3,262 research outputs found

    The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks

    Full text link
    It is challenging to design large and low-cost communication networks. In this paper, we formulate this challenge as the prize-collecting Steiner Tree Problem (PCSTP). The objective is to minimize the costs of transmission routes and the disconnected monetary or informational profits. Initially, we note that the PCSTP is MAX SNP-hard. Then, we propose some post-processing techniques to improve suboptimal solutions to PCSTP. Based on these techniques, we propose two fast heuristic algorithms: the first one is a quasilinear time heuristic algorithm that is faster and consumes less memory than other algorithms; and the second one is an improvement of a stateof-the-art polynomial time heuristic algorithm that can find high-quality solutions at a speed that is only inferior to the first one. We demonstrate the competitiveness of our heuristic algorithms by comparing them with the state-of-the-art ones on the largest existing benchmark instances (169 800 vertices and 338 551 edges). Moreover, we generate new instances that are even larger (1 000 000 vertices and 10 000 000 edges) to further demonstrate their advantages in large networks. The state-ofthe-art algorithms are too slow to find high-quality solutions for instances of this size, whereas our new heuristic algorithms can do this in around 6 to 45s on a personal computer. Ultimately, we apply our post-processing techniques to update the bestknown solution for a notoriously difficult benchmark instance to show that they can improve near-optimal solutions to PCSTP. In conclusion, we demonstrate the usefulness of our heuristic algorithms and post-processing techniques for designing large and low-cost communication networks

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of ddd\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(dmlogn)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound dnd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog2n)O(n\log^2 n), dd edge failures are processed in O(dlogdloglogn)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(loglogn)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set UVU\subseteq V we can remove a set BB of U/(s2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for UBU-B with maximum degree ss
    corecore