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Cross-Convolutional-Layer Pooling
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Abstract—Recent studies have shown that a Deep Convolutional Neural Network
(DCNN) trained on a large image dataset can be used as a universal image
descriptor and that doing so leads to impressive performance for a variety of image
recognition tasks. Most of these studies adopt activations from a single DCNN
layer, usually a fully-connected layer, as the image representation. In this paper,
we proposed a novel way to extract image representations from two consecutive
convolutional layers: one layer is used for local feature extraction and the other
serves as guidance to pool the extracted features. By taking different viewpoints
of convolutional layers, we further develop two schemes to realize this idea. The
first directly uses convolutional layers from a DCNN. The second applies the pre-
trained CNN on densely sampled image regions and treats the fully-connected
activations of each image region as a convolutional layer’s feature activations.
We then train another convolutional layer on top of that as the pooling-guidance
convolutional layer. By applying our method to three popular visual classification
tasks, we find that our first scheme tends to perform better on applications which
demand strong discrimination on lower-level visual patterns while the latter excels
in cases that require discrimination on category-level patterns. Overall, the
proposed method achieves superior performance over existing approaches for
extracting image representations from a DCNN. In addition, we apply cross-layer
pooling to the problem of image retrieval and propose schemes to reduce the
computational cost. Experimental results suggest that the proposed method
achieves promising results for the image retrieval task.

Index Terms—Convolutional networks, deep learning, pooling, fine-grained object
recognition
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1 INTRODUCTION

RECENTLY, Deep Convolutional Neural Networks (DCNNs) have
attracted much research attention in visual recognition, largely due
to their excellent performance [1]. It has been discovered that the
activation of a DCNN trained on a large dataset, such as ImageNet
[2], can be employed as a universal image descriptor, and applying
this descriptor to many visual classification and retrieval problems
delivers impressive performance [3], [4], [5]. This discovery quickly
sparked significant interest and inspired many extensions, includ-
ing [6], [7]. A fundamental issue with these kinds of methods is how
to generate an image representation from a pre-trained DCNN.
Most current solutions take activations of a single DCNN layer, usu-
ally the fully-connected layer, as the image representation.

In this paper, we show that we can build a powerful image
representation using the activations from two consecutive convolu-
tional layers. We name our method cross-convolutional layer pool-
ing (or cross-layer pooling for short). This new method relies on
two crucial components: (1) we extract local features from one con-
volutional layer (2) we pool extracted local features by using acti-
vations from its successive convolutional layer as guidance.

The first component is motivated by recent work [6], [7], [8] which
has shown that DCNN activations are not translation invariant and
that it is beneficial to extract fully connected layer activations from a
DCNN to describe local regions and create the image representation
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by pooling multiple regional DCNN activations. In this paper, we
view those regional CNN activations as a newly added convolutional
layer (named as the augmented convolutional layer as discussed in
Section 3.1). Inspired by this view, we also extract local features from
the original convolutional layers of the pre-trained CNN.

The second component is motivated by the parts-based pooling
method [9] which was originally proposed for fine-grained image
classification. This method creates one pooling channel for each
detected part region while the final image representation is obtained
by concatenating pooling results from multiple channels. We general-
ize this idea to DCNNs and avoid the need for annotating predefined
parts. More specifically, we deem the feature map of each filter in a
convolutional layer as the detection score map of a part detector and
apply the feature map to weight regional descriptors extracted from
the previous convolutional layer in the pooling process. The final
image representation is obtained by concatenating pooling results
from multiple channels with each channel corresponding to one fea-
ture map. Note that in contrast to existing regional-DCNN based
methods [6], [7], the proposed method does not require additional
dictionary learning and encoding steps at either the training or test-
ing stage once the convolutional layer activations become available.
To further reduce the memory use in storing image representations,
we also experiment with a coarse ‘feature sign quantization’ com-
pression scheme and show that the discriminative power of the pro-
posed representation can be largely maintained after compression.

