8,532 research outputs found

    Linear Spatial Pyramid Matching Using Non-convex and non-negative Sparse Coding for Image Classification

    Full text link
    Recently sparse coding have been highly successful in image classification mainly due to its capability of incorporating the sparsity of image representation. In this paper, we propose an improved sparse coding model based on linear spatial pyramid matching(SPM) and Scale Invariant Feature Transform (SIFT ) descriptors. The novelty is the simultaneous non-convex and non-negative characters added to the sparse coding model. Our numerical experiments show that the improved approach using non-convex and non-negative sparse coding is superior than the original ScSPM[1] on several typical databases

    Learning midlevel image features for natural scene and texture classification

    Get PDF
    This paper deals with coding of natural scenes in order to extract semantic information. We present a new scheme to project natural scenes onto a basis in which each dimension encodes statistically independent information. Basis extraction is performed by independent component analysis (ICA) applied to image patches culled from natural scenes. The study of the resulting coding units (coding filters) extracted from well-chosen categories of images shows that they adapt and respond selectively to discriminant features in natural scenes. Given this basis, we define global and local image signatures relying on the maximal activity of filters on the input image. Locally, the construction of the signature takes into account the spatial distribution of the maximal responses within the image. We propose a criterion to reduce the size of the space of representation for faster computation. The proposed approach is tested in the context of texture classification (111 classes), as well as natural scenes classification (11 categories, 2037 images). Using a common protocol, the other commonly used descriptors have at most 47.7% accuracy on average while our method obtains performances of up to 63.8%. We show that this advantage does not depend on the size of the signature and demonstrate the efficiency of the proposed criterion to select ICA filters and reduce the dimensio

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Cross-convolutional-layer Pooling for Image Recognition

    Get PDF
    Recent studies have shown that a Deep Convolutional Neural Network (DCNN) pretrained on a large image dataset can be used as a universal image descriptor, and that doing so leads to impressive performance for a variety of image classification tasks. Most of these studies adopt activations from a single DCNN layer, usually the fully-connected layer, as the image representation. In this paper, we proposed a novel way to extract image representations from two consecutive convolutional layers: one layer is utilized for local feature extraction and the other serves as guidance to pool the extracted features. By taking different viewpoints of convolutional layers, we further develop two schemes to realize this idea. The first one directly uses convolutional layers from a DCNN. The second one applies the pretrained CNN on densely sampled image regions and treats the fully-connected activations of each image region as convolutional feature activations. We then train another convolutional layer on top of that as the pooling-guidance convolutional layer. By applying our method to three popular visual classification tasks, we find our first scheme tends to perform better on the applications which need strong discrimination on subtle object patterns within small regions while the latter excels in the cases that require discrimination on category-level patterns. Overall, the proposed method achieves superior performance over existing ways of extracting image representations from a DCNN.Comment: Fixed typos. Journal extension of arXiv:1411.7466. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Deep Convolutional Ranking for Multilabel Image Annotation

    Full text link
    Multilabel image annotation is one of the most important challenges in computer vision with many real-world applications. While existing work usually use conventional visual features for multilabel annotation, features based on Deep Neural Networks have shown potential to significantly boost performance. In this work, we propose to leverage the advantage of such features and analyze key components that lead to better performances. Specifically, we show that a significant performance gain could be obtained by combining convolutional architectures with approximate top-kk ranking objectives, as thye naturally fit the multilabel tagging problem. Our experiments on the NUS-WIDE dataset outperforms the conventional visual features by about 10%, obtaining the best reported performance in the literature
    • 

    corecore