76 research outputs found

    Optimal Orchestration of Virtual Network Functions

    Full text link
    -The emergence of Network Functions Virtualization (NFV) is bringing a set of novel algorithmic challenges in the operation of communication networks. NFV introduces volatility in the management of network functions, which can be dynamically orchestrated, i.e., placed, resized, etc. Virtual Network Functions (VNFs) can belong to VNF chains, where nodes in a chain can serve multiple demands coming from the network edges. In this paper, we formally define the VNF placement and routing (VNF-PR) problem, proposing a versatile linear programming formulation that is able to accommodate specific features and constraints of NFV infrastructures, and that is substantially different from existing virtual network embedding formulations in the state of the art. We also design a math-heuristic able to scale with multiple objectives and large instances. By extensive simulations, we draw conclusions on the trade-off achievable between classical traffic engineering (TE) and NFV infrastructure efficiency goals, evaluating both Internet access and Virtual Private Network (VPN) demands. We do also quantitatively compare the performance of our VNF-PR heuristic with the classical Virtual Network Embedding (VNE) approach proposed for NFV orchestration, showing the computational differences, and how our approach can provide a more stable and closer-to-optimum solution

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    FluidRAN: Optimized vRAN/MEC Orchestration

    Get PDF
    Proceeding of: IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, Hawai, USA, 16-19 April 2018Virtualized Radio Access Network (vRAN) architectures constitute a promising solution for the densification needs of 5G networks, as they decouple Base Stations (BUs) functions from Radio Units (RUs) allowing the processing power to be pooled at cost-efficient Central Units (CUs). vRAN facilitates the flexible function relocation (split selection), and therefore enables splits with less stringent network requirements compared to state-of-the-art fully Centralized (C-RAN) systems. In this paper, we study the important and challenging vRAN design problem. We propose a novel modeling approach and a rigorous analytical framework, FluidRAN, that minimizes RAN costs by jointly selecting the splits and the RUs-CUs routing paths. We also consider the increasingly relevant scenario where the RAN needs to support multi-access edge computing (MEC) services, that naturally favor distributed RAN (D-RAN) architectures. Our framework provides a joint vRAN/MEC solution that minimizes operational costs while satisfying the MEC needs. We follow a data-driven evaluation method, using topologies of 3 operational networks. Our results reveal that (i) pure C-RAN is rarely a feasible upgrade solution for existing infrastructure, (ii) FluidRAN achieves significant cost savings compared to D-RAN systems, and (iii) MEC can increase substantially the operator’s cost as it pushes vRAN function placement back to RUs.This work has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 671598 (5G-Crosshaul project) and 761536 (5G-Transformer project), and from Science Foundation Ireland (SFI) under Grant Number 17/CDA/476

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0

    Get PDF
    This work has been partially funded by the H2020 project 5G-CLARITY (Grant No. 871428) and the Spanish national project TRUE-5G (PID2019-108713RB-C53).Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among production lines (PLs) in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the end-to-end (E2E) mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of Time-Sensitive Networking (TSN) against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.H2020 project 5G-CLARITY 871428Spanish Government PID2019-108713RB-C53TRUE-5

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Orchestration and management of application functions over virtualized cloud infrastructures

    Get PDF
    Next-generation networks are expected to provide higher data rates and ultra-low latency in support of demanding applications, such as virtual and augmented reality, robots and drones, etc. To meet these stringent requirements of applications, edge computing constitutes a central piece of the solution architecture wherein functional components of an application can be deployed over the edge network to reduce bandwidth demand over the core network while providing ultra-low latency communication to users. In this thesis, we provide solutions to resource orchestration and management for applications over a virtualized client-edge-server infrastructure. We first investigate the problem of optimal placement of pipelines of application functions (virtual service chains) and the steering of traffic through them, over a multi-technology edge network model consisting of both wired and wireless millimeter-wave (mmWave) links. This problem is NP-hard. We provide a comprehensive “microscopic” binary integer program to model the system, along with a heuristic that is one order of magnitude faster than optimally solving the problem. Extensive evaluations demonstrate the benefits of orchestrating virtual service chains (by distributing them over the edge network) compared to a baseline “middlebox” approach in terms of overall admissible virtual capacity. Next, we look at the problem of finding the optimal configuration parameters, such as memory and CPU, for application functions running as serverless functions, i.e. they run in stateless compute containers that are event-driven, ephemeral, and fully managed by the cloud provider. While serverless computing is a relatively simpler computing model, configuring such parameters correctly while minimizing cost and meeting delay constraints is not trivial. To solve this problem, we present a framework that uses Bayesian Optimization to find the optimal configuration for serverless functions. The framework uses statistical learning techniques to intelligently collect samples with the goal of predicting the cost and execution time of a serverless function across unseen configuration values. Our framework uses the predicted cost and execution time to select the “best” configuration parameters for running a single or a chain of serverless functions (service chains). Evaluations on a commercial cloud provider and a wide range of simulated distributed cloud environments confirm the efficacy of our approach.2021-02-10T00:00:00

    NFV orchestration in edge and fog scenarios

    Get PDF
    Mención Internacional en el título de doctorLas infraestructuras de red actuales soportan una variedad diversa de servicios como video bajo demanda, video conferencias, redes sociales, sistemas de educación, o servicios de almacenamiento de fotografías. Gran parte de la población mundial ha comenzado a utilizar estos servicios, y los utilizan diariamente. Proveedores de Cloud y operadores de infraestructuras de red albergan el tráfico de red generado por estos servicios, y sus tareas de gestión no solo implican realizar el enrutamiento del tráfico, sino también el procesado del tráfico de servicios de red. Tradicionalmente, el procesado del tráfico ha sido realizado mediante aplicaciones/ programas desplegados en servidores que estaban dedicados en exclusiva a tareas concretas como la inspección de paquetes. Sin embargo, en los últimos anos los servicios de red se han virtualizado y esto ha dado lugar al paradigma de virtualización de funciones de red (Network Function Virtualization (NFV) siguiendo las siglas en ingles), en el que las funciones de red de un servicio se ejecutan en contenedores o máquinas virtuales desacopladas de la infraestructura hardware. Como resultado, el procesado de tráfico se ha ido haciendo más flexible gracias al laxo acople del software y hardware, y a la posibilidad de compartir funciones de red típicas, como firewalls, entre los distintos servicios de red. NFV facilita la automatización de operaciones de red, ya que tareas como el escalado, o la migración son típicamente llevadas a cabo mediante un conjunto de comandos previamente definidos por la tecnología de virtualización pertinente, bien mediante contenedores o máquinas virtuales. De todos modos, sigue siendo necesario decidir el en rutamiento y procesado del tráfico de cada servicio de red. En otras palabras, que servidores tienen que encargarse del procesado del tráfico, y que enlaces de la red tienen que utilizarse para que las peticiones de los usuarios lleguen a los servidores finales, es decir, el conocido como embedding problem. Bajo el paraguas del paradigma NFV, a este problema se le conoce en inglés como Virtual Network Embedding (VNE), y esta tesis utiliza el termino “NFV orchestration algorithm” para referirse a los algoritmos que resuelven este problema. El problema del VNE es NP-hard, lo cual significa que que es imposible encontrar una solución optima en un tiempo polinómico, independientemente del tamaño de la red. Como consecuencia, la comunidad investigadora y de telecomunicaciones utilizan heurísticos que encuentran soluciones de manera más rápida que productos para la resolución de problemas de optimización. Tradicionalmente, los “NFV orchestration algorithms” han intentado minimizar los costes de despliegue derivados de las soluciones asociadas. Por ejemplo, estos algoritmos intentan no consumir el ancho de banda de la red, y usar rutas cortas para no utilizar tantos recursos. Además, una tendencia reciente ha llevado a la comunidad investigadora a utilizar algoritmos que minimizan el consumo energético de los servicios desplegados, bien mediante la elección de dispositivos con un consumo energético más eficiente, o mediante el apagado de dispositivos de red en desuso. Típicamente, las restricciones de los problemas de VNE se han resumido en un conjunto de restricciones asociadas al uso de recursos y consumo energético, y las soluciones se diferenciaban por la función objetivo utilizada. Pero eso era antes de la 5a generación de redes móviles (5G) se considerase en el problema de VNE. Con la aparición del 5G, nuevos servicios de red y casos de uso entraron en escena. Los estándares hablaban de comunicaciones ultra rápidas y fiables (Ultra-Reliable and Low Latency Communications (URLLC) usando las siglas en inglés) con latencias por debajo de unos pocos milisegundos y fiabilidades del 99.999%, una banda ancha mejorada (enhanced Mobile Broadband (eMBB) usando las siglas en inglés) con notorios incrementos en el flujo de datos, e incluso la consideración de comunicaciones masivas entre maquinas (Massive Machine-Type Communications (mMTC) usando las siglas en inglés) entre dispositivos IoT. Es más, paradigmas como edge y fog computing se incorporaron a la tecnología 5G, e introducían la idea de tener dispositivos de computo más cercanos al usuario final. Como resultado, el problema del VNE tenía que incorporar los nuevos requisitos como restricciones a tener en cuenta, y toda solución debía satisfacer bajas latencias, alta fiabilidad, y mayores tasas de transmisión. Esta tesis estudia el problema des VNE, y propone algunos heurísticos que lidian con las restricciones asociadas a servicios 5G en escenarios edge y fog, es decir, las soluciones propuestas se encargan de asignar funciones virtuales de red a servidores, y deciden el enrutamiento del trafico en las infraestructuras 5G con dispositivos edge y fog. Para evaluar el rendimiento de las soluciones propuestas, esta tesis estudia en primer lugar la generación de grafos que representan redes 5G. Los mecanismos propuestos para la generación de grafos sirven para representar distintos escenarios 5G. En particular, escenarios de federación en los que varios dominios comparten recursos entre ellos. Los grafos generados también representan servidores en el edge, así como dispositivos fog con una batería limitada. Además, estos grafos tienen en cuenta los requisitos de estándares, y la demanda que se espera en las redes 5G. La generación de grafos propuesta sirve para representar escenarios federación en los que varios dominios comparten recursos entre ellos, y redes 5G con servidores edge, así como dispositivos fog estáticos o móviles con una batería limitada. Los grafos generados para infraestructuras 5G tienen en cuenta los requisitos de estándares, y la demanda de red que se espera en las redes 5G. Además, los grafos son diferentes en función de la densidad de población, y el área de estudio, es decir, si es una zona industrial, una autopista, o una zona urbana. Tras detallar la generación de grafos que representan redes 5G, esta tesis propone algoritmos de orquestación NFV para resolver con el problema del VNE. Primero, se centra en escenarios federados en los que los servicios de red se tienen que asignar no solo a la infraestructura de un dominio, sino a los recursos compartidos en la federación de dominios. Dos problemas diferentes han sido estudiados, uno es el problema del VNE propiamente dicho sobre una infraestructura federada, y el otro es la delegación de servicios de red. Es decir, si un servicio de red se debe desplegar localmente en un dominio, o en los recursos compartidos por la federación de dominios; a sabiendas de que el último caso supone el pago de cuotas por parte del dominio local a cambio del despliegue del servicio de red. En segundo lugar, esta tesis propone OKpi, un algoritmo de orquestación NFV para conseguir la calidad de servicio de las distintas slices de las redes 5G. Conceptualmente, el slicing consiste en partir la red de modo que cada servicio de red sea tratado de modo diferente dependiendo del trozo al que pertenezca. Por ejemplo, una slice de eHealth reservara los recursos de red necesarios para conseguir bajas latencias en servicios como operaciones quirúrgicas realizadas de manera remota. Cada trozo (slice) está destinado a unos servicios específicos con unos requisitos muy concretos, como alta fiabilidad, restricciones de localización, o latencias de un milisegundo. OKpi es un algoritmo de orquestación NFV que consigue satisfacer los requisitos de servicios de red en los distintos trozos, o slices de la red. Tras presentar OKpi, la tesis resuelve el problema del VNE en redes 5G con dispositivos fog estáticos y móviles. El algoritmo de orquestación NFV presentado tiene en cuenta las limitaciones de recursos de computo de los dispositivos fog, además de los problemas de falta de cobertura derivados de la movilidad de los dispositivos. Para concluir, esta tesis estudia el escalado de servicios vehiculares Vehicle-to-Network (V2N), que requieren de bajas latencias para servicios como la prevención de choques, avisos de posibles riesgos, y conducción remota. Para estos servicios, los atascos y congestiones en la carretera pueden causar el incumplimiento de los requisitos de latencia. Por tanto, es necesario anticiparse a esas circunstancias usando técnicas de series temporales que permiten saber el tráfico inminente en los siguientes minutos u horas, para así poder escalar el servicio V2N adecuadamente.Current network infrastructures handle a diverse range of network services such as video on demand services, video-conferences, social networks, educational systems, or photo storage services. These services have been embraced by a significant amount of the world population, and are used on a daily basis. Cloud providers and Network operators’ infrastructures accommodate the traffic rates that the aforementioned services generate, and their management tasks do not only involve the traffic steering, but also the processing of the network services’ traffic. Traditionally, the traffic processing has been assessed via applications/programs deployed on servers that were exclusively dedicated to a specific task as packet inspection. However, in recent years network services have stated to be virtualized and this has led to the Network Function Virtualization (Network Function Virtualization (NFV)) paradigm, in which the network functions of a service run on containers or virtual machines that are decoupled from the hardware infrastructure. As a result, the traffic processing has become more flexible because of the loose coupling between software and hardware, and the possibility of sharing common network functions, as firewalls, across multiple network services. NFV eases the automation of network operations, since scaling and migrations tasks are typically performed by a set of commands predefined by the virtualization technology, either containers or virtual machines. However, it is still necessary to decide the traffic steering and processing of every network service. In other words, which servers will hold the traffic processing, and which are the network links to be traversed so the users’ requests reach the final servers, i.e., the network embedding problem. Under the umbrella of NFV, this problem is known as Virtual Network Embedding (VNE), and this thesis refers as “NFV orchestration algorithms” to those algorithms solving such a problem. The VNE problem is a NP-hard, meaning that it is impossible to find optimal solutions in polynomial time, no matter the network size. As a consequence, the research and telecommunications community rely on heuristics that find solutions quicker than a commodity optimization