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Abstract 

Large scale systems in science and engineering are often modelled by numerical simulation 
to monitor their behaviour and to provide the ability to forecast future state. With the 
increasing volume of data from observations in the natural and built environments, it is now 
possible to adjust parameters of such simulations so that they can track more accurately the 
actual state of the systems. The systems that are tracked by the simulations are named 
Dynamic Data Driven Application Systems (DDDAS) and the method that adjusts the 
simulations are already known as the Data Assimilation (DA) process. 

The DA utilized in DDDAS is often a compute-intensive and time-consuming process. 
Hence, existing DA applications can take hours and days to update the simulation. Although 
this updating speed is acceptable in investigations that are not subject to real-time constraints 
it is not acceptable in application that are, e.g. weather forecasting, monitoring of forest fires. 
Thus, a major challenge is to accelerate data assimilation process to prepare the simulation 
to keep pace with the development physical system being modelled. 

Computational steering has been utilized to optimize the exploration of parameter space in 
simulations. Based on the analysis of the simulation output, we hypothesize that adapting 
computational steering can also optimize data assimilation. This requires adaptation and 
automation of methods of utilizing computational steering so that data streams as well as 
human users can steer simulations. 

Consequently, we have developed a steering architecture to implement the steerable data 
assimilation process. To guarantee the updating frequency required by DDDAS, we 
introduce time management and computing resource management functions into the new 
computational steering architecture. 

To evaluate our hypothesis and steering architecture, we applied it to the problem of 
simulating the real-time behaviour of water distribution networks as an example of a 
DDDAS. Collaboration with the water utilities has provided real observation data for our 
experiments. We find that, by integrating computational steering with the data assimilation, 
the running time of the data assimilation method is dramatically decreased. Moreover, using 
steering results from the data assimilation, human users can also steer high-level parameters 
of the system. Furthermore, the time management and computing resource management 
functions are able to manage to control the running time of the steering process to 
enable real-time prediction of the behaviour of DDDAS. 
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 Introduction 

 

1.1 The Problem Domain 

Large-scale physical systems, such as meteorological systems, water distribution systems, 

and electricity grid systems undoubtedly exert a significant influence on our daily lives. In 

order to gain an insight into such systems, numerical models have been increasingly utilised 

in simulations to track their behaviours of such systems. Since large-scale physical systems 

change with time continuously, it becomes essential to adapt those simulations to precisely 

reflect the real-time states of such systems. To address this issue, observation data is 

generally taken as the reference for physical systems, in order to calibrate the parameters of 

simulations.  

The development of sensor technologies, as a substantial instrument for obtaining 

observational data, has facilitated the process of adapting simulations to monitor and predict 

behaviours of large-scale physical systems. However, the use of sensor data in simulations 

raises new challenges in computation technologies. For instance, in order to simulate large-

scale systems, the uncertainties and flexibilities introduced by the sensor data require 

intensive computing and “big data” processing capabilities. Despite that High-Performance 

Computing (HPC) resources are generally used as an infrastructure to provide a high-level 

computing power for the task, scientists and engineers require more rapid and accurate 

updates to simulations in order to react to changes in physical systems at the first opportunity.  

Computational steering has been emphasised for decades as a tool for increasing the 

efficiency of running interactive simulations on HPCs. Unlike the traditional cycle, in which 

human users need to post-process simulation results for analysis and re-run the simulation 

with changes based on this analysis, computational steering enables human users to change 

simulation parameters and receive the corresponding feedback from simulations on the fly. 

However, due to the limitations of modern methods and applications areas, computational 

steering has not been widely taken up. 

Consequently, this thesis is motivated by challenges arising in two domains. The first is 

derived from simulating physical large-scale systems, which requires a more efficient 

approach in order to run simulations on HPCs. The second aspect arises from computational 
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steering since its application needs to be extended to a broader area. This thesis examines 

the intersection of these two challenges: each of these can aid in solving the other, while 

together they also raise novel research problems. The remainder of this section discusses 

separate aspects of the two problems first, and subsequently discusses the challenges which 

emerge through the effort of integrating the two approaches. 

1.1.1 Simulations of Large-Scale Real-Time Real-World Systems 

Incorporating observations into computational simulations is one significant method for 

studying the behaviours of real-world systems [11, 31, 62]. For instance, in a weather 

forecast system, observational data are obtained from weather stations, airports, ships, buoys, 

aircraft measurements and radar stations [101], and the observations are assimilated into 

computational models to track the behaviour of the weather system. Following the 

development of the Wireless Sensor Network (WSN), more real-time and large-scale 

information is available for simulating real-world systems. For example, in the United 

Kingdom, water companies are seeking methods for the integration of real-time sensor data 

with hydraulic models that can  monitor and predict states of real-world distributed water 

network [81]. In another example [63], real-time data collected by the WSN feeds into a 

flood monitoring system to produce timely predictions and flood warnings. An additional 

study [160] describes a price control system in the electricity market that adjusts electricity 

prices by analysing real-time electricity demand and consumption.  

As simulations of real-world systems with real-time observational data begin to attract 

attentions in a great number of research and engineering fields, including traffic, oil, gas, 

weather, climate, etc., various issues have been covered as open challenges in active research 

areas such as Dynamic Data-Driven Application Systems (DDDAS) and Cyber Physical 

Systems (CPS). As general areas of research, these scientific terms have a scope of 

application which extends beyond the simulations studied in this thesis. The application area 

of this thesis focuses only on systems which incorporate dynamic data from the physical 

world in compute-intensive and real-time tasks. The rest of this section introduces two 

challenges arising in DDDAS and CPS which are also of interest in this thesis. DDDAS is a 

term that is related to the application area of this work, and it will be used to indicate the 

application scope of the rest of this thesis. 

The first challenge is that computer simulation systems must have enough flexibility to cope 

with uncertain changes taking place in physical systems. Dynamic data is a representation 
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of the flexibility of physical systems. It can indicate specific states and events happening in 

the real world and requires particular methods, resources and configurations for the cyber 

systems. The fundamental concept of DDDAS is the incorporation of additional data into 

executing applications [31]. As a general paradigm related to physical and computational 

systems, DDDAS explicitly requires systems in its scope to have the ability to dynamically 

change parameters, algorithms, data selection and computing resources.  

The second challenge arises from the time management between cyber and physical worlds. 

CPS focuses on the intersection between the cyber and physical worlds [36] and is defined 

as engineered systems that are built from, and depend upon, the seamless integration of 

computational algorithms and physical components [44]. One major concern in this area of 

research is that the changes of states in the physical systems must be represented on the cyber 

systems in an accurate and timely manner [80]. The meaning of “accurate” and “timely” 

depends on specific application areas; however, as the main challenge of CPS, the 

development of such systems must take these two requirements into consideration. In our 

case, the accuracy has a correlation with the speed of reaction to changes in physical systems. 

Since the purpose of the simulations considered in this thesis is to track the behavior of 

physical systems which vary continuously, a higher frequency of updating leads to higher 

time-resolution in the simulations results. Consequently, improving the timeliness feature of 

CPS is the challenge undertaken in this project.  

1.1.2 Computational Steering 

HPC resources, such as Supercomputers and Cloud computing systems, play an increasingly 

important role in the field of computational science and have been widely used as 

infrastructure for data- and compute-intensive tasks in a broad range of application areas. 

Conventionally, such tasks running on HPCs are non-interactive [19]. Instead, an initial file 

describing the initial states, parameters and configurations of the task is prepared, and is then 

submitted to a batch queue to wait for the required computing resources, which are assigned 

by the task scheduler of the HPC. Afterwards, the simulation runs as a black box based on 

the prepared initial file, and the states of the running simulation cannot be accessed by users. 

Finally, the task outputs results to a storage system and the results are post-processed using 

visualisation to give users direct access. This non-interactive mode, which is also referred to 

here as batch mode, initially saw wide spread usage in the mid-1980s [59] and is still one 

important method for executing tasks on modern HPCs [23, 116].  
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However, with the mounting complexity of computations and the increasing amounts of data 

in simulations, the post-processing of results, waiting in the job queue and reinitialising 

simulations in batch mode has inevitably become an intricate task. Since the batch mode 

conceals the execution process from users, the running simulation may diverge from the 

region of interest, causing unnecessary usage of computing resources and decreasing the 

efficiency of analysis of computational results. Consequently, computational steering has 

emerged as a primary solution to this problem, and provides users with the real-time state of 

a running simulation. After users have gained insights into the running simulations, 

computational steering enables the simulation to be steered by modifying the parameters 

[106]. Thus, computational steering can improve the efficiency of the original feedback loop 

that consists of two objects, human users and simulations. Figure 1-1 depicts the workflow 

of computational steering process.  

 

Figure 1-1 Workflow of Computational Steering Process: Arrows indicate communications between 
components. This figure indicates computational steering forms a feedback loop using Steering Client and 
Visualisation to help users to get real-time results and change parameters of running simulations. 

While a simulation is running, it outputs simulation status and results in real-time. This 

information is instantly processed by the Steering Client and Visualisation components and 

presented to human users. According to this timely information, the user can make steering 

operations to direct the simulation to areas of interest. Due to the benefits arising from this 

interactive ability, computational steering is gradually gaining popularity and is recognised 

as a valuable computational tool for exploring computational modelling in fields such as 

fluid dynamics, molecular dynamics, design optimisation, etc. However, although the 

concept of computational steering has attracted research interest, the take-up has been 
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limited in practice. This thesis analyses the reasons for this problem from three aspects: user-

friendliness, the human factor and the application environment.  

In terms of user-friendliness, computational steering requires specialised computer science 

expertise from users. For scientists and engineers who are not familiar with HPC 

infrastructure and network communication, the efforts that they are required to invest in, in 

order to implement computational steering, may not give sufficient return. Additionally, 

since computational steering requires a deep integration with HPC infrastructure and 

software, it is also regarded as a disposable task that can benefit only a few specific projects. 

Moreover, specific hardware is required by computational steering with regard to security, 

graphical computing requirements and ad-hoc designed steering clients. Hence, finding an 

existing computational steering framework that is compatible with users’ software and 

computing resources is an essential but cumbersome task.  

Human users are the dominant source driving the entire computational steering process. 

Through the analysis of real-time feedback from running simulations, they steer the program 

based on their specialised knowledge, empirical experience and intuition. Although steerable 

simulations can benefit a lot from human intelligence, the other side of the coin is that 

computational steering is also limited by human abilities. For example, in simulations with 

very large parameter spaces or long running times, it is not realistic for users to wait for 

hours or days in front of a monitor in order to steer hundreds or thousands of parameters. 

Although the use of algorithms to automate the steering of simulations was raised as an 

aspect of computational steering as long ago as 1996 [45,123], without a specific application 

background, existing computational steering projects have insufficient support for automatic 

steering. As a result, projects using computational steering are rarely driven by automated 

algorithm. 

In terms of the application environment, online simulation is an appealing application area 

of HPCs. For example, in climate research, scientists utilise the great computing power of 

HPCs to analyse observations and predict the climate change continuously. As a result, such 

online simulations require steering ability in order to alter parameters and search for the best 

fit. However, the real-time nature of online simulations raises new challenges in the 

corresponding steering process. Computational steering is generally limited by its sole use 

with offline simulations in practise and existing works rarely have methods to estimate the 
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time taken by users to conduct steering operations. In this thesis, we 1  denote offline 

simulations as those that have no real-time interaction with physical systems or other 

programs.  

1.1.3 The Integration of Computational Steering and Dynamic Data-

Driven Application Systems 

The development of DDDAS has provided opportunities for computational steering, and 

conversely, computational steering has provided the capability to tackle certain challenges 

of DDDAS. It is therefore hypothesised that the integration of computational steering with 

DDDAS can facilitate the development in both areas. By taking the DDDAS as the main 

application scope of this thesis, this section discusses the reasons for this hypothesis and 

further challenges raised in the integration. It is also significant to emphasize that 

computational steering does not create a new real-time computation, it only works with 

existing real-time computations in DDDAS. 

Opportunities and Challenges Raised by the Data Assimilation Algorithms 

As discussed above, DDDAS applications have high requirements for real-time features. To 

meet these requirements, tasks must run in a timely manner. Computational steering is 

widely used to improve the efficiency of running simulations, and thus, in order to address 

the problem of DDDAS, we need to find compute-intensive tasks that are required to run on 

HPCs in existing work on DDDAS. The process of incorporating observational data into 

simulations is a primary target. 

This process is also referred to Data Assimilation (DA), and is well-known as one of the 

core techniques for modern forecasting in various earth science disciplines including 

meteorology, oceanography, and hydrology [108]. Data assimilation is a procedure in which 

a model is periodically adjusted on the basis of physical observations, and the adjustment 

process must be confined to a limited time window. While the specific algorithm for 

implementing data assimilation may vary, many widely-used assimilation algorithms are 

similar in terms of reducing the difference between the estimated states output by the 

simulations and the real states obtained from the physical world [33]. Such simulations are 

driven by an estimation of the initial parameters of models; hence, to minimise these 

                                                 
1 The author of this thesis is the sole author and the sole contributor to this thesis. However, the word we is 
used throughout the thesis, since this is common practice in scientific literature and can be used to refer to a 
generic third person. 
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differences, models need a very large ensemble of estimated parameters to have a high 

probability to generate an accurate simulation. Hence, if the simulation is compute and time-

intensive, the overall time consumption required by the DA is greatly increased by the 

ensemble size, and DA typically leads to high consumption of time and computing resources 

[121].  

The effect of this great time consumption is magnified by the development of sensor 

technologies, as an increasing number of application areas, such as distributed networks for 

water, gas and electricity, begin to utilize DA. With a high update frequency of sensors, 

more timely data collection and analysis becomes possible than in traditional applications of 

DA. However, although a high frequency of updating brings advantages in terms of richness 

of data, it also creates a challenge in that the existing DA methods must handle more data in 

a smaller time window. However, many recent works overlook this aspect of the time 

management, and this situation gives rise to a “data-rich but knowledge-poor” or “data 

updated but knowledge outdated” problem.  

To reduce the running time of DA, prior work has carried out DA using HPCs. However, in 

terms of the efficiency of running jobs on HPCs, the ensemble DA methods have efficiency 

problems similar to those of other batch tasks. The main difference is that in DA, algorithms 

automatically alter the parameters of models, rather than the human users in conventional 

computational steering. In this thesis, DA is considered as the main compute-intensive 

component accounting for a large proportion of the time consumed in DDDAS. Although 

the time taken by data transport, storage and analysis of results can be important, the running 

speed of these components forms a separate research topic in DDDAS and is beyond the 

scope of this thesis. Since the DA workflow on HPCs is in batch mode, this exactly matches 

the problem domain addressed by computational steering. 

Recent work in the area of DA focused on using algorithms such as 4DVAR [28], Kalman 

filter [62], genetic algorithm [35] to automatically drive programs running on HPCs. 

However, computational steering is generally driven by human rather than by algorithms, 

and few existing works have conducted experiments on steering applications using 

algorithms automatically. Hence, no existing theory and architecture have been developed 

to support such requirement, and the use of algorithms to automatically drive high-level 

components with complicated functions and requirements has been a challenging research 

area for decades. Furthermore, it is reasonable to argue that it is necessary to retain a human 
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intelligence component in DDDAS until automatic approaches can “perfectly” handle 

dynamic real-world systems. Therefore, human intelligence and interaction are still valuable 

in terms of endowing DDDAS with flexibility. Hence, a further problem which arises is how 

to integrate conventional computational steering with the requirement for driving the 

applications of DDDAS with an algorithm. 

Challenges Raised by DDDAS as a Real-Time Computing Systems 

Real-Time Systems (RTS) are defined as systems in which the correctness depends not only 

on the logical result of computation but also on the time at which the results are produced 

[131]. As discussed in Section 1.1.1, DDDAS applications are always driven by real-time 

data from the physical world; DDDAS, as discussed in this thesis, can therefore be 

considered as a real-time computing system.  

RTS can be divided into soft and hard RTS. In a hard RTS, a response is worthless once a 

deadline has passed. By contrast, in a soft RTS, the value of the response declines as it passes 

the deadline. Since a delayed result still have some values in a DDDAS application, such as 

in the case of a delayed monitoring or prediction result, the real-time system discussed in the 

remainder of this thesis is a soft RTS. Time management in soft RTS has been researched 

for decades. In order to retain the determinism, correctness and timeliness, methods such as 

planning schemes [22], running time estimations [37], deadline assignments [78] and 

scheduling strategies [4] have emerged as individual research subfields. However, although 

DDDAS is an important application area of soft RTS, time issues are addressed only in CPS, 

where projects use methods of Workflow Management System (WMS) as an effective 

approach to conduct time management. 

However, time management methods in CPS can only allow a slight deviation from 

deadlines. This requires the system to have a stable or predictable performance which can 

only be feasible for low-level computations that are distributed on an embedded network. 

Nevertheless, with developments in complexity of computation, recent works have begun to 

transport computation tasks from embedded systems to distributed computing systems such 

as supercomputers and cloud computing systems. This breaks the original stable and 

predictable computing environment and introduces uncertainties from distributed and 

remote computing and network resources [103]. Hence, it is necessary to develop a high-

level time management method to handle the time issues in the high-level simulations. 
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These time issues persist with integration of DDDAS with computational steering. Moreover, 

integrating computational steering with DDDAS can introduce additional uncertainties to 

time management. Since this work is the first to attempt an analysis of time management in 

a steerable DDDAS, questions such as: “Does steering driven by dynamic data or human 

users have a significant influence on time management?” and “How much do they affect the 

time management?” need to be answered. A further challenging research question is “What 

we can do to retain the timeliness when this integration has an inevitable influence on the 

time management?” 

1.2 Research Hypotheses 

The central hypothesis of this project is driven by two research questions: 

“How can the efficiency of running DDDAS simulations on HPCs be increased?” and “What 

is a suitable application area to extend the usage of computational steering?” 

H1. Computational steering can be applied to DDDAS in which the steering is driven 

by both human intelligence and dynamic information collected from the physical 

world. This can improve the efficiency of data assimilation algorithms in DDDAS 

that usually run in batch mode on HPCs, and can also extend the usage of DDDAS 

applications. 

From the main hypothesis, this work is grounded on the interaction between the cyber and 

physical worlds. Based on this application environment, three further research questions are 

developed with corresponding hypotheses. The first concerns the usability of Computational 

Steering:  

How can time management be carried out in computational steering after its integration with 

DDDAS? 

H2. Time is the main concern in the interaction between the cyber and physical worlds. 

To apply computational steering in applications which involve interactions with the 

physical world, it is hypothesised that the time consumed by dynamic data-driven 

computational steering can be estimated according to the dynamic data and can be 

managed by adjusting computing resources. Unlike dynamic data-driven steering, 

human users make steering decisions based on human judgement, intuition and 
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expertise. Hence, it is also hypothesised that the time required by human users is 

manually determined by users. 

What computing infrastructure is suitable for supporting new applications in computational 

steering? 

H3. We can implement a new computational steering architecture on modern HPC 

resources since HPCs can provide great computing power to support compute-

intensive tasks targeted by computational steering. 

What real-life applications can benefit from new applications of computational steering? 

H4. As computational steering can facilitate the efficiency of the feedback loop in 

running simulations on HPCs, it is hypothesised that data assimilation and human 

analysis in DDDAS applications can benefit from computational steering. 

1.3 Aims and Objectives 

The main aim of this project is to integrate computational steering with DDDAS. This 

integration has two levels. The first level is the process of integrating computational steering 

with the data assimilation process of DDDAS. Hence, the first level of integration concerns 

about driving computational steering by dynamic data from the physical world. The second 

level involves the integration of conventional human-driven computational steering with the 

first level of integration. Hence, the second level enables human users to conduct higher-

level steering on applications of DDDAS according to the results of the dynamic data-driven 

computational steering.  

Based on this aim, the objectives of this research are as follows: 

O1. To review state-of-the-art applications of computational steering and existing 

approaches that incorporate physical data in DDDAS.  

O2. To apply the functions of conventional computational steering to DDDAS 

applications. 

O3. To develop an architecture that can support both dynamic data-driven 

computational steering and human-driven computational steering based on 

DDDAS requirements.  

O4. To implement the above architecture on HPC resources. 
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O5. To demonstrate the functionality and usability of the components developed above 

by utilizing a Water Distribution System (WDS) as a use case. 

1.4 Research Methodology 

The research method of this thesis involves three components: 1) a comprehensive review 

of computational steering and DDDAS, in order to achieve objective O1 and to support O2 

and hypothesis H1; 2) theoretical work related to utilising concepts of conventional 

computational steering in the context of DDDAS, to achieve objective O2; 3) architecture 

development to support objectives O3 and hypothesis H2; and 4) architecture framework 

and evaluation in order to achieve objectives O4 and O5, and support hypotheses H3 and 

H4. 

Figure 1-2 provides a guide to the structure of this thesis. This research is primarily an 

experiment-driven project showing that the integration of computational steering with 

DDDAS can facilitate running applications of DDDAS on HPCs. In addition, this thesis is a 

build-driven project, since 1) existing computational steering architectures are not feasible 

for conducting the experiment, and 2) it is necessary to demonstrate that new applications of 

computational steering can be deployed on real HPCs and can be applied in real-life DDDAS 

environments. From Chapter 3 to Chapter 5, therefore, this work develops computational 

steering architecture, developing computational steering components in the new DDDAS 

context (Objective O2), and developing computational steering architecture to realise the 

functions and workflow of components in the architecture (Objective O3) and developing a 

framework for the implementation of the architecture on supercomputer and cloud 

computing systems (Objective O4).  

Furthermore, the contents of this experiment-driven research are partially incorporated in 

this structure: 

• To achieve objectives O1 and O2, we have conducted a comprehensive statistical 

review of the historical development of computational steering. The data is collected 

using a program written to collect related references from popular academic online 

search tools. In this review, the concepts of computational steering are examined, 

and an analysis is carried out of the factors hindering further development of 

computational steering and showing promising advancing direction. This study is 

included in the background chapter. 
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• To support H3, time management methods designed in Workflow Management 

System (WMS) are studied and time is considered as the primary factor of the quality 

of service. More specifically, this project draws on the experience of the deadline 

assignment, workflow scheduling, planning scheme and runtime prediction methods 

of the WMS. This study is conducted and the architecture is developed in Chapter 4. 

• As the proposed system evolves from computational steering, it is important to select 

an existing computational steering architecture as a prototype to achieve O3 and 

support H3. However, most current steering architectures are dedicated to the areas 

of infrastructure and application. Rather than modifying an existing architecture, the 

core steering concepts are adopted from the RealityGrid steering library2, and its 

main features are conversed; in addition, it is customised to be compatible with 

applications of DDDAS.  

• To further support H3 and O4, a collaboration was carried out with IBM to 

implement human-driven computational steering on a IBM Blue Gene/Q system. 

This collaboration provided a prototype for implementation of our architecture on 

other HPC infrastructures. This collaboration is described in Chapter 5. 

• At last, to support hypotheses H1 and H4 and to achieve objective O5, a set of 

experiments were conducted using applications of Water Distribution System (WDS) 

as a use case; these experiments were run on frameworks developed for IBM Blue 

Gene/Q system and the Amazon Cloud computing system. The IBM Blue Gene/Q 

system is used as the example of supercomputers since two of its implementations 

are ranked as the 4th and 6th most powerful supercomputer [2]. Besides, this PhD 

project has a deep collaboration with IBM since their scientists are interested in 

applying computational steering to their system. Using Amazon Cloud as the 

example of cloud computing system is because they provide flexible and affordable 

computing resources. Based on the chosen computing platforms, we compared the 

performance of steerable application and the un-steerable control group. In order to 

further demonstrate the benefits of this work, new functions were developed that can 

only be achieved using the steerable method to address some of the research 

problems in WDS. The results of this use case were incorporated into a knowledge 

                                                 
2 The RealityGrid steering library is part of the RealityGrid project and aims to provide a highly flexible and 
robust computing infrastructure to support the modelling of complex condensed matter systems. 
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exchange project between University of Manchester and water companies. These 

contents are included in Chapter 6, which presents an evaluation of this work. 

 

Figure 1-2 A Guide for readers on the Structure and Dependencies of this Thesis: The head node, Introduction, 
generally describes the problem arising in areas of computational steering and dynamic data-driven application 
systems. It is followed by Chapter 2, the background, in which we have a comprehensive review on features 
and development of computational steering and its proposed new application area. Since no comprehensive 
review of computational steering was conducted in recent years, this review is claimed as contribution C1. 
Based on the review, we introduced our new understanding of concepts of computational steering in Chapter 
3, namely hybrid computational steering. Since this new understanding can realise the integration of 
computational steering with dynamic data-driven application systems, it is considered as contribution C2. 
Afterwards, Chapter 4 describes a proposed architecture for development of conceptual components raised in 
Chapter 3, and this architecture is considered as contribution C3. Additionally, to realise coordination among 
components in the architecture, it also reviewed and proposed a time management method. To demonstrate the 
hybrid computational steering, the general architecture must be implemented on computing infrastructures. 
Hence, IBM Blue Gene/Q supercomputer and Amazon Cloud computing system are selected as two 
representatives of HPC infrastructures. Due to the difference between them, two frameworks are implemented 
separately based on the general architecture in Chapter 5. The two implementations are considered as 
contributions C5 and C6. The implementations are used to evaluated human-driven steering and dynamic data-
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driven computational steering in Chapter 6. The framework designed for Blue Gene/Q is used to evaluate both 
types of steering. However, since the cost of using Amazon Cloud is great, only the dynamic data-driven 
computational steering is evaluated on the cloud. Moreover, the time management method proposed in Chapter 
3 is also evaluated using water distribution system as an example in Chapter 6. The method and evaluation 
constitutes the contribution on time management C4. 

 

1.5  Research Contributions 

The novel contributions of this thesis are as follows: 

C1. An exhaustive review and analysis of computational steering. 

C2. A new understanding of advantages of computational steering and the use of these 

advantages in DDDAS applications. 

C3. The provision of an architecture to support C2. 

C4. The introduction of time management in computational steering. 

C5. The provision of conventional computational steering as a web service on IBM Blue 

Gene/Q supercomputers. 

C6. The introduction of using cloud to dynamically assign computing resources to 

support the hybrid computational steering. 

It is necessary to clarify that contributions of this PhD project are achieved by collaborating 

with other researchers, scientists and companies. The collaboration includes: 

1. Working with scientists in IBM to design and develop the computational steering 

web service. This collaboration is discussed in Section 5.2. 

2. Simulating communications with a computing resource broker that is designed by a 

PhD student, Zeqian Meng. The broker is used to support C6 and it will be discussed 

in Section  4.3. 

3. Using an online water modelling tool designed by Dr. Kashif Khan as the use case. 

This toolkit provides reference to code of algorithms and water simulations packages 

that are modified to meet requirements of experiments discussed in Chapter 6. 

1.6 Publications and Research Activities 

1.6.1 Publications 

1. Han, Junyi, Robert Haines, Adel Salhli, John Martin Brooke, Bruce D'Amora, and 

Bob Danani. "Virtual Science on the move: interactive access to simulations on 
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supercomputers." In IEEE 25th International Conference on Application-specific 

Systems, Architectures and Processors (ASAP), 2014, pp. 178-179. 

2. Han, Junyi. "Steering simulations on high performance computing resources." 

In IEEE International Conference on High Performance Computing & Simulation 

(HPCS), 2014, pp. 1008-1010. 

3. Han, Junyi, and John Brooke. "Hybrid Computational Steering for Dynamic Data-

driven Application Systems." Procedia Computer Science 80 (2016): 407-417. 

1.6.2 Activities 

1. Internship at the IBM Thomas J. Watson Research Centre in New York, USA 

collaborating with IBM engineers on a prototype for dynamic computational steering 

architecture, September 2013 to December 2013. 

2. Study of data visualisation and high-performance computing at the Hartree Centre 

Summer School, June 2014 to July 2014. 

3. Assisting Dr. John Brooke of the Daresbury Laboratory in setting up a computational 

steering environment on IBM Blue Gene/Q systems, August 2014. 

4. Meeting with users and developers of computational steering at the Daresbury 

Laboratory, April 2013. 

5. Presentation and discussion with water engineers at Thames Water Utilities, June 

2013. 

6. Presentation and software demo at Thames Water Utilities, August 2013. 

7. Presentation and software demo at Northumbrian Water Company, September 2015.  

8. Poster presentation in a poster symposium in the school of Computer Science at the 

University of Manchester, November 2014. 

9. Oral presentation in a research symposium in the School of Computer Science in the 

University of Manchester, October 2015. 

 

1.7 Thesis Structure 

The structure of the remainder of this thesis is presented as follows. 

Chapter 2 presents an overview of the development of computational steering, introduces 

some background knowledge of other related areas and reviews related works.  
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Based on the understanding of the conventional computational steering described in Chapter 

2, Chapter 3 introduces the integration of computational steering concepts with dynamic 

data-driven application systems in terms of the types of simulations, the driver of the steering, 

the aim of steering, benefit of the integration and time issues raised by the integration.  

Chapter 4 describes a proposed architecture which supports the integration discussed in 

Chapter 3. The framework describes the workflow of the new computational steering process 

driven by dynamic data, and in addition, and also integrates conventional computational 

steering driven by human users. Moreover, it explicitly introduces the development of three 

primary components: the Steerer, Time Manager and Computing Resource Manager.  

Following this, Chapter 5 introduces an implementation of the conventional computational 

steering on the IBM Blue Gene/Q supercomputer. Based on this implementation, the 

implementation of components of the proposed dynamic data-driven computational steering 

on both supercomputers and cloud computing systems is then presented. 

In Chapter 6, the implementations discussed in Chapter 5 are evaluated by using simulations 

of a water distribution system as an example.  

At last, the ability and performance of the new computational steering application are 

summarised, and an agenda for future works is suggested in Chapter 7. 
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 Background and Literature 

Review 

This PhD project is initially driven by the need to improve the usability of computational 

steering. As the research continues, we argue that, instead of reducing the cost of using 

conventional computational steering, it is an opportunity to integrate computational steering 

with Dynamic Data-Driven Application System (DDDAS) that requires the ability to interact 

with simulations to improve the efficiency of utilising HPCs. As a result, we need to have a 

comprehensive review of existing works in computational steering to understand its concepts, 

developments and to introduce methods to meet requirements of DDDAS. Additionally, we 

need to study the requirements of DDDAS as a new application area that provides new 

challenges for existing computational steering projects. 

Thus, at the beginning of Section 2.1, we have a background study of existing projects of 

computational steering, and afterwards, we conduct a statistical study to analyse the 

development, impacts and challenges of computational steering. In Section 2.2, we have a 

background study of DDDAS so that its application areas and data assimilation algorithms 

can be understood to facilitate its integration with computational steering. Finally, in Section 

2.3, we discuss modern HPCs since we need to implement our project based on HPC 

infrastructures which can help applications of DDDAS to keep pace with physical systems. 

2.1 Computational steering 

As claimed by Mulder et al., in a broad perspective, all interactive computational processes 

belong to the scope of computational steering [106]. In existing computational steering 

works, this scope is confined into scientific and engineering modelling and simulations. The 

value of such computational steering has been emphasised for more than two decades. 

However, the impact of steering has been much less than originally predicted. The aim of 

this section is to understand the development process of computational steering and to 

analyse fundamental concepts of computational steering to form the background knowledge. 

Additionally, according to its development history, the author discusses reasons that form 

the recent stagnation in uptake of computational steering. This analysis includes the original 
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motivations, research interests in different periods, the research climate around 

computational steering and other factors leading to the current situation. 

2.1.1 The Origin of Computational Steering 

Computational steering has been applied in many areas in the computational science. A 

broadly accepted computational steering architecture comprises a steering Application 

Programming Interface (API) enabling users to manoeuvre simulations. Additionally, it 

contains a visualisation component which provides users with real-time visual results of 

running simulations. However, except for this common understanding, there is a paucity of 

a common taxonomy of computational steering. Since this project aims at introducing 

computational steering into DDDAS, we have to research existing steering paradigms and 

understand their conceptual components. The basic concepts of computational steering have 

been discussed in the Section 1.1.2, and this section further discusses computational steering 

in terms of functions, architectures and application areas.  

The first concept of computational steering emerged around 1970s. Works such as OPS-4 

[74], SIMPLE [38], Interactive GASP IV [45] and NGPSS [10] appeared during that time. 

Most of these works were driven by the trend that High Performance Computing (HPC) 

resources were available for more general users. Thus, users needed to find an efficient way 

to utilize computing resources. One method to improve the efficiency is to understand the 

working process of running simulations. By using the early steering tools, users could build, 

test and validate simulations in an interactive way. Although those works showed the value 

of interactive simulations, the visualization of early computational steering was only able to 

present simulation results as complex and tedious data. It was difficult for users to build 

concrete pictures of simulations only according to this information. To tackle this issue, 

Hurrion [64], in 1978, introduced the “animation” into interactive simulations. The original 

aim of his work was to reduce the confidence gap between users and developers by enabling 

users to understand the processes of simulations. Hurrion’s work was realised in the project 

named SEE-WHY and is well-known in the area of “animation” which aims at portraying 

running simulations. In 1979, Hurrion integrated functions in SEE-WHY with a dedicated 

simulation programming language to produce the Visual Interactive Simulation (VISON) 

[66]. To the author’s knowledge, VISON is considered as the first generation of 

computational steering (even if it did not use computational steering as its name), and it 

established two fundamental functions of computational steering, 1) interaction and 2) 
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visualization. After VISION, works such as [65, 137] established the fundamental 

environment of the so called visual interactive simulation around the 1980s. Consequently, 

the emphasis of the interaction was on getting visual feedback from running simulations.  

Afterwards, Mc-Cormick et al. 1987 [98] in the ViSC workshop (Visualization in Scientific 

Computing) pointed out that scientists and engineers wanted to have multiple ways of 

interacting with their running computations on an integrated platform. This influential report 

considered steering as an indispensable function in visualization, listed steering tools as the 

long term needs in visualization and even pictured the future scenario in which scientists use 

computational steering to solve problems. These ideas were transformed from a 

requirements specification to an implementation vision rapidly. This report turned Scientific 

Visualization and computational steering into a major research area [144]. 

The importance of the facility of communication between users and their simulations were 

re-emphasized by Brooks [20] and Upson [140] in the literature. Afterwards, computational 

tools, which assimilate those ideas, emerged. Works such as Application Visualisation 

System (AVS) [141], FAST [12], APE [30], etc. were the first to introduce steering and 

visualization tools into specific application areas. Robert [94], in 1990, mentioned this 

transition phase in visualization. Researchers began to design their toolkits into three 

categories: post-processing, tracking and steering, which were considered as the ultimate 

goal in visualisation technique during that period. Although those tools were not fully 

fledged as computational steering environments but as early prototypes, they presented the 

common acknowledgement that a computational steering tool could efficiently help users to 

understand simulations and reduce time intervals between modifications and analysis. More 

advanced environments, such as the Application Visualisation System (AVS), provided ease 

of use, low cost, completeness, extensibility and portability with computational steering. 

Those requirements provided principles for the emergence of computational steering 

environments during the rest of the 1990s. 

Therefore, during the rest of the 1990s, many teams dedicated themselves to the area of 

computational tools that helped users to interact with running simulations. Benefiting from 

the increasing number of computational toolkits and environments, which were driven by 

the increasing power of HPC resources, researchers began to consider further interaction 

abilities such as altering parameters of running simulations and switching algorithms used 

in running computations. The period from 1990 to early 2000s is considered as a booming 
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era for computational steering. Different teams began to develop prototypes of 

computational steering based on requirements from users. This tendency led to the situation 

that there was no unified standard for computational steering. Different systems had different 

understandings of the steering ability and developments of steering environments. In 1995, 

Progress [149] and Scirun [110] were first announced as steering frameworks which 

focussed on these steering enhancements. In 1996 and 1997, CSE [88], CUMULVS [51] and 

Magellan [147] joined computational steering family. Later, in 2003 and 2004, gViz [18] 

and RealityGrid [19] were published as the latest generation of computational steering. 

These works, by integrating the experience from other scientific projects, developed the 

embryonic theoretical basis of computational steering. This thesis now analyses these typical 

systems to focus attention on 1) what are original interests that attracted researchers to be 

involved in computational steering, 2) what are the significant progresses since 

computational steering was introduced, 3) what are the issues in current works and 4) why 

has the impact of computational steering decreased. 

2.1.2 An Overview of Computational Steering Environments 

This section introduces steering environments that have made significant contributions on 

the development of computational steering.  

Progress 

According to Jeffrey [149], if High-Performance Computing (HPC) resources continue to 

remain non-interactive, end-users and program developers will not capitalize on new 

techniques for interactive data visualization and program animation, remote and 

collaborative work, interactive debugging and monitoring. The development team of 

Progress explored requirements and challenges for computational steering by designing a 

practical toolkit. The applications, which can use Progress, should be able to run in parallel 

on supercomputers. The steering is defined as the runtime manipulation of an application 

program and its execution environments, and the objectives of steering are performance and 

functionality improvement. They distinguish their work from debugging and visualization 

by pointing out that only computational steering affects simulations results. In terms of the 

understanding of computational steering, Jeffrey agrees with Mukherjee [104] and Bihari 

[16] that steering can keep users and the targeted progress “in the loop” when the simulation 

is running. The loop consists of manipulations on parameters and real-time responses from 

running simulations.  
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In terms of the architecture of Progress, it consists of a server and a client. The server is a 

separate thread running in the same memory space of the simulation. The client is running 

on another terminal which provides users with interfaces to steer the running simulations. 

However, Progress did not provide an adequate visualization interface for users to monitor 

simulations and get visual feedback. The developers mainly focused on the design of steering 

functions. In order to make the server communicate with the simulation, programs are 

annotated with the Progress library. Operations such as reading, writing, getting states of an 

object can be realized as function calls in Progress library. 

Scirun 

Developed at the same time as Progress, Scirun [110], which was proposed by Parker, treated 

itself as a general purpose environment which should be suitable for most software 

requirements and hardware environments. According to the concept of Scirun, steering can 

clarify the cause-effect relationships within simulations. It can also facilitate the scientific 

research process by finding answers of What-If questions, namely what happens if an 

alteration was made on running programs and its executing environments. Parker thought 

steering can close the loop between modifying and getting feedback. However, in Scirun, 

the focus is not only on how to realise steering, it focused more on how to build an 

environment which can “integrate a wide range of computing disciplines with a wide range 

of equally disparate application disciplines” [111]. Therefore, Scirun is intended to provide 

a computational workbench for scientists.  

The workbench is based on the data-flow programming model in which designers use 

modules to represent their algorithms and use connections to build relationships among those 

modules. The provided C++ class indicates users how to declare steerable parameters in 

modules. Furthermore, as a workbench, Scirun provides a 3D visualization component in 

the user interface which makes it more like a mature software engineering product. 

CSE 

The Computational Steering Environment (CSE) was presented first by Jarke et al. in 1994. 

However, this work can only be found in references of later works  Thus, we discuss CSE 

by using [144] and [143] instead. As they consider computational steering as the ultimate 

goal of interactive simulations, their work is motivated by the fact that computational 

steering can “greatly reduce the time between changes to model parameters and the viewing 

of the results”. Furthermore, as a work in the rising phase of computational steering, it took 
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two important factors into consideration during its development. The first one was that the 

impact of computational steering can be determined by the steering speed. It means that 

simulations running on HPC resources must run at an interactive speed. Making 

simultaneous interactions with steered simulations is considered as an important feature of 

computational steering. Secondly, Jarke realised that even if computational steering is an 

ideal goal for interactive simulation, it is important to find an operable and realistic way to 

enable general users to use it.  

The architecture of CSE is in the server-client format. The server is a data manager which is 

responsible for recording steerable variables of different simulations. Annotations should be 

made on the simulation, which is the client here, to build connections to the server. The most 

important feature of CSE is that users can steer parameters by manipulating graphical units 

in the visualisation interface [105]. 

CUMULVS 

After several computational steering environments emerged, CUMULVS [51], which was 

proposed by Geist, was more like a commercial steering software package. However, as well 

as contributing to making computational steering more convenient for normal users, it also 

expanded functions of previous computational steering toolkits. Geist et al. have a clear 

recognition of the application area of computational steering, they proposed that 

computational steering can not only facilitate the debugging process, reveal algorithm 

dynamics and identify subtle errors, but can also help to explore physical models. They 

believe that “computational steering has the potential to revolutionize computer simulation 

experiments by allowing scientists to interactively explore (steer) a simulation on time or 

space dimensions and concentrate more on the science than on the computer”. The two main 

contributions of CUMULVS are, 1) it brought fault tolerance into computational steering 

which allows users to roll back the running simulation to playback what is interesting or 

correct mistakes, and 2) CUMULVS enables multiple users to steer and collaborate on the 

same simulation.  

The developers positioned CUMULVS as a middleware which bridges the gap between 

application codes and commercial visualization packages. This positioning, on the one hand, 

tightened the relation between the steering and visualisation, on the other hand, it clarified 

the boundary between steering and visualisation.  
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RealityGrid Steering Library 

Developed after 2000, RealityGrid steering library has become one of most well-known 

Computational steering environments. It received strong support from the UK eScience 

programme and has targeted simulations in the atomistic and meso-scales applications of 

material science. As a project starting in the grid era of the early 2000’s, the RealityGrid 

steering team did not only focus on the steering functionality, but also paid great attention 

on the infrastructure on which computational steering is applied. It made a major 

contribution to integrating computational steering architectures with the grid computing 

infrastructures. As a toolkit, which was motivated by the RealityGrid project, it provided a 

computational steering environment which was realised as a service running on the grid. 

After experiencing the rapid change in proposals for grid standards, such as Open Grid 

Services Infrastructure (OGSI) [138] and Web Services Resource Framework (WSRF) [41], 

the RealityGrid steering environment evolved into a flexible and modularised design to 

reduce the interference made by changes in web service standardization and also to be 

compatible with different HPC architectures. This thesis considers that this adaptability has 

been a key factor in ensuring that the RealityGrid steering library is still being used in current 

software projects. 

gViz 

Unlike the projects introduced above, the gViz project focused on integrating an existing 

visualisation system (Iris Explorer) with grid infrastructures. To overcome challenges that 

scientists experienced when connecting to remote visualisation system from their own 

devices, gViz intended to provide a system which can address issues caused by the use of 

visualisation in grid computing. However, since gViz is driven by issues in the grid 

computing, the project paid less attentions to steering functions compared with other projects 

mentioned above. Computational steering is treated as an add-on in this system.  

gViz went a further step to hide complex architecture from normal users. It built two separate 

systems, a backend system which provided grid resources for simulations, and a front-end 

system which provided visualisation functions for users. 

2.1.3 Taxonomy of Computational Steering 

Based on the emergence of computational steering environments, understandings of 

computational steering gradually converged. A generally accepted definition of 
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computational steering was first introduced by Parker et al. [111]. Application steering, 

algorithm refinement and performance tuning were considered as the three predominant 

functions of computational steering. The application steering refers to the ability to direct 

computational processes by altering parameters of simulations at runtime. This is also named 

as model exploration in later works that falls into this steering category. The algorithm 

refinement provides the steering ability to modify configurations of algorithms. The 

performance tuning is to steer configurations of the computing resources that are utilised by 

running simulations. In a summary, computational steering provides a tool to explore the 

parameter space of applications. The term, “parameter space” is used in this literature to 

describe different aspects of a steerable object. It can indicate parameters of simulations. 

