Science, 1997.

Proceedings., 38th Annual Symposium on, pages 264–272, Oct 1997.

[ADJ+14] Divesh Aggarwal, Yevgeniy Dodis, Zahra Jafargholi, Eric Miles, and Leonid Reyzin.

Amplifying privacy in privacy amplification. In CRYPTO, 2014.

[ADKO15] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable reductions and

applications. To appear in STOC, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from

additive combinatorics. In STOC, 2014.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus

k-wise independence. Inf. Process. Lett., 88(3):107–110, 2003.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj

Prabhakaran. Explicit non-malleable codes resistant to permutations. Cryptology

ePrint Archive, Report 2014/316, 2014.

244

[AHL15] Divesh Aggarwal, Kaave Hosseini, and Shachar Lovett. Affine-malleable extrac-

tors, spectrum doubling, and application to privacy amplification. Cryptology ePrint

Archive, Report 2015/1094, 2015.

[AKO15] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-

malleable codes stronger. Cryptology ePrint Archive, Report 2015/1013, 2015.

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,

13(2):129–145, 1993.

[Alo98] Noga Alon. The Shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.

[AM86] Noga Alon and Wolfgang Maass. Meanders, Ramsey Theory and Lower Bounds for

Branching Programs. In IEEE Symposium on Foundations of Computer Science, pages

410–417, 1986.

[AN93] Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions.

SIAM J. Comput., 22(2):403–417, 1993.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[Bar06] Boaz Barak. A Simple Explicit Construction of an nÕ(logn)-Ramsey Graph. Technical

report, Citeseer, 2006.

[BBCM95] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer. Generalized privacy

amplification. IEEE Transactions on Information Theory, 41(6):1915–1923, Nov 1995.

[BBR88] C.H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discus-

sion. SIAM Journal on Computing, 17:210–229, 1988.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public random-

ness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.

245

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuris-

tic quasi-polynomial algorithm for discrete logarithm in finite fields of small charac-

teristic. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,

Denmark, May 11-15, 2014. Proceedings, pages 1–16, 2014.

[BGK06] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin. Estimates for the number of sums

and products and for exponential sums in fields of prime order. Journal of the London

Mathematical Society, 73:380–398, 4 2006.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using

few independent sources. SIAM J. Comput., 36(4):1095–1118, December 2006.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Sim-

ulating independence: New constructions of condensers, Ramsey graphs, dispersers,

and extractors. J. ACM, 57(4), 2010.

[BKT04] Jean Bourgain, Nets Katz, and Terence Tao. A sum-product estimate in finite fields,

and applications. Geometric and Functional Analysis GAFA, 14(1):27–57, 2004.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and

minima of Banzhaf values. In 26th Annual Symposium on Foundations of Computer

Science, Portland, Oregon, USA, 21-23 October 1985, pages 408–416, 1985.

[Blu86] Manuel Blum. Independent unbiased coin flips from a correlated biased source finite

state Markov chain. Combinatorica, 6(2):97–108, 1986.

[BN96] Ravi B. Boppana and Babu O. Narayanan. The biased coin problem. SIAM J. Discrete

Math., 9(1):29–36, 1996.

[Bou05a] J. Bourgain. Mordell’s exponential sum estimate revisited. Journal of the American

Mathematical Society, 18, No. 2 Apr.:477–499, 2005.

246

[Bou05b] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.

International Journal of Number Theory, 01(01):1–32, 2005.

[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Func-

tional Analysis, 17(1):33–57, 2007.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC 0 circuits. J. ACM, 57(5),

2010.

[BRSW12] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for

no(1) entropy, and Ramsey graphs beating the Frankl-Wilson construction. Annals of

Mathematics, 176(3):1483–1543, 2012. Preliminary version in STOC ’06.

[BS89] Ravi Boppona and Joel Spencer. A useful elementary correlation inequality. Journal

of Combinatorial Theory, Series A, 50(2):305 – 307, 1989.

[BS94] Antal Balog and Endre Szemerdi. A statistical theorem of set addition. Combinatorica,

14(3):263–268, 1994.

[BSZ11] Eli Ben-Sasson and Noga Zewi. From affine to two-source extractors via approximate

duality. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing,

2011.

[CCFP11] Hervé Chabanne, Gérard D. Cohen, Jean-Pierre Flori, and Alain Patey. Non-malleable

codes from the wire-tap channel. CoRR, abs/1105.3879, 2011.