Besides image classification, we explore the use of cross-layer
pooling for image retrieval. To overcome the high computational
cost of the direct implementation of cross-layer pooling, we pro-
pose to employ feature binarization and adaptive pooling channel
selection schemes to reduce the computational cost.

We conduct extensive experiments on three popular visual clas-
sification datasets, and three popular image retrieval datasets.
Experimental results suggest that the proposed method achieves
significantly better performance than competitive methods in most
cases. Further ablation studies provide insight into the importance
of various components of our approach.

A preliminary version of this paper has been published in [10].
In this paper, we have made a significant extension. The major dif-
ferences are threefold.

1)  We view the scheme of extracting fully connected CNN
activations at densely sampled regions as a newly added
convolutional layer and perform cross-layer pooling at that
level. This extension makes our method more widely
applicable.

2)  We apply cross-layer pooling to image retrieval tasks and
propose new schemes to reduce the computational cost.

3) We have conducted more experiments to validate the pro-
posed method, including experiments with a better CNN
model and new ablation studies.

Preliminary. Two network structures are considered in this paper.
One is the AlexNet [1] and another one is the VGG very deep
(VGGVD in short) network [11]. Both networks are composed by the
cascade of convolutional layers and fully connected layers. At each
convolutional layer, multiple filters are applied, and it results in mul-
tiple feature maps, one for each filter. In this paper, we use the term
‘feature map’ to indicate the convolutional result (after applying the
ReLU) of one filter and the term ‘convolutional layer activations’ to
indicate feature maps of all filters in a convolutional layer.

2 RELATED WORK

In the literature, there are two primary methods for using a pre-
trained DCNN to create an image representation: (1) directly feed-
ing the whole image into a pre-trained DCNN and extracting its
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activations; (2) applying the pre-trained DCNN to subregions of
the input image and aggregating activations from multiple regions
as the image representation. Usually, the first method extracts the
last few fully-connected layer activations as the image-level repre-
sentation. Fine-tuning is sometimes applied to make the network
better adapted to a given task. Also, to make this kind of method
more robust to image transforms, averaging activations from sev-
eral jittered versions of the original image, e.g., several slightly
shifted versions of the input image, has been employed to obtain
better classification performance [4].

DCNN:s can also be applied to extract local features. It has been
suggested that DCNN activations are not invariant to a large
amount of translation [6] and that performance will be degraded if
input images are not well aligned. To handle this issue, it has been
suggested to sample multiple regions from an input image and use
one DCNN, called regional-DCNN in this scenario, to describe each
region. The final image representation is aggregated from activa-
tions of those regional-DCNNSs [6]. In [6], another layer of unsuper-
vised encoding is employed to create the image-level representation
[6], [7]. In [12], discriminative patterns are mined from those
regional activations for classification. It is shown that for many
visual tasks [6], [7] this approach leads to better performance than
directly extracting DCNN activations as global features.

One common factor in the above methods is that they all use fully-
connected layer activations as features. Some recent studies explore
the use of convolutional layers to extract image representations. For
example, the work in [13] applies Fisher vector pooling to the local
features extracted from a convolutional layer to create image repre-
sentations for texture classification. The work in [14] uses pooled con-
volutional activations for object detection. The authors in [5]
demonstrated that the pooled convolutional feature are well suited to
the image retrieval task. The work in [15] is probably most relevant to
our work. As mentioned in [15] itself, their approach is an extension
of the method proposed in [10] (the preliminary version of this paper)
for fine-grained image classification. It uses a similar strategy as ours
to combine the convolutional feature activations from two DCNNs
and jointly fine-tune all of the parameters in an end-to-end fashion.

3 PROPOSED METHOD

3.1 Convolutional Layers, Fully Connected Layers and
Notations

The convolutional layer in a CNN is embedded with rich spatial
information. Its activations can be formulated as a tensor of the
size H x W x D, where H and W denote the height and width of
each feature map and D denotes the number of feature maps.
These activations can alternatively be viewed as an array of
D-dimensional local features extracted at I x W locations. In this
paper, we denote each of the H x W locations as a spatial unit, and
the D-dimensional feature maps corresponding to a location as the
feature vector for a spatial unit.

