7,919 research outputs found

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    EMEEDP: Enhanced Multi-hop Energy Efficient Distributed Protocol for Heterogeneous Wireless Sensor Network

    Full text link
    In WSN (Wireless Sensor Network) every sensor node sensed the data and transmit it to the CH (Cluster head) or BS (Base Station). Sensors are randomly deployed in unreachable areas, where battery replacement or battery charge is not possible. For this reason, Energy conservation is the important design goal while developing a routing and distributed protocol to increase the lifetime of WSN. In this paper, an enhanced energy efficient distributed protocol for heterogeneous WSN have been reported. EMEEDP is proposed for heterogeneous WSN to increase the lifetime of the network. An efficient algorithm is proposed in the form of flowchart and based on various clustering equation proved that the proposed work accomplishes longer lifetime with improved QOS parameters parallel to MEEP. A WSN implemented and tested using Raspberry Pi devices as a base station, temperature sensors as a node and xively.com as a cloud. Users use data for decision purpose or business purposes from xively.com using internet.Comment: 6 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1409.1412 by other author

    M-GEAR: Gateway-Based Energy-Aware Multi-Hop Routing Protocol for WSNs

    Full text link
    In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Performance Analysis of Hierarchical Routing Protocols in Wireless Sensor Networks

    Full text link
    This work focusses on analyzing the optimization strategies of routing protocols with respect to energy utilization of sensor nodes in Wireless Sensor Network (WSNs). Different routing mechanisms have been proposed to address energy optimization problem in sensor nodes. Clustering mechanism is one of the popular WSNs routing mechanisms. In this paper, we first address energy limitation constraints with respect to maximizing network life time using linear programming formulation technique. To check the efficiency of different clustering scheme against modeled constraints, we select four cluster based routing protocols; Low Energy Adaptive Clustering Hierarchy (LEACH), Threshold Sensitive Energy Efficient sensor Network (TEEN), Stable Election Protocol (SEP), and Distributed Energy Efficient Clustering (DEEC). To validate our mathematical framework, we perform analytical simulations in MATLAB by choosing number of alive nodes, number of dead nodes, number of packets and number of CHs, as performance metrics.Comment: NGWMN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore