908,958 research outputs found
Robot Navigation in Unseen Spaces using an Abstract Map
Human navigation in built environments depends on symbolic spatial
information which has unrealised potential to enhance robot navigation
capabilities. Information sources such as labels, signs, maps, planners, spoken
directions, and navigational gestures communicate a wealth of spatial
information to the navigators of built environments; a wealth of information
that robots typically ignore. We present a robot navigation system that uses
the same symbolic spatial information employed by humans to purposefully
navigate in unseen built environments with a level of performance comparable to
humans. The navigation system uses a novel data structure called the abstract
map to imagine malleable spatial models for unseen spaces from spatial symbols.
Sensorimotor perceptions from a robot are then employed to provide purposeful
navigation to symbolic goal locations in the unseen environment. We show how a
dynamic system can be used to create malleable spatial models for the abstract
map, and provide an open source implementation to encourage future work in the
area of symbolic navigation. Symbolic navigation performance of humans and a
robot is evaluated in a real-world built environment. The paper concludes with
a qualitative analysis of human navigation strategies, providing further
insights into how the symbolic navigation capabilities of robots in unseen
built environments can be improved in the future.Comment: 15 pages, published in IEEE Transactions on Cognitive and
Developmental Systems (http://doi.org/10.1109/TCDS.2020.2993855), see
https://btalb.github.io/abstract_map/ for access to softwar
Investigation of the use of navigation tools in web-based learning: A data mining approach
Web-based learning is widespread in educational settings. The popularity of Web-based learning is in great measure because of its flexibility. Multiple navigation tools provided some of this flexibility. Different navigation tools offer different functions. Therefore, it is important to understand how the navigation tools are used by learners with different backgrounds, knowledge, and skills. This article presents two empirical studies in which data-mining approaches were used to analyze learners' navigation behavior. The results indicate that prior knowledge and subject content are two potential factors influencing the use of navigation tools. In addition, the lack of appropriate use of navigation tools may adversely influence learning performance. The results have been integrated into a model that can help designers develop Web-based learning programs and other Web-based applications that can be tailored to learners' needs
Optimal Navigation Functions for Nonlinear Stochastic Systems
This paper presents a new methodology to craft navigation functions for
nonlinear systems with stochastic uncertainty. The method relies on the
transformation of the Hamilton-Jacobi-Bellman (HJB) equation into a linear
partial differential equation. This approach allows for optimality criteria to
be incorporated into the navigation function, and generalizes several existing
results in navigation functions. It is shown that the HJB and that existing
navigation functions in the literature sit on ends of a spectrum of
optimization problems, upon which tradeoffs may be made in problem complexity.
In particular, it is shown that under certain criteria the optimal navigation
function is related to Laplace's equation, previously used in the literature,
through an exponential transform. Further, analytical solutions to the HJB are
available in simplified domains, yielding guidance towards optimality for
approximation schemes. Examples are used to illustrate the role that noise, and
optimality can potentially play in navigation system design.Comment: Accepted to IROS 2014. 8 Page
Hippocampus and retrosplenial cortex combine path integration signals for successful navigation
The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals
The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments
Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks
e-Navigation and Electronic Charting: Implications for Hydrographic Community
e-Navigation is a recent IMO initiative that aims to integrate existing/new shipboard and shore-based navigational tools into an “all embracing” system. Defined as: “... the harmonised collection, integration, exchange, presentation and analysis of maritime information onboard and ashore by electronic means to enhance berth to berth navigation and related services, for safety and security at sea and protection of the marine environment” the goal of e-Navigation is to provide an infrastructure that will enable seamless information transfer onboard ship, between ships, ship-to-shore, and between shore authorities. Core elements include high-integrity electronic positioning, electronic navigational charts (ENCs) and improved system functionality towards reducing human error. In particular, this means actively engaging the mariner in the process of navigation while preventing distraction and overburdening. There are two main challenges in going from concept to implementation. 1) Ensuring the availability of all components of the system and using them effectively in order to simplify the display of crucial navigation-related information. 2) Incorporating new technologies in a structured way, while ensuring that their use is compliant with the existing navigational communication technologies and services. To date, the primary focus of IHO Member States has been to complete ENC coverage for major shipping routes. However, e-Navigation has other implications for the hydrographic community, including: 1) Use of AIS binary messages 2) Standards for Displaying e-Navigation Information 3) Guiding Principles for e-Navigation-related Informatio
Quantum Navigation and Ranking in Complex Networks
Complex networks are formal frameworks capturing the interdependencies
between the elements of large systems and databases. This formalism allows to
use network navigation methods to rank the importance that each constituent has
on the global organization of the system. A key example is Pagerank navigation
which is at the core of the most used search engine of the World Wide Web.
Inspired in this classical algorithm, we define a quantum navigation method
providing a unique ranking of the elements of a network. We analyze the
convergence of quantum navigation to the stationary rank of networks and show
that quantumness decreases the number of navigation steps before convergence.
In addition, we show that quantum navigation allows to solve degeneracies found
in classical ranks. By implementing the quantum algorithm in real networks, we
confirm these improvements and show that quantum coherence unveils new
hierarchical features about the global organization of complex systems.Comment: title changed, more real networks analyzed, version published in
scientific report
- …