The fully-connected layer can be seen as a convolutional layer
with the receptive field as the whole image. In recent literature [6],
[8], [16], the activations from a fully connected layer are often used
as a descriptor for image regions rather than the whole image. As
pointed out in [17], if the regions are sampled from the input image
over a dense grid, such a descriptor extraction process can also be
viewed as applying a convolutional layer. For the sake of clarity, in
this paper we refer such a convolutional layer as the “augmented
convolutional layer” or the AConv layer for short and the convolu-
tional layer of the original pre-trained CNN as the OConv layer.

3.2 Cross-Convolutional-Layer Pooling

In [6], [7], it has been shown that applying an additional pooling
operation on the local features extracted from multiple image
regions can significantly boost classification performance. Moti-
vated by these methods, we can design a specific pooling layer and
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apply it to the local features extracted from a convolutional layer
which can be either the OConv layer or the AConv layer.

Various pooling methods could be chosen to aggregate the local
features, e.g., max-pooling, sum-pooling or Fisher vector based
pooling [18]. In this section, we propose an alternative pooling
method which significantly improves classification performance.

The proposed method is inspired by the parts-based pooling
strategy [9] used in fine-grained image classification. In this strat-
egy, multiple regions-of-interest (ROI) are first detected, with each
corresponding to one human-specified object part, e.g., the tails of
birds. Then local features falling into each ROI are then pooled
together to obtain a pooled feature vector. Given D object parts,
this strategy creates D different pooled feature vectors and these
vectors are concatenated together to form the image representation.
It has been shown that this simple strategy achieves significantly
better performance than directly pooling all local features together.
Formally, the pooled feature from the kth ROI of the tth layer,
which we denote by P}, can be calculated by the following equation
(let’s consider sum-pooling in this case):

P, = inli‘kw ®
=1

where x; denotes the ith local feature and I, is a binary indicator
map indicating whether x; falls into the kth ROI. We can also gener-
alize I;, to real values with its value indicating the ‘membership’
of a local feature to an ROL Essentially, each indicator map defines
a pooling channel and the image representation is the concatena-
tion of pooling results from multiple channels.

However, in a general image classification task, there are no
human-specified part annotations, and even for many fine-grained
image classification tasks the annotation and detection of these
parts are typically non-trivial. To handle this situation, in this
paper, we propose to use feature maps of the (¢t + 1)th convolu-
tional layer as D;;; indicator maps. By doing so, D;;; pooling
channels are created for the local features extracted from the tth
convolutional layer. We call this method cross-convolutional-layer
pooling or cross-layer pooling for short.

The use of feature maps as indicator maps is motivated by the
observation that a feature map of a deep convolutional layer is usu-
ally sparse and tends to be selective of higher-level visual concepts,
as has also been observed in [19]. This observation is illustrated in
Fig. 3. In Fig. 3, we choose three images taken from the Birds-200
[20] dataset. We sample three feature maps from 256 feature maps
in conv5 and overlay them on the original images for better visuali-
zation. As can be seen from Fig. 3, the activated regions of the sam-
pled feature map (highlighted in warm colors) are semantically
meaningful. For example, the activated region in the first row tends
to localize at the head region of a bird while the feature map shown
in the second row exhibits high values around the claw area. Thus,
the filter of a convolutional layer works as a part detector, and its
feature map serves a similar role as the part region indicator map.
Certainly, compared with the parts detector learned from human-
specified part annotations, the filter of a convolutional layer is usu-
ally not directly task-relevant. However, the discriminative power
of our image representation can benefit from combining a much
larger number of indicator maps, e.g., 256 as opposed to 20-30 (the
number of parts usually defined by human).

