4 research outputs found

    A grid-enabled problem solving environment for parallel computational engineering design

    Get PDF
    This paper describes the development and application of a piece of engineering software that provides a problem solving environment (PSE) capable of launching, and interfacing with, computational jobs executing on remote resources on a computational grid. In particular it is demonstrated how a complex, serial, engineering optimisation code may be efficiently parallelised, grid-enabled and embedded within a PSE. The environment is highly flexible, allowing remote users from different sites to collaborate, and permitting computational tasks to be executed in parallel across multiple grid resources, each of which may be a parallel architecture. A full working prototype has been built and successfully applied to a computationally demanding engineering optimisation problem. This particular problem stems from elastohydrodynamic lubrication and involves optimising the computational model for a lubricant based on the match between simulation results and experimentally observed data

    An agent-based visualisation system.

    Get PDF
    This thesis explores the concepts of visual supercomputing, where complex distributed systems are used toward interactive visualisation of large datasets. Such complex systems inherently trigger management and optimisation problems; in recent years the concepts of autonomic computing have arisen to address those issues. Distributed visualisation systems are a very challenging area to apply autonomic computing ideas as such systems are both latency and compute sensitive, while most autonomic computing implementations usually concentrate on one or the other but not both concurrently. A major contribution of this thesis is to provide a case study demonstrating the application of autonomic computing concepts to a computation intensive, real-time distributed visualisation system. The first part of the thesis proposes the realisation of a layered multi-agent system to enable autonomic visualisation. The implementation of a generic multi-agent system providing reflective features is described. This architecture is then used to create a flexible distributed graphic pipeline, oriented toward real-time visualisation of volume datasets. Performance evaluation of the pipeline is presented. The second part of the thesis explores the reflective nature of the system and presents high level architectures based on software agents, or visualisation strategies, that take advantage of the flexibility of the system to provide generic features. Autonomic capabilities are presented, with fault recovery and automatic resource configuration. Performance evaluation, simulation and prediction of the system are presented, exploring different use cases and optimisation scenarios. A performance exploration tool, Delphe, is described, which uses real-time data of the system to let users explore its performance
    corecore