30 research outputs found

    Navigating a Maze with Balance Board and Wiimote

    Get PDF

    An expandable walking in place platform

    Get PDF
    The control of locomotion in 3D virtual environments should be an ordinary task, from the user point-of-view. Several navigation metaphors have been explored to control locomotion naturally, such as: real walking, the use of simulators, and walking in place. These have proven that the more natural the approach used to control locomotion, the more immerse the user will feel inside the virtual environment. Overcoming the high cost and complexity for the use of most approaches in the field, we introduce a walking in place platform that is able to identify orientation, speed for displacement, as well as lateral steps, of a person mimicking walking pattern. The detection of this information is made without use of additional sensors attached to user body. Our device is simple to mount, inexpensive and allows almost natural use, with lazy steps, thus releasing the hands for other uses. Also, we explore and test a passive, tactile surface for safe use of our platform. The platform was conceived to be utilized as an interface to control navigation in virtual environments, and augmented reality. Extending our device and techniques, we have elaborated a redirection walking metaphor, to be used together with a cave automatic virtual environment. Another metaphor allowed the use of our technique for navigating in point clouds for tagging of data. We tested the use of our technique associated with two different navigation modes: human walking and vehicle driving. In the human walking approach, the virtual orientation inhibits the displacement when sharp turns are made by the user. In vehicle mode, the virtual orientation and displacement occur together, more similar to a vehicle driving approach. We applied tests to detect preferences of navigation mode and ability to use our device to 52 subjects. We identified a preference for the vehicle driving mode of navigation. The use of statistics revealed that users learned easily the use of our technique for navigation. Users were faster walking in vehicle mode; but human mode allowed precise walking in the virtual test environment. The tactile platform proved to allow safe use of our device, being an effective and simple solution for the field. More than 200 people tested our device: UFRGS Portas Abertas in 2013 and 2014, which was a event to present to local community academic works; during 3DUI 2014, where our work was utilized together with a tool for point cloud manipulation. The main contributions of our work are a new approach for detection of walking in place, which allows simple use, with naturalness of movements, expandable for utilization in large areas (such as public spaces), and that efficiently supply orientation and speed to use in virtual environments or augmented reality, with inexpensive hardware.O controle da locomoção em ambientes virtuais 3D deveria ser uma tarefa simples, do ponto de vista do usuário. Durante os anos, metáforas para navegação têm sido exploradas para permitir o controle da locomoção naturalmente, tais como: caminhada real; uso de simuladores e imitação de caminhada. Estas técnicas provaram que, quanto mais natural à abordagem utilizada para controlar a locomoção, mais imerso o usuário vai se sentir dentro do ambiente virtual. Superando o alto custo e complexidade de uso da maioria das abordagens na área, introduzimos uma plataforma para caminhada no lugar, (usualmente reportado como wal king in place), que é capaz de identificar orientação, velocidade de deslocamento, bem como passos laterais, de uma pessoa imitando a caminhada. A detecção desta informação é feita sem o uso de sensores presos no corpo dos usuários, apenas utilizando a plataforma. Nosso dispositivo é simples de montar, barato e permite seu uso por pessoas comuns de forma quase natural, com passos pequenos, assim deixando as mãos livres para outras tarefas. Nós também exploramos e testamos uma superfície táctil passiva para utilização segura de nossa plataforma. A plataforma foi concebida para ser utilizada como uma interface para navegação em ambientes virtuais. Estendendo o uso de nossa técnica e dis positivo, nós elaboramos uma metáfora para caminhada redirecionada, para ser utilizada em conjunto com cavernas de projeção, (usualmente reportado como Cave automatic vir tual environment (CAVE)). Criamos também uma segunda metáfora para navegação, a qual permitiu o uso de nossa técnica para navegação em nuvem de pontos, auxiliando no processo de etiquetagem destes, como parte da competição para o 3D User Interface que ocorreu em Minessota, nos Estados Unidos, em 2014. Nós testamos o uso da técnica e dispositivos associada com duas nuances de navegação: caminhada humana e controle de veiculo. Na abordagem caminhada humana, a taxa de mudança da orientação gerada pelo usuário ao utilizar nosso dispositivo, inibia o deslocamento quando curvas agudas eram efetuadas. No modo veículo, a orientação e o deslocamento ocorriam conjuntamente quando o usuário utilizava nosso dispositivo e técnicas, similarmente ao processo de controle de direção de um veículo. Nós aplicamos testes para determinar o modo de navegação de preferencia para uti lização de nosso dispositivo, em 52 sujeitos. Identificamos uma preferencia pelo modo de uso que se assimila a condução de um veículo. Testes estatísticos revelaram que os usuários aprenderam facilmente a usar nossa técnica para navegar em ambientes virtuais. Os usuários foram mais rápidos utilizando o modo veículo, mas o modo humano garantiu maior precisão no deslocamento no ambiente virtual. A plataforma táctil provou permi tir o uso seguro de nosso dispositivo, sendo uma solução efetiva e simples para a área. Mais de 200 pessoas testaram nosso dispositivo e técnicas: no evento Portas Abertas da UFRGS em 2013 e 2014, um evento onde são apresentados para a comunidade local os trabalhos executados na universidade; e no 3D User Interface, onde nossa técnica e dis positivos foram utilizados em conjunto com uma ferramenta de seleção de pontos numa competição. As principais contribuições do nosso trabalho são: uma nova abordagem para de tecção de imitação de caminhada, a qual permite um uso simples, com naturalidade de movimentos, expansível para utilização em áreas grandes, como espaços públicos e que efetivamente captura informações de uso e fornece orientação e velocidade para uso em ambientes virtuais ou de realidade aumentada, com uso de hardware barato