Formally, the image representation extracted from cross-layer
pooling can be expressed as follows:

pPr=pp PP P T

Dytq
(2)

N
where, P! = E xiziit,
p

where x! € R?" is the ith local feature (filter responses) in the tth
convolutional layer. N’ is the total number of local features at the

t+1

tth layer. ;" € R is the activation value of the ith spatial unit and
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Fig. 1. lllustration of the proposed method. Our method performs the pooling oper-
ation by using two consecutive convolutional layers. Local features x! are
extracted from the ¢th convolutional layer, and each of the feature maps at the
(t + 1)th convolutional layer is used to perform weighted sum-pooling for xi. The
concatenation of all pooling results is used as the image representation.
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the kth filter at the (¢ + 1)th convolutional layer. Thus P} represents
a weighted sum-pooling of x! with the weight defined by z!}'. In
total, there are D'™! sets of weights since there are D'*! filters at the
(t + 1)th convolutional layer. The final image representation P’ will
be the concatenation of all P! k=1,...,D,,, and thus its
dimensionality will be D'*!D!. A demonstration of the proposed
cross-layer pooling scheme is shown in Fig. 1 Note that here we
assume that there is a correspondence between the ith local feature
at the tth layer x! and the ith feature activations at the (£ + 1)th
layer. This correspondence can be easily established if the consecu-
tive convolutional layers have the same spatial unit layout. For
example, the last two convolutional layers in the Alex net both
have a 13x13 spatial unit layout and we can deem that feature
maps at the same spatial unit across two layers are corresponding.

Another way of interpreting Equ. (2) is that the image represen-
tation is a sum over outer products of corresponding features in
two layers. This operation is similar to calculating Gram matrices
which have been applied in computer vision [21], [22], [23]. The
difference is that our cross-layer pooling calculates the outer prod-
uct across different layers and thus can be seen as an extension of
the Gram matrices based representation.

3.3 Augmented Convolutional Layers versus Original
Convolutional Layers

To implement cross-layer pooling, one needs to specify two convo-
lutional layers. In practice, these two convolutional layers can
either be chosen from the AConv layer or the OConv layer." But
which type of convolutional layers performs better? We show
empirically below that the best performing layer type depends on
the recognition task to which it will be applied.

For the AConv layer, its convolutional filters are the fully-
connected layer parameters of the original CNN. So the AConv
layer encodes the higher-level visual concept, e.g., object-category-
level information. Thus, if the target problem involves identifica-
tion of object-category-level patterns, e.g., to classify whether a
“car” occurs in the image, then the AConv layer should be used,
and its activations can be seen as being similar to object bank detec-
tors [24]. Note that even if the problem does not directly involve
the identification of an object that appears in the network training
task, e.g., the 1,000 categories in the ImageNet subset, category-

1. It is also possible to choose one OConv layer and one AConv layer to per-
form cross-layer pooling. We discuss this possibility in Section 4.2.1.
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Fig. 2. This figure demonstrates the image style mismatch issue when using fully-
connected layer activations as regional descriptors. Top row: input images that a
DCNN ‘sees’ at the training stage. Bottom row: input images that a DCNN ‘sees’ at
the test stage.

level pattern detection may be still beneficial. For example, for
scene classification, the occurrence of an object, such as a bed, can
be a strong indicator of the scene class “bedroom”.

Compared with the AConv layer, the OConv layer captures
lower-level visual patterns. Thus for target applications which
require strong discriminative power to identify lower-level visual
patterns, e.g., specific textures in a fine-grained image classification
problem, using the OConv layer can transfer across domain more
easily and lead to better performance than using the AConv layer.
It should be noted that most commonly used pre-trained CNNs are
trained on image classification datasets such as ImageNet [2].
Thus, if we use an AConv layer to describe low-level patterns, the
input images of those pre-trained networks will be very different
to that in the target domain. Fig. 2 shows an example in this case.
The top row of Fig. 2 shows some images from the ImageNet [2]
dataset while the bottom row shows some regions corresponding
to the low level visual patterns from the images in Birds-200 [20]
dataset. As can be seen, the appearance and the level of detail are
quite different between the two rows. Thus, applying the AConv
layer to describe lower-level visual patterns will introduce a signif-
icant input image style mismatch which could potentially under-
mine the discriminative power of DCNN activations.