Additionally, it can represent parameters of algorithms and configurations of computing 

resources. To realise the above functions, 1) integrating computational steering with 

applications, 2) making steering decisions and 3) conducting steering operations are 

considered as the essential components in computational steering workflow.  

1) Implementing Steering 

In the development of computational steering environments, many projects incorporated 

computational steering at the development phase by inserting library calls into the code. 

However, in many areas, comprehensive and well-tested simulation packages have no 

support for computational steering. It is not cost-effective to re-develop these projects by 

including calls to computational steering libraries in their code. Hence, the question, how to 

integrate computational steering with an existing software package, is of great importance.  

SCIRun [110] and SCIRun2 [159] are two examples of computational steering environments 

that only require users to re-develop existing projects. They are based on the dataflow 

programming paradigm and they model a program by abstracting instructions as nodes that 

operate on the data flow. Instruction nodes are realised as modules that are written in C++. 

Specific steering C++ functions are provided for users to integrate customised modules with 

computational steering. However, this environment limits the programing paradigm for 

general users, and it is expensive for an existing project to be integrated into SCIRun.  

Annotation of code is used by other computational steering environments, e.g. RealityGrid, 

CSE and CUMULVS. To implement the code annotation, users must have a comprehensive 

understanding of the projects and programs. Parameters of interests are registered by using 

the programing interface provided by the steering environment, and the communication 
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between the visualisation, steering client and simulations adds further complexity for regular 

users. Therefore, this approach is more suitable for researchers having strong computer and 

programming knowledge. 

Above steering environments require users to identify the position to make the change on 

steerable parameters. In general, the steering location is at the beginning or end of the main 

loop of programs so that states of simulations that regard to the steered parameters can be 

embodied at the next simulation step. If any variables are related to steered parameters, it is 

also important to re-compute such variables. Either steering modules or steering APIs are 

inserted at the steering locations chosen by users. They are responsible for communicating 

with the steering client and altering parameter values from the memory. 

2) Making Steering Decisions 

The majority of existing projects consider human users as the decision-makers in 

computational steering. Two sources of information are considered to inspire the decision-

making. The first source is the knowledge of human users, which includes the understanding, 

experience and intuition of particular application areas. Hence, the effect of computational 

steering is extensively affected by the individual behaviour of the users. Additionally, the 

steering decisions are dynamically affected by the feedback from simulations. This feedback 

is typically represented in the visualisation component that graphically displays the states of 

simulations. In addition to graphical feedback, values representing the states of simulations, 

such as real-time values of parameters, can also be embodied in the steering client for the 

purpose of a precise understanding. 
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3) Conducting Steering Operation 

 

Figure 2-1 A Typical Computational Steering Interface [153]: The graphic window presents real-time results 
of running simulations. The interface behind it shows parameter values and steering controls that can be used 
by users to modify steerable parameters. 

As depicted in the typical computational steering paradigm in Figure 1-1, human users alter 

the parameters of a simulation through a steering client. The steering client provides a user 

interface as the example presented in Figure 2-1. The steering decisions generated by 

changing the values and moving controls are transferred to the running simulations via this 

steering interface. In a computational steering session, without significant steering lag, users 

can have a direct visual feedback relating to their steering decisions via the visualisation 

component. This type of steering interface is adopted by a great number of environments 

such as RealityGrid [19], CUMULVS [51], CSE [88] and many other specifically designed 

steering environments [94]. Additionally, some works [25, 152] integrate the visualisation 

and steering client components. This integration provides users a more immersive steering 

experience by avoiding switching between the steering interface and the visualisation. In 

some works, direct manipulating the visualisation can increase the steering lag experienced 

by human users, and it is believed by some users that a continuous visualisation context can 

help to inspire users intuition [153]. Furthermore, McAdam [97] combined the steering client 

with a hand-held controller, and users can steer the parameters of the simulation by 

controlling two multi-axis joysticks. 



 
43 

2.1.4 A Statistical Analysis of the Impact of Computational Steering 

To analyse current situations of computational steering, only reading papers is not sufficient 

to evaluate the impact of computational steering. The author made a statistical evaluation by 

leveraging several popular on-line research tools to analyse the impact of computational 

steering from 1990 to 2013. Furthermore, as no survey of computational steering has been 

conducted in recent years, this section also compares the contributions of recent 

computational steering works with earlier works. In this thesis, we analyse the period from 

1990 to 2013 in terms of the impact of computational steering. 

The Analyzing Tool 

In terms of current searching technology, there are different kinds of academic citation 

indexing and search services such as Google Scholar 3  (GS), Web of Science 4 (WoS), 

Citeseer5 and Scopus6. On the other hand, many publishers also have on-line search tools. 

For example, Elsevier operates the ScienceDirect7 and Springer8 has a search tool on its 

website. Additionally, both Association for Computing Machinery (ACM) and IEEE 

Computer Society (the primary US umbrella organization for academic and scholarly 

interests in computing) have their own web search applications such as ACM 9  and 

IEEEXplore10. These tools dramatically improve the efficiency in doing searching, citing, 

analysing in a particular scientific area. However, despite advantages such search services 

bring to researchers, there are a number of arguments about whether those tools are suitable 

and reliable for bibliometrics. Therefore, we need to have an overview of search tools before 

we can assure that our gauges work correctly or at least with transparent limitations [69].  

After analysing recent researches on academic literature collections [5, 85, 87, 99], we found 

Scopus and WoS have higher quality than GS. Since GS collects information from other 

websites, it may have the largest coverage related to searched keywords. However, for the 

same reason, it may include same works that have different details on different websites. 

Therefore, this thesis uses GS as the first tool to get a gross collection of relevant works and 

                                                 
3 Google Scholar Website, http://scholar.google.co.uk 
4 Web of Science Website, http://apps.webofknowledge.com 
5 Citeseer Website, http://citeseerx.ist.psu.edu/index 
6 Scopus Website, http://www.scopus.com 
7 ScienceDirect Website, http://www.sciencedirect.com 
8 Springer Website, http://www.springer.com 
9 ACM Digital Library Website, http://dl.acm.org 
10 IEEEXplore Website, http://ieeexplore.ieee.org/Xplore/home.jsp 
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then utilises WoS and Scopus to filter the collection. In case of any missing references from 

the list supplied by GS, IEEEXplore, ACM DL, Springer and ScienceDirect are used as 

additional search tools to make supplementary.  

As the comparison work is tedious and there are hundreds of thousands papers needed to be 

analysed, the author built an application to communicate with the above search services. The 

principle of this application is simple. First of all, all papers that are relevant to 

computational steering are recorded with their publishing years and citation numbers by 

using GS. The citation number is the times a paper is cited by other works. These papers are 

searched again by using other web search engines. If there are any mismatches, the result 

from GS is modified. Finally, the number of papers that are relevant to computational 

steering is counted, and their citation numbers are also noted to have a general picture of the 

impact and development. The code and user interface are listed in Appendix A.  

The Trend of Computational steering 

    

Figure 2-2 Trend of Computational steering: The red and solid line indicates the number of papers of 
computational steering published and verified in our application in each year. Blue and dashed line indicates 
number of citations obtained by papers in each year.  

As indicated in Figure 2-2, the red solid line stands for the number of papers related to 

computational steering in each year, and the blue dashed line indicates the number of 

citations obtained by papers published in each year.  

Based on the number of papers, it is evident that from 1990 to 2004, it was a booming period 

of computational steering. However, this increasing trend stopped at 2006, and both numbers 
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of papers and citations dropped drastically afterwards and continued on this low-level to the 

present. Especially between 2006 and 2007, the number of citations decreased more than 

fifty percent. Additionally, there are two precursors to indicate this drop. The first one is the 

negative correlation between the citation number and paper number from 2003 to 2004. 

Another precursor is shown between 2004 and 2006 in which citation numbers remain 

around 240 for three years, but numbers of papers keeps growing in the same time window.  

To understand the development pattern of computational steering, we did another general 

review to have an overview of modern development of computational steering. In this review, 

we only select papers that have representativeness or outstanding features. Since we have 

reviewed the early stage of computational steering in Section 2.1.1, this review will start 

from 2004. 

From 2004 to 2006, many works were interested in integrating computational steering with 

the grid computing in order to enhance the visualisation capability using the grid computing 

architecture. Johnson in his paper [72] proposed issues for the scientific visualisation in 

terms of both computational steering and grid computing. He indicates that “powerful 

graphics facilities are becoming available as part of grid based computing systems. Missing 

are effective ways to tap into the available graphics capabilities of these distributed graphics 

systems to create scalable visualizations”, and the effective ways turn out to be a key 

motivation in utilizing grid computing with computational steering. With the same 

acknowledgement of challenges on the grid, Brodlie et al. [18], Zhang et al. [159], Pickles 

et al. [114] and Peter et al. [29] are dedicated to tackling problems that exist between grid 

computing and computational steering and to building environments and tools such as 

RealityGrid and Scirun2. Other works focus on data management issues in grid computing 

such as data collecting [90], data storage [54], data movement [48] and communication [119]. 

Additionally, Darema [31] proposes a new way to utilize concept of computational steering. 

In her work, she presented a new perspective on steering which, for her, means to “entails 

the ability to incorporate additional data into an executing application”. The additional data 

stated by Darema means observations from the physical world, and the executing 

applications are related to application systems that interact with physical systems.  

However, the turning point appeared in 2007 with a rapid drop on the citation number. 

According to our review, number of papers that discuss integrating computational steering 

with grid computing systems decreased as well. Instead, works that have specific 
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contributions on computational steering took advantage of web technology to provide new 

clients with computational steering [145], and to decrease the cost in using computational 

steering. Additionally, Junyi et al. [57] integrated computational steering with IBM Blue 

Gene/Q supercomputer to provide a consumable HPC web service. Denham, in his work 

[34], considered the Genetic Algorithm (GA) as a kind of computational steering. In 2010, 

Wright [154] noticed challenges brought by the increasing hardware and software 

complexity. She discussed models that use split architectures in which computing resources, 

visualisation and local devices of users are geographically divided. Moreover, the pipeline 

of visualisation can be divided as well in order to facilitate steering process. In terms of 

visualisation, Hernando et al. [60] integrate the immersive visualisation with computational 

steering. Similarly, Kuckuk et al. [84] use Xbox Kinect as an interface to interact with the 

running program. As a result, although researchers attempted to make contributions to 

computational steering, without a strong development on the architecture context, such as 

grid computing, contributions are diverse and few. 

However, only analysing works that aim at enhancing computational steering is not enough. 

In order to explore motivations behind the increase and decrease of the research trend, it is 

necessary to compare different factors that attracted interest in steering in each year from 

2004 to 2014. Since the amount of papers relevant to computational steering is too large to 

read one by one, only works of which citation numbers are greater than the average citation 

number at the same year are analysed. Additionally, selected works are categorized based 

on the area of their contributions and application areas. The division is based on the idea that 

computational steering has been involved into many research areas and integrated with 

technologies in various areas (such as visualisation, big data movement and grid computing). 

Following this analysis, the proportions of each category is shown in Figure 2-3.  
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Figure 2-3 Categories of  Using Computational steering: Contributions of works from 2004 to 2014 are divided 
into six categories. The height of columns indicates the proportion accounted by each category in each year. 
The sum of proportions can be greater than 100 since one work may cover more than one contribution areas. 

As shown in Figure 2-3, works during the declining period are divided into six categories. 

The “New Understanding of Steering Function” means works that focus on improving the 

steering ability and propose new requirements and issues on computational steering. Works 

that tackle issues on big data are categorized as “Data Processing”. Those works are 

interested in solving problems such as the transport and storage of large datasets which are 

produced as the visualisation results. The works of “Adds-on for Grid” are interested in 

enabling users to steer their applications on the grid. Since it is possible for one work belong 

to different categories at same time, the sum of proportions accounted by each category is 

greater than 100%. The “As Visualisation Tools” is also an attracting area, many works are 

committed to providing new user interfaces to interact with visualisation components. 

Additionally, such works also addressed on the performance of visualisations. Works 

belonging to the “Used in Specific Application Area” category only integrates existing 

computational steering environments or tools with specific applications. They primarily 

focus on their own scientific areas such as medicine, social science, engineer, etc. The last 

category is the “Just as a Related Work” group. This group contains works that only use 

computational steering as an example, a part of the future work and an interesting function 

of their related works. Although these works do not use computational steering at all, the 

number can, to some extent, indicate the influence of computational steering. 
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Figure 2-3 depicts the proportion that different categories account for in each year. It 

indicates the difference of efforts researchers invested on the quantity level. An interesting 

time point shown on Figure 2-3 is 2006. It is a turning point of two categories, “Adds-on for 

Grid” and “Used in Specific Application Area”. In 2004 and 2005, most works attempted to 

deploy computational steering on grids, and it created an increasing trend during that time. 

However, since 2006, efforts in this area greatly decreased. By 2013/14, there are few works 

that still mention integrating grid with computational steering. In contrast, more works begin 

to integrate existing computational steering environments into their project to facilitate the 

research in various application areas. At the beginning, the amount of projects considered 

using computational steering stayed at a low-level during 2004 and 2005. But the situation 

altered dramatically since 2006. The ratio of papers, which only use but do not further 

develop existing computational steering tools, rises by about 50 percentages and stays at that 

level from 2006 to 2014. Moreover, another category which occupies a large scale is the 

“Just as a Related Work” and its trend is stable. The evidence shows that the sum of “Just as 

a Related Work” and “Used in Specific Application Area” takes up about 80 percentage of 

steering works after 2006. Conversely, works that attempt to improve the core functions of 

computational steering, such as visualisation, steering functions and data movement, remain 

steady at a low ratio level except that works related to grid computing were once at a high 

ratio at the beginning but fell down rapidly. 

We can gain further insight by combining Figure 2-2 and Figure 2-3. The significant drop 

on citation number between 2003 and 2004 could be explained by the observation that the 

cost of learning and implementing computational steering remained too high for general 

users, especially users who have not studied computer science, to utilise computational 

steering in practise. This falling trend was temporarily alleviated by the rise of grid 

computing when researchers attempted to integrate distributed computing resources in a 

more integrated and usable structure.  

However, this promising perspective lasted only for three years. Afterwards, another major 

decrease in the interest of computational steering happened between 2006 and 2007. From 

Figure 2-3, it is noticeable that works relevant to grid computing suddenly have a 

considerable drop. Therefore, the author assumes the drop of citations referring to the 

computational steering is related to the drop of applying computational steering on grid 

computing. We assume two reasons for the loss of interest in integrating computational 

steering with grid computing. Firstly, research challenges such as big data movement and 
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real-time visualisation of grid computing cannot guarantee a stable user-experience required 

by computational steering. Additionally, a significant application direction of computational 

steering on grid is to provide computing resources and steering as an integrated web service. 

However, the future of the standardization of web services on grid is uncertain. The initially 

proposed Open Grid Services Infrastructure (OGSI) [138] was replaced by Web Services 

Resource Framework (WSRF) [41]. However, with an uncertain future of WSRF, it is not 

convincing for researchers to build a service on unstable fundamental. By communicating 

with scientists and developers of RealityGrid computational steering, we obtained a 

confirmation on the influence caused by varying standard of grid computing. 

On the other hand, a large amount of works from other scientific areas still attempts to take 

up the steering technology. This explains the existence of the largely dominant category, 

“Used in Specific Application Area”. However, limited by the fact that the integration 

requires dedicated knowledge and efforts to work on intricate HPC structures, grid service 

standards and steering code annotation, recent works appear to have less impact compared 

with previous works. 

Finally, our analysis can explain the curb between 1999 to 2002 shown by the number of 

published papers seen in Figure 2-2. We argue that the increasing trend of computational 

steering motivated by the original requirement of facilitating interactions between users and 

running simulations became a spent force after 2000. The followed-up major decline in the 

number of citations at this time supports this argument. However, this decline coincides with 

the rise of grid computing. Few of works that are dedicated on implementing computational 

steering on grid environments obtained a great amount of citations. Hence, this argument is 

also a possible conjecture to explain the largest difference between number of citations and 

number of papers in 2003. 

2.1.5 Discussion 

This section summaries concepts of computational steering based on its development and 

presents a discussion on the future direction of computational steering. 

Historical Discussion 

In the early phase, the concept of computational steering is blurry. As introduced in section 

2.1.1, works at that time were trying to explore the interactivity between running simulations 

and users. Even though the so-called interactivity is more like a deep monitoring ability, 
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these primary researches present the original motivation of computational steering which is 

to get more intensive understanding of simulations and achieve higher work efficiency. 

However, this initial motivation cannot take the premature computational steering further 

without addressing the issues of visualisation. Evolved from the animation, visualisation in 

the early 1990 enhanced the effect of feedback in the interactive simulation and brought new 

requirements on computational steering. Consequently, computational steering went into a 

transitional period during which researchers defined the previous interactivity as the tracking 

ability and coined the term, steering. However, a rose has its thorns. Since basic requirements 

of computational steering were born within the context of visualisation, researchers saw 

computational steering as an accessory of visualisation. Moreover, the application area of 

computational steering was tightly affixed to simulations running on the HPC. As a result, 

both developments of the visualisation and HPC restrict the scope of computational steering.  

At the beginning period, scientists and engineers developed computational steering toolkits 

and environments based on the assumptions and descriptions of requirements from users. In 

spite of being applied in various areas, these tools presented the basic design patterns, 

conceptual and architectural components of computational steering. Through this process, 

the fundamental nature of computational steering was forming. Although these concepts are 

still confined in the relation between HPC and visualisation, many researchers began to take 

high-level views of computational steering and to give it a more general description in which 

the users and simulations form a feedback loop, and interactions between users and running 

simulation in the feedback loop can be facilitated by using computational steering. Based on 

such concepts, researchers defined model exploration, algorithm refinement and 

performance tuning as three functions of computational steering. In order to realise the 

steering functions, computational steering needs to cover issues such as data movement in 

the distributed computing architecture, in-time data movement, in-time feedback and 

visualisation of simulation results. Furthermore, it also needs to provide users an easy-to-

use environment. As a result, the term “computational steering” also indicates the interaction 

capability between users and simulations. 

Consequently, we argue that the development of computational steering always depends on 

the development of other computer science areas, such as visualisation, supercomputers and 

grid computing. Although the development of such areas motivates and accelerates the 

growth of computational steering, their fluctuations and uncertainty can also have negative 

affections on computational steering. As shown in Figure 2-2 and Figure 2-3, the high 
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dependency of computational steering on the grid computing makes challenges of grid 

computing impede the development of computational steering. Although we believe the 

development of related areas, such as grid, can ultimately facilitate the growth of 

computational steering, it is still necessary to protect the core concepts of computational 

steering from technological turbulence in such areas during their ferment period. 

 The Future and Extrapolation 

By understanding and acknowledging the historical pattern of the development of 

computational steering, the author proposes a new direction for using computational steering.  

Based on the development of computational steering, the author acknowledges that instead 

of making contribution by implementing computational steering on new computing 

infrastructures and integrating with existing simulation models, another way of making 

contribution is to find a new application area for computational steering. Utilizing the review 

of computational steering, the author perceives opportunities to integrate computational 

steering with computations that have interactions with physical systems.  

Since physical systems can include a great amount of uncertainties and dynamics, it is 

necessary to build interactions between applications and the physical processes being 

simulated. On the software level, the interaction can delivery significant information that 

can be leveraged by algorithms to adapt models to represent real states of physical systems. 

On the hardware level, the interaction can enable dynamical assigning computing resources 

to support applications on software level. Such interaction requirements have been raised by 

other research fields, such as Cyber-Physical System (CPS) and Dynamic Data-Driven 

Application System (DDDAS), as dynamical reorganization and reconfiguration [31, 128]. 

The required innovative interaction ability in the field of CPS and DDDAS fits exactly into 

the three functions that can be facilitated by using computational steering: model exploration, 

algorithm refinement and performance tuning. The rest of this thesis uses DDDAS to 

illustrate applications that require such interaction ability. 

The most significant conceptual difference between the interaction of computational steering 

and applications of DDDAS is that in computational steering, most interactions are built 

between computation process and human users instead of the physical world. However, for 

simulations applied in DDDAS that have enormous parameter space and are required to run 

constantly, it is not feasible for human users to interact with such simulations. Based on 

existing works in DDDAS, algorithms have been utilized to realize such interactions. 
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Darema has claimed that DDDAS requires computational steering to dynamically steer 

simulations at their execution time by using data collected from the physical world [31]. 

Under this paradigm, Denham and co-workers utilize a genetic algorithm to steer simulation 

of forest fires based on dynamic data [34, 35].  Gabrielle proposes the requirement of 

automatic steering ability for hurricane forecasting [6]. Additionally, a great number of 

works in the Water Distribution Systems utilize genetic algorithm, Kalman filter, etc. to steer 

simulations based on sensor data [56, 67]. However, even though steering simulations at the 

execution time has been raised in applications of DDDAS, in practice, it can be more easily 

realized as feeding simulations with new inputs, which is similar to the batch mode of 

running simulations on HPC resources.  

On the other hand, as claimed in the CSE, computational steering should “greatly reduce the 

time between changes to model parameters and the viewing of the result” [144]. For an 

algorithmic steering, it should reduce the time consumed by interacting between algorithms 

and models. This understanding is also supported by existing works in the field of 

computational steering. To the author’s knowledge, the first person that discussed such 

steering ability is Vetter [147] who proposed the algorithmic steering to replace human users 

to make steering decisions. In addition to make automatic steering decisions, steering 

algorithms take advantage of steering interfaces deployed on the program side to have an 

efficient communication with running simulations. Similarly, Smith proposed goal-oriented 

computational steering [130] based on AVS steering environment and Swan used the term 

“inverse steering” to describe the algorithmic steering [134] based on CUMULVS.  

As a result, current works in DDDAS has started to notice the importance of computational 

steering. Their concepts of steering only focused on realizing interactions between two 

objects. Nevertheless, they neglected the consideration that the steering interaction can also 

be considered as a process of facilitating the original batch interaction. The author believes 

that by proposing applications of DDDAS as a new application area, the achievements made 

by computational steering can be applied to required interactions between dynamic data, 

algorithms and simulations in DDDAS. 

2.2 Dynamic Data-Driven Application Systems 

Based on observations from the physical system, a system that utilises models to simulate, 

predict and analyse a large-scale real-time physical system is described as Dynamic Data-
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Driven Application System (DDDAS) in the Chapter 1. The research area indicated by 

DDDAS has arisen in the recent decade. As initially proposed by Darema [31], “Dynamic 

Data Driven Application Systems entails the ability to incorporate additional data into an 

executing application - this data can be archival or collected on-line; and in reverse, the 

ability of applications to dynamically steer the measurement process”, it covers a broader 

application area than what is studied in this thesis. This chapter introduces the specific sub-

area of DDDAS that is addressed in this thesis by having an overview of the broad definition 

of DDDAS. After this section, the term DDDAS will only indicate the sub-area focused by 

this thesis. 

2.2.1 Three Components Areas of Dynamic Data-Driven Application 

System 

This section uses the taxonomy defined in the work [31] and divides the application area of 

DDDAS into applications, mathematical algorithms and platforms and infrastructures. By 

discussing these areas, we locate those areas to which computational steering can make 

contribution. 

Applications 

DDDAS requires its applications to incorporate dynamic data at execution time and be 

steered by such data. Applications typically correspond to functions such as monitoring, 

prediction and other methods that can help to analyse physical systems. Considering the 

scale and stochastic behaviour of physical systems, it is not feasible to physically monitor 

without uncertainties. Hence, monitoring on this level means conducting real-time 

simulations by interpolating dynamic information collected from physical systems. In terms 

of prediction, researchers utilise results of simulations that represent current states to 

estimate future states of the physical systems. Specific analysis such as precautions of 

anomalies and disasters, what-if simulations and decisions support tools can be conducted 

based on the monitoring and prediction as well.  

Since this project specifically takes Water Distribution System (WDS) as an example of the 

physical systems, we pay a special attention on simulations of the WDS. Khan [81] has 

discussed using on-line hydraulic data collected from sensor networks to provide a 

simulation that can track and predict states of water networks. Haines developed a decision 

support tools in which dynamic information is incorporated into simulations [56]. Hutton 
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utilised dynamic information to estimate current and predict future rainfall-runoff situations 

[117]. Preis also takes sensor data to present current and future states of a real water network 

in Singapore [118].  In addition to works in the WDS, applications of DDDAS are also 

widely used in large-scale systems such as forest fire spread prediction [35] and hurricane 

prediction [6]. 

Mathematical Algorithms 

Mathematical algorithms are critical in terms of incorporating dynamic information into 

applications of DDDAS. Algorithms need to interpolate incomplete data, estimate 

uncertainties of physical systems and even handle emergencies and anomalies happening in 

physical systems [31]. In practise, many works develop such algorithms as calibration 

processes that utilise dynamic data to rectify models used by simulations. Additionally, the 

development of applications is also integrated with the development of such algorithms so 

that the calibration results can be directly used by real-time applications, and the calibration 

algorithms are considered as data assimilation algorithms. The result of such integration was 

first raised in the area of weather forecast as the data assimilation. In the application areas 

discussed above, algorithms such as genetic algorithm [35, 81, 118], ensemble Kalman filter 

[158] and 4DVAR [121] are used to realise the calibration in the data assimilation. 

Platforms and Infrastructures 

To support applications and algorithms, computing platforms and infrastructures are needed 

by DDDAS. They must meet the real-time requirements in dynamic data storage and 

transport, dynamic computing resource management, etc. For a specific application area, 

frameworks and architectures that contain communication protocols and service standards 

also need to be developed. One significant feature of such platforms and infrastructures is 

that they must have the flexibility to adapt according to dynamic changes of physical 

processes. 

2.2.2 Algorithms of Data Assimilation  

Since the main hypothesis of this thesis is that computational steering can facilitate the Data 

Assimilation (DA) algorithms, and other interaction abilities required by DDDAS are 

derived from the interaction between algorithms and dynamic data, the this section 

specifically discuss the general workflow of such algorithms. 
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Numerical modelling has been largely deployed to describe states of physical systems. 

However, the numerical model is typically confronted with uncertainties that are raised by 

dynamic states of the physical system. To derive high-level applications, such as monitoring 

and prediction, from a numerical model, it is crucial to calibrate parameters and initial states 

of models to match with the varying states of the physical system. DA describes a collection 

of algorithms that incorporates observation data into models to derive uncertain initial states 

so as to improve the prediction [150] and monitoring of physical systems. It was first used 

in the area of meteorology [40], and as advances in data collection methods, it has been 

widely applied in hydrology, hurricane and forest fire prediction [95, 142].  

In a general applications of data assimilation, the numerical model (𝐻𝐻�), which represents the 

relationship between input model parameters (𝑋𝑋�) and model states (𝑌𝑌�), is 

 𝑌𝑌� = 𝐻𝐻�(𝑋𝑋�). (1) 

However, one main issue of using a numerical model to represent the real system is the 

uncertainty. Hence, we use the symbol ˄ to indicate that the mode, its parameters, and its 

states do not equal to their counterparts in the real systems. In terms of the model 𝐻𝐻�, it is not 

possible to perfectly represent a physical system by using a numerical model. In general, the 

numerical model is limited by the large scale of DDDAS system. For example, details of 

physical systems are always generalised out in numerical models, and structures of the real 

world are normally skeletonised and abstracted to facilitate the model design and reduce the 

computational expense. Additionally, even if model 𝐻𝐻�  can manage to signify physical 

systems precisely, the initial parameters, 𝑋𝑋�, also introduce uncertainties into the model due 

to its corresponding states of physical systems can change as time passes. 

Besides the Equation (1) which maps initial parameters to states of physical systems, another 

basic function of the data assimilation is to estimate initial parameters at the next simulation 

time step 𝑋𝑋�𝑡𝑡𝑒𝑒 based on known model states 𝑋𝑋�𝑡𝑡−1𝑎𝑎 , that is 

 𝑋𝑋�𝑡𝑡𝑒𝑒 = 𝑃𝑃�(𝑋𝑋�𝑡𝑡−1𝑎𝑎 ). (2) 

𝑃𝑃� is the method used to predict initial parameters. Exactly as for the 𝐻𝐻�, it cannot flawlessly 

predict the future initial states. In 𝑋𝑋�𝑡𝑡𝑒𝑒, the symbol 𝑒𝑒 indicates the initial parameters at time 

step 𝑡𝑡 is estimated from calibrated parameters, 𝑋𝑋�𝑎𝑎, at the previous time step, 𝑡𝑡 − 1. 
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By using 𝐻𝐻�  and 𝑃𝑃�  as tools, the data assimilation incorporates observation data, �̈�𝑌 , to 

calibrate the 𝑋𝑋�𝑒𝑒, and the calibration result is 𝑋𝑋�𝑎𝑎. If we use 𝐹𝐹 to denote the algorithm used to 

calibrate the 𝑋𝑋�𝑒𝑒, then calibrated states can be presented as 

 𝑋𝑋�𝑡𝑡𝑎𝑎 = F(H(𝑋𝑋�𝑡𝑡𝑒𝑒), �̈�𝑌𝑡𝑡). (3) 

in which the calibration algorithm compares the difference between �̈�𝑌 and the predicted 

system states  𝑌𝑌�𝑒𝑒. Typically, the �̈�𝑌 is limited by methods of collecting the observation data. 

Hence, the �̈�𝑌 can only represent observational states in the subset of the entire and computed 

states of the system,  𝑌𝑌�𝑒𝑒. The realization of 𝐹𝐹(H(𝑋𝑋�𝑡𝑡𝑒𝑒), �̈�𝑌) depends on particular algorithms 

used in the calibration, and it will be discussed in the section: Genetic Algorithm – as an 

Example of Calibration . As a result, the three basic equations of the data assimilation form 

an iteration, one example of the iteration is the Prediction and Calibration Scheme discussed 

in the following subsection. 

Prediction and Calibration Scheme 

 

Figure 2-4 The Prediction and Correction Scheme of the Data Assimilation: 𝑋𝑋� denotes initial states that are 
used to drive models. 𝑋𝑋�𝑡𝑡𝑒𝑒 and 𝑋𝑋�𝑡𝑡𝑎𝑎 indicate the predicted and calibrated states at time step t. H() is the model 
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that is driven by 𝑋𝑋� to generate observations 𝑌𝑌. �̈�𝑌𝑡𝑡 ,𝒀𝒀�𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝒀𝒀�𝑡𝑡𝑎𝑎 indicate observations collected from the physical 
world, predicted observations and calibrated observations generated by using H() and 𝑋𝑋�. Due to observations 
collected from real world cannot cover an entire physical system, 𝒀𝒀�𝑡𝑡𝑒𝑒  𝑎𝑎𝑎𝑎𝑎𝑎 𝒀𝒀�𝑡𝑡𝑎𝑎 covers more states than �̈�𝑌𝑡𝑡. This 
figure uses circled numbers to illustrate one iteration of the loop. This iteration needs to calibrate states at time 
step t based on calibrated states at time step t-1. In the iteration, calibration algorithm 𝐹𝐹() creates ensembles 
of multiple sets of initial states derived from predicted states 𝑋𝑋�𝑡𝑡𝑒𝑒 and compares results of H() driven by such 
initial states with �̈�𝑌𝑡𝑡. The initial states set that leads to a minimum difference between H() results and �̈�𝑌𝑡𝑡 is 
selected as the calibration result. Then it is used by monitoring to present current states of systems and also 
leveraged by prediction component to estimate future initial states. 

Figure 2-4 depicts the prediction and calibration scheme which is widely utilised in the area 

of data assimilation area [67, 91]. The core iteration is shown by dashed lines between 

Prediction of Initial Parameters and Calibration Algorithms. When the observations �̈�𝑌𝑡𝑡 arrive, 

the Calibration Algorithm adapts the predicted states 𝑋𝑋�𝑡𝑡𝑒𝑒 to represent the physical world. As 

the result of the calibration, 𝑋𝑋�𝑡𝑡𝑎𝑎 is utilised as the input to predict the 𝑋𝑋�𝑡𝑡+1𝑒𝑒 . According to the 

definition of the control theory, it can be defined as a feedback loop.  

Since the calibration results 𝑋𝑋�𝑡𝑡𝑎𝑎 increases the confidence on the initial parameters, the model 

driven by the calibrated parameters is utilised to realise the monitoring. But its accuracy 

highly depends on the coverage of the observation data �̈�𝑌 and the implementation of the 

calibration algorithm 𝐹𝐹(). In terms of the observation data coverage, the calibration results 

can only reflect the system attributes carried by �̈�𝑌. Hence, the bias introduced by partially 

calibrating the model is embodied by model, 𝐻𝐻, when it maps the calibration results to the 

entire DDDAS. In addition, numerous algorithms have been implemented as the calibration 

method. Their performance differs according to application area and evaluation metrics. 

Even though for the same algorithm and problem domain, the accuracy is also contingent 

upon the configuration of algorithms.  

Furthermore, the term monitoring may refer to the data extracted from the sensor reading 

directly. This type of monitoring has a small delay from obtaining data and displaying them 

on simulations. However, as limited by the amount of applied sensors, the sensor reading 

cannot often cover the monitored area sufficiently. Hence, as discussed in the application 

area of DDDAS, DA is always required by high-level applications of DDDAS. Consequently, 

since this work focuses on the calibration algorithm, only the monitoring that requires DA 

is addressed as an example of applications of DDDAS in the rest of this thesis.   

Genetic Algorithm – as an Example of Calibration Algorithms 

There is a great family of algorithms that can be utilised to conduct calibration. For example, 

there is a continuing argument about the choice between 4D-VAR and ensemble Kalman 
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filter in the area of weather forecast [75, 92], and recently there is a requirement to use the 

two algorithms together [27]. Moreover, in the WDS, which is the use case application area 

of this thesis, ensemble Kalman filter [26], genetic algorithm [117], particle filter[125], 

weighted least squares [76], etc. have been applied as calibration algorithms. The selection 

of algorithms typically depends on model linearity, computing cost and difficulty of 

implementation. 

This work has received help and support from water companies. Thus, we use the Water 

Distribution System (WDS) as the use case of the Dynamic-Data Driven Application System 

(DDDAS). We build our project based on a Knowledge Transfer Partnership project between 

the Water Research Centre and the University of Manchester [82]. In previous software 

implementations of the collaborative project, the Genetic Algorithm (GA) has been applied 

as the calibration algorithm. Thus, we need to use GA as an example of calibration 

algorithms. Additionally, although this work does not claim contributions on calibration 

algorithms, demonstrating the project built with GA provides sufficient features to test the 

concepts and implementation of our innovations in the steering process. To demonstrate the 

development based on GA can be applied in projects using other calibration algorithms, we 

have an analysis of common features of calibration algorithms. 

As indicated by Kalnay, ensemble methods and variational methods provide an option for 

scientists to realise data assimilation [75]. Additionally stated by Hutton that ensemble 

methods, especially ensemble Kalman filters and its variations, account for the majority of 

implementations of data assimilation algorithms in this developing application area, WDS 

[67]. Furthermore, GAs are also widely utilised as calibration algorithms to adapt water 

models to dynamic information obtained from the physical world [47, 83, 120, 124, 127]. 

Therefore, we argue that the method used to integrate computational steering with GA can 

also be applied to other calibration algorithms. 
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// using the predicted initial states vector 𝑋𝑋�𝑒𝑒as the first individual 
// to fill up a population by adding perturbations; each state in  
// the states vector is considered as a gene segment. 
while (current individual number < desired population size){ 
 initializing new individual; 
 inserting new individual into population 
} 

generation = 0; 
while (generation < max generations){ 
 // evaluating a generation of individuals by using them as  
 // dynamic parameters of the model 𝐻𝐻() and run simulations based  
 // on such model; at last, simulations results are compared  
 // with observations �̈�𝑌, and the difference indicate the accuracy 
 // of estimated initial states represented by individuals. 
 evaluating new population; 
 
 if (best incumbent individual is better than requirement) exit; 
 
 // using competitive individuals to generate the next generation 
 // of individuals. 
 selecting competitive individuals; 
 
 // randomly mutating states in individuals 
 mutation operations; 
 
 // randomly crossover states between individuals 
 crossover operations; 
 
 generation = generation + 1; 
}  

Figure 2-5 Pseudocode of the Genetic Algorithm: It is better to read the pseudocode with Figure 2-4. Population 
size and maximum generation number are parameters that can be adjusted by developers based on specific 
requirements. On the premises of simplifying implementation, this pseudocode utilises elitism selection, 
Gaussian mutation and simulated binary crossover [32]. 

We begin our argument by introducing the GA. Compared with other calibration algorithms, 

GA has less requirements on model and problems. However, the reason for scientists to think 

GA is too computational expensive for real-time calibration [67] is the large computational 

workload required by the evaluation function. This is because that, during the evaluation, 

GA needs to run a great number of simulations. The number depends on the population size 

and max generation number. As a result, the product of population size multiplied by max 

generation number can always lead to hundreds of thousands of simulation executions.  

Since computational steering can facilitate the process of altering parameters of models that 

are used by simulations, the author hypothesizes that the evaluation and its related 
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interactions between simulations and GA can be improved by using computational steering. 

Consequently, to present the project developed for GA so that it can also be applied to other 

calibration algorithms, the process of large-scale parameter alteration needs to be identified 

in other algorithms 

Initially, the largely utilised ensemble Kalman filter is based on Monte Carlo methods that 

acts similarly to GA except that the perturbations are added by using values from a 

probability distribution rather than mutation and crossover methods. Additionally, similar 

algorithms that are derived from ensemble Kalman filter such as  ensemble adjusted Kalman 

filter [7] fit into our project as well. Consequently, we argue that a big calibration algorithm 

family based on ensemble Kalman filter can be integrated with our work in the future. 

Furthermore, as indicated by the term ensemble, ensemble assimilation methods typically 

require a number of ensembles to estimate model errors. As the error estimation is based on 

adding perturbations on 𝑋𝑋�𝑒𝑒 , computational steering is, theoretically, able to make 

contributions on all ensemble algorithms that have the perturbation addition process, 

although the practical effect depends on the size of the ensemble.  

Returning to GA, as it is simple to be implemented, has less limitations on models, shares 

common features with a large portion of other assimilation algorithms and is also the method 

used in the collaboration project with water companies, we assume that it is reasonable to 

use the GA as an example of the calibration algorithm.  

2.3 High-Performance Computing Resources 

Both applications of DDDAS and simulations steered by using computational steering 

require High-Performance Computing resources (HPCs). Therefore, to establish the 

hypothesis, it is important to ground our work on real HPC architectures. As a result, this 

section discusses architectures of different types of HPCs and we select the IBM Blue 

Gene/Q, Amazon Cloud and CNGrid as examples of supercomputers, cloud and grid. 

2.3.1 IBM Blue Gene/Q System 

Blue Gene series systems are designed to reach operating speeds in the PFLOPS 

(petaFLOPS) range and are specially optimized for energy efficiency. There are three 

generations of Blue Gene systems, the Blue Gene/L, Blue Gene/P and Blue Gene/Q. This 
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section only introduces the Blue Gene/Q system of which two implementations are ranked 

at 4th and 6th on the TOP500 [2] in June 2016.  

 

Figure 2-6 Blue Gene/Q Architecture [53]: Arrows among components indicate their communications. The 
racks shown on the left are computing resources, it is also named as Backend nodes. The File servers provide 
storages for other components. The Service node checks administration of Users. The FNs provide users the 
interface to interact with File servers and Back end nodes. 

Figure 2-6 depicts the architecture of the IBM Blue Gene/Q system. The pictures of physical 

racks shown on the left present the essential component to provide the computing resources. 

It is also named as the Backend Node (BN) since users cannot directly interact with it. A 

rack is densely assembled by one or two compute midplanes and one I/O drawer. 16 node 

boards constitute one compute midplane and each node board contains 32 compute cards. 

Finally, one compute card is made of one 16 cores chip and 16 GB DDR3 memory. At a 

maximum, the system can be scaled to 512 racks.  

In addition to the primary component, the system comprises: service node, Frontend Node 

(FN), storage system and the communication subsystem. The service node is used for 

administration and management of the Blue Gene/Q system. The FNs, which are also 

referred as the login nodes, are the interface for external users to access the computing and 

storage resources. 

In a regular workflow, users login to the FN to prepare their programs with the software 

provided by the system. Since the Blue Gene/Q is a diskless [53] system, the File server is 

Racks/ 
Backend Nodes 
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used as the storage to keep users’ programs and data. After being edited, compiled and 

debugged, programs of users can be submitted to a job scheduler, such as the LoadLeveler 

scheduler, in which programs are queued based on the their priority. Finally, results are 

transferred from the backend compute nodes to the file server so that users can post-process 

results via the FN. 

2.3.2 Amazon Cloud 

Rather than purchasing and maintaining a dedicated supercomputer, cloud computing 

provides software and hardware of HPCs as services to end users. On the hardware level, 

cloud computing offers users great flexibility so that they are able to tailor computing 

infrastructures in minutes or even in seconds. Hence, this flexibility eliminates an up-front 

commitment by cloud users, and moreover, it provides the ability of paying for usage on 

demand [8, 9]. This service is named as Infrastructure as a Service (IaaS). On the software 

level, cloud computing divides the service into Platform as a Service (PaaS) and Software 

as a Service (SaaS). The PaaS sheds complexities of infrastructure and provides tools and 

environments for users to conveniently deploy applications. In addition, the SaaS tends to 

separate the possession of a software from its use [139]. By providing software as a service, 

end users can focus more on using the software rather than installing and maintaining it. 

Moreover, users can also access the software service via thin clients. For example, depending 

on the development of the WEB technology, the software services on the cloud can be based 

on Web services, and on the client end, users only need a web browser to utilize the SaaS 

[21]. 

Cloud computing has been provided as a service by a number of companies such as Amazon 

Elastic Compute Cloud, Google AppEngine, Microsoft Azure, etc.. Comparing details of 

different cloud services is beyond the topic of this thesis. According to the market research 

done by Magic Quadrant, Amazon Cloud service is ranked the first cloud service provider 

in Q2 2016 [136]. Hence, this work uses the Amazon Cloud as an example of large-scale 

computing environment on the cloud. 

Figure 2-7 displays a guidance provided by the Amazon Web Service (AWS) Architecture 

Centre which aims at helping general users to build highly scalable and reliable systems in 

the AWS cloud. Hence, we use this architecture as an example of general architectures of 

large scale clusters implemented on the AWS cloud. 
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Figure 2-7 Amazon Cloud Batch Processing [1]: This architecture is similar as that of IBM Blue Gene/Q system. 
Arrows indicate communication between components. The EC2s on the up right corner are computing 
resources users can dynamically apply or release based on their demands. It can be considered as the Compute/ 
Back end Nodes. Users also use the EC2 to realize the FN on which users manage their jobs. The Amazon 
SimpleDB, Amazon RDS and Amazon S3 can store results obtained from computing EC2s. The difference is 
on read/write speed and data format. Additionally, queue services can be applied to job and results management 
if this architecture is shared with multiple users. 

The Amazon EC2 stands for Amazon Elastic Computing node which is also referred as the 

instance. Instance is similar to a virtual computer, and users can apply a number of instances 

to meet their requirements on the computing power. In Figure 2-7, one EC2, on the bottom 

left corner, is used as the Job Manager for users to install applications and manage their jobs. 

On the upper right corner, a quantity of EC2s are used as Worker Nodes to execute the 

computing task. The amount of worker EC2 instances can be scaled automatically according 

to requirements of users. Furthermore, the program and input data of users are stored in the 

Amazon Simple Storage Service (S3) which can also be used to store the output from Worker 

Nodes. Alternatively, results of tasks can be transferred to storages that are shown as the 

Amazon SimpleDB or Amazon Relational Database Service (RDS), and users can manage 

their tasks by using Amazon Simple Queue Service (SQS) so that tasks can be queued up 

and executed sequentially. 
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2.3.3 China National Grid 

 

Figure 2-8 Grids and Clouds Overview: Grid computing system has overlaps with supercomputers, clusters 
and clouds. This work does not differentiate clusters and supercomputers. 

Grid computing is considered as a branch of the distributed computing [49]. There is little 

consensus on how to define the difference among grid computing, cloud computing and 

supercomputers. This thesis agrees with Ian Foster who believes grid computing has 

overlapping features with supercomputers, cloud computing and even clusters as shown in 

Figure 2-8 [43]. The main reason for the grid computing shares common features with the 

others is that grid computing aims at “enabling resource sharing and coordinated problem 

solving in dynamic, multi-institutional virtual organizations” [42]. The virtual organizations 

are defined as flexible, secure, coordinated computing resource in a grid. Therefore, a 

supercomputer, a cloud computing resource, or a cluster which is able to be coordinated 

under a specific grid can all be used in a virtual organization. As a result, the coordination is 

the primary concept differs the grid computing from others. 

Grid computing environment has several names in different areas. In China, it is called High-

Performance Computing Environment (HPCE), but in most European areas, it is named as 

the e-Science Environment. Alternatively, a synonymous term, cyberinfrastructure, is used 

by the US National Science Foundation (NSF). Since the HPCE is designed by referring to 

the UK’s e-Science projects [61], and collaborated with US Cyberinfrastructure projects 

such as Globus [50], this project uses the HPCE as an example of the grid computing. 
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Figure 2-9 The CNGrid architecture [155]: The Center Servers and Monitor Servers bridge users and HPC 
sites. One user holds two accounts, one for the Grid service and one for their accessible sites. Each site is a 
computing resource provider who either registers supercomputer or cloud computing resources to the 
Operating Center. Thus, the structure of each site is similar to that of supercomputers and cloud. The difference 
is, instead of login on Front End/ Front Servers, users only need to submit jobs on the Operating Center which 
selects optimal site to execute their jobs. 

The China National Grid is a realisation of the HPCE and its architecture is shown in Figure 

2-9 [43]. On the top box of this figure, the environment account is issued to external users 

to login to the operating center. The center hides computing resources details from external 

users, thus, users can manage their programs and tasks as they are run on clusters and 

supercomputers. The difference is that their jobs are distributed to the site selected by the 

Center/Monitor Servers. A Front Server is applied to a Site to coordinate with the Center 

Server. In order to be a Site in the Grid, the Front Server must update its real-time usage 

status for the Center Servers. Moreover, the architecture and configuration of a Site must 

match with the coordination protocol required by the specific grid. The design of a common 

coordination protocol is still a challenging research area since it is related to the collaboration 

of different utilities of which the HPC systems are designed dedicatedly. Consequently, the 

grid computing transfers complexities and difficulties of utilizing HPCs from end users to 

system engineers and designers.  
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2.3.4 Discussion 

Different types of HPCs provide various options for users. Supercomputers, cloud and grid 

computing are three types of HPCs that are widely in use. Thereafter, this project should 

have the compatibility to be installed on these three types of HPCs. 

Since computational steering focuses on interactions between users and simulations running 

on computing resources, it is crucial to discuss the method of building interaction to the 

computing resources on different types of HPCs. From the above introduction, 

supercomputers, cloud and grid have similarities in their architectures in terms of 

communicating with computing resources. In IBM Blue/G supercomputer, the computing 

resources, BNs are connected to FNs and Service nodes, in which the FNs provide the 

interface for the supercomputer to connect to the outside network. Additionally, on the cloud, 

the Job Manager hides the computing resources, Worker Nodes, from the external network. 

Users can only access the cloud through the Job Manager. Finally, on the grid, each site has 

an interface, namely Front Servers, that bridges outside communications to the internal 

computing resources. One additional function of the Front Server, compared with FNs and 

Job Manager, is the negotiation with the grid Operating Center.  

As a result, communications with all computing resources on the three types of HPCs must 

be relayed by a front node/manager/server. For grid computing, it may also need to be 

relayed by an additional Center Server on the Operating Center. Consequently, this similarity 

provides a template to develop a computational steering project that has the compatibility to 

be applied to general HPC architectures. 

However, even though HPC architectures have such similarity, the complexity raised by 

above architectures still hinder regular users to utilize their great computing power. As 

pointed out by Xu [155], an important open question is why technology for global networked 

supercomputing has not yet become as widespread as the Internet or Web. One common 

complaint is that modern HPCE is too complex and heavy to learn and use.  

In terms of providing computational steering for HPC users. The implementation of 

computational steering on supercomputers and cloud maybe impeded by the security 

requirements on interactions between the external network and the internal network of the 

computing resources. Especially for a dedicated computing resource, users do not have the 

authority to implement the steering communication, and the cost of applying a steering 
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implementation outweighs the potential benefits. Additionally, the issue of realizing the 

steering interaction is even worse on the grid computing systems. As discussed in 2.3.3, grid 

does not allow users to interact with FNs on a resource provider. The Center Servers build 

one extra wall between users and the BNs. 

This situation can be improved by providing computational steering as a SaaS. SaaS is 

typically based on PaaS in which the software service depends on a reliable platform service. 

However, the development of computational steering service always binds to specific grid. 

As a rapid developing area, grid cannot guarantee a stable platform service for computational 

steering. One example is the unstable standardization of web service popularized by big 

companies such as the WSRF. It initially replaced the original Open Grid Services 

Infrastructure (OGSI). However, it required a plethora of Web Service standards and it is 

now argued that the Web Service style of distributed computing should be replaced by using 

the Representational State Transfer (REST) architectural style. Therefore, since 

computational steering has to keep adapting to different architecture styles, it cannot be 

provided as a stable service. 

Moreover, the coming version of HPCE 3.0 will be a human-cyber-physical ternary 

computing [155]. This thesis believes computational steering will play an important part in 

future utilization of HPCs since it facilitates the interaction with running programs. This 

interacting ability is crucial to the human-cyber-physical ternary computing since both 

human and physical systems can raise dynamic and uncertain requirements on tasks running 

on HPCs.  

In a conclusion, different types of HPC architectures provide common features that can be 

utilized to realize communication with computing resources. However, the development of 

computational steering is restricted by the complexity and uncertain environments of HPC 

infrastructures as well. Based on requirements of future HPC applications, this thesis 

develops a computational steering architecture that can be developed to tackle existing issues 

by being specific to common features of HPC architectures, instead of being dedicated on 

specific HPC infrastructure. Existing HPC providers, such as Amazon cloud and Microsoft 

Azure, can provide the required HPC as a service to evaluate the computational steering 

architecture. 
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 Real-Time Hybrid Data-Driven 

Computational Steering 

Section 1.1 has discussed the gap between the large scale Dynamic Data-Driven Application 

System (DDDAS) and computational steering. To fill this gap, this chapter proposes a new 

concept, namely Hybrid Computational Steering, which consists of the Dynamic Data-

Driven Computational Steering (DDDCS) and Human Driven Computational Steering 

(HDCS). 

Long running simulations of DDDAS are based on models that encompass a large amount 

of dynamics and uncertainties. Calibrating such models includes exploring a large parameter 

space and requires the calibration to run constantly. Because of the size of parameter space 

and the required continuity, algorithms are widely used to conduct the calibration. The 

interaction between algorithms and models forms a feedback loop that can be facilitated 

using computational steering. However, many existing projects have considered human 

users as the sole engine of computational steering for decades. Hence, the first problem 

raised in integrating computational steering with DDDAS is to utilise an algorithm to drive 

the steering. 

Additionally, even though algorithms can handle the calibration of DDDAS, users can have 

dynamic requirements on many high-level functions, such as monitoring11 and prediction, 

in which algorithms have not yet been proved to be reliable and efficient enough to meet 

users’ requirements. As a result, human intelligence is still required in such systems. 

However, most existing works in DDDAS only consider human users in the offline functions 

such as algorithm tuning.  Hence, the second problem that needs to be tackled by this chapter 

is to find what interactions between human users and computations can be facilitated by 

using computational steering in the context of steering a DDDAS. 

In the rest of this chapter, DDDCS and HDCS are discussed based on our review of 

computational steering (in Chapter 2) to tackle the two research problems. Section 3.1 

discusses the aim of the hybrid computational steering and usage of both DDDCS and HDCS. 

Afterwards, based on steering usages, algorithms and human users are discussed as steerers 

                                                 
11 The monitoring function can be realised by real-time simulations that keep representing states of physical 
systems. Such monitoring has been introduced in Chapter 2. 
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of DDDCS and HDCS in section 3.2. This discussion is followed by steering targets 

introduced in section 3.3, and steering loops depicted in section 3.4 and 3.5. 

3.1 The Aim and Usage of Hybrid Computational Steering 

This thesis assumes that computational steering can be seen as a tool that increases 

interaction speed of two objects. The objects can be pairings of simulations and data-streams 

or simulations and human users. Consequently, even though this thesis addresses the hybrid 

computational steering in the context of Dynamic Data-Driven Application Systems 

(DDDAS), its aim is same as the conventional computational steering.  

Parker et al. [111] summaries that the computational steering can be used in model 

exploration, algorithm refinement and performance tuning. Since this summary has been 

widely cited in works in the area of computational steering, the rest of this section discusses 

usages of the proposed hybrid computational steering in the context of DDDAS. 

3.1.1 Using Computational Steering in the Calibration of Dynamic Data-

Driven Application Systems 

As this thesis is addressed in the context of DDDAS, it is necessary to discuss what processes 

of DDDAS can utilise computational steering. While the concept of DDDAS is suitable for 

a great number of application areas which can have significantly diverse functions, to present 

the steering ability in such a sizeable and complex system, a common and crucial steering 

goal is required. Based on the background study discussed in Chapter 2, this thesis believes 

that studying, analysing and predicting physical systems are the ultimate objectives of 

DDDAS applications. However, uncertainties of physical systems and uncertain reliability 

of numerical models impede the achievement of these objectives. Therefore, a significant 

and appealing challenge related to the common steering aim is exploring uncertain 

parameters of simulation models to search parameter spaces for what can represent 

corresponding states of physical systems. Typically, the evaluation of such processes is 

based on dynamic observations on physical systems. The exploration process is generally 

termed as calibration and using the results of calibration to conduct high-level functions such 

as monitoring and predictions, are named as Data Assimilation (DA). We have discussed 

that the calibration of DA is considered as the interface to apply computational steering on 
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simulations that represent physical systems. Hence, this thesis takes the model exploration 

as the first usage of computational steering in DDDAS.   

The model exploration in conventional computational steering can be further divided into 

goal-oriented exploration and variation-oriented exploration. Goal-oriented exploration is 

similar to driving a car with specific directions and destinations in mind. The steering 

operation is determined based on traffic conditions. In contrast, the variation-oriented 

steering is more similar to exploring a city by a driver and being curious about the view 

around the next corner. The steering operation is determined by the area of interests, namely 

what-if scenarios. For the goal-oriented exploration, each steering operation can be 

evaluated by measuring the distance between steered simulation states and expected 

simulation states. However, for the variation-oriented exploration, the steering results are 

evaluated subjectively by human users.  

Therefore, by taking DDDAS application context into consideration, the calibration can be 

taken as analogous to the goal-oriented exploration in which calibration algorithms use the 

dynamic observations of physical world as the goal and explores model parameters to 

simulate similar states to the observations. Additionally, the objective functions of the 

calibration process can be used to evaluate the exploration results. On the other hand, it is 

challenging to use algorithms to automatically define the areas of interests for researchers 

and engineers. Hence, it is difficult to determine values of the variation-oriented exploration 

by algorithms. Consequently, a calibration process of DDDAS belongs to goal-oriented 

model exploration giving the summarised application areas in the context computational 

steering, and the real-time computations of a calibration process raises a problem that can 

be tackled by using computational steering to increase the speed of interactions between 

calibration algorithms and calibrated simulations.  

3.1.2 Using Computational Steering on the Calibration of Dynamic Data-

Driven Application Systems 

Another challenge in the calibration process of DDDAS is to provide the ability to configure 

algorithms to adapt to dynamic events happening in physical systems. Even though existing 

calibration algorithms, such as Genetic Algorithm (GA), have the self-adaption abilities to 

change specific methods based on dynamic observations, it cannot meet all requirements of 

users. For example, for situations such as emergencies and anomalies, it is crucial to adapt 

algorithms with particular targeted methods. However, automatic algorithms adaption is still 
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a challenging research area. As discussed in Chapter 2, many existing applications of 

DDDAS only consider general calibration algorithms, and challenges in applying automatic 

algorithm adaption create the research gap in adapting calibration algorithms to cope with 

uncertain situations in physical world. 

This work believes an alternative method is to build interactions between algorithms and 

human users. The argument of the importance of human users has been discussed in Chapter 

1. Researchers, such as Salhi [126], believe that the ultimate goal of computational steering 

and autonomic computing system is to exclude humans in the control loop. However, by 

using the current technologies, human intelligence is crucial to analyse complex systems.  

As stated by Lin et al., “the self-regulation and separation of concerns provide human 

beings with the ability to concentrate on high-level objectives without having to micro-

manage the specific details involved [89].” This thesis believes that the first use of 

computational steering has raised a promising goal-oriented model exploration method to 

tackle the “specific details” in DDDAS by algorithms. Hence, the human users can play 

another role by focusing on high-level steering, and the aim of HDCS is to incorporate 

human users into the real-time workflow of DDDAS, and facilitate interactions between 

users and DDDAS applications. 

If we assume that real-time functions that utilise the calibration results can provide human 

users high-level perspectives of DDDAS applications, it is reasonable for us to assume that 

human users need to alter parameters of calibrations to adjust performance of the high-level 

functions. However, because the interaction between calibration algorithms and human users 

is an underdeveloped area, most calibration algorithms used in DDDAS are static and pre-

tuned in offline mode. This thesis proposes that computational steering can be used to 

facilitate the interaction between human users and algorithms; hence, it can enable human 

users to alter parameters of algorithms in on-line mode. As a result, the usage of HDCS in 

this thesis is in altering parameters of algorithms. Corresponding to the three categorisations, 

it is similar to the algorithm refinement. However, the difference is that instead of searching 

an optimal configuration of algorithm, the HDCS enable users to steer algorithms based on 

their requirements on the high-level functions. Thus, we name the usage of HDCS as 

algorithm adaption. 

For an example of the algorithm adaption, the calibration algorithm requires a large amount 

of time to conduct a fine-grained calibration. However, in regular situations, users may not 
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need such accuracy on simulations; hence, they can steer the calibration algorithm to 

generate a less accurate calibration result with less time consumption. On the other hand, 

users can also increase the calibration accuracy on a specific area of simulations by steering 

the calibration algorithm to take more dynamic information and wait for a longer time. 

Moreover, the usage of this type of computational steering also specifically indicates the aim 

in this thesis of HDCS is to facilitate interactions between human users and calibration 

algorithms. 

3.2 The Steerer of Hybrid Computational Steering 

The term “steerer” is defined as the object that makes the steering decisions. Based on the 

two usages discussed in Section 3.1, this section introduces algorithms and human users as 

two steerers of the hybrid computational steering. Before discussing the two steerers, we 

firstly review current utilisations of algorithms and human users in computational steering 

and related areas. 

Conventionally, human users dominate the role of steerer. However, significant challenges 

have been raised in the integration of computational steering and DDDAS. As a real-time 

system, the required deadlines attached to steering tasks cannot be guaranteed by human 

users since they require flexible time to analyse the current status. As simulations that reflect 

behaviours of physical systems contain enormous amounts of dynamics and uncertainties, it 

is infeasible for human users to have a comprehensive understanding and rapid steering 

reaction on dynamic data. Furthermore, human users are more suitable for simulations that 

have short running times. It is not realistic for human users to supervise a real-time 

simulation that simulates physical processes constantly. Even in steering scripts, particular 

steering behaviours can be triggered by pre-defined conditions, and the reliability of this 

method cannot endow users enough confidence with regards to a physical system that has a 

large number of uncertainties. Therefore, human users are not able to fulfil the steering 

requirements in most DDDAS applications.  

Rather than driving computational steering by human users, algorithms which are used as 

the alternative steerers [134, 147, 148] have been discussed before 2000. In a summary of 

existing works that use algorithms as the steerer, they indicate that computational steering 

will finally converge into goal-oriented computation when human users, the intrinsic 

component of computational steering, are replaced by algorithms. They regarded the 
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algorithm, which replaces the original human users, as the new steerer, namely the 

algorithmic steering agent. However, restricted by applicable areas and algorithms, complex 

steering objectives required by human users cannot be realised by automatic steering agents 

proposed in early works. Moreover, steering is linked with software development in the early 

stage and is required to be highly reactive, which requires a human rather than algorithmic 

steerer. Nevertheless, in some existing works, only the ability of changing model parameters 

either by algorithms are addressed [13, 14, 34, 93]. The feature of improving the interaction 

speed between the steerer and steered objects, which was raised with the emergency of 

computational steering (see Section 2.1.2), is neglected.  

We argue that computational steering is also addressed by the necessity of facilitating 

interactions between human users and computations. However, a large number of existing 

works only focus on developing components to realise such interaction. This thesis sees 

computational steering from a different aspect in which computational steering can facilitate 

the feedback loop between different processes such as simulations, human users and 

algorithms by increase their interaction speed. Therefore, we claim that the contribution of 

computational steering is not only to provide interaction ability, but also to provide a 

mechanism whereby steerers and steered simulations can interact more efficiently compared 

with interactions without computational steering. Hence, the steerer of this project is a 

container that should be compatible with components, e.g. algorithms and humans, that 

repeatedly conduct steering-enhanced interactions with complex and time-consuming 

computations. Based on this understanding, the two steerers implemented in the hybrid 

computational steering are introduced as follows.  

Algorithmic Steerer 

We need to have an algorithmic steerer that will take care of lower levels of the steering, 

that are highly data intensive and hence are not suitable for a human steerer. Consequently, 

this thesis looks for algorithms that explore parameter spaces in DDDAS. As a result, the 

data assimilation is selected since it is the main compute-intensive component of which 

calibration requires a significant amount of running time to explore parameter spaces. 

Moreover, the calibration algorithms in the assimilation process require frequent interactions 

with simulations. Hence, this thesis believes that calibration algorithm is a potential 

component that can be used as the automatic steerer of the DDDCS, and the improvement 
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brought by computational steering can be represented as the reduced time consumption of 

calibrations. 

In considering the type of steering decisions made by the algorithm is initially driven by the 

variation of the physical system in a DDDAS, quality of the data is the key determiner of 

the steering decisions. Therefore, we use the term, Dynamic Data-Driven Computational 

Steering (DDDCS), and we also use it to match “Dynamic Data-Driven Application System 

(DDDAS)”, which is the name of the application context of this thesis, in order to show how 

those two acronyms are closely linked. 

Human Steerer 

In addition to the algorithmic steerer, this thesis keeps steering interfaces for human users to 

realise the second usage of the hybrid computational steering. The reason is that current 

algorithmic steerers can only replace human users to conduct function-simple but workload-

cumbersome steering tasks. For fuzzy and complex situations in a physical system, human 

instinct and intelligence are indispensable. Therefore, in this thesis, the steering tasks driven 

by human users are lifted from the low-level parameter exploration to high-level functions 

analysis. For example, the steering results generated by the DDDCS must be utilised by 

functions such as monitoring and predictions. Instead of focusing on the calibration process, 

human users can analyse the monitoring and prediction results, and steer the calibration 

algorithm, which is the steerer of the DDDCS. Since the results of calibration process are 

input for high-level functions, this human-driven computational steering can indirectly steer 

the high-level functions in terms of accuracy and updating frequency. Compared with 

conventional computational steering, this human steerer requires more dedicated 

visualisation components to analyse its steering results. For steering interfaces, a graphical 

user interface that shows values of steerable parameters and provides controls for users to 

alter these values can be utilised.  

Since both conventional computational steering and the steering raised in this thesis can be 

driven by human users, in the rest of this thesis, we use Human-Driven Computational 

Steering (HDCS) to indicate the human-driving part of the proposed hybrid computational 

steering, and use conventional computational steering to indicate the “legacy” human-driven 

steering. 

In conclusion, this thesis applies the algorithmic steerer in a new application area, DDDAS. 

Additionally, this thesis keeps the original human users as another type of steerer to steer 
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the algorithmic steerer. Finally, DDDCS and HDCS are used to indicate the two 

compositions of the hybrid computational steering. 

3.3 Steering Targets 

Steering targets are the objects that interact with steerers. For algorithmic steerer in the 

Dynamic Data-Driven Computational Steering (DDDCS), its steering targets are simulations 

that can reflect the effects of steered models. In the calibration process, calibration 

algorithms alter parameters of models. The models are used in simulations that reflect 

steering effects on the difference between simulated states and observed states. In this thesis, 

models are considered as static descriptions of physical processes, and simulations are 

considered as processes of running the model. Hence, even though the calibration algorithm 

alters parameters of a model, we consider algorithms that actually interact with simulations. 

Therefore, simulations in the calibration process are steering targets of the algorithmic 

steerer. 

For human steerers in the Human-Driven Computational Steering (HDCS), its final steering 

target is the output of high-level functions. However, as these functions are driven by results 

of the calibration in DDDAS, users can steer parameters in the calibration process to 

indirectly steer simulations. Additionally, endowing human users the ability of steering the 

calibration can help users to adapt the algorithmic steerer to steer the simulation to areas of 

interest. By introducing the aim and usage of HDCS, we have explicitly discussed the reason 

to steer the algorithms by users. Moreover, it is necessary to discuss that this thesis attempt 

to provide an interface to include human users into the workflow of DDDAS. Hence, by 

introducing the conventional computational steering into DDDAS, using the calibration 

algorithm as an example of the steering target of HDCS, other parameters that are interested 

by users may also be steerable in the future. 

A significant difference between the hybrid computational steering and conventional 

computational steering is that this project applies computational steering on a real-time 

system. Hence, understanding real-time features of simulations in DDDAS is significant. 

Therefore, the rest of this section only further discusses real-time simulations that are used 

as the steering targets in the DDDCS. 
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3.3.1 Three types of Steerable Simulations 

Previously, computational steering was rarely integrated with real-time simulations. The on-

line feature is usually discussed in terms of obtaining visual results of the steered simulations 

in real-time. However, to integrate computational steering with simulations of physical 

systems, it is essential to differentiate simulations of the Dynamic Data-Driven Application 

Systems (DDDAS) from simulations steered by conventional computational steering. 

Consequently, this thesis summarises existing simulations that have been integrated with 

computational steering into 1) static simulations, 2) offline dynamic simulations and 

discusses 3) real-time simulations targeted by this thesis. To describe features of theses 

simulations, simulation time and wall-clock time are two types of time considered in this 

section. The simulation time is a measurement of duration of simulated events and gaps 

between them. It provides a dimension to compare states of different stages of a simulation 

process. The wall-clock time is the human perception of the passage of time in the physical 

world. It measures the actual amount of time a computing task needs in seconds, minutes 

and hours. 

1) Static Simulations 

Firstly, the static simulations are further divided into two types. The first type includes 

simulations that only reflect states of systems at a specific time point. Additionally, the 

second type contains simulations that include time passages. But as static simulations, 

instead of keeping changing as time passes, these simulations enter into a stable status after 

several iterations of computations. For example, in a wind tunnel experiment, users want to 

explore the parameter space for an optimal aerodynamic design of a sport car. After an 

initialization process, environmental parameters such as the strength and direction of the 

airflow do not fluctuate as simulation time passes. Both types of the static simulations are 

based on static inputs and they both generate static results at the end.  

After being integrated with computational steering, core computations of such simulations 

continue iterating and checking values of steerable parameters. Hence, without re-initialising, 

when users steer parameters, simulation results can be emitted faster. In practise, simulations 

of computational molecular dynamics and fluid dynamics, which have widely been 

integrated with computational steering, belong to this type.  

2) Offline Dynamic Simulations 
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In offline dynamic simulations, the behaviour of the simulation can evolve in time. The 

offline dynamic simulations can be considered as running static simulations with a series of 

static inputs. Hence, it can represent a process in a physical system. The examples can be 

given from offline simulations that attempt to reproduce a process that evolves as time passes. 

By using a driving simulation as an example, the aim of an experiment is to explore the 

fastest route by driving a car from location A to location B through N crossroads. In front of 

each crossroad, users need to steer the direction parameter which changes the direction of 

the vehicle. Simulation results include the traffic map and conditions and the location of the 

vehicle. Since the simulated environment keeps changing, users need to make the steering 

decisions in an appropriate amount of time according to the information they can collect 

from the simulated map and the traffic condition. Hence, steering offline dynamic 

simulations have their timeliness, which means that the steering decision has no value or 

gradually less value when it arrives after its best time point (deadline) to take effect. In this 

example, a delayed turning command may lead the vehicle to a remote route.  

However, since states of these simulations only change with the simulation time instead of 

wall-clock time, users can pause the simulations to leave enough time to make steering 

decisions. If any steering decision is delayed by a mistake, a steering checkpoint can be 

retrieved to make the steering decision again. If no steering decision is made, the simulations 

change in a static pattern and wait for steering decisions. Therefore, by including the time 

saved from re-initialisations, computational steering can be used to steer simulations that 

evolve to areas that are not of interest back to the areas of interest in the investigation and, 

accordingly, reduce time wasted on the overall amount of computation for the whole 

investigation. 

3) Real-time Simulations 

The previous wo types of simulations are offline simulations that execute based on 

simulation time. However, to monitor and predict behaviours of physical systems, 

simulations are required to be synchronised with physical systems. Hence, we use the term 

real-time simulations to describe dynamic simulations that are based on the wall-clock time. 

As a result, such simulations need a proper updating frequency to avoid missing important 

changes in the real world. By using the driving simulation as the example, but this time, 

human users steer a real vehicle remotely with the help of a simulation. The simulation 

provides the simulated environment including traffic conditions, the road map and the real-
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time states of the vehicle. The pilot needs to explore the simulation to find the optimised 

route based on the real-time and predicted information. However, different from the second 

simulation type, if the pilot cannot finish the steering in time, we assume that the vehicle 

either waits in front of a green traffic light or keeps the current driving direction, which may 

lead to a detour. Since the simulation is synchronised with the physical system, a delayed or 

improper steering decision cannot be retrieved, and its influence can only be made up by 

following steering decisions. Consequently, it is essential to constrain the time for the Steerer 

to analyse simulation results and make steering decisions. However, most current 

computational steering projects only focus on offline dynamic and static simulations. To the 

author’s knowledge, no existing works focus on steering real-time simulations.  

Because this thesis focuses on simulations of DDDAS, the simulations must reflect the 

information represented by the dynamic real-time data. Thus, only real-time simulations fit 

into our context. In addition, this thesis defines the class of real-time simulations as an 

ensemble of static simulations in which the real-time states of the physical system at each 

time-step are obtained by using a real-time input to calibrate new static simulations. Hence, 

it is important to notice that the real-time simulations discussed in the remainder of this thesis 

includes the workflow of the two static simulations types as well. 

3.3.2 The Steerable Real-Time Simulation 

The author agrees with the definition that simulations are the imitation of the operation of a 

real-world process or system over time [71], and a real-time simulations can reflect 

significant changes in the physical world in time. Practically, the updating rate can be 

different from one microsecond per simulation time step to one day or one week per 

simulation time step. Hence, it is necessary to discuss the frequency of simulation updates.  

The continuous simulations and discrete-event simulations are two terms tightly connected 

with the real-time simulations in the field of modelling and simulation. As discussed by Birta 

et al. [17], continuous simulations are based on a set of differential equations that represent 

deductive processes which can be governed by the specific physical laws. In contrast, the 

time of discrete-event simulations jumps between events and may advance faster or slower 

than the physical time. Hence, it is argued that discrete-event simulations are not real-time 

simulations since it can omit subtleties such as state changes and unknown events [157]. 

However, recent works such as Belanger et al. [15] consider the discrete simulations as the 

real-time simulations provided that the condition of triggering events is sufficiently subtle 
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to reflect important changes of the physical systems. Moreover, recent research integrates 

continuous dynamics with the discrete-event models by approximating a superdense model 

of time [86]. Simulations of such superdense model outputs the status between two discrete 

events by calculating the effects of a set of casual-related actions. The actions are executed 

strictly in order but without the concept of time passage. Hence, as long as the time 

restrictions between two discrete events are met, the simulations behave similarly to the 

physical system. 

The author considers that both continuous and discrete-event simulations to be real-time 

simulations in this thesis. Regarding the real-time discrete-event simulations, they must 

comply with the deadline of each event, and only the actions between two events can neglect 

the time passage. As a result, the steerable real-time simulations are divided into steerable 

continuous simulations and steerable discrete-event simulations. For the steerable 

continuous simulations, they are considered as continuous simulations with an imposed 

discrete time step12, which is the steering time step. The size of the time step is determined 

by particular applications and one steering operation must be finished in the interval between 

two discrete steering time steps. Alternatively, the time requirement of the steerable discrete-

event based simulations is determined by the interval between two events. Different from 

continuous simulations, which can have a static steering time step, discrete-event 

simulations must predict the arrival time of the next event to set the deadline for conducting 

the steering. In conclusion, the continuous simulations require static deadlines. On the other 

hand, the discrete-even simulations require dynamic deadlines. 

Because this thesis uses the simulation of the water distribution network as the use case, a 

widely used water network simulation package, EPANET is used as an example to introduce 

real-time simulations. EPANET is a software package that simulates the status of large-scale 

water distribution system, and it has a function named Extended Period Simulation (EPS) 

that aims for simulating a continuous period. The basic simulation function is static and only 

calculates the state of the network at one time step, and this time step can only reflect the 

state of the physical world at a specific time point. By combining these single time steps 

together, the EPS can simulate the continuous states of a network during a period by 

presenting the system states at a serial of time points. Additionally, it assumes states that one 

time point can represent states of the interval between two time points. On the other hand, 

                                                 
12Continuous simulations with discrete time step are a time based simulations. It is different from the discrete-
event simulations, which are event based. 
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the continuous simulations can also be integrated with discrete events. By assimilating real-

time information from the physical world, this offline dynamic simulation can be used as a 

real-time simulation. 

3.4 The Steering Loop of Dynamic Data-Driven Computational 

Steering 

In light of the analysis of computational steering in Chapter 2, this thesis believes that 

implementing computational steering includes three phases, namely, identifying steerer and 

steering target, selecting steering instrument and facilitating the control loop. Hence, this 

section follows these phases to discuss the implementation of the Dynamic Data-Driven 

Computational Steering (DDDCS). 

As the steerer of DDDCS is a calibration algorithm and the steering targets are simulations 

used in the calibration process, to apply computational steering, it is significant to study the 

calibration process so as to target the feedback loop that can be facilitated by computational 

steering. Firstly, the term “feedback loop” used in computational steering needs to be 

explained. Vetter [148] first raised the analogy between computational steering and the 

closed-loop feedback system based on feedback control systems described by Philips [112], 

and it follows the definitions of the control theory. In the control theory, the control loop can 

be categorised as an open or closed control loop. As defined by Hellerstein [58], an open 

control loop, also referred as feedforward control, is a technique that avoids adjusting input 

by referring to its output. In contrast, outputs of a closed control loop can be fed back to 

affect its future inputs. Hence, the closed control loop is also named as the feedback loop.  

 

Figure 3-1 The Original Workflow without Computational Steering: It depicts the batch mode of running 
simulations on HPCs in a form of a closed control loop and indicates a closed control loop has already existed 
before introducing computational steering. 
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According to the survey discussed in Section 2.1.4, many works only noticed that 

computational steering can close a control loop by providing the ability of interactions 

between human users and simulations [73, 93, 102, 105, 106, 110]. This thesis argues that 

definitions referred from the control theory are not sufficient to capture the nature of the 

conventional computational steering. A problem domain targeted by computational steering 

is the batch process of analysing compute-intensive and time-consuming models. Figure 3-1 

depicts the workflow of such batch process. The output of the computation shown, as symbol 

⨁, is used by human users, and the following modifications made to the input are based on 

the output. Therefore, in the context of the control theory, the previous workflow has already 

been a closed control loop or a feedback loop. Hence, it is not comprehensive to claim that 

computational steering can only close the loop. 

 

Figure 3-2 The Workflow of Computational Steering [148]: This figure is used to be compared with Figure 
3-1to support our argument that it is necessary to emphasize another feature of computational steering is to 
reduce the length of the feedback loop. 

Figure 3-2 presents the workflow of computational steering introduced by Vetter. By 

comparing with Figure 3-1, Figure 3-1 shows that human users can only get results at the 

end of the simulation process and change the input parameters at the beginning of a 

simulation process. However, in Figure 3-2, the steering agent can make steering decisions 

and obtain computation status when the simulations are still running. Therefore, this thesis 

reasons that computational steering does not only provide a new control loop. In addition, it 

improves the efficiency of the original control loop by reducing the length of the closed 

control loop. 

Based on our understanding of computational steering, the first task of implementing 

computational steering is to target control loops in DDDAS. As stated by Kephart et al. [79], 

the underlying concept of an autonomic component is a control loop. Hence, since DDDAS 
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can contain a complex hierarchy of autonomic components to achieve high-level functions, 

we assume it is reasonable to find control loops in applications of DDDAS. Consequently, 

targeting the closed control loop becomes the new task. 

The realisation of a DDDAS can be diverse among specific projects. Since the calibration is 

a critically time-consuming component of DDDAS, we attempt to deploy computational 

steering on components of the calibration process by analysing its workflow as shown in 

Figure 3-3.  

 

Figure 3-3 The Workflow of the Calibration Process: The arrows indicate dataflow between components. The 
Calibrator calibrates models being used by Simulations based on information represented by Sensor Data. 

The steerer in this workflow is the Calibrator, which is a calibration algorithm that can be 

used to adjust model parameters. The sensor data is considered as an example of the dynamic 

data of physical systems. On the right side, the Simulations component alters parameters of 

its models based on input received from the Calibrator and outputs simulation results based 

on such models. As a result, the Sensor Data is taken by the Calibrator as references to 

evaluate its calibration results represented by simulated states. To present the control loops 

as depicted in Figure 3-1 and Figure 3-2, Figure 3-4 extends the general workflow of 

DDDAS shown in Figure 3-3. 

 

Figure 3-4 Control Loop Targeted in the Dynamic Data-Driven System: This figure is derived from Figure 3-4, 
and is used to expose the control loop in the calibration process in DDDAS. The black solid lines indicate the 
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workflow which is not integrated with computational steering. The red dashed lines indicate the workflow 
which is integrated with computational steering. 

The solid arrows between Calibrator and the input and output indicate the previous control 

loop, and the dashed arrows indicate the workflow after being integrated with computational 

steering. In the steering workflow, Simulations are kept running. However, rather than 

looping from the beginning to the end, Simulations do no re-execute initialisations. The 

Initialisation component includes processes of writing input parameters into memory and 

recalculating variables that are related to input parameters. Hence, only re-running core 

computations avoids re-initialising unchanged parameters and their related variables. This 

mechanism can improve the efficiency of programs of DDDAS since its primary application 

areas are the large-scale physical systems which typically have a significant amount of input 

parameters. Moreover, as indicated in Section 3.3.1, simulations can require a pre-processing 

phase to reach a stable or a specific state, namely the "transient" or as "spin-up" time, and 

only then are the input parameters utilised by the model. This thesis includes this phase into 

the Initialisation component. For such simulations, computational steering improves the 

speed of iterations by restarting the model with environmental parameters of previous 

executions. Furthermore, even though the improvement represented on one re-execution is 

slight; however, as the Calibrator has the potential to issue a tremendous amount of re-

executions as discussed in Section 2.2.2, the overall effect of improvement can be 

considerable. Conventionally, it is solved by using parallel programming to tackle massive 

reruns of the simulations. This thesis proposes that by combining computational steering 

with the parallel programming, the running time of calibration process can be further reduced.  

However, as well as benefits, applying computational steering to calibration process also 

introduces issues that have not been addressed by existing works in computational steering. 

Since real-time systems having a time requirement on the calibration, it is necessary to 

guarantee the time consumed by interactions between the calibration algorithm and steered 

simulations. The dynamic quality of the data can have a major effect on the workloads of 

the calibration process. Therefore, it is necessary to predict the time required by the 

calibration process with respect to available dynamic computing resources. However, 

existing time management on computational steering only focuses on reducing update 

latency between the steerer and steering targets. To the author’s knowledge, no work has 

studied the time issues raised by dynamic steering workload. As a result, this thesis considers 

time management and computing resources assignment methods in scientific workflow 

systems to tackle this problem. Because these methods are not conventional computational 
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steering methods and require to be explained within an architecture, we will discuss them in 

the design of the steering architecture in Chapter 4. 

3.5 The Steering Loop of Human-Driven Computational 

Steering 

Because the aim of HDCS is to facilitate interactions between human users and calibration 

algorithms, and the calibration algorithm is the steerer of the DDDCS, this thesis considers 

that the realisation of HDCS is also an integration between HDCS and DDDCS. In terms of 

three steering development phases introduced in Section 3.4, we have identified the human 

users as the steerer and calibration algorithm as the steering target. Hence, this section 

discusses the feedback loop in HDCS. 

 

Figure 3-5 The Feedback Loop of Human-Driven Computational Steering: The solid arrows present the 
feedback loop before using computational steering, and the dashed arrows indicate the feedback loop after 
being integrated with computational steering. The steerable workflow enables users to alter the calibration 
online. However, in the original workflow, users can only make changes on the calibration in offline mode. 
Since the DDDCS only affects communication inside the calibration process, this figure can also indicate the 
composite steering loop of the hybrid computational steering. 

Figure 3-5 shows the proposed feedback loop in HDCS. The Calibration component includes 

the calibration algorithm. The solid arrows present the feedback loop before using 

computational steering, and the dashed arrows indicate the feedback loop after being 

integrated with computational steering.  

Since without integrating computational steering with this workflow, calibration algorithms 

are typically tuned in the offline mode by users. Only historical sensor data can be used to 

tune the calibration algorithm. Based on the results of high-level functions, users modify 

parameters of the calibration process in order to obtain expected results from high-level 
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functions. This workflow is same as the batch mode described in Section 1.1.2, and it is used 

to search an optimal configuration for the calibration algorithm to cope with situations 

indicated by the historical sensor data. 

On the other hand, integrating computational steering with original workflow enables human 

users to have direct interactions with calibration algorithms. It reduces the length of the 

original feedback loop to enable users to refine algorithms more efficiently. Moreover, as 

the computational steering also incorporate human users into the workflow, human users can 

alter parameters of calibration algorithms without break the real-time nature of applications 

of DDDAS. As a result, the calibration can use dynamic sensor data to support high-level 

functions to present the real-time states of the physical systems.  

In addition to refining calibration algorithm, this online interaction ability can be used to 

adapt the calibration algorithm based on requirements of users on high-level function, since 

the high-level functions uses results of the calibration algorithm as input. A typical example 

of an algorithm parameter that can be steered by human users is the amount of sensor data. 

For instance, during regular situations, the variation of physical system is not great; hence, 

users can reduce the amount of sensor data to reduce the calibration workload and obtain a 

faster calibration speed. On the other hand, when emergencies occur, users can increase the 

amount of sensor data assimilated by the calibration and require a more accurate 

understanding of emergencies. Consequently, high-level functions are used as the 

visualisation component of the conventional computational steering to provide steering 

feedback to users, and the visualised information is the core knowledge that users can 

analyse for their steering operations The implementation of the visualisation component 

depends on requirements of specific applications. However, the visualisation components, 

such as those require heavy rendering tasks, also have the potential to be a barrier for 

computational steering. As the use case of this project does not have a time-consuming 

rendering task, only computing resources for the visualisation will be considered in the 

future work. 

One issue raised with integrating HDCS with DDDCS is the potential conflicts between 

human users and the calibrator. At the current stage, this project assumes modifications made 

by human users and sensor data are at two different levels. Human users only handle tasks 

that are not reliable to be executed by algorithms, and the steering in simple and tedious 

tasks are handed over to algorithms. However, in future works, it is possible and interesting 
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to enable human users to steer some interesting parameters currently handled by algorithms 

and vice versa. Hence, it would be necessary for developers to carefully arrange the steering 

code annotations to guarantee steering priorities required in different projects. Moreover, a 

dedicated function to introduce race conditions would be interesting to be developed in the 

future work. 

Moreover, even though the HDCS is a high-level computational steering, it can influence 

the low-level components. By using monitoring as an example of the high-level function, a 

higher updating frequency of the monitoring requires a higher convergence speed of 

calibration algorithm. When users do not want to increase speed by losing accuracy, it is still 

necessary to dynamically assign computing resources to meet user requirements. Hence, the 

dynamic workload of the steerable calibration is an issue introduced by the HDCS, and this 

project proposes to allocate dynamic computing resources as a solution to address this issue. 

For example, the monitoring can be updated every 30 minutes by running calibration on 

eight-cores machines. However, when users require the system to be updated every 15 

minutes, 20 cores need to be assigned to the Calibrator (16 cores may not be enough due to 

the parallel overhead).  However, to realise such funtions, a computing infrastructure that 

includes time management and a computing resource assignment must be developed.  Since 

such functions are beyond scope of conventional computational steering, and this chapter 

mainly introduces the hybrid computational steering inspired by the conventional 

computational steering, this thesis discusses them as one function of the architecture which 

will be discussed in Chapter 4. 

3.6 Chapter Summary 

This chapter discusses the theory of hybrid computational steering. It consists of both 

Dynamic Data-Driven Computational Steering (DDDCS) and Human-Driven 

Computational Steering (HDCS).  

We emphasise that computational steering does not only create a feedback loop; instead, it 

improves the speed of interactions between components in the feedback loop. This 

understanding is used to describe the aim of the hybrid computational steering and aims of 

its subsystems, DDDCS and HDCS.  

For DDDCS, model exploration is defined as its usage, calibration algorithms are its steerers 

and real-time simulations of physical processes are its steering targets. The hypothesized 



 
87 

advantage of using DDDCS is that it reduces the length of the original feedback loop in the 

calibration process and increases the speed of interactions between calibration algorithm and 

calibrated simulations. Finally, its specific aim is facilitating interactions between calibration 

algorithms and simulations. 