    CGAMES'2009

    Get PDF

    PhysicTV - Motion-based physical rehabilitation games for the Google-TV

    Get PDF
    O termo PhysicTV é composto por dois termos distintos. O primeiro (Physic - Físico) refere-se ao aspeto físico associado ao objetivo da plataforma e o segundo (TV - Televisão) refere-se ao aspeto tecnológico uma vez que os jogos a desenvolver vão ser jogados numa televisão.Enquanto plataforma, o PhysicTV contém duas tecnologias principais: XtionPRO e GoogleTV. Os principais objetivos deste projeto são a integração entre essas tecnologias e o desenvolvimento de jogos eletrónicos que possam ser utilizados para efeitos de reabilitação. O primeiro desses objetivos constituirá uma vertente inovadora e o segundo vai permitir ao fisioterapeuta uma ligeira mudança nas sessões com os seus pacientes, tornando-as mais dinâmicas e mantendo os pacientes mais motivados aquando da realização de exercícios. Com o XtionPRO e os seus sensores de movimento, é possível ao utilizador interagir com o sistema através dos movimentos dos braços, permitindo-lhe realizar exercícios e ir melhorando durante as sessões.PhysicTV as a concept is composed of two distinct terms. The first (Physic) relates to the physical aspect associated with the platform and the second (TV) relates to the technological component of the project since the games to developed will be played on a television screen.As a platform, PhysicTV contains two main technologies: XtionPRO and GoogleTV. The main goals of this project are the successful integration between those two technologies and the development of electronic games that can be used for rehabilitation purposes. The first goal will guarantee an inovative side and the second will allow the physioterapist to change a bit the sessions with his patients, making those sessions more dynamic and keeping the patients more motivated when doing the exercises. With the XtionPRO, that has motion sensors, it is possible for the user to interact with the system with arm movements, allowing him/her to do physical exercises and consequently keep improving during the sessions