3.4 Implementation Details

PCA. In our implementation, we perform PCA on x! to reduce the
dimensionality of P’ to 2,000 dimensions for the AConv layer. For
the OConv layer, we still perform PCA to de-correlate the local fea-
tures but without performing dimensionality reduction. We

Fig. 3. Visualization of feature maps extracted from the conv5-4 layer of the VGG
Net. Three feature maps and their activations on three different images are shown.
Each row represents the feature map corresponding to the same filter. Warmer
color indicates higher activation values.
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empirically find that this leads to slightly better performance than
using the uncorrected OConv local features.

Normalization. Since the number of activated spatial units at the
guidance convolutional layer can be different for different pooling
channels. The pooling vector derived from different channels may
have a different energy. Thus, in our implementation we ¢; normal-
ize the pooled coding vector for each channel. After that, we apply

power normalization to P/, that is, we use P’ = sign(P')\/|P'| as the
image representation to further improve performance.

Feature Sign Quantization. Besides the aforementioned image
representation, we also tried directly using sign(P’) as an image
representation, that is, we coarsely quantize P’ into {-1,1,0}
according to the feature sign of P".

Adding a New Convolutional Layer for the AConv Layer. One issue
when using the AConv layer for cross-layer pooling is that we need
to find two consecutive AConv layers. These two layers can be
obtained by using two consecutive fully-connected layers in the origi-
nal DCNN. However, since the fully-connected layers in most com-
monly used DCNN models have a very large number of output
neurons, e.g., 4,096 or 1,000. Directly performing cross-layer pooling
on those AConv layers will result in a very high dimensional image
representation. To solve this issue, we only utilize one fully con-
nected layer from the original DCNN as one AConv layer, and stack
another newly added convolutional layer on top of it with a much
smaller number of filters, e.g., 100. Then we train the new convolu-
tional layer on the target dataset. The network architecture of our
implementation is as follows: a max-pooling layer is applied to pool
the activations of the newly added convolutional layer and the
pooled result is feed into a logistic regression layer. The negative
entropy loss is then utilized to train the new convolutional layer.

3.5 Application to Image Retrieval
Recently, it has been discovered that the pooled convolutional
layer activations can form a good image representation for image
retrieval [5]. Inspired by the success of the work in [5], we apply
our cross-layer pooling method to image retrieval. Since cross-layer
pooling creates multiple pooling channels with each pooling chan-
nel capturing one type of visual pattern, and the pooling result of
each channel is normalized, an image representation created by
cross-layer pooling can depict various aspects of visual patterns
within the image in a balanced way. In comparison, the representa-
tion generated by the direct pooling method in [5] may be domi-
nated by patterns that occur more frequently within the image.
Directly applying cross-layer pooling for image retrieval will
incur a high computational cost due to the high dimensionality of the
generated image representations. For example, if there are M pooling
channels, the computational cost can be M times higher than the
method in [5]. To handle this drawback, in this paper we propose
two strategies. The first strategy is to binarize the cross-layer pooling
feature. This is inspired by the observation (which will be experimen-
tally demonstrated in Section 4.4) that keeping the sign of feature val-
ues” does not significantly impact the discriminative power of cross-
layer pooling. The second strategy is to adaptively select a small
number, say k, of pooling channels for each query image and then only
retain the features pooled from the selected channels in both the
query and the reference image to perform the similarity comparison.
Formally, for such a scheme the image similarity between a query
image and a reference image is calculated via

s(I,,1) =Y PP, 3)