Since using algorithms to conduct all steering tasks has not yet been proved to be reliable 

enough to meet users’ requirements, the calibrator in DDDCS may need to have a higher 

level input for supporting interpolation. As a result, algorithm adaption is defined as the 

usage of HDCS in which human users are steerers and calibration algorithms are its steering 

targets. The hypothesized advantage of using HDCS is that it facilitates interactions between 

human users and calibration algorithms. Hence, human users can adapt high-level real-time 

functions by altering parameters of calibration algorithms without interrupting real-time 

applications of DDDAS. Finally, its specific aim is facilitating interactions between human 

users and calibration algorithms. 
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 Hybrid Computational Steering 

Architecture and Time Management 

Based on the concepts of the hybrid computational steering discussed in Chapter 3, it is 

inevitable for this thesis to design an architecture to establish concepts of the hybrid 

computational steering. Hence, this architecture must be designed with respect to three main 

problems raised in integrating computational steering with Dynamic Data-Driven 

Application System (DDDAS). Firstly, conventional computational steering is typically 

driven by human users, and to our knowledge, this thesis is the first to integrate 

computational steering with the calibration process in DDDAS. Hence, the architecture must 

include a new design of workflow and communication methods among components of the 

Dynamic Data-Driven Computational Steering (DDDCS). Additionally, the DDDCS must 

be integrated with the HDCS to form a composite computational steering architecture. Lastly, 

since time is a critical factor in integrating the in-silico process with the physical world, 

using dynamic information to drive computational steering must meet the time constraint 

required in the physical world. Hence, this architecture must comprise components to 

manage time and computing resources for the DDDCS and HDCS. 

Consequently, the aim of this chapter is to introduce the development of the hybrid 

computational steering architecture. The general organisation of components is introduced 

by grouping components into three layers, 1) HDCS, 2) DDDCS and 3) Time and Computing 

Resource Management. The time and computing resource management layer is also named 

as the DDDCS on the Hardware Level (DDDCS-HL), and the reason will be discussed in 

Section 4.1. To differentiate the time and computing resource management with the DDDCS. 

We change the DDDCS to Dynamic Data-Driven Computational Steering on Software Level 

(DDDCS-SL). This general architecture defines relations among layers and general 

functions they need to realise. Afterwards, the general architecture is separated into three 

sub-architectures designed specifically for each layer. Based on the target function, the sub-

architecture defines relations among components and introduces methods utilised to realise 

such components.  

Additionally, even though the development of the architecture is based on general 

applications in the context of DDDAS. Since introducing a specific use case can make the 

explanation more clearly, a Water Distribution System (WDS) is used as the example of 
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DDDAS to create an exemplary application for readers. As the simulation and visualisation 

occupies a much less execution time compared with the calibration process, the key aspect 

being considered is time for running the calibration process. Moreover, a number of projects 

have provided toolkits to support the development of computational steering (See Section 

2.1). However, many of them must be used under specific development environments. Thus, 

this thesis explicitly uses the RealityGrid computational steering to support the development 

of steering related components, since the RealityGrid steering has a high flexibility to be 

integrated with other projects. We also hope to motivate the usage of RealityGrid after this 

thesis is published. 

4.1 Architecture of the Hybrid Computational Steering  

By introducing simulations of DDDAS as the new application area of computational steering, 

we generally propose two types of computational steering: Dynamic Data-Driven 

Computational Steering (DDDCS) and Human-Driven Computational Steering (HDCS). 

Additionally, the DDDCS is further divided into two levels. The first level is the software 

level on which the algorithm steers models based on real-time observation data. The second 

level is the hardware level on which the amount of the computing resources assigned to 

software is steered to meet the requirement of the time constraint. The integration of the 

DDDCS and the HDCS is named as the hybrid computational steering, and its theory has 

been discussed in Chapter 3. To support this theory, this section introduces the architecture 

of the hybrid computational steering developed in the context of the Dynamic Data-Driven 

Application System (DDDAS). 
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Figure 4-1 Hybrid Computational Steering Architecture: The red lines outline the HDCS on the highest level. 
The blue lines outline the DDDCS-SL in the middle. The green lines outline the DDDCS-HL. This figure 
illustrates conceptual components of the hybrid computational steering on three layers. It indicates the 
communications among these conceptual components to fulfil the aims explained in concepts of the hybrid 
computational steering.  

Figure 4-1 illustrates the general architecture of the hybrid computational steering. The 

HDCS, DDDCS on the Software Level (DDDCS-SL) and DDDCS on the Hardware Level 

(DDDCS-HL) are three groups that constitute the general architecture of the hybrid 

computational steering, and they are organised as three layers on top of each other. The 

HDCS is on the highest layer on which human users make steering decisions based on the 

steering results of the DDDCS-SL. The DDDCS-SL is located on the middle layer. It 

explores parameter spaces of simulation models by utilising computational steering and 

provides input for the high-level functions on the HDCS layer. The DDDCS-HL is at the 

bottom layer. It manages the time and computing resources utilised in the middle layer. The 

core layer is the DDDCS-SL. Firstly, as the main component of the DDDCS-SL, the 

Calibrator component is a link between the preceding and the following steering layers. 

Secondly, our main hypothesis is to use computational steering to increase the speed of the 

calibration in DDDAS; hence, steering on the other two layers are derivatives used to support 

the steering at the middle layer. Since each of the three steering layers has a steering loop, 

this section describes this architecture by introducing the steering loop and their surrounding 

components, in which the core layer, the DDDCS on the software level, is the first 

component discussed. 

This work considers a model as the mathematical representation of a physical world, which 

can be driven by parameters to generate states of physical systems. Additionally, a 

simulation is a process of using those parameters to drive a model and to present generated 

results. Based on this understanding, we discuss components inside the DDDCS-SL. Firstly, 

the Models component is used by Simulations to estimate states of the physical world. 

However, in practise, some of the parameters that drive the Models cannot be directly 

observed from the physical world, and observations such as sensor data can need pre-process 

before they can be used by the simulation. Thus, the Calibrator is applied to estimate the 

driving parameters of the Models. During the calibration, the Calibrator drives Models with 

different sets of parameters and comparing the simulation results with the Dynamic Data. 

The model is well-calibrated when one set of estimated parameters can drive the model to 

generate simulated results that are close enough to the Dynamic Data. Otherwise, the 

Calibrator is stopped after reaching its deadline. The measure of whether a simulated is close 
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enough to sensor data is determined by specific stopping criteria configured in the calibration 

algorithm. After the calibration finishes, the calibration results are taken as input by the 

High-Level DDDAS Functions such as Prediction and Monitoring. They can provide Human 

Users with insight of the states of physical systems. The Calibrator is the Steerer in the 

DDDCS-SL. It interacts with Simulations and steers parameters of Models used by 

Simulations. The communication loop formed by the interaction between Calibrator and 

Simulations is considered as the steering loop on the middle steering layer. 

Above the DDDCS-SL is the HDCS in which Human Users analyse results from High-Level 

DDDAS Functions. Based on the analysis, Human Users, as the Steerer of the HDCS, steer 

configurations of the Calibrator. Hence, we claim that the HDCS is on a higher layer than 

the software-level DDDCS. The Steering Interface is the same as what is defined in 

conventional computational steering. It provides users with the real-time information from 

the Calibrator and provides users with controls to alter steerable configurations of the 

Calibrator. As a result of using this architecture, two limitations that prevent Human Users 

from interacting with applications of DDDAS are addressed. Firstly, since results of High-

Level DDDAS Functions are based on the calibration results from the middle layer, the 

steering decisions made by Human Users can indirectly affect results of the High-Level 

DDDAS Functions. Hence, Human Users do not need to manage an enormous amount of 

steerable parameters in the parameter space. Secondly, by separating HDCS from the 

DDDCS, this architecture does not require Human Users to make steering decisions under a 

tight time constraint. One difference between the HDCS shown in this architecture and 

conventional computational steering is that this thesis does not have a specific visualisation 

component. Instead, the indirect steering results are presented in the High-Level DDDAS 

Functions, and visualisation components could be built in these functions. Figure 4-1lists 

Monitoring and Prediction as two examples of such functions in DDDAS. Finally, the 

second steering loop is formed by the interaction between Human Users, the Calibrator and 

High-Level DDDAS Functions. 

The last steering loop includes the Time Manager, Computing Resource Manager and the 

Calibrator. This loop is defined as the DDDC-HL. Since meeting time requirements is 

crucial in DDDAS, this thesis proposes a method to manage the required execution time of 

the dominantly time-consuming components, the Calibrator and Simulations, by assigning 

them dynamic computing resources based on the time constraint. To achieve this function, 

the Time Manager maintains relations among the real-time Dynamic Data, Calibrator 
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parameters steered by HDCS, amount of computing resources and the required running time 

of the Calibrator. Hence, the Time Manager sends the amount of required computing 

resources to the Computing Resource Manager which further applies for computing 

resources from the Computing Resource Broker. The Computing Resource Broker maintains 

a service with computing resource providers which provide computing resources such as 

grid, cloud and supercomputers. The Computing Resource Manger also indicates the amount 

of applied computing resources to the Calibrator which adapts its parallelism scale to 

available computing resources. The feedback sent to the Time Manager is the actual running 

time consumed by the Calibrator with values of steered parameters. Together with dynamic 

data and requested computing resources, the Time Manager stores this information as a 

historical relation to estimate the execution time in the future. It may seem as a contradiction 

to claim computational steering on the hardware level. This thesis argues that, even though 

objects steered by the Time Manager and Computing Resource Manager is the amount of 

computing resources, additionally, they also affect the program of the Calibrator in terms of 

running in parallel. We further argue that steering computing resources ultimately affect the 

results users obtained from the High-Level DDDAS Functions. Hence, this thesis describes 

altering the amount of computing resources as a type of steering driven by dynamic data. 

Additionally, as this ability of assigning dynamic computing resources is a specific research 

area which has been addressed by works in grid computing, this work does not include it in 

the discussion of the hybrid computational steering in Chapter 3. 

After introducing the overall architecture of the hybrid computational steering, the rest of 

this chapter introduces our methods to implement components on the three steering layers 

explicitly. Since the implementation of HDCS has no additions on the conventional 

computational steering, its description is interwoven into the description of other steering 

layers. 
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4.2 Architecture of Dynamic Data-Driven Computational 

Steering on Software Level 

 

Figure 4-2 The Architecture of the Dynamic Data-Driven Computational Steering on the Software Level: This 
figure is extracted from Figure 4-1. Arrows indicate the dataflow between components. The Computing 
Resource Manager informs available computing resources for the Calibrator in order to run Simulations in 
parallel. The Steering Interface for Human Users can interact with the steering interface inside the Calibrator 
to change alter configurations of the calibration process. 

Figure 4-2 illustrates the architecture of the Software-Level Dynamic Data-Driven 

Computational Steering (DDDCS-SL). It is extracted from the architecture of the hybrid 

computational steering shown in Figure 4-1. The four components include: Calibrator, 

Dynamic Data, Models and Simulations. In existing works of DDDAS, the calibration 

process also consists of these components. However, the DDDCS-SL aims for optimising 

the interactions between the Calibrator and Simulations. Therefore, this section focuses on 

introducing computational steering into the existing calibration process. Other research 

problems in the calibration such as storage and transfer of dynamic data are not studied in 

this thesis. Additionally, since this section only discusses the implementation of DDDCS-

SL, the remainder of this section uses the term DDDCS without indicating the software level.  

4.2.1 Calibrator – The Steerer of Software-Level Dynamic Data-Driven 

Computational Steering 

The key process in utilising computational steering is to realise the steering interaction 

between the Steerer and the steered simulations. Based on the DDDCS discussed in Chapter 

3, calibration algorithms are used as the Steerer of the DDDCS to explore parameter spaces 
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of models. Thus, instead of describing in the abstract, this thesis first uses a calibration 

algorithm as our example in the explanation. 

This work has received help and support from water companies. Thus, we use the Water 

Distribution System (WDS) as the use case of the Dynamic-Data Driven Application System 

(DDDAS). We built our project based on a Knowledge Transfer Partnership project between 

the Water Research Centre 13 , Northumbrian Water company and the University of 

Manchester [82]. In previous software implementations of the collaborative project, the 

Genetic Algorithm (GA) has been applied as the calibration algorithm. Moreover, GA is also 

a widely utilised calibration algorithm to adapt water models to dynamic information 

obtained from the physical world [47, 83, 120, 124, 127]. Therefore, we argue that it is 

reasonable to use the GA as an example of the calibration algorithm. As a result, the 

calibration algorithm mentioned in the rest of this thesis indicates the GA. The background 

of GA can be found in Section 2.2.2. 

Since GA is selected as the algorithm utilized by the Calibrator, and the Calibrator is the 

Steerer in the DDDCS, we then discuss our method to realize the interaction between the 

GA and steered Simulations. By applying the steering interaction, the increased speed of 

executing the calibration process is considered as the contribution of the DDDCS. 

This thesis uses the term, steering interaction, to indicate the interaction improved by using 

DDDCS, and to describe the original interaction as the batch interaction. Based on the theory 

of the hybrid computational steering, the improvement taken by steering is based on opening 

the simulation model, which acts as a black box in the view of the GA, and on establishing 

an interaction between the GA and the internal workflow of Simulations. Therefore, to 

develop the steering interaction, we firstly introduce the batch interaction to understand what 

is in the black box. 

                                                 
13WRc is an Independent Centre of Excellence for Innovation and Growth. They operate across different 
sectors including Water, Environment, Gas and Resource Management. http://www.wrcplc.co.uk/ 
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Figure 4-3 The Batch Interaction between Genetic Algorithm and Simulations: This figure indicates the 
workflow between GA and Simulations without steering ability. It can be compared with the Figure 3-1 to 
indicate the calibration is similar to a parallel batch workflow. It also helps to understand the calibration process 
in detail. 

The batch interaction between the GA and Simulations is depicted in Figure 4-3. Simulations 

are executed based on the Models. The Models are initialised based on prepared inputs, and 

afterwards, it uses parameters obtained from the Calibrator as inputs. Results of Simulations 

are compared with the real-time Dynamic Data in the Selection component. The comparing 

results are represented as fitness values which indicate the measure on the correctness of 

input parameters which are used as input by Models. Afterwards, input parameters that lead 

to better Simulation results are selected to generate a new ensemble of input parameter sets. 

The new input parameters are created by altering selected parameters through Mutation and 

Crossover functions, and drive Models to generate a new batch of simulation results. One 

such loop in GA is named as one generation, and each parameter set is termed as one 

individual. A parameter in the parameter set is considered as a gene segment of an individual. 

The calibration process is terminated upon reaching a specific fitness value, e.g. a generation 

number or an execution time. Since GA is a widely utilised algorithm, a great number of 

studies have focused on studies of selection, mutation and crossover methods. As the 

purpose of this thesis is not contribution to GA, the tournament selection, Gaussian mutation 

and simple crossover [32], are used in the implementation of GA for the purpose of easy to 

code. 

After introducing the batch interaction in the non-steerable calibration, this thesis summaries 

its difference from the batch interactions targeted by most conventional computational 

steering. As a result, three difference are indicated as follows. The first difference is that the 
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Calibrator/GA can take advantage of parallel computing to accelerate the exploration speed. 

The parallel steering can be similar with the scenario in which human users steer multiple 

simulations at the same time based on the same model. However, the difference is that GA 

can steer tens and hundreds of simulations simultaneously. Secondly, the GA does not 

require a visualisation component since the Selection can directly process simulation results 

in raw data type. Finally, unlike human users, the Calibrator itself is a steering target in the 

view of its higher and lower level Steerers such as Computing Resource Manager and 

Human Users. Hence, it must be developed with the ability of being steered. 

By discussing the batch interaction between GA and Simulations, we conclude that using 

GA as the algorithm of the Steerer does not make the interaction between Steerer and 

Simulations significantly different from the interaction between Human Users and 

Simulations in the conventional computational steering. With respect to three differences 

discussed above, existing Computational Steering programming toolkits can be used to 

realise the interaction between GA and Simulations. Among toolkits reviewed in the 

background, this thesis takes the RealityGrid Computational Steering toolkit [19] to develop 

the steering interaction.  

Because the RealityGrid is developed with flexibility in mind, it can be modified to fit into 

a new project conveniently. Based on its loosely coupled feature, its visualisation component 

is removed, and functions that are responsible for interactions between Steerers and 

Simulations are kept. In terms of the parallel steering, since the conventional RealityGrid 

does not support the Steerer to acknowledge multiple steered Simulations, this thesis 

abstracts multiple Simulations as one steering target, and sends the steered parameters for 

all simulations to the Simulations component. This solution can be realised in two ways: 1) 

The steered parameters for all simulations can be sent as an entire data set to a master process. 

The master process assigns the steered parameters to the slave processes based on the meta 

information received with the steered parameters. 2) Another method is to develop a relay 

steering service that can divide the entire data set into slices, and each slice corresponds to 

a process in the parallel programming. Both methods will be further discussed in the Chapter 

5 since they are related to the implementation on the computing infrastructure. 
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Figure 4-4 Steering-Enabled Calibrator: This figure can be compared with Figure 4-3. It indicates the 
implementation of the computational steering on the GA side. The steered parameters are ensemble and 
transferred through the RealityGrid Steering Interface to Simulations. 

Consequently, Figure 4-4 indicates the steering-enabled Calibrator. By being compared with 

the non-steerable Calibrator shown in Figure 4-3, the difference is that it packs Steered 

Parameters for all simulations into an ensemble and sends them through the RealityGrid 

Steering Interface. This steering interface interacts with the steering interface inside 

Simulations on the left. The next section discusses the development of the Simulations 

component. 
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4.2.2 Simulations 

 

Figure 4-5 Ordinary Interaction in Calibrator: This figure presents the workflow inside the simulation being 
used in the calibration process. As a non-steerable workflow, it is used to find the position to integrate the 
computational steering. In indicates, without computational steering, the altered parameters need to re-initialise 
the simulation to enter the Main Computations. The circle shown in the Main Computations indicates the 
iterations required to finish the computation. 

Similar to the study on the Calibrator, this section introduces the development of the 

steerable Simulations based on studying a non-steerable simulation. Figure 4-5 indicates the 

batch workflow of one non-steerable simulation and its corresponding new input. At the 

initialisation stage, parameters are stored into memory, and in addition, variables that are 

based on such parameters are computed. After the initialisation stage, parameters and 

variables are utilised by the Main Computations.  

The Main Computations are based on the model which describes numerical relations 

between parameters and states of simulated systems. Based on the three steerable simulation 

types discussed in the Section 3.3.1, most simulations targeted by computational steering 

have an inner loop in the Main Computations. Depending on specific simulation type, the 

inner loop can be a number of computations that search for better solutions. In addition, it 

can also represent the progress of changing states based on one set of input parameters. For 
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the first type of inner loop, Main Computations can be stopped after a specific number of 

iterations, to be stopped when there is no improvement after a number of iterations or to be 

stopped after reaching a specific fitness value. On the other hand, the computation iteration 

for the second inner loop type finishes after reaching the final states.  

The results of Main Computations do not require to be sent to the calibrator before the loop 

is terminated since the Calibrator implemented in this thesis does not support the steering 

function in which the Steerer can evaluate the running direction of the Main Computations 

based on the intermediate states and make corresponding steering before the current 

computation loop terminates.  

By taking the large number of elements in WDS into consideration, both initialisation and 

destruction of these elements can have an enormous contribution on the unnecessary time 

consumption. Since the GA may require hundreds and thousands times of interactions, the 

time wasted on re-initialisation can also be magnified by the large-scale interactions between 

GA and Simulations. 

After studying the workflow of non-steerable simulations, we introduce three factors that 

can be improved by introducing computational steering. Firstly, the new model parameters 

modified by GA may account for only a small portion of the total steerable parameters. 

However, the re-execution of the initialisation re-initialises unchanged parameters and 

reruns computations related to these unchanged parameters. The time wasted is presented as 

𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢. Secondly, simulations, such as those based on the model of DL_MESO14, require a 

large number of computations from the initial state, 𝑆𝑆0, to reach a stable state, 𝑆𝑆1. This time 

at the start of running a model is known as "transient" or as "spin-up" time. If we denote 

𝑇𝑇(𝑆𝑆𝑖𝑖,𝑆𝑆𝑗𝑗) to the execution time for a simulation to run from state 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗, then the original 

calibration method creates a large amount of unnecessary transient time on simulations that 

have a relation: 𝑇𝑇(𝑆𝑆0,𝑆𝑆2) > 𝑇𝑇(𝑆𝑆1,𝑆𝑆2). Moreover, the execution of all other extra works 

required at the initial stage, such as network negotiation, is presented as 𝑇𝑇𝑟𝑟𝑡𝑡. Combing the 

previous concepts, the total time wasted in a single batch interaction is 𝑇𝑇𝑤𝑤𝑤𝑤 =  𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 +

(𝑇𝑇(𝑆𝑆0, 𝑆𝑆2) −  𝑇𝑇(𝑆𝑆1, 𝑆𝑆2)) + 𝑇𝑇𝑟𝑟𝑡𝑡 . Thirdly, by taking GA and the parallel programing into 

                                                 
14 DL_MESO is a general purpose mesoscopic simulation package developed at Daresbury Laboratory by Dr Michael Seaton under the 
auspices of the Engineering and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Computational Project for 
the Computer Simulation of Condensed Phases (CCP5). The package is the property of the Science and Technology Facilities Council 
(STFC). 
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consideration, the wasted time also depends on parameters such as the generation number, 

population size and the scale of the parallelism. If we denote the generation number, 

population size and the scale of the parallelism as 𝐺𝐺𝑒𝑒𝑎𝑎 , 𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃  respectively (For 

example, if MPI is used, the 𝑃𝑃𝑃𝑃𝑃𝑃 is the number of available of processors). Therefore, the 

number of re-executions is 𝐺𝐺𝑒𝑒𝐺𝐺 × 𝑃𝑃𝑃𝑃𝑢𝑢
𝑃𝑃𝑟𝑟𝑃𝑃

 and the total wasted time is 𝑇𝑇𝑡𝑡𝑤𝑤 =  𝑇𝑇𝑤𝑤𝑤𝑤 × 𝐺𝐺𝑒𝑒𝐺𝐺 × 𝑃𝑃𝑃𝑃𝑢𝑢
𝑃𝑃𝑟𝑟𝑃𝑃

. 

Without increasing the converging rate of GA, one method to reduce this time waste is to 

increase the parallelism scale. However, this method is limited by hardware cost and the 

decreasing parallel advantage obtained from the increasing number of cores.  

 

Figure 4-6 Steerable Interaction between Simulations and the Calibrator: The difference between the 
simulation shown in this figure and Figure 4-5 is that two RealityGrid Computational Steering Interfaces are 
inserted in the simulation. The steering interface below the Initialisation alters parameters of the model used 
by the Main Computations and variables related to the steered parameters. The Interface at the end of the 
simulation is used to send computation results to the GA. Only one simulation is shown as an example, in 
practice, multiple simulations can use such steering interface to communicate with the GA. 

Since computational steering has been utilized to tackle such wasted time, this thesis 

integrates computational steering by opening the non-steerable simulations to create an 

interaction between the post-initialisation stage of simulations and GA. Figure 4-6 shows 

the steerable interaction between the Calibrator and Simulations. Two RealityGrid Interfaces 

are inserted. The first steering interface below the Initialization component is used to interact 

with the steering interface on the Calibrator side. It receives steered parameters from the 
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Calibrator and modifies local parameters based on the steered values. If it is the master 

process, it may also need to assign steered parameters to other processes. The steering 

interface inserted at the bottom is used to send the simulation results to the Calibrator. 

Because the GA does not require visualization from the simulation results, the visualization 

component which is one critical component in conventional computational steering is 

removed. 

As the result, instead of starting a new execution after each time a new set of steered 

parameters is received, the main computations can start from the last state, which is the 

results by using last set of parameters. The new start is realised by re-initializing and 

computing states only related to steered parameters. Additionally, the Steered Parameters 

Arrived? component checks if there is a new steering input at the start of a new round of 

Main Computations. If no new steered parameters arrive, it has the following options, 1) 

continue waiting for new steered parameters or 2) continue to execute main computations 

based on current parameters. In the conventional computational steering, the second option 

is typically taken, and the Main Computations component constantly runs the loop during 

the steering. It emits intermediate results and checks if new steered parameters have arrived 

after a specific number of iterations. Hence, this method is appropriate for Human Users to 

steer the direction of a simulation even before it reaches the stopping criteria. However, in 

the DDDCS implemented in this thesis, the Steerer is the GA that cannot make such complex 

analysis on the running computations, and only analyses simulation results after the 

computations stop after reaching stopping criteria. Hence, it is not meaningful to continue 

running computations without a new set of steered parameters.     

As a result, this method can reduce the time wasted on repeating initialisation. However, as 

we introduce two steering interfaces in the workflow, the time consumed by transferring 

steering information and processing steering decision can increase the execution time in 

calibrations. Therefore, for a calibration task, a specific number of interactions must be 

reached to ensure the benefit obtained from integrating computational steering is greater than 

the overhead. Additionally, the Simulation shown on the left is named as Simulation X since 

the GA needs to steer multiple simulations concurrently. As this section focuses on 

introducing the steering interactions between the GA and simulations, the parallel workflow 

will be further discussed in Section 5.3.1. 
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4.2.3 Dynamic Data  

The Dynamic Data component is the interface between the physical systems and cyber 

system in the context of DDDAS. It can be for example the satellite data, manual 

observations, data from observation stations, sensor data, and data from other sources. This 

data needs to be collected in real-time, pre-processed in the format of the Calibrator inputs. 

Finally, it also needs to be transferred to the Calibrator in time. Since this thesis focuses on 

the high-level application of DDDAS, we do not study methods to handle challenges on real-

time data transport and storage. Instead, based on our collaboration with water companies 

and water research utilities, this thesis can utilise historical sensor data that was collected 

every 15 minutes by the sensors developed in the real water network. Additionally, we also 

generate artificial sensor data based on the model that has been calibrated by water engineers. 

Thus, the calibration is assumed to take real sensor data collected from the physical world. 

These sensor data is our source of Dynamic Data and it is stored into a database that can be 

connected to the Calibrator. During the calibration, the Calibrator extracts the historical 

sensor readings as the real-time sensor data obtained from the physical world. By doing so, 

we abstract the data transport layer and only focus on using such dynamic data. The 

following figure presents an example of the sensor data stored in the MySQL15 Database. 

 

Figure 4-7 An Example of Sensor Data Stored in the Database: Sensor ID: 47295461. ForP indicates it is a 
Flow reading or a Pressure reading. Value indicates the pressure value in the unit of meter (height is the proxy 
for pressure).  

                                                 
15 MySQL is an open-source relational database management system (RDBMS). 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Relational_database_management_system


 
103 

4.3 Architecture of Dynamic Data-Driven Computational 

Steering on Hardware Level 

 

Figure 4-8 The Architecture of the Dynamic Data-Driven Computational Steering on Hardware Level: The 
Simulations and Calibrator belongs to the software-level DDDCS. The Calibrator, Time Manager and 
Computing Resources Manager form a feedback loop in which the computing resources required by Time 
Manager is based on estimating the execution time of the Calibrator. The estimation is based on historical 
execution time consumed by the Calibrator. As no interaction is created or facilitated by using computational 
steering techniques, we do not consider it as an individual steering loop. Thus, it is categorised as DDDCS on 
the Hardware Level (DDDCS-HL).  

Based on the architecture of the hybrid computational steering, Figure 4-8 illustrates the 

architecture of the Hardware-Level Dynamic Data-Driven Computational Steering 

(DDDCS-HL). As this thesis is developed in context of Dynamic Data-Driven Application 

System (DDDAS), it is crucial to be able to restrict the execution time of programs and to 

provide sufficient computing resources to guarantee that tasks finished in the restricted time 

window can be finished with reliable quality. Therefore, two components, the Time Manager 

and Computing Resource Manager are included in this architecture. The Time Manager 

provides principles for assigning deadlines to components working on the DDDCS-SL and 

estimates the required amount of computing resources to make the calibration finish in time. 

The Computing Resource Manager applies for the required amount of computing resources 

from Computing Resource Broker, and provides the information of the applied computing 

resources to the Calibrator. Based on this information, the Calibrator coordinates with 

Simulations to adapt the parallelisation scale of the calibration process to assigned 

computing resources.  

To meet the time requirement, the amount of computing resources is significant for DDDAS. 

However, the communication with the Computing Resource Broker is based on specific 

Application Programming Interfaces (APIs) and communication protocols provided by the 
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Computing Resource Broker. If we take the example of cloud computing, Amazon Cloud 

provides its particular APIs to apply for instances based on HTTP and REpresentational 

State Transfer (REST). Additionally, gird organizations also provide particular APIs for 

applying computing resources based on diverse standards such as Web Services Resource 

Framework (WSRF) and Open Grid Services Infrastructure (OGSI). This thesis intends to 

provide flexibility to integrate with different computing resource providers. Hence, a 

Computing Resource Broker is assumed to be implemented in the architecture. It is 

responsible for communicating with different resource providers and handle diverse 

interfaces. Since the development of the broker is beyond the scope of this thesis, we 

collaborate with another PhD student, Zeqian Meng, who focuses on the study of the 

communication between brokers and various resources providers. Hence, the Computing 

Resource Broker is benefited by Meng’s work [100]. Based on interfaces provided by the 

Computing Resource Broker, the Computing Resource Manager of this thesis can apply for 

computing resources. However, in practice, it is not feasible to test the requests based on 

real grid and supercomputer computing resources. Hence, by managing to communicate with 

a Computing Resource Broker provided by Meng, this thesis demonstrates that it is 

applicable to implement the Computing Resource Manager in practice in the future work. 

For the evaluation, all resources are assigned manually. Since the details of requesting 

computing resources are not the focus of this thesis, the Computing Resource Manager will 

not be discussed explicitly. The rest of this section focuses on the design of the Time 

Manager.  

The Time Manager is the key component in this architecture since it guarantees the value of 

steering results by taking the time of the physical world into in-silico simulations. This 

section reviews the time management developed in another research area, the scientific 

Workflow Management System (WMS), and introduces its time management methods for 

the hybrid computational steering system. Therefore, a review of time management methods 

is presented in Section 4.3.1. Based on methods discussed in the review, Section 4.3.2 

discusses the architecture of the Time Manager including Deadline Assignment and 

Estimation of Execution Time. Since the implementation of the function Estimation of 

Execution Time relates to a complex hierarchy of knowledge, an individual section, Section 

4.3.3, is dedicated to discussing it. 
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4.3.1 A Literature Review of Time Management in the Scientific 

Workflow 

This section reviews the Time Management from four perspectives: 1) system structure, 2) 

quality of service, 3) deadline assignment and 4) estimation of execution time. 

Workflow management has been a major research interest for around 20 years [156]. It was 

defined in the business domain in 1996 by the Workflow Management Coalition as: “The 

automation of a business process, in whole or part, during which documents, information or 

tasks are passed from one participant to another for action, according to a set of procedural 

rules” [135]. With the advent of grid and application technologies, the workflow systems 

were studied to manage the grid-based scientific workflows in which distributed scientists 

can collaborate on conducting large-scale scientific experiments and knowledge discovery 

applications.  

Since we refer to the time management methods of the workflow system to manage the time 

in DDDCS-SL, components in the DDDCS-SL architecture are considered as tasks of the 

workflow system. Generally, tasks of the workflow system have four types of structures: 

sequence, parallelism, choice and iteration. The sequence structure consists of a series of 

ordered tasks while the parallelism structures enable tasks to be concurrently executed. 

Moreover, in the choice structure, the priority of a task can be changed based on specific 

conditions. Finally, a set of tasks may be executed repeatedly in the iteration structure [156]. 

These types of structures are not mutually exclusive, and can constitute a composite structure. 

In the hybrid computational steering proposed in this thesis, steering loops on each layer are 

considered as the iteration structure. The condition component that checks whether new 

steered parameters have arrived and the condition component checks whether the new 

stopping criteria of GA has been reached fits into the choice structure. Additionally, the 

parallel steering fit into the parallel structure. Finally, since some of components in the 

DDDCS architecture need to be executed in a specific sequence, for instance, the execution 

sequence of Calibrator, Simulation, High-Level DDDAS Functions and Human Users fits 

into the sequence structure. Since no further structure types are discovered in the architecture 

of the hybrid computational steering, we suppose methods designed in the WMS structure 

can be used in the hybrid computational steering. 

In terms of the quality of service in the workflow system, there are five main requirements, 

which are shown in Figure 4-9. However, only Time and Cost are considered in this thesis 
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since we are building a "just-in-time" system where the remaining three components are not 

of primary importance, although this could change in future work.  

 

Figure 4-9 QoS Requirements of Workflow System[156]: Time and Cost are two factors considered as the 
Quality of Service in this thesis. 

Time is a basic measure of performance, and it is also a critical measure of timeliness of 

system results. Generally, it represents the total time required to finish all tasks in the 

workflow, namely the time requirement of the global task. Specifically, it can also refer to 

the time demanded by each task individually. In order to keep the workflow working in a 

timely manner, it is essential to leverage deadline assignment strategies to manage the 

running time of both the global task and individual tasks.  

In real-time systems, deadline is used to restrict the execution time of tasks so that a cyber 

system can keep pace with the system in physical world. Existing research has provided 

sophisticated protocols for the deadline assignment problem [77, 122] which can be adopted 

by the Time Manager of this thesis. Since this thesis does not aim at exploring the most 

optimal scheduling strategy but only a sufficiently good one, we introduce four deadline 

assignments methods which are widely cited, namely ultimate deadline, effective deadline, 

equal slack, and equal flexibility [77]. Before we continue to discuss these methods, we need 

to generally divide the deadline assignment problem into a serial task problem and a parallel 

task problem since this division determines the realisation of deadline assignment methods, 

and both types exist in our architecture.  

For serial tasks, we can only apply the ultimate deadline if no knowledge of subtasks is 

available, and it can be expressed as the following: 

𝑎𝑎𝑑𝑑(𝑇𝑇𝑖𝑖) = 𝑎𝑎𝑑𝑑(𝑇𝑇) (4) 

The 𝑎𝑎𝑑𝑑(𝑇𝑇𝑖𝑖) denotes the deadline of a subtask 𝑇𝑇𝑖𝑖, and 𝑎𝑎𝑑𝑑(𝑇𝑇)represents the deadline of global 

task. However, this simple method cannot indicate accurate information such as how much 

time the next task can be delayed. While, if an estimation of the subtask execution time is 

available, the effective deadline strategy can be applied as the following: 
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𝑎𝑎𝑑𝑑(𝑇𝑇𝑖𝑖) = 𝑎𝑎𝑑𝑑(𝑇𝑇) − � 𝑃𝑃𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�
𝑚𝑚

𝑗𝑗=𝑖𝑖+1

 (5) 

𝑃𝑃𝑒𝑒𝑝𝑝 denotes the predicted execution time (a duration of time and not a time point) and m is 

the number of rest tasks. However, this method has a problem named “little slack for final-

stage subtasks”, which means that tasks at early stages consume most of available time 

resources and leave a low probability for the rest of subtasks and even the global task to 

finish on time. A simple strategy to conquer this issue is to divide the total remaining slack 

equally among the remaining subtasks, and it can be referred to as equal slack strategy, 

formally,  

𝑎𝑎𝑑𝑑(𝑇𝑇𝑖𝑖) = 𝑎𝑎𝑃𝑃(𝑇𝑇𝑖𝑖) +  𝑃𝑃𝑒𝑒𝑝𝑝(𝑇𝑇𝑖𝑖) +
[𝑎𝑎𝑑𝑑(𝑇𝑇) − 𝑎𝑎𝑃𝑃(𝑇𝑇𝑖𝑖) −� 𝑃𝑃𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�]

𝑚𝑚

𝑗𝑗=𝑖𝑖+1

𝑚𝑚 − 𝑖𝑖 + 1
 

(6) 

The 𝑎𝑎𝑃𝑃 represents the arrival time point of a task. The 𝑎𝑎𝑑𝑑(𝑇𝑇) − 𝑎𝑎𝑃𝑃(𝑇𝑇𝑖𝑖) calculates the amount of 

time available for tasks 𝑇𝑇𝑖𝑖 to 𝑇𝑇𝑚𝑚. Hence, the distance between the deadline and arrival time of task 

𝑇𝑇𝑖𝑖 is calculated using the sum of predicted execution time of 𝑇𝑇𝑖𝑖 and calculated equal slack.   

Moreover, the total remaining slack can also be divided in proportion to their execution time. 

Thus, we obtain  

𝑎𝑎𝑑𝑑(𝑇𝑇𝑖𝑖) = 𝑎𝑎𝑃𝑃(𝑇𝑇𝑖𝑖) +  𝑃𝑃𝑒𝑒𝑝𝑝(𝑇𝑇𝑖𝑖) + [𝑎𝑎𝑑𝑑(𝑇𝑇) − 𝑎𝑎𝑃𝑃(𝑇𝑇𝑖𝑖) −� 𝑃𝑃𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�]
𝑚𝑚

𝑗𝑗=𝑖𝑖
∗ [ 𝑢𝑢𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�

� 𝑢𝑢𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�
𝑚𝑚

𝑗𝑗=𝑖𝑖

] (7) 

Above deadlines are for the serial structure, for the parallel structure, the ultimate deadline 

can also be used since subtask are executed in parallel. Additionally, a global task always 

consists of both the serial and parallel subtasks, and strategies discussed in this literature 

review can be integrated to tackle problem together. Furthermore, in order to achieve the 

deadline assignment strategies discussed above, another crucial task is to measure the 

execution time of subtasks, 𝑃𝑃𝑒𝑒𝑝𝑝�𝑇𝑇𝑗𝑗�. 

Estimating the execution time is a critical and challenging task [68]. Generally, there are 

three major approaches to estimate the execution time: code analysis, analytical 

benchmarking/code profiling and statistical prediction. In the code analysis, the estimation 

is based on the analysis of the number of instructions of a task. Since it is a low-level method, 

only specific tasks can utilize it [146]. Analytic benchmarking/code profiling was first 
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presented by Freund [46]. This method first defines a number of primitive code types. 

Afterwards, each type of code is executed on different machines to generate corresponding 

benchmarks. At the prediction stage, the code type and benchmarks are considered together 

to estimate the runtime. Lastly, the statistical prediction method estimates the runtime by 

analyzing historical observations. In this method, tasks are categorised into different groups, 

and a quantity of runtimes is recorded for specific combinations of task group and machine 

type. At the prediction stage, prediction results are obtained by referring to the task 

configurations, such as input parameters of tasks, and specifications of computing 

infrastructure. One advantage of this method is that the accuracy of the estimation can 

increase with the accumulation of the historical observations. 

4.3.2 Design of the Time Manager 

After reviewing methods utilized in the time management of the workflow management 

system, this section introduces how to implement the time management in the architecture 

of the hybrid computational steering. 

This work belongs to the soft real-time system since a delayed result, can still reflect states 

of physical systems to some extent. Hence, the time management focuses on the deadline 

assignment only for those components that predominantly occupy the time resources. As 

discussed, the core layer in the general architecture of the hybrid computational steering 

shown in Figure 4-1 is DDDCS-SL, and the Simulations and Calibrator are the two primarily 

time-consuming processes in the workflow. Therefore, this thesis only considers the time 

management on the Calibrator and Simulations. Additionally, as the Calibrator and 

Simulations components are tightly bound with each other, this thesis only considers 

assigning deadlines to the process combined by these two components, namely the 

Calibration Process. As a result, the Estimation of Execution Time, which is the component 

used to support the Deadline Assignment, only predicts the execution time required by the 

calibration process as well. In the future, based on the complexity of applications users build 

on the calibration results, the Deadline Assignment component may need to constrain the 

execution time of the High-Level DDDAS Functions component. 

It is argued that the time taken by the Estimation of Execution Time component on the 

hardware level DDDCS and Human Users on HDCS layer are significant as well. Hence, it 

is necessary to explain why this thesis does not consider them in the Time Management and 

deadline assignment. Firstly, the Estimation of Execution Time component, which will be 
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introduced in the next section, is based on a learning process and a large number of historical 

relations among running time, task configurations and machine specifications. Since 

estimating the execution time involves a large amount of historical processing that can be 

done offline and then used online, we assume that estimating the execution time is relatively 

stable compared to the time scale of calibration. Secondly, HDCS in this thesis is separated 

from DDDCS as two layers. This separation is based on the aim of providing human users 

sufficient time to conduct the steering without being concerned with the time limitation 

raised in the physical system. The separation also raises HDCS on a higher layer of which 

the steering decisions are made based on results of DDDCS on the lower layer. Hence, 

steering conducted by human users is considered as a “slow” real-time system in which Time 

Management is a subjective task operated by human instinct. Moreover, the time 

management of conventional computational steering focuses on minimizing the duration 

from issuing a steering command to observing the corresponding steering feedback. 

However, in the HDCS, the feedback of steering can only be shown to users at the speed of 

calibration process, and the time required by a calibration task in the water use case is at 

least in minutes. As this required time is much greater than the duration from issuing a 

steering command to getting the corresponding feedback, the issue considered in the time 

management of the conventional computational steering is not covered in this thesis. 

 

Figure 4-10 The Architecture of the Time Manager: Time Manager learns the relations among the amount of 
the computing resources, the sensor data, execution time of the calibration process and the Calibrator 
parameters, which are steered by the human users based on historical information. According to the studied 
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relations and the deadline required in applications of DDDAS, it request computing resources from the 
Computing Resource Manager by estimating the dynamic workload of the calibration based on the real-time 
sensor data. 

Based on the architecture of DDDCS-HL, the architecture of the Time Manager is shown in 

Figure 4-10. There are two components inside the Time Manager, the Deadline Assignment 

and Estimation of Execution Time. The Estimation of Execution Time component utilises 

the Dynamic Data as the indicator of the workload of the calibration process. Based on this 

indication, it estimates the running time required by the calibration process. Since the 

deadline has been acknowledged by the Deadline Assignment component, the Estimation of 

Execution Time component needs to find out how much computing resources are enough 

for the calibration to be finished in time based on the estimated workload. Afterwards, it 

sends the required amount of computing resources to the Computing Resource Manager 

which further requests the computing resources from resource providers. The relation 

between amount of computing resources and time consumption based on a particular 

workload is maintained and learnt from a large number of such historical relations. 

As we analysed, the architecture of the hybrid computational steering has a compound 

structure that includes all four structure types of a workflow management system. However, 

in this thesis, the time management only manages the time on the level of the Calibration 

Process. Hence, the parallelism and choice structures are not considered by the Time 

Manager. In addition, the loops on the hardware DDDCS and HDCS layers, which fit into 

the iteration structure, are considered as the offline workflow and “slow” real-time workflow, 

and they do not need to be manged by the Time Manager. Therefore, the iteration structure 

is not considered in our implementation as well. Finally, we conclude that the structure of 

this implementation only fits into the sequence structure in which the Calibration Process 

must be finished in time to guarantee that the following functions can benefit from the real-

time Dynamic Data. As presented in Figure 4-1, the timeliness of the High-Level DDDAS 

Functions directly depends on the Calibration Process, the sequence structure that needs to 

be managed by the Time Manager consists of two components, the High-Level DDDAS 

Functions and the Calibration Process.  