[CCP12] Hervé Chabanne, Gérard D. Cohen, and Alain Patey. Secure network coding and

non-malleable codes: Protection against linear tampering. In ISIT, pages 2546–2550,

2012.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-

tection of algebraic manipulation with applications to robust secret sharing and fuzzy

extractors. In EUROCRYPT, pages 471–488, 2008.

247

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and

probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,

1988.

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In

ITCS, pages 155–168, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise

and split-state tampering. In TCC, pages 440–464, 2014.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hastad, Joel Friedman, Steven Rudich, and Ro-

man Smolensky. The bit extraction problem of t-resilient functions (preliminary ver-

sion). In 26th Annual Symposium on Foundations of Computer Science, Portland,

Oregon, USA, 21-23 October 1985, pages 396–407, 1985.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,

with their many tampered extensions. In STOC, 2016.

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Advances in Cryptology – ASI-

ACRYPT 2011: 17th International Conference on the Theory and Application of Cryp-

tology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,

chapter BiTR: Built-in Tamper Resilience, pages 740–758. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011.

[CKOR10] N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplification

with asymptotically optimal entropy loss. In Proceedings of the 42nd Annual ACM

Symposium on Theory of Computing, pages 785–794, 2010.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source

extractors and almost optimal privacy amplification protocols. Electronic Colloquium

on Computational Complexity (ECCC), 2016.

248

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In STOC, 2016.

[CM06] Antonio Cafure and Guillermo Matera. Improved explicit estimates on the number of

solutions of equations over a finite field. Finite Fields Appl., 12(2):155–185, April 2006.

[Coh15a] Gil Cohen. Local correlation breakers and applications to three-source extractors and

mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-

puter Science, 2015.

[Coh15b] Gil Cohen. Local correlation breakers and applications to three-source extractors and

mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-

puter Science, 2015.

[Coh16a] Gil Cohen. Non-malleable extractors - new tools and improved constructions. In CCC,

2016.

[Coh16b] Gil Cohen. Non-malleable extractors with logarithmic seeds. Technical Report TR16-

030, ECCC, 2016.

[Coh16c] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey

graphs. In STOC, 2016.

[CRS12] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and ap-

plications to privacy amplification. In IEEE Conference on Computational Complexity,

pages 298–308, 2012.

[CRS14] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and

applications to privacy amplification. SIAM Journal on Computing, 43(2):450–476,

2014.

[CS09] Mahdi Cheraghchi and Amin Shokrollahi. Almost-uniform sampling of points on high-

dimensional algebraic varieties. In STACS, pages 277–288, 2009.

249

[CS16] Gil Cohen and Leonard Schulman. Extractors for near logarithmic min-entropy. Tech-

nical Report TR16-014, ECCC, 2016.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant

split-state tampering. In Proceedings of the 55th Annual IEEE Symposium on Foun-

dations of Computer Science, pages 306–315, 2014.

[CZ16a] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-

silient functions. In STOC, 2016.

[CZ16b] Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources.

In CCC, 2016.

[DGJ+10] Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and

Emanuele Viola. Bounded independence fools halfspaces. SIAM Journal on Com-

puting, 39(8):3441–3462, 2010.

[DK11] Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n - o(n) lower

bound on the circuit complexity of affine dispersers. In Proceedings of the 36th In-

ternational Conference on Mathematical Foundations of Computer Science, MFCS’11,

pages 256–265, Berlin, Heidelberg, 2011. Springer-Verlag.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from

two-source extractors. In CRYPTO (2), pages 239–257, 2013.

[DKRS06] Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust fuzzy extractors and authenticated

key agreement from close secrets. In Advances in Cryptology — CRYPTO ’06, 26th

Annual International Cryptology Conference, Proceedings, pages 232–250, 2006.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the

method of multiplicities, with applications to Kakeya sets and mergers. In Proceedings

of the 50th Annual IEEE Symposium on Foundations of Computer Science, pages 181–

190, 2009.

250

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the forty-fourth

annual ACM symposium on Theory of computing, pages 351–358. ACM, 2012.

[DLWZ14] Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplifica-

tion and non-malleable extractors via character sums. SIAM Journal on Computing,

43(2):800–830, 2014.

[DO03] Y. Dodis and R. Oliveira. On extracting private randomness over a public channel. In

RANDOM, pages 252–263, 2003.

[Dod06] Yevgeniy Dodis. Fault-tolerant leader election and collective coin-flipping in the full

information model, 2006.

[DOPS04] Y. Dodis, Shien Jin Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of

cryptography with imperfect randomness. In Foundations of Computer Science, 2004.

Proceedings. 45th Annual IEEE Symposium on, pages 196–205, Oct 2004.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–

139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In

Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,

FOCS ’07, pages 227–237, Washington, DC, USA, 2007. IEEE Computer Society.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In

ICS, pages 434–452, 2010.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-

tography from weak secrets. In STOC, pages 601–610, 2009.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In 10th Theory of Cryp-

tography Conference, 2013.

251

[Fei99] Uriel Feige. Noncryptographic selection protocols. In Proceedings of the 40th Annual

IEEE Symposium on Foundations of Computer Science, pages 142–153, 1999.

[FGHK15] Magnus Gausdal Find, Alexander Golovnev, Edward Hirsch, and Alexander Kulikov. A

better-than-3n lower bound for the circuit complexity of an explicit function. Technical

Report TR15-166, ECCC, 2015.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Con-

tinuous non-malleable codes. In TCC, pages 465–488, 2014.

[FMVW13] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-

malleable codes and key-derivation for poly-size tampering circuits. IACR Cryptology

ePrint Archive, 2013:702, 2013.

[FW81] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences. Com-

binatorica, 1(4):357–368, 1981.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique

decoding and new list-decodable codes over smaller alphabets. In Proceedings of the

Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages

812–821, New York, NY, USA, 2002. ACM.

[Gop14] Parikshit Gopalan. Constructing Ramsey graphs from boolean function representa-

tions. Combinatorica, 34(2):173–206, 2014.

[Gow98] W. T. Gowers. A new proof of szemeredi’s theorem for arithmetic progressions of

length four. Geometric and Functional Analysis GAFA, 8(3):529–551, 1998.

[GR08] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields.

Combinatorica, 28(4):415–440, 2008.

[Gro00] Vince Grolmusz. Low rank co-diagonal matrices and Ramsey graphs. Electr. J. Comb.,

7, 2000.

252

[GRS06] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing

sources by obtaining an independent seed. SIAM J. Comput., 36(4):1072–1094, 2006.

[GSV05] S. Goldwasser, M. Sudan, and V. Vaikuntanathan. Distributed computing with im-

perfect randomness. In P. Fraigniaud, editor, Proceedings of the 19th International

Symposium on Distributed Computing DISC 2005, volume 3724 of Lecture Notes in

Computer Science, pages 288–302. Springer, 2005.

[Gur03] Venkatesan Guruswami. List decoding from erasures: bounds and code constructions.

IEEE Transactions on Information Theory, 49(11):2826–2833, 2003.

[Gur04a] Venkatesan Guruswami. Better extractors for better codes? In Proceedings of the

Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pages 436–

444, New York, NY, USA, 2004. ACM.

[Gur04b] Venkatesan Guruswami. List Decoding of Error-Correcting Codes (Winning Thesis of

the 2002 ACM Doctoral Dissertation Competition), volume 3282 of Lecture Notes in

Computer Science. Springer, 2004.

[Gur11] Venkatesan Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes.

In Computational Complexity (CCC), 2011 IEEE 26th Annual Conference on, pages

77–85. IEEE, 2011.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-

panders and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4),

2009.

[HW98] Ming-Deh A. Huang and Yiu-Chung Wong. An algorithm for approximate counting of

points on algebraic sets over finite fields. In ANTS, pages 514–527, 1998.

[Jan90] Svante Janson. Poisson approximation for large deviations. Random Structures &

Algorithms, 1(2):221–229, 1990.

253

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable

codes. In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC

2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 451–480, 2015.

[Kar71] A.A. Karatsuba. On a certain arithmetic sum. Soviet Math Dokl., 12, 1172-1174, 1971.

[Kar91] AA Karatsuba. The distribution of values of dirichlet characters on additive sequences.

In Doklady Acad. Sci. USSR, volume 319, pages 543–545, 1991.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions

(extended abstract). In 29th Annual Symposium on Foundations of Computer Science,

White Plains, New York, USA, 24-26 October 1988, pages 68–80, 1988.

[KLR09] Y. Kalai, X. Li, and A. Rao. 2-source extractors under computational assumptions

and cryptography with defective randomness. In Proceedings of the 50th Annual IEEE

Symposium on Foundations of Computer Science, pages 617–626, 2009.