keS

2. As will be discussed in the second strategy, some channels will be dis-
carded during feature similarity calculation, which is equivalent to setting the
feature values within the discarded channels to 0. In this view, there are still three
possible values, 1,—1,0, in the resulting image representation.
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where I, and I are the query image and a reference image. In the
original cross-layer pooling, both the query image and the refer-
ence image are represented by D subvectors which are pooled
from each pooling channel. We use P, ;, and P, ;. denote the kth sub-
vectors of the query and a reference image respectively. For the
original cross-layer pooling approach, the comparison should be
made over all D subvectors. Here in Equ. (3), only subvectors
whose indices fall within a small subset S (|S| = k < D) are com-
pared. Thus, the computational cost can be greatly reduced in com-
parison with the naive implementation of cross-layer pooling for
image retrieval. In this paper, we construct the set S by selecting
channels (feature maps of a convolutional layer) with top k average
activations. By applying this criterion, the convolutional feature
maps with less significant activations will be discarded. Thus, for
this operation, one additional benefit besides a reduction in the
computational cost is that it might suppress the noise patterns and
therefore potentially improve retrieval performance. Note that
besides selecting channels with top k activation values, other crite-
ria can be applied. For example, if the retrieval task is to find a spe-
cific object type such as sculpture, cloth, an importance weight for
each pooling channel can be learned by using images which con-
tain the object-of-interest as positive training samples and random
images as negative training samples.

4 EXPERIMENTS

We have organized our experiments into three parts. The first eval-
uates the proposed cross-layer pooling method for the image clas-
sification application. In the second part, we conduct ablation
studies and demonstrate the impact of the various components of
our method. In the third part, we evaluate the proposed method on
image retrieval tasks. The focus of the third part is to evaluate
whether the proposed cross-layer pooling leads to better perfor-
mance than the method in [5] which also uses a convolutional layer
pooling strategy for image retrieval.

4.1 Image Classification Experiments
4.1.1  Experimental Protocol

We evaluate the proposed method on three datasets: MIT indoor
scene-67 (MIT-67 in short) [28], Caltech-UCSD Birds-200-2011 [20]
(Birds-200 in short) and PASCAL VOC 2007 [29] (PASCAL-07 in
short) for image classification. These three datasets cover several
popular topics in image classification, that is, scene classification,
fine-grained object classification and generic object classification.

We compare the proposed method against three baselines, they
are: (1) directly using fully-connected layer activations for the
whole image (CNN-Global); (2) averaging fully-connected layer
activations from several transformed versions of an input image.
Following [3], [4], we transform the input image by cropping its
four corners and middle regions as well as by creating their mir-
rored versions (CNN-Jitter); (3) applying the sparse coding based
Fisher vector encoding method [7] on the local feature extracted
from the convolutional layer (in both schemes) (SCFV). Since
R-CNN SCFV has demonstrated superior performance to the MOP
method in [6], we do not include MOP in our comparison. To make
a fair comparison, we reimplement all three baseline methods. We
also apply PCA, ¢, normalization and power normalization to
SCFV and ¢, normalization to CNN-Global and CNN-Jitter (We
find that using PCA and/or power normalization makes little dif-
ference to the result of CNN-Global and CNN-Jitter).

Two CNN models are adopted throughout our experiment: the
Alex net [1] and the VGG very-deep 19 layer network [11]. Two dif-
ferent types of convolutional layers are used, the original convolu-
tional layer (denoted as OConv) and the augmented convolutional
layer (denoted as AConv). As discussed in Section 3.1, the latter can
be implemented by applying DCNN on a set of image regions which
are extracted on a dense grid. In our implementation, we first resize
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TABLE 2
Comparison of Results on Birds-200

