409 research outputs found

    On the constrained mock-Chebyshev least-squares

    Full text link
    The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes whose elements mimic as well as possible the Chebyshev-Lobatto points. In this work we use the simultaneous approximation theory to combine the previous technique with a polynomial regression in order to increase the accuracy of the approximation of a given analytic function. We give indications on how to select the degree of the simultaneous regression in order to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical results are provided.Comment: 17 pages, 9 figure

    An extremal problem of Erdős in interpolation theory

    Get PDF
    AbstractOne of the intriguing problems of interpolation theory posed by Erdős in 1961 is the problem of finding a set of interpolation nodes in [−1, 1] minimizing the integral In of the sum of squares of the Lagrange fundamental polynomials. The guess of Erdős that the optimal set corresponds to the set F of the Fekete nodes (coinciding with the extrema of the Legendre polynomials) was disproved by Szabados in 1966.Another aspect of this problem is to find a sharp estimate for the minimal value I★n of the integral. It was conjectured by Erdős, Szabados, Varma and Vertesi in 1994 that asymptotically I★n − In(F) = o(1n).In the present paper, we use a numerical approach in order to find the solution of this problem. By applying an appropriate optimization technique, we found the minimal values of the integral with high precision for n from 3 up to 100. On the basis of these results and by using Richardson's extrapolation method, we found the first two terms in the asymptotic expansion of I∗n, and thus, disproved the above-mentioned conjecture. Moreover, by using some heuristic arguments, we give an analytic description of nodes which are, for all practical purposes, as useful as the optimal nodes

    Near G-optimal Tchakaloff Designs

    Get PDF
    We show that the notion of polynomial mesh (norming set), used to provide discretizations of a compact set nearly optimal for certain approximation theoretic purposes, can also be used to obtain finitely supported near G-optimal designs for polynomial regression. We approximate such designs by a standard multiplicative algorithm, followed by measure concentration via Caratheodory-Tchakaloff compression

    Numerical Analysis

    Get PDF
    Acknowledgements: This article will appear in the forthcoming Princeton Companion to Mathematics, edited by Timothy Gowers with June Barrow-Green, to be published by Princeton University Press.\ud \ud In preparing this essay I have benefitted from the advice of many colleagues who corrected a number of errors of fact and emphasis. I have not always followed their advice, however, preferring as one friend put it, to "put my head above the parapet". So I must take full responsibility for errors and omissions here.\ud \ud With thanks to: Aurelio Arranz, Alexander Barnett, Carl de Boor, David Bindel, Jean-Marc Blanc, Mike Bochev, Folkmar Bornemann, Richard Brent, Martin Campbell-Kelly, Sam Clark, Tim Davis, Iain Duff, Stan Eisenstat, Don Estep, Janice Giudice, Gene Golub, Nick Gould, Tim Gowers, Anne Greenbaum, Leslie Greengard, Martin Gutknecht, Raphael Hauser, Des Higham, Nick Higham, Ilse Ipsen, Arieh Iserles, David Kincaid, Louis Komzsik, David Knezevic, Dirk Laurie, Randy LeVeque, Bill Morton, John C Nash, Michael Overton, Yoshio Oyanagi, Beresford Parlett, Linda Petzold, Bill Phillips, Mike Powell, Alex Prideaux, Siegfried Rump, Thomas Schmelzer, Thomas Sonar, Hans Stetter, Gil Strang, Endre Süli, Defeng Sun, Mike Sussman, Daniel Szyld, Garry Tee, Dmitry Vasilyev, Andy Wathen, Margaret Wright and Steve Wright

    A Newton Collocation Method for Solving Dynamic Bargaining Games

    Get PDF
    We develop and implement a collocation method to solve for an equilibrium in the dynamic legislative bargaining game of Duggan and Kalandrakis (2008). We formulate the collocation equations in a quasi-discrete version of the model, and we show that the collocation equations are locally Lipchitz continuous and directionally differentiable. In numerical experiments, we successfully implement a globally convergent variant of Broyden's method on a preconditioned version of the collocation equations, and the method economizes on computation cost by more than 50% compared to the value iteration method. We rely on a continuity property of the equilibrium set to obtain increasingly precise approximations of solutions to the continuum model. We showcase these techniques with an illustration of the dynamic core convergence theorem of Duggan and Kalandrakis (2008) in a nine-player, two-dimensional model with negative quadratic preferences.
    • …
    corecore