[KLRZ08] Y. Kalai, X. Li, A. Rao, and D. Zuckerman. Network extractor protocols. In Proceedings

of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 654–

663, 2008.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University

Press, 1997.

[Kon03] Sergei Konyagin. A sum-product estimate in fields of prime order. CoRR,

arXiv:math/0304217, 2003.

[KR09] B. Kanukurthi and L. Reyzin. Key agreement from close secrets over unsecured chan-

nels. In EUROCRYPT 2009, 28th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, 2009.

[KRVZ11] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extrac-

254

tors for small-space sources. Journal of Computer and System Sciences, 77:191–220,

2011.

[KZ07a] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and

exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[KZ07b] Jesse Kamp and David Zuckerman. Deterministic Extractors for Bit-Fixing Sources

and Exposure-Resilient Cryptography. Siam Journal on Computing, 36:1231–1247,

2007.

[Len90] Thomas Lengauer. Handbook of Theoretical Computer Science (Vol. A). MIT Press,

Cambridge, MA, USA, 1990.

[Li11a] Xin Li. Improved constructions of three source extractors. In Proceedings of the

26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,

California, June 8-10, 2011, pages 126–136, 2011.

[Li11b] Xin Li. A new approach to affine extractors and dispersers. In Computational Com-

plexity (CCC), 2011 IEEE 26th Annual Conference on, pages 137–147, June 2011.

[Li12a] Xin Li. Design extractors, non-malleable condensers and privacy amplification. In

Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 837–

854, 2012.

[Li12b] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In

Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science,

pages 688–697, 2012.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic

min-entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of

Computer Science, pages 100–109, 2013.

255

[Li13b] Xin Li. New independent source extractors with exponential improvement. In Proceed-

ings of the 45th Annual ACM Symposium on Theory of Computing, pages 783–792,

2013.

[Li15a] Xin Li. Improved constructions of two-source extractors. Electronic Colloquium on

Computational Complexity (ECCC), 2015.

[Li15b] Xin Li. Improved constructions of two-source extractors. Technical Report TR15-125,

ECCC, 2015.

[Li15c] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic en-

tropy. Technical Report TR15-125, ECCC, 2015.

[Li15d] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal pro-

tocols for privacy amplification. In 12th Theory of Cryptography Conference, 2015.

[Li15e] Xin Li. Three-source extractors for polylogarithmic min-entropy. In Proceedings of the

56th Annual IEEE Symposium on Foundations of Computer Science, 2015.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state

model. In CRYPTO, pages 517–532, 2012.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extractors: optimal

up to constant factors. In STOC, pages 602–611, 2003.

[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized ci-

pher. Journal of Cryptology, 5(1):53–66, 1992.

[Mek15] Raghu Meka. Explicit resilient functions matching Ajtai-Linial. CoRR, abs/1509.00092,

2015.

[MU02] Elchanan Mossel and Christopher Umans. On the complexity of approximating the

{VC} dimension. Journal of Computer and System Sciences, 65(4):660 – 671, 2002.

Special Issue on Complexity 2001.

256

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.

In Advances in Cryptology — CRYPTO ’97, volume 1294, pages 307–321, August 1997.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new con-

structions. Journal of Computer and System Sciences, 58(1):148 – 173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.

Sci., 52(1):43–52, 1996.

[PR04] P. Pudlak and V. Rodl. Pseudorandom sets and explicit constructions of Ramsey

graphs, 2004.

[PR08] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Com-

put., 37(6):1891–1925, 2008.

[Rao07] Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on

Computational Complexity (ECCC), 14(034), 2007.

[Rao09a] Anup Rao. Extractors for a constant number of polynomially small min-entropy inde-

pendent sources. SIAM J. Comput., 39(1):168–194, 2009.

[Rao09b] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual

IEEE Conference on Computational Complexity, 2009.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM

Symposium on Theory of Computing, pages 11–20, 2005.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and re-

ducing the error in Trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[RSZ02] Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader

election and collective coin-flipping in the perfect information model. SIAM J. Com-

put., 31(6):1645–1662, 2002.

257

[RW03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy from an

arbitrarily weak secret. In Advances in Cryptology — CRYPTO ’03, 23rd Annual

International Cryptology Conference, Proceedings, pages 78–95, 2003.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy

and mixed-sources extractors. Journal of Computer and System Sciences, 77:167–190,

2011.

