3,661 research outputs found

    Self-organized Emergence of Navigability on Small-World Networks

    Full text link
    This paper mainly investigates why small-world networks are navigable and how to navigate small-world networks. We find that the navigability can naturally emerge from self-organization in the absence of prior knowledge about underlying reference frames of networks. Through a process of information exchange and accumulation on networks, a hidden metric space for navigation on networks is constructed. Navigation based on distances between vertices in the hidden metric space can efficiently deliver messages on small-world networks, in which long range connections play an important role. Numerical simulations further suggest that high cluster coefficient and low diameter are both necessary for navigability. These interesting results provide profound insights into scalable routing on the Internet due to its distributed and localized requirements.Comment: 3 figure

    A Game Theoretic Model for the Formation of Navigable Small-World Networks

    Full text link
    Kleinberg proposed a family of small-world networks to ex-plain the navigability of large-scale real-world social net-works. However, the underlying mechanism that drives real networks to be navigable is not yet well understood. In this paper, we present a game theoretic model for the for-mation of navigable small world networks. We model the network formation as a game in which people seek for both high reciprocity and long-distance relationships. We show that the navigable small-world network is a Nash Equilib-rium of the game. Moreover, we prove that the navigable small-world equilibrium tolerates collusions of any size and arbitrary deviations of a large random set of nodes, while non-navigable equilibria do not tolerate small group collu-sions or random perturbations. Our empirical evaluation further demonstrates that the system always converges to the navigable network even when limited or no information about other players ’ strategies is available. Our theoretical and empirical analyses provide important new insight on the connection between distance, reciprocity and navigability in social networks

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    The Navigability of Strong Ties: Small Worlds, Tie Strength and Network Topology

    Get PDF
    International audienceWe examine data on and models of small world properties and parameters of social networks. Our focus, on tie-strength, multilevel networks and searchability in strong-tie social networks, allows us to extend some of the questions and findings of recent research and the fit of small world models to sociological and anthropological data on human communities. We offer a 'navigability of strong ties' hypothesis about network topologies tested with data from kinship systems, but potentially applicable to corporate cultures and business networks

    Extended navigability of small world networks: exact results and new insights

    Full text link
    Navigability of networks, that is the ability to find any given destination vertex starting from any other vertex, is crucial to their usefulness. In 2000 Kleinberg showed that optimal navigability could be achieved in small-world networks provided that a special recipe was used to establish long range connections, and that a greedy algorithm, that ensures that the destination will be reached, is used. Here we provide an exact solution for the asymptotic behavior of such a greedy algorithm as a function of the system's parameters. Our solution enables us to show that the original claim that only a very special construction is optimal can be relaxed depending on further criteria, such as, for example, cost minimization, that must be satisfied.Comment: Presented at the BCNet Workshop in Barcelona on December 12 2008; submitted to PR

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    Navigability of temporal networks in hyperbolic space

    Get PDF
    Information routing is one of the main tasks in many complex networks with a communication function. Maps produced by embedding the networks in hyperbolic space can assist this task enabling the implementation of efficient navigation strategies. However, only static maps have been considered so far, while navigation in more realistic situations, where the network structure may vary in time, remain largely unexplored. Here, we analyze the navigability of real networks by using greedy routing in hyperbolic space, where the nodes are subject to a stochastic activation-inactivation dynamics. We find that such dynamics enhances navigability with respect to the static case. Interestingly, there exists an optimal intermediate activation value, which ensures the best trade-off between the increase in the number of successful paths and a limited growth of their length. Contrary to expectations, the enhanced navigability is robust even when the most connected nodes inactivate with very high probability. Finally, our results indicate that some real networks are ultranavigable and remain highly navigable even if the network structure is extremely unsteady. These findings have important implications for the design and evaluation of efficient routing protocols that account for the temporal nature of real complex networks.Comment: 10 pages, 4 figures. Includes Supplemental Informatio

    Adaptive Dynamics of Realistic Small-World Networks

    Full text link
    Continuing in the steps of Jon Kleinberg's and others celebrated work on decentralized search in small-world networks, we conduct an experimental analysis of a dynamic algorithm that produces small-world networks. We find that the algorithm adapts robustly to a wide variety of situations in realistic geographic networks with synthetic test data and with real world data, even when vertices are uneven and non-homogeneously distributed. We investigate the same algorithm in the case where some vertices are more popular destinations for searches than others, for example obeying power-laws. We find that the algorithm adapts and adjusts the networks according to the distributions, leading to improved performance. The ability of the dynamic process to adapt and create small worlds in such diverse settings suggests a possible mechanism by which such networks appear in nature

    Collective navigation of complex networks: Participatory greedy routing

    Full text link
    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.Comment: Supplementary Information and Videos: https://koljakleineberg.wordpress.com/2016/11/14/collective-navigation-of-complex-networks-participatory-greedy-routing
    corecore