    Amergent Music: behavior and becoming in technoetic & media arts

    Get PDF
    Merged with duplicate records 10026.1/1082 and 10026.1/2612 on 15.02.2017 by CS (TIS)Technoetic and media arts are environments of mediated interaction and emergence, where meaning is negotiated by individuals through a personal examination and experience—or becoming—within the mediated space. This thesis examines these environments from a musical perspective and considers how sound functions as an analog to this becoming. Five distinct, original musical works explore the possibilities as to how the emergent dynamics of mediated, interactive exchange can be leveraged towards the construction of musical sound. In the context of this research, becoming can be understood relative to Henri Bergson’s description of the appearance of reality—something that is making or unmaking but is never made. Music conceived of a linear model is essentially fixed in time. It is unable to recognize or respond to the becoming of interactive exchange, which is marked by frequent and unpredictable transformation. This research abandons linear musical approaches and looks to generative music as a way to reconcile the dynamics of mediated interaction with a musical listening experience. The specifics of this relationship are conceptualized in the structaural coupling model, which borrows from Maturana & Varela’s “structural coupling.” The person interacting and the generative musical system are compared to autopoietic unities, with each responding to mutual perturbations while maintaining independence and autonomy. Musical autonomy is sustained through generative techniques and organized within a psychogeographical framework. In the way that cities invite use and communicate boundaries, the individual sounds of a musical work create an aural context that is legible to the listener, rendering the consequences or implications of any choice audible. This arrangement of sound, as it relates to human presence in a technoetic environment, challenges many existing assumptions, including the idea “the sound changes.” Change can be viewed as a movement predicated by behavior. Amergent music is brought forth through kinds of change or sonic movement more robustly explored as a dimension of musical behavior. Listeners hear change, but it is the result of behavior that arises from within an autonomous musical system relative to the perturbations sensed within its environment. Amergence propagates through the effects of emergent dynamics coupled to the affective experience of continuous sonic transformation.Rutland Port Authoritie

    Gesture Interaction at a Distance

    Get PDF
    The aim of this work is to explore, from a perspective of human behavior, which\ud gestures are suited to control large display surfaces from a short distance away; why that is so; and, equally important, how such an interface can be made a reality. A well-known example of the type of interface that is the focus in this thesis is portrayed in the science fiction movie ‘Minority Report’. The lead character of this movie uses hand gestures such as pointing, picking-up and throwing-away to interact with a wall-sized display in a believable way. Believable, because the gestures are familiar from everyday life and because the interface responds predictably. Although only fictional in this movie, such gesture-based interfaces can, when realized, be applied in any environment that is equipped with large display surfaces. For example, in a laboratory for analyzing and interpreting large data sets; in interactive shopping windows to casually browse a product list; and in the operating room to easily access a patient’s MRI scans. The common denominator is that the user cannot or may not touch the display: the interaction occurs at arms-length and larger distances

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Motion-Based Video Games for Older Adults in Long-Term Care

    Get PDF
    Older adults in residential care often lead sedentary lifestyles despite physical and cognitive activities being crucial for their well-being. Care facilities face the challenge of encouraging their residents to participate in leisure activities, but as the impact of age-related changes grows, few activities remain accessible. Video games in general – and motion-based games in particular – hold the promise of providing mental, physical and social stimulation for older adults. However, the accessibility of commercially available games for older adults is not considered during the development process. Therefore, many older adults are unable to obtain any of the benefits. In my dissertation, this issue is addressed through the development of motion-based game controls that specifically address the needs of older adults. The first part of this thesis lays the foundation by providing an overview of motion-based game interaction for older adults. The second part demonstrates the general feasibility of motion-based game controls for older adults, develops full-body motion-based and wheelchair-based game controls, and provides guidelines for accessible motion-based game interaction for institutionalized older adults. The third part of this thesis builds on these results and presents two case studies. Motion-based controls are applied and further evaluated in game design projects addressing the special needs of older adults in long-term care, with the first case study focusing on long-term player engagement and the role of volunteers in care homes, and the second case study focusing on connecting older adults and caregivers through play. The results of this dissertation show that motion-based game controls can be designed to be accessible to institutionalized older adults. My work also shows that older adults enjoy engaging with motion-based games, and that such games have the potential of positively influencing them by providing a physically and mentally stimulating leisure activity. Furthermore, results from the case studies reveal the benefits and limitations of computer games in long-term care. Fostering inclusive efforts in game design and ensuring that motion-based video games are accessible to broad audiences is an important step toward allowing all players to obtain the full benefits of games, thereby contributing to the quality of life of diverse audiences
    corecore