[RZ01] A. Russell and D. Zuckerman. Perfect-information leader election in log∗ n + O(1)

rounds. JCSS, 63:612–626, 2001.

[RZ08] Anup Rao and David Zuckerman. Extractors for three uneven-length sources. In Ap-

proximation, Randomization and Combinatorial Optimization. Algorithms and Tech-

niques, 11th International Workshop, APPROX 2008, and 12th International Work-

shop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages

557–570, 2008.

[Sak89] Michael Saks. A robust noncryptographic protocol for collective coin flipping. SIAM

Journal on Discrete Mathematics, 2(2):240–244, 1989.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

J. ACM, 27(4):701–717, October 1980.

[Sha06] Ronen Shaltiel. How to get more mileage from randomness extractors. In 21st Annual

IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague,

Czech Republic, pages 46–60, 2006.

[Sha08] Ronen Shaltiel. How to get more mileage from randomness extractors. Random Struct.

Algorithms, 33(2):157–186, 2008.

[Sho90] Victor Shoup. Searching for primitive roots in finite fields. In Proceedings of the

22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,

Maryland, USA, pages 546–554, 1990.

258

[SSZ95] Michael Saks, Aravind Srinivasan, and Shiyu Zhou. Explicit dispersers with polylog

degree. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of

Computing, STOC ’95, pages 479–488, New York, NY, USA, 1995. ACM.

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-

random sources. Journal of Computer and System Sciences, 33:75–87, 1986.

[Tal14] Avishay Tal. Tight bounds on the Fourier spectrum of AC 0. Electronic Colloquium

on Computational Complexity (ECCC), 21:174, 2014.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages

860–879, 2001.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting Randomness from Samplable Distribu-

tions. In IEEE Symposium on Foundations of Computer Science, pages 32–42, 2000.

[TV06] Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge University Press,

2006.

[TZ04] A. Ta-Shma and D. Zuckerman. Extractor codes. IEEE Transactions on Information

Theory, 50:3015–3025, 2004.

[Uma99] C. Umans. Hardness of approximating sigma;2p minimization problems. In Founda-

tions of Computer Science, 1999. 40th Annual Symposium on, pages 465–474, 1999.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the

bounded-storage model. J. Cryptology, 17(1):43–77, 2004.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672,

2014.

[vN51] J. von Neumann. Various techniques used in connection with random digits. Applied

Math Series, 12:36–38, 1951. Notes by G.E. Forsythe, National Bureau of Standards.

Reprinted in Von Neumann’s Collected Works, 5:768-770, 1963.

259

[VV85] U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to slightly-

random polynomial time. In Foundations of Computer Science, 1985., 26th Annual

Symposium on, pages 417–428, Oct 1985.

[WZ93] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound:

Explicit construction and applications. In Proceedings of the Twenty-fifth Annual ACM

Symposium on Theory of Computing, STOC ’93, pages 245–251, New York, NY, USA,

1993. ACM.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing.

In ACM Symposium on Theory of Computing, pages 209–213, 1979.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,

2011.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the

International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79,

pages 216–226, London, UK, UK, 1979. Springer-Verlag.

[Zuc90] D. Zuckerman. General weak random sources. 2013 IEEE 54th Annual Symposium on

Foundations of Computer Science, 0:534–543 vol.2, 1990.

[Zuc91] David Zuckerman. Computing Efficiently Using General Weak Random Sources. PhD

thesis, University of California at Berkeley, 1991.

[Zuc96] D. Zuckerman. Simulating bpp using a general weak random source. Algorithmica,

16(4):367–391, 1996.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and

Algorithms, 11:345–367, 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory of Computing, pages 103–128, 2007.

260

Vita

Eshan Chattopadhyay was born in Visakhapatnam, India on 23rd September, 1989, the son of

Atrayee Chattopadhyay and Buddhadeb Chattopadhyay. After completing his high school in

Hyderabad, he attended Indian Institute of Technology at Kanpur. He received a Bachelor of

Technology in Computer Science from IIT Kanpur in 2011. He entered the graduate school at

University of Texas at Austin in September 2011.

Permanent Address: USA

This dissertation was typeset with LATEX 2ε
3 by the author.

3LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the American
Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das, Department of
Computer Sciences, The University of Texas at Austin, and extended by Bert Kay, James A. Bednar, and Ayman
El-Khashab.

261