solver. Traditionally, NFV orchestration algorithms have tried to minimize the deployment costs derived from their solutions. For example, they try to not exhaust the network bandwidth, and use short paths to use less network resources. Additionally, a recent tendency led the research community towards algorithms that minimize the energy consumption of the deployed services, either by selecting more energy efficient devices or by turning off those network devices that remained unused. VNE problem constraints were typically summarized in a set of resources/energy constraints, and the solutions differed on which objectives functions were aimed for. But that was before 5th generation of mobile networks (5G) were considered in the VNE problem. With the appearance of 5G, new network services and use cases started to emerge. The standards talked about Ultra Reliable Low Latency Communication (Ultra-Reliable and Low Latency Communications (URLLC)) with latencies below few milliseconds and 99.999% reliability, an enhanced mobile broadband (enhanced Mobile Broadband (eMBB)) with significant data rate increases, and even the consideration of massive machine-type communications (Massive Machine-Type Communications (mMTC)) among Internet of Things (IoT) devices. Moreover, paradigms such as edge and fog computing blended with the 5G technology to introduce the idea of having computing devices closer to the end users. As a result, the VNE problem had to incorporate the new requirements as constraints to be taken into account, and every solution should either satisfy low latencies, high reliability, or larger data rates. This thesis studies the VNE problem, and proposes some heuristics tackling the constraints related to 5G services in Edge and fog scenarios, that is, the proposed solutions assess the assignment of Virtual Network Functions to resources, and the traffic steering across 5G infrastructures that have Edge and Fog devices. To evaluate the performance of the proposed solutions, the thesis studies first the generation of graphs that represent 5G networks. The proposed mechanisms to generate graphs serve to represent diverse 5G scenarios. In particular federation scenarios in which several domains share resources among themselves. The generated graphs also represent edge servers, so as fog devices with limited battery capacity. Additionally, these graphs take into account the standard requirements, and the expected demand for 5G networks. Moreover, the graphs differ depending on the density of population, and the area of study, i.e., whether it is an industrial area, a highway, or an urban area. After detailing the generation of graphs representing the 5G networks, this thesis proposes several NFV orchestration algorithms to tackle the VNE problem. First, it focuses on federation scenarios in which network services should be assigned not only to a single domain infrastructure, but also to the shared resources of the federation of domains. Two different problems are studied, one being the VNE itself over a federated infrastructure, and the other the delegation of network services. That is, whether a network service should be deployed in a local domain, or in the pool of resources of the federation domain; knowing that the latter charges the local domain for hosting the network service. Second, the thesis proposes OKpi, a NFV orchestration algorithm to meet 5G network slices quality of service. Conceptually, network slicing consists in splitting the network so network services are treated differently based on the slice they belong to. For example, an eHealth network slice will allocate the network resources necessary to meet low latencies for network services such as remote surgery. Each network slice is devoted to specific services with very concrete requirements, as high reliability, location constraints, or 1ms latencies. OKpi is a NFV orchestration algorithm that meets the network service requirements among different slices. It is based on a multi-constrained shortest path heuristic, and its solutions satisfy latency, reliability, and location constraints. After presenting OKpi, the thesis tackles the VNE problem in 5G networks with static/moving fog devices. The presented NFV orchestration algorithm takes into account the limited computing resources of fog devices, as well as the out-of-coverage problems derived from the devices’ mobility. To conclude, this thesis studies the scaling of Vehicle-to-Network (V2N) services, which require low latencies for network services as collision avoidance, hazard warning, and remote driving. For these services, the presence of traffic jams, or high vehicular traffic congestion lead to the violation of latency requirements. Hence, it is necessary to anticipate to such circumstances by using time-series techniques that allow to derive the incoming vehicular traffic flow in the next minutes or hours, so as to scale the V2N service accordingly.The 5G Exchange (5GEx) project (2015-2018) was an EU-funded project (H2020-ICT-2014-2 grant agreement 671636). The 5G-TRANSFORMER project (2017-2019) is an EU-funded project (H2020-ICT-2016-2 grant agreement 761536). The 5G-CORAL project (2017-2019) is an EU-Taiwan project (H2020-ICT-2016-2 grant agreement 761586).Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Ioannis Stavrakakis.- Secretario: Pablo Serrano Yáñez-Mingot.- Vocal: Paul Horatiu Patra
    corecore