However, since the execution time of the High-Level DDDAS Functions can significantly 

vary based on specific implementations, its time management needs to be developed in 

particular projects. Therefore, this thesis assumes that the Calibration Process is the only 

component that needs to be managed. Subsequently, the Ultimate Deadline is selected as the 

deadline assignment method in this thesis, and the other three deadline assignment methods 
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are suitable for a more complex structure. As a result, the deadline of the Calibration Process, 

𝑎𝑎𝑑𝑑�𝑇𝑇𝑢𝑢𝑢𝑢�, can be represented as 𝑎𝑎𝑑𝑑�𝑇𝑇𝑢𝑢𝑢𝑢� = 𝑎𝑎𝑑𝑑(𝑇𝑇) in which 𝑇𝑇 denotes the global task. As the 

hybrid computational steering is driven by the Dynamic Data, the interval between two 

updates of the Dynamic Data is considered as the deadline of the global task, 𝑎𝑎𝑑𝑑(𝑇𝑇). Finally, 

since this thesis uses a water distribution system as the use case, and a probable updating 

frequency advised by water engineers is 15 minutes, we finally set 𝑎𝑎𝑑𝑑�𝑇𝑇𝑢𝑢𝑢𝑢� = 𝑎𝑎𝑑𝑑(𝑇𝑇) =

15 𝑚𝑚𝑖𝑖𝑎𝑎𝑚𝑚𝑡𝑡𝑒𝑒𝑚𝑚 in the implementation. 

In terms of the QoS, this thesis focuses only on the time and cost. Thus, the strategy of 

applying for computing resources is divided into market-driven and performance-driven 

strategies. The main purpose of the use of dynamic computing resources is to provide 

sufficient computing power to guarantee the time requirements. Under the premise of 

assuring the time requirement, dynamic computing resource can provide us the flexibility of 

saving cost. Hence, the performance-driven strategy is first considered, and only when 

computing power is sufficient, the market-driven strategy can be applied. 

The only component left without discussion in Figure 4-10 is the Run-time Estimation. Since 

its implementation relates to a complex hierarchy of knowledge, an individual section, 

Section 4.3.3, is dedicated to discussing it. 

4.3.3 Estimation of Execution Time 

Estimating the execution time of tasks is challenging [68]. In the literature review at the 

beginning of this section, Code Analysis, Analytical Benchmarking/Code Profiling and 

Statistical Prediction are discussed as general methods to realize the estimation of execution 

time. Both the code analysis and code profiling methods focus on analyzing structures, 

functions and algorithms of programs. However, by demonstrating the calibration process 

based only on the GA with specific implementation methods, the uncertainties of time 

estimation are mainly raised by dynamic information such as dynamic data, dynamic 

computing resources and GA parameters. Hence, this thesis focuses on the influence of 

factors that are not addressed by the Code Analysis and Code Profiling methods. On the 

other hand, the statistical prediction method provides the relation between the required 

execution time and influential factors, which can affect the execution time as a black box. 

Thus, it does not require specific knowledge on information such as details of computing 

infrastructure and algorithms used in computations, and it does not have limitations on types 

of influential factors. Therefore, this thesis selects the statistical prediction as the 
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fundamental method to develop the Estimation of Execution time component. As a result, 

the estimated running time of the Calibration Process, 𝐸𝐸𝑚𝑚𝑡𝑡.𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒, is modeled as a function:  

 𝐸𝐸𝑚𝑚𝑡𝑡.𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 = 𝑃𝑃𝑒𝑒𝑝𝑝(𝑋𝑋) (8) 

where 𝑋𝑋 denotes the vector of factors that affect the execution time, and the 𝑃𝑃𝑒𝑒𝑝𝑝() represents 

the algorithm to implement the black box which maps the factors to 𝐸𝐸𝑚𝑚𝑡𝑡.𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒. The factors 

that constitute the vector 𝑋𝑋 will be denoted as Influential Factors. This section discusses a) 

the four factors that constitute the vector 𝑋𝑋 and b) the algorithm used to implement the 𝑃𝑃𝑒𝑒𝑝𝑝(). 

Four Influential Factors  

Four types of factors are considered in this thesis: 1) The first one is the sensor data which 

represents the dynamic information observed in the physical system, and it can be used to 

indicate the calibration workload. Using the term Sensor Data is because this thesis only 

takes sensor readings as the dynamic information in the use case. 2) The second type is the 

amount of computing resources that can be applied from resource providers. Since the 

parallel programming is utilised by the Calibration Process, the amount of computing 

resources can determine the parallelism scale of the program. 3) The third information is the 

values of steerable parameters of the GA. 4) Finally, the inner loop of Main Computations 

can also contribute to the flexibility of execution time of the Calibration Process. Before 

discussing the method of mapping the sensor data and amount of computing resources to the 

running time, it is necessary to explicitly explain the usage of these factors. 

The required execution time of the Calibration Process depends on the amount of computing 

resources and the workload. In terms of the computing resources, the Time Management 

method reviewed in WMS is based on the grid computing infrastructure. Though grid is one 

possible option for this thesis, we only implement the hybrid computational steering on local 

computers, supercomputers and commercial cloud computing infrastructures since we do 

not have access to available grid computing resources. Since specifications of machines 

provided by different providers can vary significantly, the amount of computing resources 

is indicated by two types of information: the computing resource provider and the core 

number. In our use case, a Macbook Pro, an IBM Blue Gene/Q supercomputer and multiple 

Amazon Cloud computing instances are utilized as examples of different types of machines 

provided by resource providers.  
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Since this thesis focuses on scalability of computing resources, only the number of cores 

offered by these providers are considered as the scalability to support parallel computing. It 

is necessary to clarify that Amazon Cloud computing system can provide different type of 

instances. However, as a demonstration, this thesis does not comprehensively evaluate all 

specifications of instances. For the implementation on the Amazon Cloud, the same type of 

instances, which contains only one core and same cache, memory and network 

configurations, are applied. Hence, the number of instances indicate the number of cores. 

Additionally, in the context of large-scale physical systems, the sensor readings can include 

a great amount of data, and using all of them can greatly increase the space size of vector 𝑋𝑋. 

Hence, it is necessary to extract the workload represented by sensor data in a simpler format. 

To discuss the method of simplifying the information, we first make four assumptions. The 

calibration is a process of exploring the parameter space of a model that converts the 

simulation from state 𝑆𝑆𝐺𝐺 to 𝑆𝑆𝐺𝐺+1 in which 𝑎𝑎 denotes the simulation time step; hence, 1) we 

assume parameters that are used to obtain state 𝑆𝑆𝐺𝐺  and 𝑆𝑆𝐺𝐺+1 are 𝑃𝑃𝑝𝑝𝐺𝐺  and 𝑃𝑃𝑝𝑝𝐺𝐺+1, and the 

calibration starts to explore the parameter space from 𝑃𝑃𝑝𝑝𝐺𝐺. 2) Additionally, we assume the 

distance between 𝑃𝑃𝑝𝑝𝐺𝐺  and 𝑃𝑃𝑝𝑝𝐺𝐺+1  indicates the workload for the Calibration Process. 3) 

Finally, we assume the distance between 𝑃𝑃𝑝𝑝𝐺𝐺 and 𝑃𝑃𝑝𝑝𝐺𝐺+1 has a positive correlation with the 

difference between 𝑆𝑆𝐺𝐺 and 𝑆𝑆𝐺𝐺+1. Since 𝑆𝑆𝐺𝐺 and 𝑆𝑆𝐺𝐺+1 can be directly represented on sensor 

readings 𝑆𝑆𝑆𝑆𝐺𝐺  and 𝑆𝑆𝑆𝑆𝐺𝐺+1 , the difference between 𝑆𝑆𝐺𝐺  and 𝑆𝑆𝐺𝐺+1  can be indicated as the 

difference between sensor readings 𝑆𝑆𝑆𝑆𝐺𝐺 and 𝑆𝑆𝑆𝑆𝐺𝐺+1. Hence, the difference between 𝑆𝑆𝑆𝑆𝐺𝐺 and 

𝑆𝑆𝑆𝑆𝐺𝐺+1  can have a positive correlation with the distance between 𝑃𝑃𝑝𝑝𝐺𝐺  and 𝑃𝑃𝑝𝑝𝐺𝐺+1 , which 

finally indicates the amount of the workload of the Calibration Process. Consequently, we 

transfer “using sensor data to directly indicate the workload of Calibration Process” to “using 

the difference between sensor data at time step 𝑎𝑎 and 𝑎𝑎 + 1” to indicate the workload. By 

doing so, it is possible to utilize measures to indicate the difference between values of a large 

amount of sensor readings in a single number. For instance, Root-Mean-Square Error 

(RMSE) and Mean Absolute Error (MAE) are such measures that have been largely applied 

to compare states of large-scale systems in areas such as meteorology, hydrogeology, etc. 

There are a number of arguments of selecting the “right measure” to signify the difference 

[24], and this thesis leaves the choice to future users and does not further compare them. 

Then, we discuss the steerable parameters of GA. It is significant to differentiate them from 

the steerable parameters of simulations. The steerable parameters of GA are steered by users 

on the higher steering layer, HDCS. For example, users may need to increase the updating 
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frequency of a monitoring application. The monitoring application is driven by parameters 

calibrated in the Calibration Process. Hence, it is possible for application developers to 

register the stopping criteria of GA as a steerable parameter. Since such parameters can 

significantly affect the execution time of GA, this thesis takes it as intervention raised by 

HDCS and its effect must be taken into consideration in Estimation of Execution Time. 

Finally, the fourth factor is number of iterations of Main Computations as discussed in the 

Simulations component of the architecture of DDDCS-SL. Since simulations targeted by 

this thesis need to be executed on HPCs, we assume they have complex computations and 

may have an uncertain number of iterations. For simulations that have a stable number of 

computations, they do not account for a large proportion of the uncertainty. Hence, their 

execution time can be directly estimated. In terms of simulations have a great uncertain 

number of iterations, we have categorized them based on four stopping criteria: 1) a specific 

number of iterations, 2) a number of iterations after stopping improves, 3) reaching a specific 

value that indicates the results quality and 4) the final simulation state is reached. Except for 

the first stopping criteria, the others raise significant uncertainty on the execution time of 

simulations. Since the time management on simulations are use case specific, this thesis 

takes the first stopping criteria as an example in the architecture design. For future studies, 

this factor can be added to the vector without changing the estimation method discussed in 

the next section. For example, in the model, EPANET, which is used to model the water 

distribution system in our use case, its main computation loops to search for the best 

hydraulic solution. This thesis uses the default iteration number, 40, which is provided by 

the EPANET as the static number of iterations. Consequently, in the remainder of this thesis, 

the iterations of Main Computations are static and not considered as an influential factor, 

and the execution time of simulations are assumed to be stable. 

Consequently, by using the 𝐶𝐶𝑃𝑃𝑃𝑃𝑒𝑒𝑚𝑚 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑎𝑎𝑒𝑒𝑃𝑃 to indicate the number of cores and name 

of computing resource providers, 𝑆𝑆𝑒𝑒𝑎𝑎𝑚𝑚𝑃𝑃𝑃𝑃_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 to indicate the difference between sensor 

readings at two time steps and 𝐻𝐻(ℎ1,ℎ2, … ,ℎ𝐺𝐺) to signify steered parameters. The vector 𝑋𝑋 

of Equation (8) consists of three influential factors and can be presented as 𝑋𝑋 =

 (𝐶𝐶𝑃𝑃𝑃𝑃𝑒𝑒𝑚𝑚,𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑎𝑎𝑒𝑒𝑃𝑃, 𝑆𝑆𝑒𝑒𝑎𝑎𝑚𝑚𝑃𝑃𝑃𝑃_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷,𝐻𝐻(ℎ1,ℎ2, … , ℎ𝐺𝐺)).   

The Estimation Algorithm 

After discussing the vector of influential factors that affect the running time of the 

Calibration Process, this section further discusses the algorithm used to map the influential 
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factors to the running time. Classification tree is a widely-used type of algorithm in the 

prediction of required running time of programs [96, 113, 115]. Compared with Linear 

Regression and Support Vector Machine [39, 129], classification trees can ignore limitations 

raised by linear correlation between running time and influential factors and consume less 

computing resources than Vector Machine. Thus, this thesis utilizes the Classification Tree 

as the method to manage relations between execution time and influential factors. If the 

training sample ensemble of the tree is 𝑆𝑆 = (𝑚𝑚1, 𝑚𝑚2 … 𝑚𝑚𝐺𝐺) , then each sample 𝑚𝑚𝑖𝑖  can be 

represented as 𝑚𝑚𝑖𝑖 =  (𝑇𝑇𝑒𝑒𝑝𝑝𝑒𝑒,𝑖𝑖,𝑋𝑋) where 𝑇𝑇𝑒𝑒𝑝𝑝𝑒𝑒 denotes the execution time, and 𝑋𝑋 is the vector of 

the three influential factors we discussed above. Consequently, a simple example tree is 

shown in Figure 4-11. 

 

Figure 4-11 A Simple Example of the Classification Tree: All influential factors that affects the execution time 
are considered in nodes shown in the middle. Since Steered Parameters will be discussed in the evaluation 
chapter, this figure does not depict specific example for parameters that can be steered. The leaves of the tree 
are the estimated running time.   

The tree shown in Figure 4-11 is only an example. In practice, conditions on nodes can be 

composite. The leaves of the tree are the estimated execution time; however, the estimation 

results are presented as a time range instead of a specific number. This is because this thesis 
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takes uncertainties raised by GA into consideration. In practise, the execution time of the 

Calibration Process fluctuates even with the same configuration and task since the execution 

time also depends on the probability of evolving towards the goal of convergence. Hence, 

the relation between a set of influential factors and the corresponding execution time can be 

one-to-many instead of one-to-one.  

Consequently, this thesis further studies the relation between influential factors and 

execution time of GA. Since stopping criteria of GA implemented in this thesis is the fitness 

value, for a particular configuration of GA, its execution time can be represented by the 

number of generations that it consumes to reach the stopping criterion. As a result, a new 

relation can be built between 𝐺𝐺𝑒𝑒𝑎𝑎𝑗𝑗 and (𝑆𝑆𝑒𝑒𝑎𝑎𝑚𝑚𝑃𝑃𝑃𝑃_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷,𝐻𝐻(ℎ1,ℎ2, … ,ℎ𝐺𝐺)). The 𝐺𝐺𝑒𝑒𝑎𝑎𝑗𝑗 denotes 

the required number of generations for the GA to converge at the 𝑗𝑗𝑡𝑡ℎ execution, and the 

specifications of hardware are not included in to the relation because it only affects the 

execution time per generation but not the number of generations. Multiple executions, 𝑗𝑗 =

 (1, 2, … 𝐽𝐽), of GA based on the same configuration and task can generate an ensemble of 

such relations that can be utilized to study the distribution of required generation numbers. 

In this thesis, we assume this distribution fit into the Gaussian distribution since operations 

such as the mutation and crossover of GA are based on random number selected from 

Gaussian distribution. Based on this assumption, we further establish the estimated number 

of generations, 𝐸𝐸𝑒𝑒,  equals to 𝜎𝜎 +  𝜇𝜇  where 𝜎𝜎  represents the standard deviation, and 𝜇𝜇 

denotes the mean of the distribution. The reason to use the 𝜎𝜎 +  𝜇𝜇 is that in a Gaussian 

distribution, 84.2% of the distribution of execution times are less than 𝐸𝐸𝑒𝑒. Hence, based on 

this execution time estimation, 84.2% of calibration can has enough time to finish. This 

thesis believes that 84.2%, as the estimation accuracy, is acceptable in our system and the 

extra 15.8% of results, although do not have enough time to be finished, are assumed to be 

close to the final results.  

Additionally, to be compatible with the deadline which is in the form of Wall-Clock Time 

(WCT), the number of generations needs to be mapped with the WCT. This requirement 

connects the distribution of generations with one influential factor, which is the amount of 

computing resources. Since the GA implemented in this thesis does not have functions to 

make self-tuning, and the simulations it communicates with have stable execution time, it is 

assumed that unless being affected by the 𝑆𝑆𝑒𝑒𝑎𝑎𝑚𝑚𝑃𝑃𝑃𝑃_𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷  and 𝐻𝐻�ℎ1,ℎ2, … ,ℎ𝐺𝐺� , 

configurations of the GA do not change during its execution time. Hence, with a particular 
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simulation model and configuration of GA, we assume the number of generations and the 

WCT are in a linear relation. Thus, the linear regression is utilized to generate coefficients 

of linear functions that represents their relations. Since the slope of the linear functions are 

determined by the 𝐶𝐶𝑃𝑃𝑃𝑃𝑒𝑒 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖𝑎𝑎𝑒𝑒𝑃𝑃. Therefore, two decision trees are utilized together 

to estimate the execution time as shown in Figure 4-12. 

 

Figure 4-12 Two Classification Trees Used to Make the Execution Time Estimation: Nodes of the left tree are 
conditions that affect a required number of generations. Since Genetic Algorithm has a variable required 
generation number even using a static configuration, we assume the distribution of the required generation 
number, after following a path on the tree, fit into Gaussian distribution. Hence, each path leads to a leaf that 
indicates mean and standard deviation of the Gaussian distribution instead of a specific generation number. By 
assuming the sum of mean and standard deviation is greater than the required generations numbers in 84.2% 
of GA, a specific estimated generation number is generated. On the right tree, conditions are Computing 
Resource Providers and number of cores. Based on the assumption that the relation between the number of 
generations is in a linear relation with a particular computing resource, such as 4 Cores on Blue Gene/Q. Hence, 
based on historical execution information, coefficients of the linear relation function of the number of 
generations X that represents the execution wall-clock time can be obtained. By combining two leaves of each 
tree together, an estimated execution time is generated. 

4.4 Chapter Summary 

This chapter introduces the general architecture developed for functions and components 

raised in the theory of the hybrid computational steering. To realise the hybrid steering and 

time management, the general architecture is divided into three layers: Human Driven 

Computational Steering (HDCS), Dynamic Data Driven Computational Steering (DDDCS) 
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and Time and Computing Resource Management. Additionally, this chapter discusses 

methods used to develop components on sub-architectures of each layer. 

In the development of HDCS, RealityGrid Computational Steering is utilised to realise the 

steering interactions between human users and computations. Different from conventional 

computational steering, this high-level HDCS steers parameters of the Steerer of the DDDCS. 

Additionally, instead of using visualisation to directly present results of steered simulations, 

a High-Level DDDAS Functions component is utilised to represent high-level functions 

based on the results of DDDCS.  

On the layer of DDDCS, a Genetic Algorithm (GA) is used as an example of calibration 

algorithms to compare the batch and steering interaction of conventional and steerable 

calibration process. Then, RealityGrid Computational Steering is used as the steering toolkit 

to develop the steering interaction between the Calibrator and Simulations components. 

Different from conventional computational steering, the Calibrator does not require a 

visualisation component since it can directly analyse output emitted by the Simulations. 

Additionally, we restrict types of simulations that can be steered in this architecture and use 

the workflow of targeted simulations to present reasons that computational steering is 

applicable to improve the efficiency of interactions between Simulations and the Calibrator. 

Furthermore, a steering-integrated simulation workflow is implemented in the architecture 

of the DDDCS. It interacts with GA which has the ability to run in parallel. Additionally, it 

is modified based on the steerable simulation workflows of conventional computational 

steering. In this workflow, the Steerer only analyses results of simulations after the loop of 

main computations of simulations finish, and computations only check if the steered 

parameters have arrived when it starts a new round of iterations. Finally, the sensor data 

provided by water companies is provided as an example of dynamic data. 

Since time management has rarely been studied in DDDAS, this thesis introduces time 

management methods of the scientific Workflow Management Systems (WMS). By 

projecting structures of developed architectures onto structures of WMS, this thesis choses 

ultimate deadline assignment and historical classification trees to constrain execution time 

and estimate required computing resources to meet the constrained execution time. The 

calibration process constituted by Calibrator and Simulations are assumed to be the 

predominant time-consuming process in the entire architecture, and factors that can affect 

the execution time of the calibration process are studied. 
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Even though the architecture is developed in the modularised structure and aims at being 

used generally, this chapter still discusses it under several assumptions and specific use cases. 

This is because, although introducing the development of the architecture, this chapter also 

needs to introduce methods this thesis utilises to design the infrastructure-level frameworks 

and evaluate the use case, a Water Distribution System (WDS). Therefore, this chapter 

demonstrates that it is feasible to build a compatible architecture based on the theory of the 

hybrid computational steering for the specific WDS use case. Future applications of this 

architecture can be built based on its flexibility.  
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 Computational Steering on High-

Performance Computing Resources 

The aim of this chapter is to introduce the development of hybrid computational steering 

framework. The framework is used to support implementing the architecture of the hybrid 

computational steering on the High-Performance Computing (HPC) infrastructures, such as 

supercomputers and cloud systems. As the hybrid computational steering consists of Human-

Driven Computational Steering (HDCS) and Dynamic Data-Driven Computational Steering 

(DDDCS), this chapter is divided into implementing HDCS on HPC infrastructure (Section 

5.2) and implementing DDDCS on HPC infrastructure (Section 5.3). This thesis believes 

that the best way to develop the HDCS framework is to learn from existing computational 

steering frameworks. Thus, we worked in close collaboration with IBM to integrate 

computational steering with their Blue Gene/Q supercomputers. However, repeating 

implementations of existing steering frameworks is not sufficient for a PhD study. Thus, 

based on a gap we found between conventional computational steering and HPC resources, 

we proposed to provide computational steering as a dynamic web service. Hence, Section 

5.1 introduces our thoughts on the computational steering service. Additionally, Section 5.2 

implements such thoughts in the project collaborated with IBM, and the collaboration result 

is used as an example framework of implementing HDCS on HPC infrastructures. Moreover, 

Section 5.3 introduces the framework of DDDCS that is developed and based on both the 

framework of HDCS and the computational steering web service. Finally, Section 5.4 

integrates the frameworks of HDCS and DDDCS to generate the ultimate framework of the 

hybrid computational steering.  

5.1 Beyond the Steering Toolkit to the Steering Service  

One efficient way to maintain the increase of the computing speed is to increase parallelism 

scale by developing multi-core processors. This leads to non-uniform communication 

patterns in HPC infrastructures (within processors and between processors) and hybrid 

models of parallel programming (shared-memory and distributed-memory paradigms). The 

drive for higher performance has made writing efficient programs for such top-end HPC 

infrastructures a highly specialised task. It is further challenging to communicate with 

supercomputers and interact with their running programs. Additionally, the specialised 
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architectures and programming environments of HPC resources make it difficult for users to 

analyse the results of their programs especially when the volume of results is considerable. 

Specifically, users need to either manually transfer results into visualisation component or 

program dedicated components that can only fit into specific HPC architectures. 

Computational steering has been studied explicitly to deal with this problem. Although 

computational steering can increase the efficiency of running simulations on HPC 

infrastructures, the process of implementing computational steering is a burden for regular 

users. One reason many of the early systems were not sustained can be that they did not give 

enough return to users. As discussed in Section 2.1.2, of the successful systems, COVISE 

[151] and SCIRun2 [159] have moved beyond providing a steering toolkit to providing rich 

computational environments, which incorporate computational steering. To scientists and 

engineers, such computational steering environments provide specific computational models 

that are specifically integrated with computational steering. Additionally, components of 

computational steering, such as visualisation and user interfaces, are developed on dedicated 

computing infrastructures so that regular users only need to focus on their simulations 

instead of on steering environments. Therefore, these steering environments reduce the costs 

of utilising computational steering and provide platforms for model developers to contribute 

more “steering-ready” models to the steering family.  

As a result, an interesting future work can be generalizing the use of computational steering. 

This future work requires contributions from model developers who can provide more 

steerable computational models for regular users. It also requires model developers and HPC 

owners to create a general understanding of the importance of utilising computational 

steering among HPC users. 

However, as indicated in our survey introduced in Section 2.1, the development of 

computational steering has always been related to the development of its application 

environments. As its fundamental computing infrastructures, dedicated supercomputers are 

expensive and difficult to be maintained by scientists. Hence, this limitation impedes 

developers from integrating computational steering with more computational models. As a 

result, computational steering environments were largely integrated with grid computing 

environments around 2005.  

The grid provides collaborative computing environments that share distributed computing 

infrastructures. Hence, it makes HPC infrastructures more accessible by providing them as 
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grid services. Based on the grid service, peripheral services are provided as the middleware 

between HPC infrastructures and end-users. The computational steering service is one of 

them. However, based on this understanding of computational steering service, the 

implementation, such as communication protocols and frameworks, of computational 

steering service depends on specifications of different grids. Considering that grid is 

developing at a fast speed and its implementation is largely diverse and rapidly altering, it is 

challenging for the steering service to be updated with a compatible grid developments and 

it is further challenging to convince model developers to keep updating their models with an 

unstable steering environment or to restrict their development on specific grid environment. 

One example of the disadvantage of considering computational steering to be a peripheral 

service can be seen in the development of the RealityGrid steering environment [55]. 

Based on this situation, this work proposes to treat the service of computational steering as 

being on the same level as the grid service. Thus, computational steering service can act as 

a client of a computing resource providers, but not an accessory service that is bound to the 

grid. Additionally, an interface can be built on the steering service to specifically deal with 

the communication with computing resource providers. Hence, the interface can isolate the 

development of steerable models from the development of communication with computing 

resource providers. As a result, model developers can have a stable steering environment to 

contribute to develop steering-enabled models. Finally, since a computational steering 

service treats grid just as a computing resource provider, we can extend the scope of 

computing resource providers to commercial clouds and supercomputers, abstract functions 

of resource providing and focus on developing the framework for HPC infrastructures.  

To implement such a computational steering service, we need to choose a steering toolkit 

that 1) has the flexibility of being implemented on different infrastructures, 2) is still being 

used, and 3) can be easily integrated with general models used on HPC infrastructures. The 

RealityGrid steering library, as the latest “alive” steering toolkit, was explicitly designed to 

deal with the problems of steering on high-end supercomputers. Additionally, it adopted a 

loosely coupled architecture where the computational components could run independently 

from the visualisation and the graphic user interface. This design of the RealityGrid can be 

adapted to several different HPC structures that may have limitations on visualisation and 

communication with external users. Moreover, not wishing to be tied to any standards that 

might prove to be ephemeral, RealityGrid steering is also able to adapt to other service-based 

approaches or even to low-level communication libraries.  



 
123 

Benefitting from the loosely coupled structure of the RealityGrid steering library, this project 

proposes a solution in which computational steering can be offered as a “standalone” web 

service. As a standalone service, it can separate the efforts made by model developers from 

that of the steering infrastructures developers. The word standalone means that our proposed 

computational steering service is different from some existing steering services, which are 

highly dependent on the grid environment. In addition, this work takes the IBM Blue Gene/Q 

as an example of an HPC infrastructure to represent how to implement the steering service 

with a specific HPC infrastructure. 

However, to realize such CSWS requires massive support from computing resource 

providers including negotiation protocols and communication frameworks. Such functions 

have been dedicatedly studied in the area of grid computing. Thus, the CSWS can act as a 

client of the grid to request computing resources that support computational steering. 

Nevertheless, as stated in Section 4.3, the development of communication and protocols 

between the Blue Gene/Q system and the Computing Resource Broker Service is a dedicated 

research area that is beyond the scope of the collaboration project and this thesis. As we only 

aim at providing a promising direction of the development of computational steering, this 

thesis does not explicitly develop components to communicate with providers such as grid 

in the framework developed for the collaboration. Instead, we use the Blue Gene/Q system 

as an example to present the effect of computational steering that can be provided if the 

expected support can be obtained from computing resource providers. 

Moreover, the development of the CSWS server is also based on the requirement of 

providing the IBM Blue Gene/Q as a service for users of computational steering. Hence, 

instead of the expected use of the CSWS in the future, the development of CSWS also needs 

to address requirements such as flexibility, security, user-friendliness and communications. 

Such requirements are addressed in the collaboration project and considered as objectives of 

the current CSWS. Finally, the development of the CSWS is introduced in the following 

section. It presents a general framework for the so-called “mobile supercomputing” 

conception proposed by IBM *[virtual science on the move].  
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5.2 Implementing Human-Driven Computational Steering on 

IBM Blue Gene/Q  

Referring to the three-phases theory raised by Xu[155], the modern HPC era is from 1976 

to 1994 in which the performance of computing is considered to be the most important 

concern. Afterwards, the scalability of HPC infrastructures became the most significant 

feature in the second phase, which spans from 1994 to the present. Currently, we are entering 

the third phase in which the efficiency will become the priority of HPC systems. Besides 

improving the energy efficiency, we believe increasing the efficiency of using HPC systems 

is also a crucial challenge. 

According to our collaboration with the IBM Thomas J. Watson Research Center, scientists 

and engineers in IBM believe integrating computational steering with supercomputers is an 

promising approach to tackle such crucial challenge and improve the efficiency of running 

simulations on supercomputers. To facilitate the use of computational steering on 

supercomputers, this section discusses a flexible framework developed for the 

Computational Steering Web Service (CSWS) that provides steering-enabled software 

models as a software service for users. The feedback obtained from IBM engineers is 

attached in Appendix C. 

Moreover, it is necessary to emphasise that the computational steering service is the outcome 

from the collaboration, and initially it is only a contribution to conventional computational 

steering. Except for the realization of the visualization component, the computational 

steering interactions of the proposed Human-Driven Computational Steering (HDCS) are 

not different from the conventional computational steering based on our analysis. Thus, we 

assume that the framework developed for the collaboration project can be further used as the 

framework of the HDCS. 
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5.2.1 The Computational Steering Web Service 

The Overview of the New Framework 

 

Figure 5-1 The Overview of the New Framework: The Computing Resource Broker Service on the top provides 
computing resources as a service. The Computational Steering Web Service Server hides computing 
infrastructure services, such as grid interfaces, and make users focus on their simulations. The Blue Gene/Q 
stands for HPC infrastructures which needs to register itself as a steering-enabled computing resource provider 
on the Computing Resource Broker Service. It also needs to indicate the steering-enabled models it supports. 
The dotted arrows and components indicate communications and functions proposed in this thesis but are not 
realised in current implementation. 

An overview of the CSWS framework is shown in Figure 5-1. It includes the Clients, 

Computational Steering Web Service Server (CSWS server), Computing Resource Broker 

Service and Blue Gene/Q supercomputers components. To make this design compatible with 

more light-weight client devices, web browsers are used as the platform for running the 

client-side steering application. This application acts as a user interface for steering 

parameters, monitoring states of running simulations, and visualising real-time simulation 

results. Since this client-side steering application is built as a web application, it can be easily 

integrated into native Apple, Android and Windows operating systems. 

Additionally, the web application is hosted by the CSWS server. The CSWS server keeps 

connections with the clients open in order to stream steering information and visualization 

results in real-time. This is a critical requirement to realize the real-time steering in the 

CSWS. After clients submit a request to the CSWS server, computing resources that meet 

the requirement of users are requested through the Computing Resource Broker Service. 

Afterwards, the Computing Resource Broker Service returns information of the Blue Gene/Q 

system to the CSWS server. According to the returned information, the CSWS server 

submits tasks to the resource provider and sets up several TCP connections to the Blue 
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Gene/Q. Because the identity of CSWS server is checked by the Computing Resource Broker 

Service, the Blue Gene/Q does not need to manage computational steering users.  

As the Computing Resource Broker Service is not developed in the collaboration project, 

we only demonstrate the workflow after the Blue Gene/Q has been successfully assigned to 

the CSWS. The remainder of this section introduces our design of the CSWS Server and 

development on the Blue Gene/Q system.  

Computational Steering Web Service Server 

Figure 5-2 shows the design of CSWS. By referring to Figure 5-1, all communications on 

the left side are to/from the Blue Gene/Q system, and all communications on the right side 

are to/from users clients. Different colours are only used to differentiate components and 

communications.  

 

Figure 5-2  Computational Steering Web Service Server: This figure shows the internal framework of the 
CSWS server. The Blue Gene/Q system is on its left and the users are on its right. The Apache HTTP Server 
hosts a web application for users to steer parameters and view results of simulations. The visualisation of the 
web application is developed using the ParaView library. It also uses a proxy to transfer steering commands to 
the Blue Gene/Q system. The Output Loader and Checker are used to check states of simulation results and 
coordinates other components to work based on status of simulation results. 

To serve the web application to users, an Apache HTTP server is applied to the CSWS server. 

The web application contains three main parts. The first part is the Computational Steering 

Interface. It is a set of web interfaces that are built based on the RealityGrid Computational 
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Steering toolkit. It obtains real-time steering information from the simulations running on 

the Blue Gene/Q system and transfers this information to end users. The Visualization 

Interface is realised using the ParaViewWeb library16. This library supplies Javascript APIs 

for users to integrate a viewport into the web application. The viewport has a global ID, 

which will be passed to the ParaView Render Server. The render server builds connections 

to the visualization interfaces and to render the viewport when it receives requests from the 

Output Loader. The advantage of using the ParaViewWeb library is that it can process inputs 

obtained from the end-user to generate new images. Thus, users interact with the view since 

the ParaViewWeb can generate new images by processing user operations. For example, 

users can rotate the image, zoom in and out, and change which portion of the data can be 

displayed.  

The visualization data and status of steering programs are transferred to the web application 

in real-time via WebSocket. The reason for using WebSocket is that users need to obtain 

real-time feedback from running simulations. Originally, users needed to send requests to 

the CSWS server to check the status and outputs of their simulations but with WebSocket, 

servers can push information and data to the web application without requests from clients 

Hence, a lot of handshaking is eliminated. Since the Apache HTTP server does not support 

WebSocket during the development time, a Proxy is designed to handle WebSocket requests 

from users. There are three servers behind the proxy: the Output Loader, Output Checker, 

and Relay Server. The Relay Server is deployed on the Blue Gene/Q system to relay steering 

information between the CSWS server and Blue Gene/Q system, and it will be introduced 

in the following section. The Output Checker connects to the Blue Gene/Q system to check 

whether a new output has been generated. If there is one, it sends a signal to the Output 

Loader, which asks the ParaView Data Server to open the newly generated output file and 

sets up initial attributes about how to display the output data. Finally, the Output Loader 

commands the data server to pass the processed data to the ParaView Render Server which 

renders the data on the viewport of web applications.  

                                                 
16  ParaView is an open-source, multi-platform data analysis and visualization application. 
http://www.paraview.org/ 
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Since protocol frameworks of WebSocket such as Web Application Messaging Protocol 

(WAMP) 17  are not as mature as implementations of HTTP, Autobahn Python 18  and 

Autobahn JS are used as open-source implementations of the WebSocket protocols in this 

thesis. Many traditional server engines are based on the requests and responses mode. In this 

project, a server engine called Twisted is used as prototype for Output Loader and Output 

Checker. It is written in Python and is an event-driven networking engine that supports 

WebSocket technology. The Output Loader utilizes the WAMP that enables a web 

application to call remote procedures. The Output Checker uses the basic WebSocket 

protocol to guarantee that Output Loader can obtain a real-time signal. 

Finally, the User Management component is used to check the access permissions, and the 

information of users and their applications are stored in the Data Base. 

Configuration on the Blue Gene/Q System 

To be a computing resource that supports computational steering, specific components must 

be implemented on the Blue Gene/Q system. This section presents the Blue Gene/Q systems 

extracted from Figure 5-1 in Figure 5-3. All communications on the right side go to the 

CSWS server as shown in Figure 5-1. There are four components shown in Figure 5-3: the 

Backend Nodes (BNs), the General Parallel File System (GPFS), the Internal Network and 

the Frontend Nodes (FNs) and the Local Area Network (LAN). Since other components in 

the Blue Gene/Q system do not have a direct effect on this project, they are omitted from 

this figure. 

                                                 
17 WAMP is an open standard WebSocket protocol that provides two application messaging patterns in one 
unified protocol. 
18 Autobahn Python is a WebSocket WAMP library for Python 2 and 3 and Autobahn JS is a WAMP client 
library that works with any WAMP server. http://autobahn.ws 
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Figure 5-3 Implementation on the Blue Gene/Q: The FNs interact with the Proxy to accept and transfer steering 
commands. The ParaView Data Server is used to process results of simulations for the visualisation. The BNs 
are computing resources to run the simulations. The GPFS are storage of FNs and BNs.  

The FNs act as the interface on the BGQ system for building and launching applications. 

Typically, users cannot access the BNs directly. Instead, they need to access a FN to upload 

their programs and submit jobs. The FNs and BNs connect to the functional LAN to 

communicate with the GPFS. The GPFS is used as the shared storage of the FNs and BNs. 

The computational models that have been integrated with computational steering are stored 

on the GPFS. 

For the system security, this private LAN is typically inaccessible from outside, so 

communications between simulations running on BNs and remote client devices cannot be 

created directly. In this case, we have created a Relay Server to act as a transfer agent 

between the private computer network and CSWS server. The Relay Server is developed 

based on the RealityGrid steering library and is implemented on the FNs. Thus, it can 

communicate with BNs and utilizes the RealityGrid steering library to alter parameters of 

simulations running on BNs. Additionally, it receives real-time states of simulations running 

on BNs, pushes information to the CSWS server, and receives steering commands and 

steered parameters from the CSWS server. Additionally, commands and modified 

parameters retrieved from the CSWS server are passed to the running simulations through 

the Relay Server. The communications between the Relay Server and simulations can be 
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based on either files or sockets, but currently we only leverage sockets to avoid pressure on 

the file system.  

The reason for separating data and render servers in this project is that the specific Blue 

Gene/Q system has no GPUs to support rendering tasks. As the CSWS server runs on a 

separate machine that has GPUs, we implement the render server to the CSWS server to 

speed up the image rendering. Another reason is that the data server has the ability to transfer 

data to the render server in parallel. This means separating the render server and the data 

server can save a lot of development time in realising parallel data transport. It may be 

possible to leverage a shared file system, such as the GPFS, between the Blue Gene/Q and 

CSWS server as a more dedicated data transport method in the future.  

5.2.2 Discussion of the CSWS Framework 

Deploying the conventional computational steering on HPC systems as a web service has 

many uncertainties. Performance and feasibility of the CSWS can be limited by the support 

for the visualization, the structure of the HPC systems, and the overall network performance. 

Therefore, components of this framework are loosely coupled into different servers. The 

performance of this framework can be affected by the locations of these servers, and the 

implementations can be flexibly based on the requirements of users and the structures of 

hardware systems. To demonstrate that this framework can cope with the uncertain 

requirements, this section presents our experience as two examples in which the loosely 

coupled design helps to complete the collaboration project. 

Generally, the implementation should limit data movement, especially for simulations that 

generate large amounts of visualisation data. However, if under certain circumstances the 

data movement is inevitable, it can be accomplished either via network transfer or shared 

storage solutions. The reason for the data movement in our collaboration project was the 

lack of support for GPUs. For example, users may require a volume visualization in the web 

application. The volume visualization requires a volume rendering that is computationally 

expensive and typically requires GPU acceleration to achieve interactive performance 

required by computational steering. However, the visualisation data is stored on the Blue 

Gene/Q system, which does not have GPU support19. To cope with this issue, the ParaView 

                                                 
19 ParaView also provides the Catalyst that allows CPUs to render images. Since the speed of rendering using 
Catalyst on Blue Gene/Q is slow, this project provides another method to introduce GPUs. To the author’s 
knowledge, some implementations of Blue Gene/Q have began to have high end GPUs installed while the 
thesis was writing. 
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server can be separated as the ParaView Data Server and ParaView Render Server. The 

ParaView Data server processes visualisation data into a specific format and transfers the 

data to the ParaView Render Server which can be installed on machines that have specific 

support from GPUs. 

In another case, we assume that the FNs do not have the computing power to support the 

ParaView Data Server at the beginning of this project. This assumption is based on the fact 

that FNs are only suitable for light-weight tasks, such as launching applications, because of 

the light computing resource assigned to it. Hence, in the original plan, the ParaView Data 

and Render Servers are both installed on the CSWS server to avoid introducing compute-

intensive tasks on FNs. The data transfer will be implemented between the Output Checker 

and Output Loader. However, because of the tight development time during the collaboration, 

the author did not have enough time to implement the original plan. Hence, benefit from the 

loosely coupled data and render servers, the current implementation is a comprise solution 

based on the loosely coupled data and render server. 

Consequently, scenarios described above illustrate that the loosely coupled structure of the 

framework enables components to be flexibly implemented on the BG/Q system and CSWS 

server. The loosely coupled structure also provides the ability for the CSWS framework to 

deal with uncertain specifications and structures of general supercomputer structures. Thus, 

configurability is shown as an important feature in the framework of the CSWS. Users can 

deploy this framework by re-organising components based on their requirements.  

Finally, this collaboration project succeeded in enabling users to steer a DL_MESO14 

simulation based on the CSWS framework. We demonstrate the steering interface as seen 

by the users using a web browser to steer the simulation and obtain the visualization feedback 

in the Appendix B. 

5.3 Implementing Dynamic Data-Driven Computational 

Steering on High-Performance Computing Resources 

To guarantee the Dynamic Data-Driven Computational Steering (DDDCS) can finish tasks 

in time, it is important to dynamically assign computing resources to the DDDCS to meet 

the requirement of computing power. The author considers the calibration process to be the 

predominant time-consuming component of the DDDCS. Hence, this section primarily 
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introduces implementing the calibration component on dynamic computing resources. The 

required amount of computing resources is analysed by the Time Manager introduced in 

Section 4.3. Hence, this section introduces how to link the calibration component to the Time 

Manager and the Computing Resource Manager in terms of working on the specific amount 

of computing resources required by the Time Manager and assigned by the Computing 

Resource Manager. 

5.3.1 The Workflow of Parallel DDDCS 

As discussed in the Section 3.2, the Dynamic Data-Driven Computational Steering (DDDCS) 

is represented by the calibration process. Additionally, the workflow of the calibration 

process, which consists of the Genetic Algorithm (GA) and the simulations, has been 

depicted in Section 4.2.2. However, the workflow described in Section 4.2.2 focuses on 

steering interactions between GA and simulations, conversely, this section outstands 

functions which are required to be implemented DDDCS on HPC resources. Moreover, as 

DDDCS uses GA as the steerer, this section needs to analyse the specific requirement raised 

by the GA, in order to benefit from the template framework developed in the collaboration 

project with IBM. 

Consequently, three features of DDDCS are discussed as follows. Firstly, the GA Steerer 

can trigger massive parallel steering on multiple computing resources. The parallel DDDCS 

is an equivalent to a scenario in which a human steerer uses two or three copies of one 

simulation simultaneously with different groups of steered parameters. The difference is that 

the automatic Steerer, GA, has a higher scalability in terms of parallelism which means it 

can steer a large number of simulations concurrently. Secondly, since DDDCS requires 

dynamic computing resources, the communication between the Application Side Steering 

Interface and the Steerer can only be built dynamically. Moreover, since the DDDCS is 

conducted in parallel, the Steerer needs to communicate with multiple Application Side 

Steering Interfaces and coordinate steering tasks. Thus, parallel workflow of DDDCS is 

shown in Figure 5-4. 
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Figure 5-4 Parallel Workflow of the DDDCS:Dashed arrows are used to differentiate between overlapped 
arrows. It emphasizes the Checking Outputs and Assigning New Parameter Values components that are 
designed to handle the parallel programming on the HPC resources. 

Figure 5-4 depicts the design of the parallel workflow of DDDCS based on the workflow 

introduced in Figure 4-6 of Section 4.2.2. The description of each workflow can be found in  

Section 4.2.2 as well. This section only discusses the functions shown in the Steerer. At first, 

the Assigning New Parameter Values function acts as the steering interface on the steerer 

side. It manages a task pool which consists of parameter groups generated by the GA. As 

the calibration is running in parallel, the Assigning New Parameter Values function also 

needs to assign each group of parameters to the corresponding simulation. On computing 

resources, all processes are initialised simultaneously and wait for the steered parameters. 

Thus, based on the parallel scale 𝑁𝑁, 𝑁𝑁 sets of parameters are explored concurrently. The 

Main Computations components are identical in all parallel processes, and their outputs are 

collected by the Checking Outputs component. If any of them meet the stopping criteria, the 

workflow reaches the End status. Otherwise, N sets of new values from the task pool are 

generated and used to trigger another round of steering on remote simulations.  
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5.3.2 The Framework of Dynamic Data-Driven Computational Steering 

The parallel workflow discussed in the last section introduces functions required by 

interactions between the steerer and simulations. However, since the DDDCS also needs 

time management and computing resource management, the parallel steering workflow 

needs to be further extended to include functions that have been introduced in Section 4.3. 

Additionally, we propose to extend the CSWS to support the DDDCS as well.  

However, the framework developed for the HDCS and CSWS only provides abstract 

description of components such as Computing Resource Broker and Computing Resource 

Manager. As we collaborate with Zeqian Meng who focuses on the study of the 

communication between brokers, resources providers and resource requesters, the developed 

framework is only tested based on a set of fundamental interfaces provided by Meng’s work 

[100]. The test can show that the designed framework can communicate with one of modern 

computing resource broker. 

By doing so, new functions that are created to tackle challenges of DDDAS, such as time 

management and computing resource management, are included in the CSWS server. 

By adding new DDDCS functions to the CSWS server, it is necessary to adapt the workflow 

among Steerer, CSWS server and HPC infrastructures that are developed for HDCS to the 

DDDCS. Additionally, since this section focuses on integrating DDDCS functions with 

CSWS, the details of HDCS on the CSWS will not be discussed. 
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Figure 5-5 The Workflow of the Dynamic Data-Driven Computational Steering: This figure indicates Steerer, 
Time Manager and Computing Resource Manager are integrated with CSWS developed for the conventional 
computational steering. The Steerer, the GA, steers parameters of simulations through the Relay Server. 

Figure 5-5 shows a general CSWS workflow of the DDDCS which is inspired by the CSWS 

framework developed for the HDCS. It is flexibly designed to be implemented on HPC 

infrastructures. The HPC Infrastructures shown on the right represents a general HPC 

structure, and Blue Gene/Q and Amazon Cloud will be used as two specific HPC structures 

to demonstrate the applicability of the general framework. The component shown on the left 

is the extended CSWS, and it includes Time Manger and Computing Resource Manger that 

are used to support real-time steering functions required by the DDDCS. Additionally, the 

steerer of the DDDCS is also included in the CSWS since the CSWS can provid secure 

communications with the HPC infrastructures. The Time Manager estimates the running 

time of the Steerer based on the incoming sensor reading and further estimates the least 

required computing resources to ensure the Steerer to finish in time and sends the amount of 

required computing resource to the Computing Resource Manager. The Computing 

Resource Manager is the interface of the CSWS to the Computing Resource Broker. It wraps 

the required computing resources into the request to the Computing Resource Broker, which 

is responsible for searching available computing resources from resource providers, and 

initialising a computing environment on these resources to make them ready for users. The 
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Computing Resource Broker provided by Meng uses REpresentational State Transfer 

(RESTful) interfaces for the Computing Resource Manager to send the wrapped request. 

The requested amount of resources is in the form of core numbers, and the feedback from 

the Computing Resource Broker includes IP addresses and port numbers of Relay Server on 

the HPC Infrastructure. 

In practice, the specification of CPUs and the network configuration are also important for 

computing performance. However, this work is limited by functions that can be provided by 

the simple Computing Resource Broker. Hence, to demonstrate the ability of using different 

amount of computing resources, it is reasonable to use the number of a specific type of CPUs 

to measure the amount of computing resources. In addition, as testing the performance of 

different computing infrastructures is not in the scope of our work, we do not have a 

comprehensive study on comparison between different types of computing resources. As 

studied in Section 4.3, this thesis only provides a general method to demonstrate existing 

time management method can be used to support the hybrid computational steering by 

learning the relation between the required amount of computing resources, the workload of 

calibration process and the deadline. Studying the exact amount of computing resources 

required by a steering job is left as a future work in the development of a specific project.  

The Relay Server is also a concept used in the template framework developed with IBM. By 

referring to the parallel steering workflow, it can be considered as one part of the Application 

Side Steering Interface. Its basic function is to relay steered parameters to simulations by 

communicating with the steering interface on the simulations. This steering interface is 

considered as the other part of the Application Side Steering Interface. Additionally, in this 

work, one process is assumed to solely occupy one basic computing unit in the HPC 

infrastructures. Hence, we do not consider the situation of two threads running on the same 

CPU based on a mechanism such as the round robin. To reduce the computing burden of the 

Relay Server, the Computing Resource Manager indicates the number of cores applied from 

the resource provider to the Steerer. Based on this information, the Steerer groups steered 

parameter values into steering tasks, and the number of tasks in a group equals to applied 

core numbers. Thus, the Relay Server only needs to relay each steering task to the 

corresponding task process. 

The general framework acts as a template of implementing DDDCS on HPC infrastructures. 

However, the specific implementation can be different. In order to support our general 



 
137 

DDDCS framework, we discuss the derived framework implemented on two popular HPC 

infrastructures. In this thesis, frameworks of the IBM Blue Gene/Q supercomputer and 

Amazon Elastic Computing Cloud (Amazon EC2) are used as representatives of computing 

resources that can be offered by the Computing Resource Broker.  

Implementing Dynamic Data-Driven Computational Steering on Blue Gene/Q 

supercomputer 

The Blue Gene/Q supercomputer is a representative of local clusters and supercomputers. 

Supercomputers and local clusters have geographically closed processors. Since in the Blue 

Gene/Q system, processors do not share memory, this implementation only aims at 

distributed-memory supercomputers. Thus, each simulation process in this work maintains 

its own memory and the steering process needs to alter parameters in memories for each 

steering task assigned to the processes. By taking this general feature of supercomputers into 

consideration, we transform the general framework designed in Figure 5-5 to the framework 

designed for the Blue Gene/Q supercomputer.  

 

Figure 5-6 The DDDCS framework implemented on the Blue Gene/Q supercomputer: Since the general 
framework is developed based on the framework of developed for conventional computational steering, this 
figure is similar to Figure 5-5. The difference is the Relay Server only communicates with one process on the 
Backend Nodes to exchange the steering information. 
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As shown in Figure 5-6, communications among the Blue Gene/Q supercomputer, 

Computing Resource Broker, Computing Resource Manager, Time Manager and the Steerer 

remain the same as that of the general framework. Additionally, based on the design of 

HDCS framework, the interface component, Relay Server, is implemented on a Frontend 

Node (FN) of the Blue Gene/Q. As part of the negotiation protocol, the information of 

computing resources, which is used by the Steerer to send tasks, are the Internet Protocol 

(IP) address and TCP port of the Relay Server. 

In this framework, the Relay Server has three functions: 1) the first one is to separate the 

outside network from the computing node; 2) it transfers all tasks received from the Steerer 

to tasks running on the BNs, and 3) it is also responsible for initialising steering 

environments for accepted steering tasks. The first two tasks have been discussed in previous 

sections, and the third function means that the Relay Server, after confirming to the 

Computing Resource Broker to provide computing resources, must start several steerable 

simulations on its computing resources. Additionally, the TCP ports that have been provided 

as resource information for the broker must be reserved by the Relay Server for 

communications from the Steerer. The pre-started simulation waits for the Steerer by stalling 

at the Steering Interface as shown in Figure 4-6. Afterwards, the Computing Resource 

Manager can obtain the information of the ready-to-use computing resources from the 

Computing Resource Broker and pass the information to the Steerer, which starts the 

DDDCS by transferring steering tasks to the Relay Server through the reserved TCP ports. 

As the Blue Gene/Q is a distributed-memory system, each sub-process of the parallel 

simulation has one of its own copies of parameters. Hence, the steering process must be 

conducted on each of the sub-process to alter the steered parameters. However, the 

RealityGrid Computing Steering toolkits used in this thesis do not provide support to directly 

alter parameters on all processes. Hence, to enable the parallel steering, we either need to 

create steering interfaces for each processes or need to realise the parameter alternation by 

modifying the original parallel simulation package to pass the steered parameters from the 

master process to slave processes. 

The method used for the Blue Gene/Q supercomputers is modifying the original parallel 

simulation package. The reason is that the communications among BNs are specifically 

optimised in the Blue Gene/Q system. Instead of customise the communication between the 

Steerer and all processes, interfaces such as Message Passing Interface (MPI) can be directly 



 
139 

used to take advantage of the optimised communication among BNs. Since in the distributed-

memory system, MPI is a predominant communication protocol to realise the 

communication, we assume all parallel simulations discussed in this thesis running on the 

Blue Gene/Q system utilise the MPI.  

To achieve this method, all information of steered parameters received from the Relay Server 

is transferred to one process, the master. Before all processes enter the Main Computations 

component as shown in Figure 5-6, the master process, by using Process 1 as an example, 

sends steered parameters to slave processes using MPI, and at the end of the Main 

Computations, results of each processes are collected by the Process 1 which sends them 

back through the computational steering interface.  

Implementing Dynamic Data-Driven Computational Steering on Amazon Cloud 

Supercomputers always have an absence of computing resources, especially when the 

resources are shared among several institutions and organisations, instead, on-demand cloud 

computing resources can be applied in time without consideration on lacking resources. 

Additionally, Amazon Cloud provides different instance types. An instance is a virtual 

machine on the Amazon Cloud, which can be customised with different configurations on 

the CPU, memory, storage, and network resources. It is a type of virtual computing resource 

since the physical computing resources are dynamically assigned to instances on demand. 

For example, in the Amazon Cloud, the smallest instance has one CPU, 0.613 gigabyte of 

memory and a low network performance. On the other hand, the largest instance, which is 

optimised for compute-intensive tasks, has 32 CPUs, 60.5 of gigabyte memory and a 10-

gigabit network bandwidth. Therefore, after the Computing Resource Broker accepts the 

application from the Computing Resource Manager, it starts instances that meet the 

requirement of the Time Manager. 

Based on the types of instances of Amazon Cloud accessed in October 2016, three solutions 

can be used to deploy the parallel steering tasks: 1) utilising OpenMP to parallelise steering 

tasks on compute-intensive instances, such as the “c3.8xlarge” instance that has 32 CPU 

cores, 2) utilising the one-core instances, such as the “t2.nano”, to assemble a distributed 

computing system, and 3) combining the first and second solutions by utilising the multi-

core instances to construct a distributed computing system. In terms of choosing the optimal 

solution for a specific project, the decision can depend on the particular requirements of 

computing power, project budget, and specific model of the simulation. A “fat” instance that 
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has up to 128 CPUs has advantages of fast communication among parallelised tasks and a 

short application time. However, it has a high price compared with smaller instances. For 

example, the price of the “c3.8xlarge” instance is $1.68 per hour, while, the price of the 

“t2.nano” instance costs $0.0065 per hour. Although the “c3.8xlarge” has 32 times the 

number of CPU cores as the “t2.nano”, it costs 258 times more than the small instance. Since 

the hybrid solution includes the structure of the first and second solutions, this section solely 

introduces the framework designed for the third solution as an example. 

 

 

Figure 5-7 The DDDCS framework implemented on the Amazon EC2: This figure emphasizes the Relay 
Servers are installed on all instances to handle their communications with the Steerer.  

Figure 5-7 depicts the framework designed for the cloud computing resources. Since the 

basic workflow is the same as that of frameworks shown in Figure 5-5 and Figure 5-6, we 

only emphasize its difference.  

In the development of the DDDCS framework for the cloud structure, each instance has its 

per se Relay Server. After Computing Resource Broker manages to find requested 

computing resources, it returns IP addresses and port numbers of Relay Servers on all 

instances to the Computing Resource Manager. This information is transferred to the Steerer 

which dynamically divides tasks into slices and assigns these to corresponding Relay Servers. 
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Creating multiple Relay Servers for each instance is necessary. Different from the 

centralised computing resources in the Blue Gene/Q system, the processor provided by the 

cloud providers can be geographically distributed. In this example, the computing resources 

acquired from the Amazon EC2 cloud are in the form of instances. Compared with 

supercomputers that have a high-speed interconnect to connect the processors, the 

communication among Amazon instances may need to go crosses countries and continents. 

In the implementation on the IBM Blue Gene/Q, the steered parameters are assigned to slave 

processes by a master process using MPI. However, the conventional MPI did not support 

the cross-sites communication required in the Amazon Cloud structure. Due to the advance 

of grid computing and meta-computing, variations derived from the original MPI, such as 

OpenMPI, PACX-MPI and MPIg, have started to handle communication among distributed 

processes. However, as we do not want to bind our project with specific MPI standards, we 

move the job of separating and assigning steering tasks from the master process to the Steerer. 

To achieve a concurrent task assignment effect, the Steerer is run in parallel in this 

implementation. As a result, each process of the Steerer corresponds to an instance requested 

from the Amazon Cloud. The MPI is still used, but instead of being used among Processes, 

it is applied to the Steerer to distribute steering tasks. The Relay Server simply relays steering 

tasks to computing processes and sending simulation results back to the Steerer. 

A challenge in this implementation is to deploy the steering-enabled models on an instance 

which is requested dynamically and set up the software environment of such instance to 

make it ready for the DDDCS tasks. As for the framework designed for the Blue Gene/Q 

system, this thesis assumes that the toolkit, simulation models and other required libraries 

have been installed on the instance, and this setup is a requirement of being a provider of the 

DDDCS service. To realize this assumption, the instance image mechanism provided by the 

Amazon EC2 is utilized to store the configuration of a pre-configured instance. By 

requesting instances with an image identity, the required software environment and steerable 

models are ready to use.  

5.4 The Framework of the Hybrid Computational Steering 

After describing the frameworks of Human-Driven Computational Steering (HDCS) and 

Dynamic Data-Driven Computational Steering (DDDCS), this section integrates them to 

achieve the framework of the hybrid computational steering. The result of the integration 

incorporates workflows introduced in both frameworks.  
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Figure 5-8 Framework of the Hybrid Computational Steering: The red, blue and green colours are used to 
indicate the HDCS, DDDCS-SL and DDDCS-HL layers introduced in architecture design in Figure 4-1. The 
black bar in the middle separates the frameworks of HDCS and DDDCS. The components with dashed outlines 
indicate the functions used to support the conventional computational steering. Such functions can be removed 
in the development of the hybrid computational steering. 

Figure 5-8 illustrates the framework of the hybrid computational steering. Although this 

framework has a complex workflow, this figure separates the HDCS on the upper side from 

the DDDCS on the lower side. Details of each steering framework are not repeated in this 

section. As introduced in Chapter 4, the HDCS is considered as a higher steering layer 

compared with the DDDCS, this section focuses on introducing the interaction between the 

HDCS and DDDCS. 

In the hybrid computational steering, human users are enabled to alter parameters of the 

calibration algorithm at its execution time. The web steering application developed in the 

framework of the HDCS is kept to provide users an interface to steer parameters of the 

calibration algorithm. This steering application is served by the Apache HTTP Server and 
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acts as a Relay Server between the DDDCS Steerer and users since it needs to pass the 

steering commands assigned by users to the DDDCS Steerer. As the function of relaying 

steering command is the same as its function used in the project collaborated with IBM, the 

implementation of Apache HTTP Server is kept the same, and the DDDCS Steerer is 

integrated with RealityGrid Computational Steering to interact with the Apache HTTP 

Server. Moreover, as the HDCS provide high-level functions for users to analyse the 

behaviour of the physical world, the visualisation data processing and rendering are not 

critical in the context of DDDAS. Such components that are designed to facilitate the 

conventional computational steering are outlined in dashed lines. It means that these 

components can be removed in the framework of the hybrid computational steering. 

5.5 Chapter Summary 

This chapter presents the frameworks that are developed to implement architectures of the 

hybrid computational steering on HPC infrastructures. As the infrastructure of the hybrid 

computational steering can be divided into Human-Driven Computational Steering (HDCS) 

and Dynamic Data-Driven Computational Steering (DDDDCS), its framework is also 

divided into HDCS and DDDCS frameworks.  

Since the hybrid computational steering is inspired by conventional computational steering 

which are largely driven by human users, the development of HDCS framework is based on 

a collaboration with IBM which intends to improve the usability of supercomputers using 

conventional computational steering. Based on the survey conducted in Section 2.1, we 

analysed that the diverse and rapidly changing communication protocols and standards of 

the grid may prevent model developers from contributing to computational steering. Thus, 

the developed framework sees computational steering as the Computational Steering Web 

Service (CSWS) that can isolate the steering middleware from the HPC resource service. 

Additionally, the developed framework manages to support the web service to provide both 

conventional computational steering and HPC infrastructures as services for users. We 

managed to steer the DL_MESO simulation through the web application and managed to 

allow the CSWS server to handle communications between the steerer and simulations 

running on HPC resources. At the end of the collaboration, IBM takes the steering service 

as a solution to provide an app that enable consumer devices (e.g. tablets) to access an IBM 

Blue Gene/Q system. Since there is no significant difference between the HDCS and 

conventional computational steering in terms of implementing on HPCs, the framework 
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developed in the collaboration project is considered as the framework developed for the 

HDCS. Moreover, it also provides us experience and a template in the development of the 

DDDCS framework. 

Based on the framework developed for the HDCS, we further developed frameworks for the 

DDDCS that can be implemented on both supercomputers and clouds. Inspired by the 

framework of HDCS, the Steerer of the DDDCS is incorporated by the CSWS to enable 

secure communications between the steerer and Relay Server. The Relay Server is also a 

product of the collaboration project. It transfers the steered parameters from the DDDCS 

Steerer to the simulations running on the backend computing resources. To cope with the 

parallel simulations running on the HPCs, dividing steered parameter groups for different 

processes are introduced as an additional function of the DDDCS Steerer. Additionally, to 

communicate with the Steerer, the Time Management and Computing Resource Manager 

are also included into the CSWS. Based on features of IBM Blue Gene/Q and Amazon Cloud 

computing architecture, the general DDDCS framework is modified to demonstrate that it 

can be applied to specific computing resources.  

Finally, the frameworks developed for HDCS and DDDCS are integrated as the framework 

of the hybrid computational steering. Our aim in developing above frameworks is to 

implement architectures of the hybrid computational steering in practice. Hence, it is crucial 

to develop components in these frameworks as programs. Since the main contribution of this 

thesis is not program development and also because of the limitation of the content size, we 

do not introduce the progress of programming. All programs designed in the collaborative 

project must not be disclosed in the public according to the requirements of IBM. Programs 

for Steerer, Relay Server, Computing Resource Manager in both DDDCS and the hybrid 

computational steering are stored in Bitbucket. The web link to access these programs are 

attached in Appendix A. Since we collaborated with another PhD research which provided 

the program of the Computing Resource Broker, we do not include it as the work of this 

thesis. For the Time Manager, the time management principles are evaluated manually; 

hence, we do not realize the Time Manger as a program. 
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 Evaluation 

The concept of the hybrid computational steering has been introduced in Chapter 3. Chapter 

4 and Chapter 5 have presented its design of the architecture and framework levels. This 

chapter evaluates the combination of functions, architectures and frameworks introduced 

above and demonstrates that the hybrid computational steering is feasible to be implemented 

in practice and make contributions to solving problems of a real large-scale physical system. 

This chapter uses an application of water distribution systems as a use case because of the 

collaboration with WRc and Northumbrian Water company. The background and 

implementation of the use case are introduced in Section 6.1 and 6.2. Section 6.3 evaluates 

the functions and performance of Human-Driven Computational Steering (HDCS), which 

constitutes the first half of the evaluation of the hybrid computational steering. For the 

second half, namely the Dynamic Data-Driven Computational Steering (DDDCS), Section 

6.4 compares the performance of the calibration process developed in Section 4.2 with the 

calibration of existing projects in the field of the water distribution system. Additionally, to 

achieve the time requirement in a DDDAS, the Time Manager and the ability of using 

dynamic computing resources, which are introduced in Section 4.3, are evaluated in Section 

6.3, 6.5 and 6.6. A local cluster, a local multi-core computer and a cloud computing system 

are used as two platforms to conduct the evaluation.  

6.1 Use Case: The Simulation of Water Distribution System 

As we propose to integrate computational steering with applications of DDDAS, it is 

essential to select a physical system as a use case that needs to utilise a numerical model to 

implement a real-time and compute-intensive simulation. This section first discusses the 

reasons for selecting a Water Distribution System (WDS). In addition, we introduce the 

software used to model the WDS. Finally, this section introduces a genetic algorithm that is 

used as the specific calibration algorithm in this evaluation. 
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6.1.1 Computational Challenges of Modelling a Water Distribution 

System 

 

Figure 6-1 The Water Supply System [109]: The water supply system includes the water distribution system 
that is framed into the lower-half box. A numerical model of the water distribution system can be implemented 
to simulate states of junctions, pipes and reservoirs. These states are important for daily works of water 
engineers. Sensors are used to collect information to rectify the numerical model, and they are abstracted as 
being implemented on junctions. This figure gives readers a general idea of a water distribution system. 

A Water Distribution System (WDS) is a sub-system of the Water Supply System as shown 

in Figure 6-1. It is mainly responsible for clean water storage and transmission. In a physical 

WDS system, the main components of a WDS include pipes, valves, pumps, junction, tanks 

and reservoirs. In modelling a WDS, junctions, reservoirs and tanks are always abstracted 

as nodes and pipes, pumps and valves are categorised as links [82].  
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Figure 6-2 The Simulation of the WDS: This is a graphical result of modelling a water network. Two scales 
are shown on the upper left corner to map colours to values of pressures and flow speeds. Rounds denote 
junctions and lines denote pipes.  By taking the size of a real water network into consideration, this figure 
indicates the complexity of simulating a water network when 

Figure 6-2 shows a graphical result of a simulation whose links and nodes are shown as lines 

and circles. Its colours correspond to particular pressure and flow values. However, Figure 

6-2 only shows a portion of the entire water distribution network that can include thousands 

of junctions and pipes. Modelling a WDS is challenging for our evaluation methods since a 

WDS is a complex physical large-scale network system. In the United States, the distance 

of the distribution WDS network has reached 400,000 miles in 2005  [132], which is more 

than 16 times longer than the perimeter of the earth. The network operated by our project 

partner Northumbrian Water company operates 326 water service reservoirs, 25678.3 km 

mains, 29923.1 km sewers and serves more than 1104 megalitres water to their customers 

every day [3]. Additionally, these distributed networks are always largely interconnected 

and buried under the ground. Thus, there is a high degree of uncertainty about the state of 

the WDS, and both the simulation and calibration of the WDS turn to be a compute-intensive 

task.  

Furthermore, as identified by Shannon and Jeanne in 2005 [70], system wide sensor 

networks coverage is very rarely available and exists only in selected testbeds. Hence, 

conventional WDS simulations typically run in offline mode. However, as the development 

of sensor networks, using sensor data to simulate and calibrate WDS is becoming a goal for 

water companies, and it raises interests in running real-time simulations and calibrations so 
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that anomalies such as pipe leakage and bursts can be identified, measured and fixed in time. 

Hence, a real-time and compute-intensive problem has arisen in WDS, and it fits the problem 

domain defined in Chapter 1.  

6.1.2 Modelling Water Network 

We chose a widely available open source software package, EPANET, as the simulation 

component for modelling a WDS. EPANET was developed by the Environmental Protection 

Agency for the water modelling community, and it is widely utilised for public and 

commercial water network software development. This work uses its latest version, 

EPANET 2, which was released in 2008. 

EPANET requires an input file that describes the geographical and engineering details of the 

network to be simulated. SZ01.inp is an input file that describes the network information 

provided by the Northumbrian Water company. The suffix, INP, is the abbreviation of the 

word input and indicates the format of the file. SZ01 is a code that denotes the particular 

area in the water network. Figure 6-3 presents the graphical result of simulating the SZ01 

area. 

 

Figure 6-3 Overview of SZ01: Dots are junctions and lines are pipes. It presents the structure and element 
positions of the water network. 
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This project divides the information stored in the SZ01.inp into static and dynamic 

information. The static information includes locations of elements, length and diameter of 

pipes, types of water demand, etc. The static information describes fundamental parameters 

and structure of the network as shown in Figure 6-3. Hence, the next step is to calculate the 

states of elements in the water network and get the result as shown in Figure 6-2. The 

dynamics of the EPANET model are driven by the water demand pattern contained in the 

INP file. It means the model in the EPANET converts the water consumption states such as 

pressure and flow rate. In a real-time simulation, the water demand is obtained from the 

calibration component dynamically. However, in order to introduce the water demand, we 

use static water demand supplied by Northumbrian water in the INP file as an example. 

In an INP file, the water demand is represented by an array of values that are attached to 

components in the model. The elements of this array are called Demand Multiplication 

Factors (DMFs) and are defined in the [PATTERN] section. EPANET calculates the demand 

of a junction by multiplying the DMF with the base demand (recorded in [DEMANDS] 

section) of a junction. Therefore, when the DMF is greater than 1, the water demand of the 

corresponding junction increases, and conversely, its demand decreases. Additionally, in 

SZ01, DMFs are categorised into 510 types according to the types and locations of 

consumers. For a specific type, the number of multiplying factors indicates the duration 

covered by the INP file.  

 

Figure 6-4 An Example of DMFs: The DO_BW005_S5PDT is the name of a water demand multiplier factor. 
It indicates the fluctuation of one type of water demand. The numbers indicate the value of the DMF at a 
specific time step. The duration a factor can represent depends on the time information noted in the [TIMES] 
section in the INP file. 

 

Figure 6-5 [TIMES] Section of the INP File: Duration is the total time can be covered by the DMFs. The 
Hydraulic and Quality Timestep indicate time steps in two types of simulations. The Pattern Timestep is the 
duration one DMF can represent. 
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Figure 6-6 [DEMANDS] Section of the INP File: The first column is the ID of a junction. The column on the 
right shows the type of water demand, and their initial water demand values are listed in the middle. For one 
junction, its water demand equals to the sum of all types of water demands shown in this section.  

For instance, Figure 6-4 shows the DMFs of a particular water demand pattern, namely 

DO_BW005_S5PDT. According to the information shown in Figure 6-5, the 48 factors of 

the DMF covers the water demand fluctuation in 24 hours and the step of the DMF is 30 

minutes. Moreover, Figure 6-6 presents an example of assignment of the water demand 

pattern. The node 47296871 contains two types of water demand, LE_BW005_S5PDT and 

DO_BW005_S5PDT, and the base demand for both types are 1. Hence, for node 47296871, 

the water demand of DO_BW005_S5PDT at the beginning of the hydraulic model is 

0.143540 which equals to the product of base demand multiplied by the first factor of the 

DO_BW005_S5PDT. As a result, by using the SZ01.inp as the input file, a 24 hour offline 

simulation of the water network can be executed with a 30 minutes updating frequency. As 

a result, the parameters that drive the simulation are the DMFs, and the results of the 

simulation are states on pipes and junctions such as the water pressures and speed.  

However, in order to monitor a WDS in real-time, rather than using the static DMFs stored 

in an INP file, DMFs must be updated to reflect the progress of a real WDS. Such knowledge 

is important for understanding the implementation of the use case discussed in Section 6.2. 

 Junctions 

Junctions 

with 

Demand 

Patterns 

Links Sensors 

Types of the 

Demand 

Multiplication 

Factors 

(DMFs) 

Amount 5000 1853 5226 39 510 

Table 6-1 Summary of SZ01: This table indicates the size of the water network area SZ01. The states of 
Junctions that have Demand Patterns fluctuate as time passes. Other junctions have static states. DMFs are 
utilised to calculate water demands on junctions. Its number indicates the amount of types of water demand. 
Since the number of sensors is much less than the types of demand, modelling cannot avoid errors and 
uncertainty. 

As a result, Table 6-1 summaries elements and DMFs stored in the SZ01.inp, and it also 

indicates the number of sensors implemented in the SZ01 area by the Northumbrian Water 

company. The labels of junctions, links and DMFs are collected by using functions provided 
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by the EPANET. The labels of junctions with demand patterns are extracted from the 

[DEMANDS] section of the input file. It is used for defining multiple water demands at 

junction nodes. Nevertheless, only 1853 out of 5000 junctions are assigned with demand 

patterns. The assumption is that the water demands on other junctions are constant [123]. 

Thus variations of the water network states are mainly represented by the 1853 junctions 

that are assigned demand patterns. In order to monitor the SZ01 region, 39 sensors are 

deployed by the Northumbrian Company, and sensor readings are used to signify the states 

of 5000 junctions and 5226 links. Hence, modelling SZ01 based on such dynamic 

information cannot avoid errors and uncertainty. 

6.1.3 Calibration 

There are multiple sources of uncertainties that have significant influence on the accuracy 

of modelling of a WDS[67]. Preis [117] indicates that the general method is to calibrate 

model parameters such as pipe roughness in offline mode. However, values of DMFs change 

much more dynamically than pipe roughness as model parameters and thus require to be 

calibrated in online mode. In a modelling of a water network, model states such as water 

pressures and flow rates can be directly obtained from sensors. Since EPANET is driven by 

un-measurable DMFs to output measurable states, such as pressure, the calibration is to 

assimilate measurable states to rectify the un-measurable DMFs. 

As discussed in Chapter 3, this thesis considers the existing calibration process as a batch 

utilisation of HPC that can be improved by computational steering. Therefore, model 

parameters can be considered as the steerable parameters. However, since we focus on the 

online calibration, only DMFs, that are steered based on the dynamic sensor data, are 

considered as our steerable parameters.  

After determining the steerable parameter, we need to discuss the calibration method that 

can be integrated with computational steering. The review of potential calibration algorithms 

has been discussed in Section 2.2.2. For this evaluation, we build on a previous decision 

support tool that has been shown to work well for WDS modelling [82]. In the previous 

collaboration, a decision support tool [82] has been developed based on the GA, hence, as 

part of the continued collaboration, the GA is selected as the calibration algorithm. 
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Figure 6-7 The Calibrator Designed for the Use Case: The Calibrator is implemented by using a genetic 
algorithm. It has an ensemble that consists of different sets of DMFs estimations. The DMF is used to drive 
the EPANET water model to simulate states of the water network. The simulation results are compared with 
sensor readings. The set of estimated DMFs that generate the closet simulation results to the sensor readings is 
selected as the best estimation, and simulated states based on this set of DMFs are considered as real-time 
states in the WDS. 

The Figure 6-7 depicts the workflow of the Calibrator realised by the GA. At time t, the 

Calibrator steers the DMFs based on the calibrated DMFs at time t-1. By using the steered 

DMFs as input parameters, the Simulator generates the estimated pressures and flow rates 

at time t, namely 𝑃𝑃𝑖𝑖,𝑡𝑡∗  and 𝑄𝑄𝑗𝑗,𝑡𝑡
∗ . By comparing the (𝑃𝑃𝑖𝑖,𝑡𝑡∗ , 𝑄𝑄𝑗𝑗,𝑡𝑡

∗ ) with the sensor readings 

(𝑃𝑃𝑖𝑖,𝑡𝑡, 𝑄𝑄𝑗𝑗,𝑡𝑡), the Calibrator steers the DMFs for another round to further minimise the fitness 

function shown in Expression (9). 

 
�𝑊𝑊𝑃𝑃(𝑃𝑃𝑖𝑖∗ − 𝑃𝑃𝑖𝑖)2 +
𝑁𝑁𝑃𝑃

𝑖𝑖=1

 �𝑊𝑊𝑄𝑄(𝑄𝑄𝑗𝑗∗ − 𝑄𝑄𝑗𝑗)2
𝑁𝑁𝑄𝑄

𝑗𝑗=1

 (9) 

Based on existing works [82, 117], the Equation (9) is the weighted sum of difference 

between squares of estimated states and the sensor reading at time t. 𝑁𝑁𝑃𝑃 and 𝑁𝑁𝑄𝑄 denote the 

number of sensors installed to measure water pressures and flow rates. The normalised 

weighting factors 𝑊𝑊𝑃𝑃  and 𝑊𝑊𝑄𝑄  are shown in Equation (10) and (11), where 𝑎𝑎 indicates a 

particular sensor. 
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𝑊𝑊𝑃𝑃,𝐺𝐺 = 𝑁𝑁𝑃𝑃

𝑃𝑃𝐺𝐺
∑ 𝑃𝑃𝑖𝑖𝑁𝑁𝑃𝑃
𝑖𝑖

 (10) 

 
𝑊𝑊𝑄𝑄,𝐺𝐺 =  𝑁𝑁𝑄𝑄

𝑄𝑄𝐺𝐺
∑ 𝑄𝑄𝑗𝑗
𝑁𝑁𝑄𝑄
𝑗𝑗

 (11) 

Furthermore, in order to evaluate the performance of the calibration, this chapter uses three 

metrics, Correlation Coefficient (CC), Root-Mean-Square Error (RMSE) and Mean 

Absolute Error (MAE) to compare estimated states (𝑒𝑒) and sensor readings (𝑎𝑎). 

The CC defines the correlation between the estimated states (𝑒𝑒) and sensor readings (𝑎𝑎):  

 
𝐶𝐶𝐶𝐶 =  

𝐶𝐶𝑃𝑃𝑝𝑝(𝑒𝑒,𝑎𝑎)
𝜎𝜎𝑒𝑒𝜎𝜎𝑎𝑎

 (12) 

where the 𝐶𝐶𝑃𝑃𝑝𝑝() denotes the covariance between 𝑒𝑒 and 𝑎𝑎, and the 𝜎𝜎 stands for the standard 

deviation. It scales from -1 to 1, and 1 signifies the perfect estimation. 

The RMSE of estimated states (𝑒𝑒) with respect to sensor readings (𝑎𝑎) is defined as Root-

Mean-Square Error: 

 
𝑆𝑆𝑅𝑅𝑆𝑆𝐸𝐸 =  �

∑ (𝑒𝑒𝑖𝑖 − 𝑎𝑎𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑠𝑠
 (13) 

where 𝑁𝑁𝑠𝑠 is the number of sensors. The 𝑒𝑒𝑖𝑖 and 𝑎𝑎𝑖𝑖 denotes the estimated states and sensor 

readings. The RMSE ranges from 0 to infinity, and 0 represents the estimation fits ideally 

with the actual parameter. 

The MAE is similar to the RMSE except that it uses the absolute error rather than the squared 

errors. 

 
𝑅𝑅𝑀𝑀𝐸𝐸 =  

∑ |𝑒𝑒𝑖𝑖 − 𝑎𝑎𝑖𝑖|𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑢𝑢
 (14) 

As with the RMSE, the 𝑒𝑒𝑖𝑖 and 𝑎𝑎𝑖𝑖 stand for a specific type of the calibrated state and sensor 

reading, and 𝑁𝑁𝑢𝑢  is the amount of DMF categories. The value of MAE ranges from 0 to 

infinity and 0 means the best fit between calibrated states and sensor readings. 
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6.2 Implementation of the Use Case  

6.2.1 Sensor Selection 

Since water companies currently lack software to make a productive use of sensor data, they 

have not deployed large-scale sensor networks that can cover full details of the WDS. As 

shown in Table 6-1, only 39 sensors are used to calibrate 510 DMFs in SZ01. In addition, 

the implementation of the 39 sensors are not deployed optimally to assist the model 

calibration. By anticipating the future development of the sensor network, this thesis 

assumes that more sensors can be used to realise a more comprehensive monitoring of the 

WDS. Therefore, this evaluation selects 1853 junctions from the INP file as artificial sensors 

to augment the physical sensors provided by the water company. Since the selected sensors 

include all types of water demand described in the SZ01.inp, we postulate that the calibration 

has a better accuracy by using our artificial sensors. In order to support this assumption, we 

test this postulate by comparing the calibration using 28 original sensors and 1853 artificial 

sensors. 

Artificial Sensor Readings  

This experiment needs sensor data corresponding to the 1853 selected artificial sensors. 

Using artificial sensor readings to evaluate projects of the WDS has been applied in many 

previous works such as [81, 117], hence, based on related works, this experiment utilises the 

EPANET and SZ01.inp to generate a group of artificial states. Consequently, we remove 

known DMFs from the SZ01.inp when we conducted the calibration, and only evaluated the 

calibration results by comparing it with artificial sensor readings. 

As discussed in the Chapter 1, one significant challenge in DDDAS is to keep applications 

on the cyber side up with physical processes. However, the INP file provided by the water 

company only contains DMFs every 30 minutes, and it may not represent changes of the 

water network in time. By reviewing recent projects in model calibration in the area of WDS, 

the “Hydraulic Time Pattern” can be required to be less than 15 minutes to reach the actual 

real-time monitoring requirement. For example, in January 2012, in a survey conducted by 

the Smart Water Network (SWAN) Forum, they claimed that “a monitoring of WDS is real-

time only if data transmission is every 15 minutes” [133]. Hence, to evaluate the ability of 

our steering components in keeping up with this rate of data flow, more DMFs are required 
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to be interpolated to reach the 15-minutes updating frequency. To achieve this requirement, 

a software, Pattern Splitter, was developed as part of this thesis. 

The Pattern Splitter utilises a customised linear interpolation method to insert an artificial 

DMF between two existing DMFs. Since DMFs can fluctuate randomly between two time 

points, instead of using the mid-value of two known DMFs as the interpolant, the Pattern 

Splitter uses standard normal distribution to generate the interpolant by using two adjacent 

DMFs as lower and upper bounds. Furthermore, by analysing the original DMF patterns, 

there is a small possibility for DMFs to fluctuate non-gradually. Hence, the position of a 

newly generated DMF is switched with its previous or next DMF with a possibility of 5%. 

Finally, the created data file is attached in Appendix A and the file name is SZ01_15.inp. 

Figure 6-8 depicts the workflow of generating and utilizing the artificial sensor readings with 

the calibration process. Based on the SZ01_15.inp, the EPANET is used to build a dedicated 

program, which we call EPANET Engine, and it takes DMFs at a specific time point as input 

and outputs states of the entire water network at the corresponding time point.  

 

Figure 6-8 Generating and Utilizing Artificial Sensor Readings: The SZ01.inp is the input file for the EPANET 
software. It describes the information of the water network. The T is the time point at which the EPANET 
Engine generates artificial sensor readings. The DMFs at T-1 are previous calibration results. They are used as 
the input for the Calibrator to estimate DMFs at T. The estimation is implemented by mutation and crossover 
functions. Thus, a number of different estimations are generated as one generation. It is used as input for 
simulations to generate the estimated state of the water network. The elite estimation is selected and sent to 
mutation and crossover components for another round of estimation. The calibration terminates when the elite 
set of DMFs can generate simulation states that are close enough to the artificial sensor reading. 
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As shown in Figure 6-8, DMFs at time T-1 is used as the input for the EPANET Engine. Its 

results represent the artificial sensor readings at T-1 and are stored in the Data Base. 

Afterwards, the Calibrator calibrates DMFs at T-1 and compares the artificial sensor 

readings provided by the database with simulation results from 𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑎𝑎0  to 

𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑𝑎𝑎𝑡𝑡𝑖𝑖𝑃𝑃𝑎𝑎𝑚𝑚𝐺𝐺 . Simulations are driven by a number of different sets of DMFs, and the 

simulation whose results are closest to the artificial sensor readings at T is selected. Its DMFs 

are used to represent the actual DMFs abstracted from the real water network. The advantage 

of using the artificial sensor readings is that, since the believed “real” sensor readings are 

generated by the EPANET model, complications arising from noises in the sensor data are 

avoided. In the future work, the noises generated by real sensor data need to be handled by 

water engineers. 

Comparing Calibration Results by Using 28 Sensors and 1853 Sensors 

In the SZ01.inp, 1853 sensors are just able to cover all types of water demands that are 

crucial for the calibration. Hence, in this section, the calibration results obtained using 28 

real sensors are compared with the calibration results obtained using 1853 artificial sensors. 

We argue that by using both real and artificial sensor readings, the overall accuracy of the 

model can be improved. The balance between the number of real and artificial sensors will 

be a topic for future research. 

In the calibration which is based on 28 sensors, the GA is stopped when there is no fitness 

improvement after 40 consecutive generations. On the other hand, the stopping criteria for 

calibration based 1853 sensors is stopping when the fitness reaches a specific value. 

Consequently, five fitness values, 3000, 2500, 2000, 1500 and 1000 are used as the stopping 

criteria. The reason to use different stopping criteria is that for 28 sensors, the fitness value 

is always smaller than using 1853 sensor since the fitness is the sum of difference between 

sensor readings and calibration results. Hence, it is not a valid comparison to stop calibration 

based on 28 sensors on the same fitness value as calibration based on 1853 sensors. 

Additionally, as the calibration based on 1853 sensors can always have a small improvement 

on the fitness value, it is difficult for the calibration to stop using the same stopping criteria. 

Thus, the chosen stopping criteria enables the calibration based on 28 sensors to have a 

longer running time and greater amount of generations. Therefore, if the calibration results 

based on 28 sensors are still more inaccurate than the calibration based on 1853 sensors, we 
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can conclude that more sensors can lead to a more accurate calibration. Additionally, other 

methods of GA such as selection and crossover are identical in both experiments. 

Number of Reference 
Sensors Stopping Criteria CC RMSE MAE 

1853 Sensors 

Fitness 1000 0.999997 0.694639 0.134121 

Fitness 1500 0.999997 0.701646 0.136441 

Fitness 2000 0.999997 0.721422 0.137312 

Fitness 2500 0.999996 0.746155 0.139456 

Fitness 3000 0.999995 0.838509 0.146798 

28 Sensors No Improvement after 
40 Generations 0.954 3.604 1.628 

Table 6-2 Comparing Calibration Results by Using 28 Sensors and 1853 Sensors: This table uses three criteria 
to evaluate the calibration results under different sensor numbers. CC indicates the correlation between 
calibration results and the sensor readings. It scales from -1 to 1, and 1 signifies the perfect estimation. Root 
Mean Square Error (RMSE) ranges from 0 to infinity, and 0 represents the estimation fits ideally with the 
actual parameter. Mean Average Error ranges from 0 to infinity and 0 means the best fit between calibrated 
and actual DMFs. 

To achieve the goal of this experiment, the calibration process was run 50 times for each 

stopping criterion. Based on the calibration results, the CC, MAE and RMSE introduced in 

Section 6.1.3 are used as metrics for this evaluation, and Table 6-2 shows their mean values 

of 50 runs. As a result, CC, RMSE and MAE all indicate that the calibration results are much 

better when using 1853 sensors. The most noticeable improvement is on RMSE whose value 

decreases around 77% to 81%. Consequently, we conclude that the results indicate it is 

necessary to deploy more sensors to monitor the WDS if a higher accuracy is required by 

current and future functions of the WDS.  

It can be argued that a smaller amount of sensors can achieve the same or close calibration 

results since for metric CC the improvement is not significant. To response this argument, 

we need to state that it is difficult for the author of this thesis to select suitable positions for 

sensors since we do not have specialised knowledge in WDS. Additionally, by calibrating 

areas with a large number of sensors engineers can determine the best locations for a smaller 

number of sensors that can be kept permanently. 

Thus, based on the discussions and meetings with professionals in water industrials, all 

sensors are selected based on the INP file we obtained from Northumbrian Water Company. 
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Since the INP file emphasizes the junctions that have significant influence on the water 

demand specifically, these junctions are selected as the sensor locations for this experiment.  

 

Figure 6-9 Stopping Criteria and Corresponding RMSE Values: This figure compares values of RMSE by 
taking 3000, 2500, 2000, 1500 and 1000 as stopping criteria. The percentages represent the improvement in 
the calibration by using a smaller fitness value as the stopping criteria. This figure indicates an improvement 
can be achieved by using a restricted stopping criteria. 

Furthermore, Figure 6-9 presents the RMSE of the calibration based on 1853 sensors. The 

number below the line indicates the decrease in value of the RMSE. As values required by 

stopping criteria decreases, the increase of the improvement represented by RMSE slows 

down. As a result, the stopping criteria can also be configured as a steerable parameter which 

can alter the monitoring accuracy of the system. However, exploring a suitable stopping 

criteria for this specific WDS is beyond the scope of this thesis, and this thesis only 

demonstrates that we provide more dynamic routines for water engineers to explore the 

WDS by using computational steering. 

Increasing the number of reference sensors greatly increases the workload of the Calibrator 

because more DMFs need to be calibrated in order to lower the fitness value. Hence, there 

are two more reasons for this thesis to select a more considerable number of reference 

sensors, 1) to evaluate the Computing Resource Manager which is supposed to assign 

sufficient computing resources to meet the time requirement and 2) to embody the value of 

Dynamic Data-Driven Computational Steering (DDDCS) which can improve the efficiency 

of the calibration.  
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6.2.2 Regular and Abnormal Situations 

To achieve the objectives of this thesis, it is necessary to extend steering to anomalous 

situations, namely abnormal situations, as well as more predictable ones, namely normal 

situations. In evaluation of DDDCS, time management and computing resource assignment, 

we need different workload to understand the performance of our projects under different 

situations. However, utilizing sensor readings to assist daily management tasks of WDS still 

requires considerable collaboration between computer scientists and water engineers. Hence, 

this thesis lacks water engineering knowledge to provide a comprehensive evaluation on 

particular variation patterns of the WDS that can interest water engineers. As a result, we 

only evaluate the smallest and biggest variation that are obtainable in the data provided by 

the Northumbrian water company. Moreover, we assume that if the time management 

function proposed by this thesis can manage to handle the smallest and biggest variations of 

the WDS, then the variation in between can be handled as well. Consequently, we choose 

01:00 am as the time point for the regular situation which is supposed to have the smallest 

water demand variation of a day. Additionally, the abnormal situation is defined as a pipe 

burst event in which the water demand has significant variation.  

The first task in separating the regular and pipe burst situations is to generate corresponding 

artificial sensor data. For the regular situation, the sensor data can be created directly by 

using the SZ01_15.inp with the EPANET engine. However, the regular SZ01_15.inp file 

does not contain the abnormal information of a pipe burst. Thus, an artificial pipe burst event 

must be created in the input file. Additionally, to guarantee the artificial pipe burst data is 

reliable, it must be based on a real pipe burst. 
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Figure 6-10 Burst Sensor Reading: This figure is the burst sensor report provided by the Northumbrian Water 
company. We use it to find the pressure drop scale in the pipe burst. Since it is not feasible to get the pressure 
reading from this figure, we take the burst junction ID, burst time and date to find the burst in corresponding 
sensor readings. 

Thanks to the collaboration with the Northumbrian Water company, they provided us the 

information of a real pipe burst. As shown in Figure 6-10, this pipe burst happened between 

2014 and 2015. The ID of the sensor that monitored this pipe burst is 737426. According to 

the meter-to-junction relations provided by the water company, the corresponding junction 

ID is 47298618. Hence, the junction 47298618 must be located in the burst area. But since 

the water company is only using 28 sensors to monitor the entire area, it is not possible to 

tell if the burst happened exactly on the position of the junction 47292618. However, since 

this burst information is the only information provided by the water company, in this thesis, 

it is assumed that the burst happened on the same location as the 47298618. 
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Figure 6-11 Pressure of 47298618 during the Burst Period: Figure 6-10 provides us the range of the date on 
which the burst happened. Hence, this figure shows the plot of real sensor reading during that time to locate 
the pipe burst. The x axis indicates the data and time, and the y axis indicates the water pressure. The vertical 
lines separate sensor readings in days. The rectangle indicates the pressure drop caused by the pipe burst we 
found. 

Depending only on Figure 6-10, it is difficult to recognize the burst sensor reading clearly. 

Thus, we attempted to further explore the sensor readings via the date indicated in Figure 

6-10. Therefore, by checking the sensor records between 1st August  and 10th August in 2014, 

Figure 6-11 reproduces the pressure of component 47298618 in three days around the burst 

time. The interval between two vertical lines stands for the time of a day. As a result, by 

comparing the pressure reading of a day before and after, we found a great pressure drop 

which ranges between 0-80 meters of pressure head (height is the proxy for pressure).  
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Figure 6-12 Pressure Drop in 15 Minutes: This figure zooms into the pipe burst found in last figure and 
indicates the pressure drop in a pipe burst can be from 74.09 to 48.1 in 15 minutes. 

To zoom into the interval of the burst event, Figure 6-12 shows the drop details in every 15 

minutes between 14:30 and 17:15. The most noticeable decrease happened between 15:30 

to 15:45, during which the pressure decreased more than 20% and fell from 74.09 to 56.2. 

As a result, we take the 20% fell on pressure as the biggest variation of the WDS.  

Even after understanding the scale of the pressure decrease during a burst, it is not 

appropriate to directly alter artificial pressure values of the burst junction in the database 

which is used as the sensor reading in the calibration workflow shown in Figure 6-8. In fact, 

a burst can not only affect one junction in the network, and it also has an area of influence 

in which other junctions are affected as well. Hence, to generate the artificial sensor reading 

for the burst event, the challenge in directly altering the artificial sensor reading is that we 

cannot estimate the recession of the burst influence on adjacent sensors.  

To tackle this challenge, this thesis provides an original method to generate artificial burst 

sensor readings in WDS. Rather than altering one or several pressure sensor readings, the 

artificial burst sensor readings are generated by adding a new type of water demand to the 

burst junction in the INP file and we name the file as SZ01_15_burst.inp. This water demand 

simulates the burst as a consumer who suddenly has a great water consumption. As a result, 

by running the modified INP file with the EPANET engine, the artificial burst sensor 
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readings are generated with its effects on adjacent sensors automatically. Since one type of 

water demand corresponds to one DMF, hence, we then need to find a suitable value of the 

new type of DMF to manage a given fall on pressure. The burst simulation is conducted 

several times with different burst DMFs. Finally, a suitable DMF value, which causes a 22% 

pressure decrease on the burst junction, is used to represent the DMF for the artificial burst. 

Afterwards, the challenge is how to calibrate the pipe burst. Junctions located in nearby areas 

can share same water demand patterns. If the artificial pressure of one junction is manually 

increased in the database, the Calibrator must alter the DMFs, which are owned by the burst 

junction and are also shared with other junctions, in order to match the calibration results 

with the burst sensor reading. However, by doing so, the calibration results of other junctions 

cannot match their sensor readings.  

As a result, this thesis provides a novel method in calibrating burst event in WDS. The first 

step of this method is to locate sensors that have the highest probability of observing the pipe 

burst. To achieve the first step, we conduct a simulation based on calibration results at T-1. 

The simulation results are compared with the artificial sensor readings at T. The difference 

should be in a small range in regular situations. However, during a burst event, several big 

differences are supposed to emerge on a number of sensors, and these sensors are assumed 

to be around the burst site.  

Sensor ID Sensor Readings Simulation 
Results Difference 

47295565 29.8972 39.6749 0.246445486 
47295566 29.9176 39.6749 0.245931307 
47295932 29.8179 39.4987 0.245091611 
47295564 37.5886 48.2876 0.22156827 
47295461 37.7635 48.4274 0.220203852 
47300261 37.6856 48.3072 0.219876126 
47295484 34.4052 42.8062 0.196256617 
47295483 34.4921 42.8959 0.195911497 
47297274 34.65 42.8579 0.191514283 
47297273 37.2391 45.7988 0.18689791 
47300260 38.4054 47.1192 0.184930984 
47297272 38.4432 47.109 0.183952111 
47300270 36.9304 45.1994 0.182944906 
47298426 36.8159 44.9201 0.180413668 
47298443 36.8358 44.9376 0.180290002 
47300263 40.443 48.6028 0.167887447 
47300257 40.8118 48.9678 0.166558432 
47297271 40.576 48.6599 0.166130633 
47297270 40.6936 48.7504 0.165266336 
47300256 41.0449 49.144 0.164803435 
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Table 6-3 Sorted Difference between Sensor Readings and Predictions: The sensor readings are pressures at 
time T. Their junctions IDs are shown in the first column. The Simulation Results are obtained from the states 
of the water network simulated using DMFs at T-1. All junctions are sorted by the difference between 
prediction and sensor readings. If the difference is more than 20% of the prediction, the junction is highlighted 
on the top, and considered as junctions linked to the burst pipe. 

Table 6-3 presents the sorted difference between sensor readings and predictions. The burst 

demand is added to junction 47295564 which is where the burst happened artificially. In this 

evaluation, sensors that have a difference more than 20% between sensor readings (at T) and 

simulation results (at T-1) are selected as the sensors with abnormal readings. Consequently, 

all of junctions shown at the top of the Table 6-3 are close to the burst. As shown in Figure 

6-13, the selected sensors shown in Table 6-3 are marked as stars on the map and the red 

star, 47295564, is the burst site. As can be seen, all sensors that have significant difference 

from the predictions are around the burst site. 

 

Figure 6-13 Burst Shown on Map: The highlighted junctions shown in Table 6-3 are shown in this figure as 
stars. It indicates all highlighted junctions are surround the burst one which is highlighted as the red star. 

After locating the burst areas, the Calibrator needs to calibrate the DMF to indicate the burst 

scale. However, the selected sensors shown in Figure 6-13 do not share exactly the same 

DMFs, and even worse, they all share DMFs with other junctions that are not affected by 

the burst. Hence, in order to calibrate the selected “problem” sensors without affecting other 

“innocent” sensors, a new water demand pattern named ANOMALY is added into the INP 

file and applied to the “problem” sensors in the [DEMADNS] section. Together with the 

new pattern, an initial water demand is assigned separately to suspected burst sensors by 

taking the mean of their original water demands in different categories. All initial DMFs of 
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the new pattern are set to 0. As a result, the GA is able to calibrate ANOMALY DMFs 

without interfering other sensors.  

6.3 Evaluation of Human-Driven Computational Steering  

As stated by Munir [107], human-in-the-loop feedback control system provides interesting 

opportunities in DDDAS. However, most existing projects use only algorithms in the 

calibration and simulation of WDS and the influence of human uses is neglected. This thesis 

believes that human users have limitations in conducting steering when parameter space is 

large, but we also believe their intelligence and experience can be used on a higher level 

steering based on Dynamic Data-Driven Computational Steering (DDDCS). Inspired by 

existing computational steering projects, which are generally driven by human users, this 

thesis proposes a hybrid computational steering architecture to extend the usability of 

computational steering in the context of DDDAS on multiple levels. Hence, this section 

needs to 1) specify functions that can be facilitated by using Human-Driven Computational 

Steering (HDCS) in applications of WDS and 2) manage the calibration steered by human 

users to finish in time. 

6.3.1 Selection of Steerable Parameter 

In order to evaluate the HDCS, we firstly need to decide which parameter needs to be 

registered as steerable parameters. The steerable parameter must 1) affect high-level 

functions such as monitoring and prediction described in Chapter 4, 2) fit into a real 

application scenario in which water engineers need to manually steer the system and 3) not 

require taking effect under a tight time constraint since it is difficult to control the time 

consumed by human users. However, because of the integration of HDCS and DDDCS has 

rarely been studied in the existing projects, it is challenging for a PhD student in computer 

science to propose a suitable application scenario in the WDS, which requires dedicated 

knowledge in water engineering. Hence, we worked with engineers in Northumbrian water 

company to propose an application scenario which they are interested and can also be 

applicable in the future.  

Consequently, parameters of the calibration component are selected as steerable parameters. 

Firstly, as the calibration is the most time-consuming function compared with the monitoring 

and prediction, this evaluation selects the parameters that can affect the calibration as the 

steering target. Hence, users can control the progress speed of the application by steering the 
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calibration component. Secondly, the calibration is an intermediate function that supports 

monitoring and prediction. Since results of the calibration component have a direct effect on 

the prediction and monitoring components, parameters of the calibration component can also 

affect result of ultimate purpose of the system. Subsequently, by considering the trade-off 

between the time consumption and accuracy of monitoring and prediction, water engineers 

are interested in steer calibration parameters to explore suitable values for particular 

scenarios. 

Afterwards, we need to decide on what application scenarios, parameters of the calibration 

need to be steered. As a new emerging area in the WDS, most current works focus on 

extracting high-level information from sensor networks to human users. But the requirement 

of integrating human influence is always neglected by existing works. On the other hand, 

WDS modelling used by many water companies is still based on offline calibration and 

analysis. Even though sensors implemented by water companies have the ability to upload 

data in minutes, engineers still analyse water networks in a daily or weekly manner. This 

situation limits water engineers in exploring additional functions in using the real-time 

sensor data. As a result, there is a critical gap between the functionality that can be provided 

by computational methods and the ability of water engineers to use it to make decisions. 

After discussing with engineers in the Northumbrian Water company, we decide to use the 

number of sensors as the steerable parameters. The corresponding scenario is built under the 

promising real-time monitoring function in which the fidelity of the monitored network 

mainly depends on the coverage of sensors. To have a more accurate understanding of the 

area of interests, engineers may introduce more sensors in a specific district. On the other 

hand, a big sensor number can bring a large amount of computational burden to a WDS 

system when engineers only require a general but real-time overview of the monitored 

system. Consequently, the great computing workload may reduce the update frequency of 

the system and increase the consumption on computing infrastructures and sensor networks. 

Therefore, water engineers have the potential requirement to steer the number of sensors. 

We need to emphasize that in this experiment we do not have direct control of physical 

sensors. As this thesis only focuses on the high-level functions of DDDAS, steering sensor 

number means steering the number of sensor readings the calibration process takes, and we 

do not steer the number of sensors implemented in the physical network. Moreover, 

obtaining real-time sensor readings from physical sensors implemented by Northumbrian 
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Water company requires complex business and security negotiations. Hence, instead of 

using actual real-time sensor readings, we store them into a database and assume the 

information extracted from the database is in real-time. Furthermore, since methods and 

benefits of utilising sensor networks are still under exploration, their implementation in real-

world is limited. Thus, Northumbrian only applied 40 district pressure sensors in its covered 

area. The benefit of using a large amount of sensors to cover the entire water network has 

been presented in Section 6.2.1, but we also need to demonstrate that the steering ability can 

help water engineers based on the amount of sensors they are currently using. Hence, in this 

section, we only use a small number of sensors to demonstrate that the HDCS can be 

implemented and the time management method can handle the fluctuation raised by steering 

operations of HDCS. 

Historical logs of these sensor reading are incomplete, from the sensor reading we obtained 

from Northumbrian, some sensors do not have readings during some periods due to sensor 

failures. Therefore, we choose 28 out of 40 sensors that have available sensor readings at 

12pm on 27th of January in 2012 as the maximum available sensor number. Finally, for the 

purpose of clarification, we emphasize that this experiment is conducted based on real sensor 

readings and artificial sensor readings introduced in 6.2 is not generated for this experiment.  

6.3.2 Results of Human-Driven Computational Steering and its Time 

Management 

This section evaluates the HDCS from two aspects: steering function and time management. 

Since steerable parameters belong to the calibration process, effects on both aspects are 

presented by steering the calibration process. In terms of the steering function, this section 

demonstrates that the steering affects accuracy and time consumption of the calibration. In 

addition, the time management is evaluated by examining whether time manager can 

estimate the required running time of the calibration based on the number of sensors steered 

by human users. 

Since the Genetic Algorithm (GA) is selected as the calibration algorithm in this thesis, we 

focus our estimation on the execution time of the GA. The running time of the GA varies 

with its implementation methods such as fitness function, population size, crossover and 

mutation methods and the model which describes the problem area. Based on fitness 

functions in existing works introduced in Chapter 5, we use a simple GA implementation 

with the fitness function, 
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𝐹𝐹(𝑝𝑝) =  � 𝑊𝑊𝐺𝐺𝑠𝑠×[𝑂𝑂𝑆𝑆𝐺𝐺𝑠𝑠 − 𝐶𝐶𝑆𝑆𝐺𝐺𝑠𝑠]2

𝑁𝑁𝑁𝑁

𝐺𝐺𝑠𝑠=1

 (15) 

where ns designates the ns-th sensor of NS sensors, 𝑊𝑊𝐺𝐺𝑠𝑠 is the weight of the ns-th sensor and 

𝑂𝑂𝑆𝑆𝐺𝐺𝑠𝑠  and 𝐶𝐶𝑆𝑆𝐺𝐺𝑠𝑠 denotes the ns-th observational sensor reading and its corresponding 

simulation result after the calibration. Thus, the time taken by the GA to converge can be 

determined by the sensor data 𝑂𝑂𝑆𝑆𝐺𝐺𝑠𝑠 . The tournament selection and Gaussian mutation 

method are used in this simple GA implementation. Based on the previous study [82], the 

population size is set to be 80. Since no steerable parameters are registered in the selection, 

mutation and crossover methods, the number of sensors steered by human users is the only 

factor that affects the converging rate of GA given by equation (15). For example, when the 

number of reference sensors increases, the GA must consume more time to match more 

simulation results with more real sensor readings. On the other hand, for an extreme instance, 

when there is only one pressure sensor used as the reference, the calibrator only needs to 

match the corresponding node pressure calculated from the simulation without considering 

other parts of the network. Hence, the calibration with a small number of sensors can be 

finished much quicker than the calibration with a large number of sensors.  

Results of Human-Driven Computational Steering 

In order to further support the assumption that using more sensors can provide engineers 

more accurate states of the water network and to demonstrate the capability of HDCS, we 

steer the number of sensors from 7 to 14 and to 28 in the calibration. To ensure the number 

of sensors are the only variables in this experiment, the same sensor readings and previous 

calibration results are used for each calibration. The three commonly used metrics: 

Correlation Coefficient (CC), Root Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE), which have been introduced in Section 6.2, are used to evaluate calibration results. 

The outcome is shown in Table 6-4. 
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Table 6-4 Comparing Calibration with Different Number of Sensors: This table uses three criteria to evaluate 
the calibration results under different sensor numbers. CC indicates the correlation between calibration results 
and the sensor readings. It scales from -1 to 1, and 1 signifies the perfect estimation. Root Mean Square Error 
(RMSE) ranges from 0 to infinity, and 0 represents the estimation fits ideally with the actual parameter. Mean 
Average Error ranges from 0 to infinity and 0 means the best fit between calibrated and actual DMFs. This 
table presents the relation between sensor numbers and calibration accuracy. It also indicates the trade-off 
between accuracy and time consumption. 

As we can see, when users steer the calibration process to use more sensors, the results of 

calibration become better, but the calculation time also increases as the price. On the other 

hand, when users need to reach a tight time window instead of a more accurate calibration, 

they can steer to reduce the number of reference sensors. The results indicate that we provide 

a promising use case to connect the development of sensor network to the practical 

engineering in WDS. Finally, this result also demonstrates the design and the development 

of HDCS, which is based on conventional computational steering, managing to enrol human 

users into the control loop of DDDAS. Consequently, the steering method proposed by this 

thesis can support users to steer more parameters such as the stopping criteria and population 

size of the GA. 

Running Time Estimation of Human-Driven Computational Steering 

However, merely achieving the steering capability does not satisfy the requirement of a real-

time DDDAS. In order to guarantee the critical real-time nature of the system, we need to 

evaluate the time management component introduced in Section 4.3. Furthermore, as stated 

in Section 4.3, this thesis cannot demonstrate a comprehensive time management method 

that can handle all human steering interferences. Hence, the time management method we 

present is based on a training and learning process so that different and unknown steering 

interferences can be learnt by the time management component. As a result, this section only 

examines the accuracy of estimating the time consumption by using the steerable number of 

sensor as an example. 

In our experiment, we select 8 problem sizes in which respectively contains 7, 10, 13, 16 ,19, 

22, 25 and 28 pressure sensors, then we execute the calibration process 20 times for each 

problem size to calibrate the water model by using real sensor information obtained from 
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Northumbrian Water Company at 12pm on 27th of Jan in 2012. The HPC infrastructure used 

in this experiment is a HPC cluster named RedQueen 20 . The GA is stopped after 40 

consecutive generations that cannot reduce the result of the fitness function (15), and the 

total generations taken by the GA is considered as the representation of the convergence 

speed.  

As a result, the required generation numbers to meet the stop condition for each problem 

size is shown in Table 6-5, and accordingly, Figure 6-14 depicts the distribution of required 

generation numbers.  

Trials 7 Sensors 10 Sensors 13 Sensors 16 Sensors 19 Sensors 23 Sensors 25 Sensors 28 Sensors
1 196 274 167 139 196 220 220 136
2 173 146 294 191 173 82 136 138
3 238 239 206 150 238 192 190 273
4 330 205 174 140 330 263 159 219
5 223 222 275 106 223 248 191 119
6 152 137 226 140 152 224 167 204
7 184 172 90 177 184 248 191 267
8 137 215 113 452 137 305 273 399
9 251 219 166 183 251 246 198 239

10 366 193 184 210 366 181 185 237
11 155 162 179 257 155 268 288 268
12 228 178 139 146 228 210 234 221
13 153 166 118 136 153 185 253 219
14 161 184 275 284 161 210 214 177
15 190 100 248 149 190 316 293 237
16 141 176 216 147 141 130 252 199
17 262 220 271 200 262 301 119 276
18 165 208 277 107 165 109 363 446
19 276 148 122 275 276 135 326 297
20 237 153 247 299 237 223 205 140  

Table 6-5 Required Generation Numbers: This table lists the number of generations reuqired by the genetic 
algorithm to converge when using 7, 10, 13, 16, 19, 23, 25 and 28 sensors to calibrate DMFs, and the 
experiment is conducted 20 times for each number of sensors. 

                                                 
20 The introduction of RedQueen http://ri.itservices.manchester.ac.uk/redqueen 
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Figure 6-14 Distribution of Generation Numbers Using HDCS: The standard deviation (𝜎𝜎) and mean (𝜇𝜇) 
generation numbers required by the GA based on 7, 10, 13, 16, 19, 22, 25, 28 sensors are calculated. Each 
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calibration was executed 20 times. Points on the x axis are calculated in the form of [𝜇𝜇 −4𝜎𝜎 ,  𝜇𝜇 − 3𝜎𝜎 ), 
[𝜇𝜇 −3𝜎𝜎 , 𝜇𝜇 − 2𝜎𝜎), [𝜇𝜇 −2𝜎𝜎 ,  𝜇𝜇 − 𝜎𝜎), [𝜇𝜇 , 𝜇𝜇 + 𝜎𝜎), [𝜇𝜇 + 𝜎𝜎 ,  𝜇𝜇 + 2𝜎𝜎 ), [𝜇𝜇 +2𝜎𝜎 , 𝜇𝜇 + 3𝜎𝜎 ). The y axis on the left 
indicates the number of calibrations whose required generations number belongs to the interval indicated on 
the x axis. The sub-figures give a general recognition on the distribution of the required generation numbers. 
Based on this figure, we have some visual evidence that we are justified in the assumption that we can use the 
Gaussian distribution to estimate the required generations. A normality test was conducted to further confirm 
the assumption of using Gaussian distribution. The result of the test is used to depict a linear curve that 
represents the density of probability of a Gaussian distribution in each subfigure. 

Based on Figure 6-14, we have some visual evidence that we are justified in the assumption 

that we can use the Gaussian distribution to estimate the required generations. Generally, 

visual inspection and numerical inspection are two methods that can be used to identify the 

Gaussian distribution. As our experiment has a small sample size, it is not convincing by 

only using Figure 6-14 to conclude that the Gaussian is a justifiable approximation for the 

data distribution. Hence, the numerical methods are used to further test our assumption. 

Since Shapiro-Wilk is widely used method to test normality, in this experiment, we only 

take Shapiro-Wilk as the numerical method [52]. A null-hypothesis used by the Shapiro-

Wilk is that the tested distribution is a Gaussian distribution. It tests the normality by 

calculating the probability that a tested sample was from a normal population, and the 

probability is indicated by the p-value. Typically, if the probability of finding such a sample 

is greater than 5%, it claims that we cannot reject the null-hypothesis. As a result, many 

scientists claim when a p-value is greater than 0.05, the distribution of the tested sample can 

be assumed as normal distribution. 

Tests of Normality (Shapiro-Wilk) 

Number of Sensors Used in Calibrations p-values 
7 Sensors 0.41 
10 Sensors 0.23 
13 Sensors 0.23 
16 Sensors 0.61 
19 Sensors 0.13 
22 Sensors 0.69 
25 Sensors 0.60 
28 Sensors 0.19 

Table 6-6 Normality Test of Human Driven Computational Steering: If p-values are greater than 0.05, then we 
claim the distribution of generations can be assumed as Gaussian distribution. 

Table 6-6 shows the results obtained from Shapiro-Wilk method. Since the significance 

values for all sensor numbers are bigger than 0.05, it means there is no significant difference 

between the observed distributions of generations and the normal distribution. The shape of 

each Gaussian distribution is shown as a linear curve in Figure 6-14. Consequently, the 
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estimated generation number, 𝐸𝐸𝑔𝑔, for a particular problem size can be estimated based on 

the features of the Gaussian distribution and represented as: 

 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 𝜎𝜎 +  𝜇𝜇⌋ (16) 

which is the sum of the standard deviation, 𝜎𝜎, and mean generations, 𝜇𝜇. 𝑎𝑎 is factor that can 

be set depending on the requirement of the system. In this experiment, we use 𝑎𝑎 = 1 as a 

standard value since when 𝐸𝐸𝑔𝑔 =  𝜎𝜎 + 𝜇𝜇, the estimation can cover situations in which the 

number of generations required by the GA can be from 1 to 𝜎𝜎 + 𝜇𝜇. This range covers about 

84% of the distribution possibility. This thesis proposes the use of this n as a steerable 

parameter in the future. This is because it raises an interesting trade-off in which, although 

increasing 𝑎𝑎 can improve the estimation accuracy, a large amount of computing resources 

can be wasted since more calibrations can converge faster than the estimation. As a result, 

the estimated generation numbers required by the GA for each steered sensor numbers are 

shown in Figure 6-15. 

 

Figure 6-15 Estimated Generation Number in Human-Driven Computational Steering: The x axis indicates the 
number of sensors which is the steerable parameter in this experiment. The figure indicates the required running 
time increases as the number of sensors used in the calibration is steered to increase. 

Since the running time of generations are close, the total running time of the calibration 

depends on the number of generations. Consequently, if users require a more accurate result, 

they can steer the calibration to increase the sensor number, and this improvement is limited 

by the time constraint in DDDAS since increasing sensor number also rises the required 

number of generations.  

For testing the accuracy of the estimation, we run another 50 rounds of calibrations for each 

problem sizes, and the results are shown in Table 6-7. Above 85.8% of the results fall into 
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our estimation among which 31.8% of them have a difference from the estimation that is 

less than 1𝜎𝜎, and 72.5% of results have a difference that is less than 2𝜎𝜎. However, 14.3% 

calibrations still ran out of time before their convergence. As the calibration is terminated 

when it runs out of time, our method may affect the accuracy of calibrations. Since execution 

time estimation is not the main aim of this thesis, and the evaluation of time management is 

only used to support our hybrid computational steering, we consider 14.3% is an affordable 

estimation error. 

Result of Execution Time Estimation in Human-Driven 
Computational Steering 

Steered Sensor 
Number 

Fall into 
Estimation 

Difference between Real Requirement and 
Estimation 

Less than 1𝜎𝜎 Less than 2𝜎𝜎 Less than 3𝜎𝜎 

7 41 41 15 41 

10 39 39 14 39 

13 41 41 15 41 

16 46 46 19 46 

19 44 44 15 44 

22 41 41 20 41 

25 45 45 16 45 

28 46 46 13 46 

Table 6-7 Result of Execution Time Estimation in Human-Driven Computational Steering: The first column is 
the steered number of sensors for each experiment. The second column is the number of experiments in which 
the required number of generations fall into the range of estimation. Less than 1𝜎𝜎 , 2𝜎𝜎  and 3𝜎𝜎  mean the 
difference between the actual required generation number and the estimated generation number is less than 𝑎𝑎𝜎𝜎. 
It indicates our method may cause a waste of computing resources. 

In a conclusion, the proposed time management method, although has a margin of errors that 

can cause computing resource waste, manage to estimates the required running time of GA 

after it is steered by human users. Hence, it supports our design of HDCS. Additionally, the 

range of steerable sensor numbers are restricted by the number of sensors practically 

deployed by water companies. Therefore, it demonstrates its value based on current sensor 

networks.  

This section solely describes the estimation of generation numbers required by GA. In 

addition to this estimation, the time management also needs to map the number of 

generations to the wall-clock time. Additionally, we also need to discuss the relation between 
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the amount of computing resources and the estimated running time. As a result, the rest time 

management methods will be discussed in Section 6.5 together with the time management 

of DDDCS. 

6.4 Evaluation of Dynamic Data-Driven Computational Steering 

One contribution of this thesis is to integrate computational steering with the calibration 

process of DDDAS. Since we hypothesise computational steering optimises the interaction 

between the calibration and simulations, an improved time efficiency of the calibration is 

expected as the result of this evaluation. In this use case, the time efficiency of the calibration 

has a correlation with the converging speed of the Genetic Algorithm (GA) which is the 

predominant time consuming component in the calibration as introduced in Section 2.2.2. 

When the number of individuals in one generation is fixed, the converging speed depends 

on two factors: 1) the number of generations the GA requires, and 2) the execution time 

required by each individual of one generation. This thesis focuses on the second factor and 

the population size is increased to 240 since 1853 sensors provide a more complex 

calibration task compared with 28 sensors.  

This evaluation is designed in 4 groups, and in each group the calibration is executed 10 

times. The group is divided under 2 mutual conditions that are with or without computational 

steering and using sensor readings of normal or abnormal situations. The calibration with or 

without computational steering is represented by the terms steerable calibration and non-

steerable calibration. In addition, the abnormal sensor readings are generated in the artificial 

pipe burst event discussed in Section 6.2.2. Furthermore, to simplify the experiment, the 

running time of the first 10 generations is measured instead of waiting for the calibration to 

converge. Hence, this section uses the time consumed by 10 generations to represent the 

converging speed that can be increased by using Dynamic Data-Driven Computational 

Steering (DDDCS). Finally, Figure 6-16 shows the average running time of the 10 

executions in each group. 
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Figure 6-16 Comparing Performance of Serial Calibrations with and without Computational Steering: No 
matter based on what kind of situations, computational steering can efficiently reduce the running time of the 
calibration.  

As a result, after 10 generations, the running time taken by the steerable calibration is three 

times less compared with non-steerable calibration in both the normal and pipe burst 

situations. Additionally, it is necessary to further compare the execution time by using the 

calibration in parallel. To facilitate the experiment, only the normal situation is utilised.  

To collect the running time of the parallel Calibration, two sets of experiments have been 

conducted by using two and four cores independently. Figure 6-17 depicts the results by 

comparing the parallel calibration with the serial calibration experiment. 
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Figure 6-17 Comparing Performance of Parallel Steerable and Non-Steerable Calibration: The number of cores 
indicate the parallelism scale. For instance, by using two cores, we parallelise the calibration task on two 
worker processes by using MPI. This figure indicates, although computational steering can reduce the running 
time of the calibration, its improvement extent reduces as the parallelism scale increases. 

The number of cores indicate the parallelism scale. For instance, by using two cores, we 

parallelise the calibration task on two worker processes by using MPI. In a conclusion, 

computational steering improves the time efficiency of the calibration dramatically in all 

cases. For parallelising the calibration in 2 cores, its running time is reduced from 178.8 

seconds to 65.65 seconds, leading to a reduction of 63%. Additionally, by running the 

calibration on 4 cores, its running time drops from 107.9 to 53.75, leading to a reduction of 

50%. However, in terms of comparing the advantage of parallel programming, it is 

noticeable that the steerable calibration is not improved on the same scale as the non-

steerable calibration in parallel executes. Table 6-8 quantifies this discovery. 
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Improvement made by parallelizing Steerable and Non-Steerable 
Calibrations 

Core Number 
Steerable Calibrations Non-Steerable Calibrations 

Running 
Time 

Improvement 
Extent 

Running 
Time 

Improvement 
Extent 

1 102.76 0% 333.02 0% 

2 65.65 36% 178.78 46% 

4 53.75 48% 107.99 68% 

Table 6-8 Improvement made by parallelizing Steerable and Non-Steerable Calibrations: This table indicates 
the difference on the improvement extents between using and not using computational steering as the 
parallelism scale increases. 

As indicated in Table 6-8, the steerable calibration has a 36% improvement compared with 

the 46% improvement of the non-steerable calibration by using 2 cores. Moreover, the 

improvement difference increases when running them on 4 cores in which the steerable 

calibration is increased by 48%. Instead, the non-steerable calibration has a 68% 

improvement on the running time. 

The reason is that the parallel programming reduces the times a simulation needs to interact 

with the Calibrator by distributing simulation tasks to multiple simulations. As a result, the 

workload of one computing resource is reduced by the parallel programming. Since the 

execution time saved by using computational steering has a positive correlation with the 

workload of one computing resource, reducing the workload using parallel programming 

decreases the execution time that can be saved using computational steering. If we denote 

the time costs using computational steering as 𝑇𝑇𝑒𝑒𝑢𝑢  and the time saved by computational 

steering as 𝑇𝑇𝑠𝑠𝑢𝑢, then, as 𝑇𝑇𝑠𝑠𝑢𝑢 decreases as the increase of N, it is reasonable to assume that 

computational steering can lose effectiveness when N reaches a specific value. 

We then attempt to locate the cross-point at which the non-steerable calibration overpasses 

the steerable calibration. Equation (17) denotes the time function, 𝑇𝑇(𝑁𝑁), which suggests the 

running time of the calibration. The 𝑇𝑇𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖𝑎𝑎𝑠𝑠 and 𝑇𝑇𝑢𝑢𝑎𝑎𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 are serial and parallel running time 

of the non-steerable and steerable calibrations collected in Table 6-8. In parallel 

programming, the 𝑇𝑇𝑒𝑒 is the overhead that is raised by the non-parallel code and imperfect 

schedule. Since this experiment is conducted on a machine which only has 4 physical cores, 

the calibration parallelised on 4 cores must share the CPU time with other processes. Hence 
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the 2 cores parallel running time is used to calculate the 𝑇𝑇𝑒𝑒  for both steerable and non-

steerable calibration based on Equation

 𝑇𝑇(𝑁𝑁) =  
𝑇𝑇𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖𝑎𝑎𝑠𝑠
𝑁𝑁

+ 𝑇𝑇𝑒𝑒 (17) 

 

 

 𝑇𝑇𝑒𝑒 = 𝑇𝑇𝑢𝑢𝑎𝑎𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 −  
𝑇𝑇𝑠𝑠𝑒𝑒𝑟𝑟𝑖𝑖𝑎𝑎𝑠𝑠
𝑁𝑁

 

 

(18) 

 

Figure 6-18 Comparing the Running Time between the Steerable Calibration and the Non-Steerable Calibration: 
As the parallelism scale increases, the speed of non-steerable calibration equals to that of steerable calibration 
when 37 core numbers are used for parallel programming.  

As a result, Figure 6-18 shows the running time of steerable and non-steerable calibrations 

based on the Equation (17). Two lines cross around the point where 𝑁𝑁 equals to 115.13. 

Since the core number is an integer, 116 is taken as the particular core number from which 

the non-steerable calibration is faster than the steerable calibration. However, the difference 

between two calibrations turns to be very small after 60 cores. If 20% is considered as a 

significant improvement, then based on Equation (17), the Inequality (19) must be met for 

the steerable calibration has a significant advantage compared with the non-steerable 

calibration. The 𝑇𝑇𝑒𝑒𝐺𝐺𝑠𝑠  and 𝑇𝑇𝑒𝑒𝑠𝑠 denote parallel overhead of the non-steerable and steerable 

calibrations separately. 

 𝑇𝑇𝑠𝑠
𝑁𝑁 + 𝑇𝑇𝑒𝑒𝑠𝑠
𝑇𝑇𝐺𝐺𝑠𝑠
𝑁𝑁 + 𝑇𝑇𝑒𝑒𝐺𝐺𝑠𝑠

<
4
5

 (19) 
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As a conclusion, the inequality is broken when 𝑁𝑁 equals to 37. While the improvement made 

by computational steering is reduced by the increase of parallelism scale, it has a significant 

contribution until the parallel program scales up to 37 cores. At last, we use the ratio of task 

size to parallelism scale to indicate whether computational steering can make a significant 

improvement. As the population size is 240, the generation number is 10, and 37 cores are 

considered as the maximum parallelism scale, the ratio of this specific use case is 64.8. Thus, 

when the ratio is smaller than 64.8, we claim it is not feasible to use computational steering 

on our implementation of parallel calibration of the WDS. This ratio indicates if the 

interactions happened between the Calibrator and one simulation is less than 65, the 

computational steering may not provide sufficient values. 

In a conclusion, this section indicates the DDDCS can improve the time efficiency of the 

calibration process. However, the parallelism scale can reduce the improvement made by 

computational steering. Whether computational steering can make a significant 

improvement depends on the problem size of the calibration, the parallelism scale, the 

implementation of the parallel program, and the computing infrastructures, etc. Thus, this 

section provides a method to determine whether DDDCS can make sufficient contribution 

to a system by calculating the ratio of parallelism scale and problem size.  

The time management has not been evaluated on DDDCS since its evaluation relates to a 

complex hierarchy of knowledge. Hence, an individual section 6.5, is dedicated to discussing 

it. In order to demonstrate the time management of the hybrid computational steering, the 

time management of DDDCS is also combined with the time management of HDCS. 

6.5 Evaluation of the Estimation of Execution Time 

Section 6.4 has demonstrated that computational steering can improve the performance of 

the calibration of DDDAS. However, whether the improvement is significant enough to 

handle the dynamic workload so as to finish the calibration within the required time window 

needs to be further examined. This thesis proposes to utilize the Time Manager which 

estimates the running time of the calibration based on the dynamic data obtained from the 

physical world, and then according to the results of the estimation, the Computing Resources 

Manager assigns sufficient computing hardware to guarantee the execution time of the 

calibration. This section is the first part of the time management method which evaluates the 

function of estimating the required running time of the calibration.  
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Since the calibration in this use case is implemented by using the GA, this section takes the 

required execution time of the GA as that of the calibration process. Section 4.3.2 has 

discussed the reason for this thesis to only estimate the execution time of a Genetic 

Algorithm (GA), and the estimation method has been discussed in Section 4.3.3. Since the 

distribution of generation number is one main factor that indicates the execution time of a 

GA, this section evaluates our method that estimates the required generation numbers for the 

GA to calibrate the water model. The configurations of GA remain same as the GA used in 

Section 6.4, and the problem size of GA is divided into regular and abnormal situations as 

discussed in Section 6.2.2. Additionally, to demonstrate that the dynamic data collected from 

different situations can affect the time management, the artificial regular and abnormal 

situations are used in this evaluation.  

At last, Section 6.5.1 examines the time management under the regular situation and Section 

6.5.2 examines whether computational steering can help the Calibrator to handle the extra 

workload raised in an abnormal situation based on limited computing resources. 

Additionally, the relation between the number of generations and the Wall-Clock Time 

(WCT) are studied for each situation. 

6.5.1 Estimating the Running time of the Calibrator in the Regular 

Situation 

By fixing the configuration of the GA, the required execution time of GA depends on the 

number of generations it takes to converge. Hence, the estimation is divided into 1) 

estimation of the required number of generations and 2) mapping the generation number to 

the WCT. In this thesis, we assume that the number of generations fits into the Gaussian 

distribution and WCT has a linear relation with the number of generations. As a result, the 

first part of this evaluation is to support the use of Gaussian distributions to estimate the 

required number of generations. Additionally, we also consider the stopping criteria as a 

type of steerable parameters that can be steered by users. Thus, in regular situation, we also 

demonstrate the capability of estimating the execution time which is affected by both HDCS 

and DDDCS. The second part is to evaluate whether the relation between the number of 

generations and WCT can be obtained by using the linear regression. 
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Distribution of Generations 

In the regular situation, the problem is divided into 5 groups in which the GA stops when 

the fitness value reaches 1000, 1500, 2000, 2500 and 3000. For each stopping criteria, the 

experiment is conducted 50 times, and Figure 6-19 depicts the distribution of required 

generation numbers.         

        

Figure 6-19 Distribution of Generation Numbers Using DDDCS These figures provide a visual inspection on 
the distribution of required number of generations for experiments running based on different stopping criteria. 
Reaching a specific fitness value (1000, 1500, 2000, 2500 and 3000) is set as the stopping criteria for each set 
of experiments. A normality test was conducted to further confirm the assumption of using Gaussian 
distribution. The result of the test is used to depict a linear curve that represents the density of probability of a 
Gaussian distribution in each subfigure. 
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Tests of Normality (Shapiro-Wilk) 

Stopping Criteria (Fitness Value) p-values 

1000 .62 

1500 .19 

2000 .42 

2500 .10 
3000 .85 

Table 6-9 Normality Tests in Normal Situation: If p-values are greater than 0.05, then we claim the distribution 
of generations can be assumed as Gaussian distribution. 

Based on Figure 6-19, we have some visual evidence that we are justified in the assumption 

that we can use the Gaussian distribution to estimate the required generations. As discussed 

in Section 6.3, visual inspection and numerical inspection are two methods can be used to 

identify the Gaussian distribution. Hence, the results are further examined by using Shapiro-

Wilk as the numerical method. The IBM Statistical Package for the Social Sciences (SPSS) 

is utilised as a statistical tool to conduct this test, and the outcome is shown in Table 6-9. As 

all the significance values are greater than 0.05, we conclude that we can use Gaussian 

distribution to estimate the distribution of required number of generation. The shape of each 

Gaussian distribution is shown as a linear curve in Figure 6-19. 

Information of the Gaussian Distributions 

Stopping Criteria Standard Deviation Mean 

Fitness 1000 13.09 42.76 

Fitness 1500 9.57 39.78 

Fitness 2000 9.29 37.38 

Fitness 2500 7.80 33.14 

Fitness 3000 6.57 31.46 

Table 6-10 Information of Gaussian Distributions: The decrease of the standard deviation means a strict 
stopping criteria increases the uncertainty in estimating the running time. The decrease of the mean indicates 
a strict stopping criteria increase the average running time. 
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The information of the Gaussian distribution is shown in Table 6-10. Both the standard 

deviation and mean decrease as the stopping fitness value increases. In terms of the mean 

values, its decrease suggests that the GA can converge faster by using a high fitness value 

as the stopping criteria. Since a high fitness value indicates a more inaccurate calibration, 

this result presents the trade-off between running time and calibration accuracy. Moreover, 

the decrease of the standard deviation reveals that a more restrictive stopping criteria or a 

high requirement of the calibration accuracy can lead to a more unstable distribution of the 

required generations numbers. Thus, another trade-off is between the estimation accuracy 

and the calibration accuracy. The estimation accuracy indicates the capability of the time 

management component to estimate the required running time of the calibration process. 

Due to the time constraint required in a DDDAS, this project applies dynamic computing 

resources to speed-up the calibration if the estimation predicts the calibration will exceed 

the deadline. However, a lower estimation accuracy can lead to a waste or deficit of 

computing resources. Subsequently, the estimation accuracy turns to be the cost efficiency 

of utilising the purchased dynamic computing resources. Finally, according to the 

information of Gaussian distributions shown in Table 6-10 and the Equation (16) discussed 

in Section 6.3.2, the estimation functions are generated in Table 6-11.  

Functions of the Running Time Estimation 

Stopping Criteria Generations Estimation 

Estimated 

Generation 

Number when  

𝑎𝑎 = 1  

Fitness 1000 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 13.09 +  42.76⌋ 56 

Fitness 1500 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 9.57 +  39.78⌋ 50 

Fitness 2000 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 9.29 +  37.38⌋  47 

Fitness 2500 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 7.80 +  33.14⌋  41 

Fitness 3000 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 6.57 +  31.46⌋  38 

Table 6-11 Functions of the Estimating Required Number of Generations: It provides the result of estimating 
number of generations in the form of estimation functions. The variable in the function is n, it indicates the 
accuracy level of an estimation. A high value of n can increase the estimation accuracy but cause great 
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computing resource waste. The column on the right shows the estimated number of generations required by a 
GA when n=1. 

Since the generation number cannot be a float number, the next integer is used to represent 

the required generation number. This thesis takes 𝑎𝑎 = 1 in this evaluation since it covers 

84.2% possible situations. As a result, the estimated required generation numbers based on 

the tested stopping criteria are shown on the right column of Table 6-11.  

However, in practical applications of a WDS, the time constraint is defined by using the 

WCT instead of the generation number. Hence, relating the WCT to the required generation 

of GA is essential. 

Relation Between Generation Number and Wall-Clock Time 

By keeping the problem size and GA configurations consistent, the required WCT of the GA 

depends only on the specifications of computing resources. In this experiment a MacBook 

Pro Late 2013 version is used to execute the calibration. It has a 2GHz Intel Core i7-4750HQ 

Crystal Well processor with 6 MB on-chip L3 and 128MB L4 cache. The Intel Core i7-

4750HQ has 4 cores physically and 8 threads so that it at most supports 32 threads in parallel 

programming with the limitation that the performance improvement is restricted by the 

physical core number. The main purpose of this section is to explore the method that can 

define the relation between the generation number and the wall-clock time. Hence, it is 

reasonable to use the local laptop to conduct the experiment. Afterwards, Section 6.6 will 

take this verified method to define such relation on Amazon Cloud, which is used as the 

example of the external computing resource provider in this project. 

As discussed in Section 4.2.2, the variation of the execution time of a simulation can depend 

on the number of iterations of its main computation. In the EPANET, this iteration is to 

search for the best hydraulic solution. This thesis uses the default iteration number, 40, which 

is provided by the EPANET software as the static number of iterations. Therefore, the 

execution time of simulations are assumed to be stable. Under this assumption, the relation 

between the WCT and the number of generations required by the GA should be in the form 

of a linear equation in which the generation number should be the only variable. Additionally, 

except for stopping criteria, the GA configurations of experiments are same. Thus, all 

experiments are supposed to share the same relations between generation numbers and the 

WCT. Finally, 20 pairs of these relations are selected from above experiments. The running 

time is collected by using C++ time() function that calculates the difference between the 
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beginning and ending calendar time of the calibration, and the results are plotted on Figure 

6-20. 

 

Figure 6-20 Relation between Generations and WCT in Regular Situations: This figure provides a visual 
inspection on the linear relation between the generation number and the WCT. 

Based on Figure 6-20, this section further examines the mathematical relation between 

generations and the WCT by using the linearity test function provided by IBM SPSS. The 

results are shown in Table 6-12. It predicts a linear regression equation and test how well 

the equation fits the data. The null-hypothesis is that the predicted model does not fit the 

data, and the p-value indicates the probability of finding a data that cannot be fitted into the 

predicted equation. If the p-value is less than 0.05, we claim that the null-hypothesis is 

rejected and we can assume it is a linear relation. 

Tests of Linearity 

p-value Constant Coefficient 

0.00 9.32 5.14 

Table 6-12 Test of Linearity in Regular Situation on Local Machine: If the p-value is less than 0.05, we can 
assume the relation between number of generations and WCT is linear. 

Moreover, Table 6-12 shows the coefficients of the result linear function. Based on the 

values of Constant and Coefficient, the relation between generation numbers and the WCT 

in can be represented as:  
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 𝑊𝑊𝐶𝐶𝑇𝑇 = 5.140 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 + 9.322 (𝑚𝑚𝑒𝑒𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎𝑚𝑚) (20) 

The 𝑊𝑊𝐶𝐶𝑇𝑇  denotes the required Wall-Clock Time and the 𝐺𝐺𝑒𝑒𝑎𝑎  signifies the required 

generation number. Finally, the required WCT is shown in Table 6-13. 

Required Wall Clock Time 

Stopping Criteria Generations Estimation  𝑎𝑎 = 1 WCT(seconds) 

Fitness 1000 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 13.09 + 42.76⌋ 56 297.16 

Fitness 1500 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 9.57 +  39.78⌋ 50 266.32 

Fitness 2000 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 9.29 +  37.38⌋  47 250.90 

Fitness 2500 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 7.80 +  33.14⌋  41 220.06 

Fitness 3000 𝐸𝐸𝑔𝑔 = ⌊𝑎𝑎 ∗ 6.57 +  31.46⌋  38 204.64 

Table 6-13 Required Wall Clock Time: It provides the result of estimating running time based on the estimated 
number of generations. According to the linear relation between the generation number and the wall-clock time, 
the required running time is shown in the last column in seconds. 

By considering 15 minutes as the time constraint, the calibrations under examined stopping 

criteria can be finished in time, specifically, in 5 minutes. In a conclusion, by running the 

calibration in parallel with 4 processes, the GA can manage to converge in 5 minutes in the 

normal situation. However, as the system is considered to be steered by the dynamic sensor 

data, we further evaluate the running time estimation method in the abnormal situation.  

6.5.2 Estimating the Running time of the Calibrator on an Abnormal 

Situation 

Section 6.2.2 has introduced the abnormal situation which is artificially generated based on 

a real pipe burst sensor readings. The significant variation of sensor readings that raised by 

the pipe burst considerably increases the task size of the calibration. Hence, by 

demonstrating that this project is able to estimate the running time of the Calibrator in an 

anomalous situation, it is important to evaluate whether implementing steering on the 

calibration component is useful enough to finish extreme tasks in the WDS use case.  

The experiment is divided into two parts based on the methods evaluated in Section 6.5.1. 

Firstly, we estimated the required generation numbers. Afterwards, we estimated the relation 
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between the generation number and the WCT. Based on this relation, we calculated the 

required WCT for the calibration to finish on a specific computing environment and in the 

abnormal situation. 

Distribution of Generations 

The first step of estimating the running time is to analyse the distribution of required 

generation numbers. Hence, the calibration is executed 50 times to calibrate the water model 

in the artificial pipe burst. Since this section does not focus on demonstrating the hybrid 

steering ability, the calibration is stopped when its fitness value reaches 1000. As the 

feasibility of using Gaussian distribution to estimate the distribution of generation numbers 

has been discussed in Section 6.3 and 6.5, this section does not repeat the normality test. The 

information of the estimated Gaussian distribution are shown in Table 6-14, and the function 

used to estimate the required generations is shown in Table 6-15. 

Information of the Gaussian Distribution 

Mean Standard Deviation 

105.60 27.20 

Table 6-14 Information of the Gaussian Distribution in Pipe Burst 

Stopping Criteria Generations Estimation 
𝒏𝒏 = 𝟏𝟏 

(generations) 

Fitness 1000 𝐸𝐸𝑔𝑔 =  ⌊𝑎𝑎 ∗ 27.2 +  105.6⌋ 133 

Table 6-15 Estimation of the Required Generations: When taking n as 1, the required generation number is 
estimated as 133. 

Compared with the distribution of generation numbers in the regular situation, the mean 

value of the Gaussian distribution increases from 42.8 to 105.6. It indicates the generation 

amount required by the Calibrator increased to more than twice as compared with regular 

situation. Additionally, the standard deviation in abnormal situation is greater than normal 

situation. It suggests when the problem size increases, distribution of required generations 

become dispersed, and the time management component may apply for more redundant 

computing resources. 
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Relation Between Generation Number and Wall-Clock Time 

 

Figure 6-21 Relation between Generations and Wall-Clock Time in a Pipe Burst: This figure provides a visual 
inspection on the linear relation between the generation number and the WCT. 

After understanding the distribution of required generations, we further study the correlation 

between the generation number and its required WCT. The correlation is depicted in Figure 

6-21.  

Tests of Linearity 

p-value Constant Coefficient 

0.00 161.99 9.71 

Table 6-16 Linearity Test of Relation between Generations and Wall-Clock Time in a Pipe Burst: If the p-
value is less than 0.05, we can assume the relation between number of generations and WCT is linear. 

The linearity test method introduced in Section 6.5.1 is utilised to test the linearity in this 

abnormal situation, and the results are shown in Table 6-16. The Significance of ANOVA is 

closed to 0.00 which means all data sets fit well with a linear function as described by 

Equation (21). 

 𝑊𝑊𝐶𝐶𝑇𝑇 = 9.719 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 + 161.99 (𝑚𝑚𝑒𝑒𝑠𝑠𝑃𝑃𝑎𝑎𝑎𝑎𝑚𝑚) (21) 

By using 133 as the generation number, the estimated WCT is about 1454.617 seconds 

(about 24 minutes). Since the time constraint is 15 minutes, we can conclude that without a 
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dedicated study of the required running time of the calibration, it is possible for an existing 

monitoring system to have a delayed update when an abnormal situation happens. Moreover, 

our time management method manages to estimate the required execution time of the 

calibration process in a pipe burst event.  

6.6 Evaluation of Using Dynamic Computing Resources 

In Section 6.5, it demonstrates that, with static computing power, the calibration can run out 

of time even its running time has been reduced using computational steering. Therefore, this 

section evaluates the capability of using dynamic computing resources. Additionally, the 

cloud based computational steering architecture introduced in Section 5.3 is utilised and the 

Amazon EC2 is used as the cloud service provider.  

To demonstrate that the cloud computing can provide enough computing resources for the 

calibration, the distribution of generation numbers and calibration speed of the GA need to 

be studied specifically for this new infrastructure. Moreover, the efficiency of the parallel 

programming also needs to be reconsidered since in this evaluation, the network 

communication is between remote instances distributed in the Europe. The instance used in 

this experiment runs with 64bit Ubuntu Server 14.04 LTS, and has one CPU and one 

gigabyte memory. The number of instances are considered as the amount of computing 

resources in this evaluation. 

Additionally, the artificial pipe burst is used since it raises a more complex calibration task 

than the normal situation. This section assumes that an artificial pipe burst situation can 

generate the upper limit of the calibration workload. Hence, as long as the calibration can be 

finished in time under this abnormal situation, it supports that the method proposed by this 

thesis manages to meet the time requirement in the WDS. Finally, the configurations of the 

Genetic Algorithm (GA) is kept same as the experiment discussed in Section6.5.  

6.6.1 Generation Distribution 

The number of generations required by the GA to tackle a problem depends on selection, 

mutation and crossover, and it also depends on parameters such as the population size and 

stopping criteria. Therefore, when the configurations of the GA and the problem size are 

identical, the distribution of required generations should be similar. However, in realisation, 

specific functions, such as selection of random numbers, can make influence on the GA. 
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Therefore, this section aims at analysing the generation distribution on instances provided 

by Amazon Cloud. 

  

Figure 6-22 The Distribution of Required Generations on Amazon Cloud: This figure provides a visual 
inspection on the distribution of required number of generations. A normality test was conducted to further 
confirm the assumption of using Gaussian distribution. The result of the test is used to depict a linear curve 
that represents the density of probability of a Gaussian distribution in each subfigure. 

The calibration process is executed 50 times in this experiment, and their required generation 

numbers are analysed by the IBM SPSS. Figure 6-22 depicts the distribution histogram of 

the generation number, and Table 6-17 shows the results of the normality test. Moreover, 

the normality test conducted for the calibration on the local machine is also listed in Table 

6-17 to make comparison. 

Tests of Normality 

Platforms p-values Mean Std. Deviation 

Amazon EC2 .205 102.24 26.33 
Local MacBook .108 105.66 27.23 

Table 6-17 Normality Test of Generation Distribution on Amazon EC2: If p-values are greater than 0.05, then 
we claim the distribution of generations can be assumed as Gaussian distribution. 

Since the significance of Shapiro-Wilk test is 0.22, which is greater than 0.05. Hence we 

claim that the distribution of generation number can fit into the normal distribution. In the 

comparison with the distribution on the local machine, the difference between mean values 

is less than 3 and the difference between the standard deviation is around 1. Hence, the 

difference of generation distribution caused by the different hardware is not significant.   

Moreover, by using Equation (16) with n = 1, the estimated generation number required to 

calibrate this pipe burst anomaly is 129. In order to obtain the required Wall-Clock Time 
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(WCT), we still need to obtain the relation between generation number and WCT. Since this 

relation depends on the hardware specifications, the next section estimates the running time 

of the calibration with different instance numbers. 

6.6.2 Relation Between Generation Number and the Wall-Clock Running 

Time 

Four sets of experiment have been conducted to collect the WCT. Each set consists of 10 

executions of the calibration and they are executed separately on 1, 4, 8, 12 and 16 instances. 

As a result, the consumed WCT and the corresponding generation numbers are plotted from 

Figure 6-23 to Figure 6-27. 

 

Figure 6-23 The Relation between WCT and Number of Generations – 1 Instance: This figure provides a visual 
inspection on the linear relation between the generation number and the WCT. 



 
193 

 

Figure 6-24 The Relation between WCT and Number of Generations – 4 Instances: This figure provides a 
visual inspection on the linear relation between the generation number and the WCT. 

 

Figure 6-25 The Relation between WCT and Number of Generations – 8 Instances: This figure provides a 
visual inspection on the linear relation between the generation number and the WCT. 
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Figure 6-26 The Relation between WCT and Number of Generations – 12 Instances: This figure provides a 
visual inspection on the linear relation between the generation number and the WCT. 

 

Figure 6-27 The Relation between WCT and Number of Generations – 16 Instances: This figure provides a 
visual inspection on the linear relation between the generation number and the WCT. 

By observing the figures, we assume the relation between the WCT and the number of 

generations can still be linear. Hence, the IBM SPSS is used to conduct linearity test, and 

the results are shown in Table 6-18.  
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Tests of Linearity 

Number of Instances Sig. of ANOVA 
Constants and Coefficients 

Constants Coefficients 
1 ≈0.00 529.19 27.03 
4 ≈0.00 134.87 10.87 
8 ≈0.00 -75.17 9.07 
12 ≈0.00 -16.51 7.61 
16 ≈0.00 -65.43 7.45 

Table 6-18 Linearity Tests of Relation between WCT and Generation Number on Amazon Cloud: If the p-
value is less than 0.05, we can assume the relation between number of generations and WCT is linear. 

Because all significance value of ANOVA equal to 0.00, it indicates that every relation 

shown in Figure 6-27 fits well in the linear functions with the coefficients shown on under 

“Coefficients” column of Table 6-18. Afterwards, the linear functions that represent these 

relations are shown in Table 6-19. 

 

Relations of WCT and Generation Number 

Number of 
Instances Functions 𝑮𝑮𝑮𝑮𝒏𝒏𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏 

Seconds Minutes 

1 
 

𝑊𝑊𝐶𝐶𝑇𝑇 =  27.037 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 + 529.196 (22) 

 

4016.97 66.95 

4 
 

𝑊𝑊𝐶𝐶𝑇𝑇 =  10.873 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 + 134.875 (23) 

 

1537.49 25.62 

8  𝑊𝑊𝐶𝐶𝑇𝑇 = 9.075 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 − 75.175 (24) 

 

1095.50 18.26 

12  𝑊𝑊𝐶𝐶𝑇𝑇 =  7.618 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 − 16.51 (25) 

 

966.21 16.10 

16  𝑊𝑊𝐶𝐶𝑇𝑇 =  7.450 ∗ 𝐺𝐺𝑒𝑒𝑎𝑎 − 65.437 (26) 

 

895.61 14.93 

Table 6-19 Relations of Wall-Clock Time and Generation Number on Amazon Cloud Computing Environment: 
A function indicates the relation between the WCT and the required number of generations when a specific 
number of instances are used for the parallel calibration. By taking 129 as the estimated required number of 
generations, the estimated required running time is shown on the last two columns in seconds and minutes. 
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As a result, by using 16 instances, the running time is reduced from 67 minutes to less than 

15 minutes. As the time constraint in this use case is set as 15 minutes, we conclude that our 

time management component can successfully guarantee the time constraint by dynamically 

assign cloud computing resources to the calibration process even when an abnormal situation 

creates great workload for it. 

6.6.3 Calibration Speed – Seconds per Generation 

To evaluate the efficiency of parallel programming, functions shown in Table 6-19 are 

plotted in Figure 6-28. 

 

Figure 6-28 Relations of WCT and Generation Number: The x axis is the number of generations required to 
finish the calibration. The y axis is the time for running the amount of generations in seconds. This figure 
indicates the linear relation between the WCT and the number of generations when the calibration is run with 
1 , 4, 8, 12 and 16 instances(s). It shows when more instances are used, the linear relation has a lower slope. 
Since the problem size studied in this thesis generally require more than 60 generations, this figure indicates 
the calibration running on a greater number of instances can always be faster. However, by taking the cost of 
computing resources into consideration, as long as the time constraint is met, a smaller number of instances 
can be used to save cost. The red line indicates the 15 minutes time constraint which is used in this use case. 

Each line shown in Figure 6-28 corresponds to a function shown in Table 6-19. As instance 

numbers increase, the difference between adjacent slopes decreases. After the instance 

number reaches 8, the relation functions begin to have crossings. Specifically, the function 

of 8 instances crosses with the function of 12 instances and 16 instances when the number 

of generations equal to 40.3 and 5.9. It indicates that when the calibration task is simple and 

requires less than 41 generations, using 8 instances is better than using 12 instances. 

Nevertheless, for the specific problem size discussed in this section, the generation number 

required by the GA for the abnormal situation can reach 129. Therefore, increasing the 
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instance of numbers can manage to handle the time requirement in this pipe burst situation. 

For regular situations whose estimated generation numbers are less than 41, 2 and 4 instances 

can be an efficient choice. 

Due to the 15 minutes time constraint, the Figure 6-28 also indicates the suitable instance 

numbers for different problem sizes that may have different generation distributions. The 

results of suitable core number and its corresponding generation number is listed in Table 

6-20. 

Intervals of Required Number of 

Generations 
Instance Numbers 

[0,13] 1 

[14,70] 4 

[71,107] 8 

[107,120] 12 

[120,129] 16 

Table 6-20 Generation Distribution Intervals and Suitable Instance Numbers to Tackle Its Corresponding 
Problem: This table provides an example of a training result of the computing resources manager. It indicates 
the number of instances needs to be assigned to the calibration process when the estimated number of required 
generations fall into the intervals indicated on the left column. 

As the improvement made by the parallel programming decreases as the increase of the 

instance number, the interval size that a particular instance number can cope with drops as 

the increase of instance number as well. Since the artificial pipe burst used in this experiment 

is considered to be an extreme problem size in the WDS and a restricted stopping criteria 

(when fitness reaches 1000) is applied to the GA, the estimated generation number required 

by the Calibrator is assumed to be the maximum in the WDS use case. Therefore, we 

conclude that by using 16 instances, most problems can be guaranteed to finish in the 

required time window. Moreover, based on requirements of users, a smaller problem sizes 

in an abnormal situation can be created by steering parameters such as the stopping criteria. 

According to the required generation number estimated by analyzing the problem size, a 

suitable core number can be selected based on Table 6-20. 
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6.7 Chapter Summary 

 

Figure 6-29 Structure of the Evaluation Chapter: This chapter begins with an introduction of the Water 
Distribution System which is used as the use case in this evaluation. To evaluate functions, architectures and 
frameworks of the hybrid computational steering, this chapter is mainly divided as evaluations on HDCS and 
DDDCS. Additionally, as the time management is a complex function for both HDCS and DDDCS, it is 
emphasised in this figure as a separate component. 
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Since this chapter has a complex structure, Figure 6-29 summaries its structure. This section 

is divided into four components. The first component is the Water Distribution System and 

Its Implementation. It introduces a water distribution system which is used as the use case 

in this evaluation. Based on the calibration process discussed in 4.2, it further introduces our 

methods to implement this use case for the purpose of demonstrating functions and time 

management methods of the hybrid computational steering. 

Afterwards, the evaluation is separated as evaluation on Human-Driven Computational 

Steering (HDCS) and evaluation on Dynamic Data-Driven Computational Steering. For the 

HDCS, we evaluate its steering capability by enabling human users to steer number of 

sensors that are used in the calibration process, which is realised by using a genetic algorithm. 

The results presented that the accuracy and execution time of the calibration process can be 

steered by users successfully. Since other high-level functions can be based on the speed and 

accuracy of the calibration, we claim that HDCS can incorporate human users in the 

workflow of DDDAS as introduced in Section 3.1.1.  Additionally, as the machine that are 

used to support this evaluation is a local cluster, the architecture and framework designed 

for supercomputers are used to conduct the experiment. Thus, this evaluation also supports 

our design in Section 4.2 and 5.2. Moreover, the generation number required by a GA, which 

can be affected by HDCS, is estimated by using time management methods discussed in 

Section 4.3. It supports our assumption that the distribution of required generation number 

can be assumed as a Gaussian distribution. Finally, it presents that, based on the estimation 

results, about 85% of calibrations can have enough time to be finished. Since this thesis 

considers this estimation method as an approach to demonstrate functions of a hybrid 

computational steering, even though this estimation method might wastes some computing 

resources, we think it can be used as an example of time management method that can be 

improved in future work. 

For the DDDCS, its steering capability is presented on the reduced execution time of the 

calibration in Section 6.4. By comparing with a non-steerable calibration, the DDDCS can 

greatly increase the execution speed of the calibration process, which is realised by using a 

genetic algorithm. However, the parallel programming can weaken the improvement effect 

made by DDDCS since it reduces interactions between calibrators and simulations. Thus, 

we provide a method for users to measure whether it is effective to use DDDCS. As the 

result of the measurement, we claim the for this specific use case and its problem sizes, 

DDDCS can always improve the efficiency of the calibration process. The time management 
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of DDDCS is introduced in Section 6.5 with the time management of HDCS. In section 6.5.1, 

the stopping criteria is considered as steerable parameter of HDCS, and its effects on the 

time management is considered. In addition to estimate the required number of generations, 

This time management also supports our assumption in which the relation between the 

required number of generations and wall-clock time is linear. Based on the equation obtained 

from a linear regression method, the time management can estimate the required running 

time of the calibration process based on a regular situation in the WDS. To further evaluate 

the time management, the variation of the dynamic data is represented by using an abnormal 

situation. The results of the time management conducted for the abnormal situation is 

compared with the estimated execution time obtained from the regular situation. The results 

show that the time management method can manage to reflect the effects taken by the 

dynamic data of DDDCS.  

At last, the Amazon cloud is used as the computing infrastructure to evaluate whether using 

dynamic computing resources can meet the time requirement raised by DDDAS in Section 

6.6. By using the abnormal situation with a restricted stopping criteria, the estimated 

execution time of the calibration is successfully reduced under 15 minutes. Hence, we 

conclude that assigning dynamic computing resources to the calibration, which is steered by 

HDCS and DDDCS, can help to meet the time requirement. As the Amazon cloud is used in 

this evaluation, it also demonstrates the value of the architecture and framework designed 

for cloud computing. Part of the results shown in this chapter has been demonstrated and 

discussed with water engineers and scientists, their feedback has been recorded and listed in 

Appendix C. 
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 Conclusions 

We began this thesis by proposing a central hypothesis that computational steering can be 

integrated with Dynamic Data-Driven Application System (DDDAS) to improve the speed 

of data assimilation algorithms and to help incorporating human intelligence into workflow 

of DDDAS applications. To establish this hypothesis, we presented the theory, architecture 

and frameworks of hybrid computational steering in the course of this thesis. The achieved 

hybrid computational steering is the result of a set of objectives we set up. This section 

concludes our contributions by following the sequence of set-up objectives. To help readers 

to have an overview of this thesis, Figure 1-2 presented in Section 1.4 was re-presented as 

Figure 7-1 in this section. 

 

Figure 7-1 Structure of the Thesis Presented 
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7.1 Summary of Research Contributions 

First, a statistical analysis of the impact of computational steering is conducted; based on 

this analysis, the reasons for utilizing applications of DDDAS as the future application area 

of computational steering is raised (Objective O1). The impact of computational steering is 

analysed based on the number of published papers relating to computational steering and the 

citation numbers of these papers. In addition, the published papers are categorized to further 

examine relations between computational steering and technologies arising together with 

computational steering; see Chapter 2.  

Contribution C1: A statistical analysis of impact of computational steering. Computational 

steering has been studied for more than two decades. Several reviews were conducted in 

order to understand its concepts, taxonomy and involved projects. However, few reviews 

were conducted in the past ten years, and to the author’s knowledge, no existing review aims 

for a historical and statistical analysis. Based on our statistical analysis, we conclude that the 

development of computational steering has always been bound with other popular topics 

such as High-Performance Computing (HPC), visualizations and grid computing. As a coin 

has two sides, development of computational steering is motivated but also limited by these 

related areas. In the case of the development of grid computing, the negative correlation 

between number of published papers and number of citations these paper obtained indicates 

the arising grid motivates the development of computational steering. However, the 

motivation did not turn to widely-accepted utilization in practice. Through our analysis, 

uncertain future of alternating protocols and standardization utilized by the grid can impede 

its integration with computational steering. Additionally, since development of 

computational steering has always been related to developments of other areas, we assume 

that, instead of introducing new computing and visualization technologies to the 

computational steering, finding a new and arising application area for the computational 

steering can facilitate its development as well.  

Depending on the review in Chapter 2, we proposed the hybrid computational steering as an 

approach to facilitate the development of DDDAS. Hence, DDDAS is considered as a new 

application area for the computational steering. Additionally, the hybrid computational 

steering is divided into Human-Driven Computational Steering (HDCS) and Dynamic Data-

Driven Computational Steering (DDDCS). Each sub-steering is proposed by discussing its 

aims and usages with respect to DDDAS. Following the discussions, their conceptual 
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components are defined in terms of the steerer, steering targets; and workflows are also 

designed to indicate relations and communications among conceptual components. 

Consequently, by forming conceptual steering components and workflows, we defined the 

proposed hybrid computational steering for DDDAS in Chapter 3 (Objective O2). 

Contribution C2: A definition of hybrid computational steering and an understanding of 

advantage of computational steering from a new aspect. As applications of DDDAS are 

selected by this thesis as a new application area of computational steering, we contribute a 

hybrid computational steering that can meet requirements of DDDAS applications. In the 

HDCS, instead of exploring parameter spaces conducted in conventional computational 

steering, users steer parameters of algorithms utilized in DDDAS in order to indirectly affect 

simulations. In addition, we introduce our understanding of computational steering from a 

new aspect in which, the advantage of computational steering can be seen as reducing the 

length of feedback loop between components. This advantage was mentioned by 

computational steering developed at the early stage, but was neglected in the following 

development. Based on this understanding, we propose the DDDCS in which interactions 

between Genetic Algorithm (GA) and simulations used in calibrations are facilitated. The 

genetic algorithm is used as an example of calibration algorithms. Even calibration 

algorithms have a wide scope, we argue that the genetic algorithm can represent a number 

of popular calibration algorithms that were used in recent works, and we conclude that the 

hybrid computational steering proposed for DDDAS has a certain extent universality. 

To demonstrate the hybrid computational steering, we must design a new architecture to 

support it (Objective O3). Based on the conceptual components developed in Chapter 3, the 

architecture is introduced in Chapter 4, and it is divided into two layers, namely HDCS layer 

and DDDCS layer. The design of HDCS architecture is based on architecture of conventional 

computational steering. Additionally, DDDCS layer is further divided into software level 

and hardware level. The architecture designed for the software level is an integration of new 

steering components proposed for DDDAS applications with the workflow of conventional 

computational steering. The hardware level architecture is designed as the result of taking 

time management, which is required by DDDAS, into consideration.  

Contribution C3 and C4.a: The architecture designed for the hybrid computational steering 

and the introduction of time management methods of Workflow Management System 

(WMS). The design of architectures of HDCS and DDDCS takes the difference between the 
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hybrid computational steering and conventional computational steering into consideration. 

For HDCS, computational steering interfaces are introduced in calibration algorithms, which 

is the steering target of HDCS. The visualization components of conventional computational 

steering are changed as interfaces for users to realise their high-level functions, such as the 

monitoring and prediction. For DDDCS, steering interfaces are introduced in the algorithmic 

steerer and simulations used in calibration. The visualization component of conventional 

computational steering is replaced by evaluation functions in calibration algorithms. The 

algorithmic steerer is also enabled to steer simulations in parallel. Additionally, time 

management methods such as deadline assignment and running time estimation of WMS are 

introduced to assure components of designed architectures can meet time requirements in 

DDDAS. The time management methods are provided to handle flexible requirements of 

users in the future. However, in our current implementation, the calibration process 

consumes predominant time among components designed in the hybrid computational 

steering architecture. Hence, only its execution time needs to be estimated. As GA is used 

to realize the calibration algorithm, we then provide a classification tree to estimate required 

execution time of GA. The prediction tree builds a relation between amount of computing 

resources and required execution time based on the task size indicated by the dynamic data. 

Hence, it can help to ensure the calibration can be finished in time. As for GA has 

uncertainties on required execution time for the same problem size, the required execution 

time is further indicated by distributions of required number of generations, and we propose 

to fit such distributions into Gaussian distribution. Consequently, we claim that we proposed 

a method to assign dynamic computing resources to the steerable calibration process, in 

order to meet time requirements in DDDAS. 

Frameworks are developed in order to implement the designed architectures on computing 

infrastructures in Chapter 5 (Objective O4). Based on our statistical review of computational 

steering in Chapter 2, providing computational steering as a flexible web service is put at the 

heart of the design process. Afterwards, a framework developed for the conventional 

computational steering is presented. This dedicated framework is based on a collaboration 

project with IBM to extend the usability of the Blue Gene/Q supercomputers. This 

specifically designed framework is used as an template for the development of both HDCS 

and DDDCS frameworks. Finally, frameworks of HDCS and DDDAS are integrated as a 

general framework of the hybrid computational steering.  
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Contribution C5: The Computational Steering Web Service (CSWS) and its framework 

which are developed for the IBM Blue Gene/Q system. During the collaboration with IBM, 

we developed a flexible framework that provides the computational steering as a web service 

based on the Blue Gene/Q supercomputers. A CSWS server is developed as the middleware 

that hides the complex architecture of supercomputers from users and provides a steering 

web application to enable users take advantage of HPC resources on light-weight clients. 

Additionally, a relay server is designed to securely deal with communications between 

simulations running on the backend nodes and steering commands received from CSWS 

server. Moreover, this framework provides us the knowledge and experience of developing 

computational steering workflow on HPC infrastructures. Hence, even the framework is 

developed for conventional computational steering, the frameworks of hybrid computational 

steering is derived from it. 

In Chapter 6, calibration in Water Distribution Systems (WDS) is utilized as an example of 

data assimilation in DDDAS to evaluate our proposed concepts, architectures and 

frameworks of the hybrid computational steering (objective O5). HDCS function was 

evaluated by steering amount of sensor data which are used by the calibration algorithm. 

Genetic algorithm (GA) is taken as an example of the calibration algorithm to evaluate 

DDDAS functions. In the evaluation, the execution speed of GA, which was not integrated 

with computational steering, is compared with the execution speed of steering-enabled GA. 

Additionally, the time management method is evaluated by estimating required running time 

of calibration processes under two variables. First variable is the GA stopping criteria which 

are steered by human users, and the second variable is the varying situation in WDS. Finally, 

the computing resources assignment method is evaluated by developing the framework of 

the hybrid computational steering on Amazon Cloud. The number of instances provided by 

Amazon Cloud are used to indicate the amount of computing resources. By executing the 

calibration with different number of instances, a relation among the amount of computing 

resources, calibration workload and the calibration execution time is created. Such relations 

are used to train our time manager which can request dynamic computing resources to meet 

the deadline. Moreover, as the function such as computing resource broker is beyond the 

scope of thesis, we collaborated with another PhD project, which focuses on the provision 

of dynamic computing resources.  

Contribution C4.b and C6: Implementing designed architectures and frameworks of the 

hybrid computational steering on Amazon Cloud computing system, and using dynamic 
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computing resources of Amazon Cloud to manage execution time of the hybrid 

computational steering system. 

The implementation and designed time management methods are demonstrated using a 

WDS as an example of DDDAS. We have claimed that HDCS can assimilate dynamic 

steering commands from user into calibration algorithms. To demonstrate this ability in 

applications of a WDS, the number of sensors used by the genetic algorithm are steered by 

users in this evaluation. The results indicate HDCS enable users to adjust the genetic 

algorithm according to their requirements based on the trade-off between execution time and 

accuracy of calibration. In DDDCS, we presented that GA can steer simulations in the 

calibration process based on proposed architectures and frameworks for the supercomputer 

and cloud computing. Additionally, by comparing speeds of conventional calibration and 

the steering-enabled calibration, we show that DDDCS can greatly increase speed of 

steerable calibration. Moreover, time management methods can estimate required execution 

time of the calibration process by studying historical distributions of required generation 

numbers of GA, and the estimation results can reflect different situations happening in the 

WDS and dynamic steering commands assigned by users. Since the execution time 

estimation can indicate a specific number of instances to execute the calibration in parallel, 

and the calibration can be finished in time in our artificial pipe burst scenario, we claim that 

based on the estimation, required execution time can be met by assigning dynamic 

computing resources to DDDCS.  

Furthermore, we also conclude that it is difficult to have a perfect estimation on the execution 

time of calibrations. Thus, the trade-off between estimation accuracy and computing 

resources cost is required to be considered. This work further introduces a parameter for 

users to steer in order to control such trade-off. 

7.2 Future Work 

The hybrid computational steering opens the door to a number of future work directions,  

including but not limited to the following: 

Future Publications 

The results of using Amazon cloud computing resources to support calibration process has 

not been published. As sensor reading collected from different scenarios is another 
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significant factor that affects the performance of calibration process, it is interesting to 

publish the results in addition to the results of HDCS in the future. 

Introducing Computational Steering to General Calibrations 

This thesis only used the Genetic Algorithm as an example of the calibration algorithm to 

demonstrate the benefits of integrating computational steering with the calibration process. 

As discussed in Section 2.2, other calibration algorithms can be also expected to take 

advantage of computational steering. Therefore, we look forward to evaluating integrating 

computational steering with other calibration algorithms. Moreover, as the estimation of the 

execution time of calibration algorithm is a dedicated research area, we expect to improve 

the performance of the time management by researching other methods to estimate the 

execution time. 

Time Management in a Complex System 

The time management of workflow management system has been introduced in our project. 

However, as the use case did not provide complex system, this thesis only selected parts of 

the methods to demonstrate the capability of the introduced time management method. 

Therefore, we expect to have a more complex applications of DDDAS to evaluate rest time 

management methods. 

Hybrid Framework of Dynamic Computing Resources 

This thesis evaluates computing resources on the frameworks developed for  supercomputers 

and clouds separately. In the future work, it is interesting to conduct evaluations on the 

computing resources that are from both types of frameworks at the same time. 

7.3 Final Thoughts 

Computational steering has been considered as a valuable computation tool for decades, and 

interaction issues between steerer and steered simulations running on HPCs need to be 

tackled in many research areas. However, its development does not go smooth, and targeted 

issues are still challenging. By introducing DDDAS as a new application area of 

computational steering and showing computational steering can facilitate interactions 

between components in DDDAS, we hope to attract attentions of researchers in the area of 

DDDAS and motivate the development of computational steering.  
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In addition, we present an architecture and its frameworks for providing computational 

steering as a web service on HPCs. By keeping the flexibility of developed frameworks, we 

hope our work can motivate development of such service in practise in order to provide a 

stable platform for scientists and software developers to build steerable models and systems. 

Finally, I hope this research thesis will contribute to a deeper understanding of advantages 

of computational steering and designs of computational steering architectures on high-

performance computing resources.   
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Appendix A The Programs Repository 

A.1 Statistical Analysis of Computational Steering 

In Section 2.1.4 we have introduced that we conducted a statistical analysis of the impact of 

computational steering by developing a program to search through popular online search 

tools, such as the Google Scholar and IEEEXplore. It is developed on MacOS using 

Objective-C as the program language. The program can be found in Bitbucket with the link: 

https://demonmerlin@bitbucket.org/demonmerlin/gproofread.git. The Figure A-1 

demonstrates the user interface we developed for this application. 

 
Figure A-1 The User Interface of the Online Research Tool – GProofread: The “computational steering” is the 
keyword used to search on other online search tools. The list gives options to select years. Users first press 
“Search” button to search the key word on Google Scholar. Afterwards, users can press “verify” button to filter 
found papers on IEEE Xplore, ACM DL, Springer and ScienceDirect, WoS and Scopus. The “Found by 
Witness” indicates the number of papers found on Google Scholar and also on other search tool, and the 
information on both side are matched “Unfound on Witness” indicates the number of papers are only found on 
Google Scholar. The “Mismatched” indicates papers found on Google Scholar and also on other search tool, 
but the information on both side are not matched. We choose to trust other search tools. 
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A.2 Relay Server 

This relay server is derived from the “Relay Server” developed for the collaboration project. 

Since all programs developed in the collaboration project with IBM cannot be published in 

public, we only present our relay server developed for the framework on Amazon Cloud. 

The program was developed on MacOS using C++. It can be found using the link: 

https://demonmerlin@bitbucket.org/demonmerlin/relay-server.git. 

A.3 Calibrator – The Steerer of the DDDCS 

The Calibrator is mainly developed by the Genetic Algorithm using C++. The program has 

been uploaded on Bitbucket and can be found using the link:  

• For Amazon Cloud: 

https://demonmerlin@bitbucket.org/demonmerlin/calibratorec2.git. 

• For Supercomputers: 

https://demonmerlin@bitbucket.org/demonmerlin/calibratorbgq.git. 

A.4 Simulations 

The simulation program is developed using the EPANET model provided by the 

Environmental Protection Agency. The program has been uploaded on Bitbucket and can be 

found using the link: 

• For Amazon Cloud: 

https://demonmerlin@bitbucket.org/demonmerlin/simulationsec2.git. 

• For Supercomputers: 

https://demonmerlin@bitbucket.org/demonmerlin/simulationsbgq.git. 

A.5 Computing Resource Manager 

This Computing Resource Manager is used to demonstrate that our project can communicate 

existing works to request dynamic computing resources. It presents the progress of 

requesting dynamic computing resources by communicating with a Computing Resource 

Broker. The Computing Resource Broker provides RESTful API for the Computing 

Resource Manager. The Computing Resource Manager uses TCP sockets to communicate 
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with the Steerer using C++, and it connects with Computing Resource Broker based on 

Restlet, which is an open source RESTful web API framework for the Java platform. As a 

result, Java Native Interface (JNI) is used to call Java functions in a C++ program. The 

program has been uploaded on Bitbucket and can be found using the link: 

• For the C++ part: 

https://demonmerlin@bitbucket.org/demonmerlin/timemanagercpp.git. 

• For the Java part: 

https://demonmerlin@bitbucket.org/demonmerlin/timemanagerjava.git. 

A.6 Pattern Splitter and EPANET Engine 

A pattern splitter has been developed to generate artificial water demand patterns which can 

be used as input to obtain artificial sensor readings. The program can be found with the link: 

https://demonmerlin@bitbucket.org/demonmerlin/patternspliter.git.  

The generated water demand patterns were integrated with the EPANET input file which 

describes the water network. The link for the generated input file can be found using the link: 

https://www.dropbox.com/s/zplinuw5u0ggew3/SZ01_nc_15M_ex.inp?dl=0. 

An EPANET Engine is also developed to generate required artificial sensor readings as 

described in Section 6.2.1. The program of the EPANET Engine can be accessed using link: 

https://demonmerlin@bitbucket.org/demonmerlin/epanetengine.git. 

 

  

https://www.dropbox.com/s/zplinuw5u0ggew3/SZ01_nc_15M_ex.inp?dl=0
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Appendix B The Computational Steering 

Web Application 

 
Figure B-1 Web Application Screenshot 1: The Browser based steering interface running on mobile device. It 
presents the real-time results of a simulation running on the Blue Gene/Q supercomputer. 

Figure B-1 shows that users use the Google Web Browser to open the web application and 

the rea- time visualization data is shown on the web page. The visualization results extracted 

from running simulations are shown in the interactive window on the bottom. Users can 

pause the simulation to check the visualization data and manipulate the object in real-time 

shown in the viewport. The steerable parameters are shown in the Steered Parameters 

window. Users can slide bars under the “New Value” column to modify parameters on the 

fly. As a result of modifying parameters, users obtain feedback from the visualization data 

in real-time.  
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Figure B-2 Web Application Screen Shot 2: The Browser based steering interface running on mobile device. 
It presents the real-time results of a simulation running on the Blue Gene/Q supercomputer. It demonstrates 
that users can change angles view the simulation results. 

By comparing Figure B-2 with Figure B-1, we demonstrate that instead of displaying a 

picture of the visualisation result, this web application provides users with a 3D and 

interactive visualisation interface in which users can manipulate visualization data such as 

zooming in and changing the visualisation angle. 
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Appendix C Feedbacks 

 

Figure C-1 Feedback from IBM Engineers 

The feedback from WRc and water engineers was recorded in a voice memo. As I do not 

have the right to publish the entire meeting contents, I can only gave the link of the recording 

that relevant to my PhD project. The recording has been uploaded on Dropbox and can be 

found using the link: https://www.dropbox.com/s/upwx87rutbz6tku/Mine.wav?dl=0. 

  

https://www.dropbox.com/s/upwx87rutbz6tku/Mine.wav?dl=0
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