Methods Accuracy Remark/Setting Methods Accuracy Remark
CNN-Global 57.9% AlexNet CNN-Global 59.2% no parts. AlexNet
CNN-Jitter 61.1% AlexNet CNN-Jitter 60.5% no parts. AlexNet
SCFV [7] 59.2% AlexNet, OConv SCFV [7] 64.2% no parts, AlexNet, OConv
CrossLayer (proposed) 63.0% AlexNet, OConv CrossLayer 73.3% no parts, AlexNet, OConv
SCFV [7] 68.2% AlexNet, AConv SCFV [7] 66.4% no parts, AlexNet, AConv
CrossLayer (proposed) 68.2% AlexNet, AConv CrossLayer 71.7% no parts, AlexNet, AConv
CNN-Global 68.2% VGGNet CNN-Global 62.5% no parts. VGGNet
CNN-Jitter 70.2% VGGNet CNN-Jitter 63.6% no parts. VGGNet
SCFV [7] 73.5% VGGNet, OConv SCFV [7] 73.7% no parts, VGGNet, OConv
CrossLayer (proposed) 74.4% VGGNet, OConv CrossLayer 77.0% no parts, VGGNet, OConv
SCFV [7] 76.4% VGGNet, AConv SCFV [7] 66.2% no parts, VGGNet, AConv
CrossLayer (proposed) 78.2% VGGNet, AConv CrossLayer 69.4% no parts, VGGNet, AConv
Fine-tuning [25] 69.8% fine-tunning with the VGGNet Fine-tuning [15] 76.4% no parts, fine tunning, VGGNet
Fine-tuning [4] 66.0% fine-tunning with the AlexNet Fine-tuning [4] 66.4 % no parts, fine tunning, AlexNet
MOP-CNN [6] 68.9% three scales Parts-RCNN-FT [31]  76.37% use parts, fine tunning
VLAD level2 [6] 65.5% single scale Parts-RCNN [31] 68.7% use parts, no fine tunning
CNN-SVM [3] 58.4% - CNNaug-SVM [3] 61.8% -
FV+DMS [26] 63.2% - CNN-SVM [3] 53.3% CNN global
DPM [27] 37.6% - DPD+CNN [32] 65.0% use parts
DeepTexture [13] 81.7% 7 scales DPD [33] 51.0% -
Texture Synthesis [21]  75.0% using the Gram matrix on fc18 Bilinear CNN [15] 77 9% Two networks

layer (VGG net) for classification Bilinear CNN [15] 81.9% Two networks, fine-tuning

The lower part of this table lists some results reported in the literature.

the input image to 512x512 pixels and then extract image regions
with the size 128 x128 at a step size of 32 pixels. For OConv layers,
we report the results obtained using the 4th and 5th convolutional
layers for the Alex net and the conv5-3 and conv5-4 convolutional
layers for the VGGVD net since those settings achieve the best per-
formance. We also explore the use of other convolutional layers in
the second part of our experiment. For the AConv layer, we extract
local features from the fc6 layer in the Alex net and the first fully-
connected layer in the VGGVD net respectively. Then we stack a
new convolutional layer with 100 filters on top of them and train the
newly added layer on the target dataset. This new layer is trained
with the learning rate 0.01 by using 50 epochs. No data augmenta-
tion is used in this training step.

We use libsvm [30] as the SVM solver and use precomputed lin-
ear kernels as inputs. This is because the calculation of linear ker-
nels/Gram matrices can be easily implemented in parallel. When
feature dimensionality is high, the kernel matrix computation actu-
ally occupies most of the computational time. Thus it is appropriate
to use parallel computing to accelerate this process.

4.1.2 Classification Results

Scene Classification: MIT-67.MIT-67 is a commonly used benchmark
for evaluating scene classification algorithms. It contains 6,700
images with 67 indoor scene categories. Following the standard set-
ting, we use 80 images in each category for training and 20 images for
testing. The results are shown in Table 1. It can be seen that the pro-
posed cross-layer pooling achieves the overall best performance in
most settings. The best performance is achieved by using cross-layer
pooling and the AConv layer: this setting produces 68.2 percent clas-
sification accuracy for the Alex net and 78.2 percent for the VGGVD
net. Also, it is clear that extracting local features from the AConv
layer, as has been done in SCFV and CrossLayer, achieves significant
performance increase in comparison with global CNN features, i.e.,
Global and Jitter. Finally, the use of the VGGVD net further boosts
the classification performance by a large margin.

By comparing the performance reported from the literature,
we can see that the proposed method surpasses most state-of-
the-art methods. The only exception is the result in [13]. How-
ever, its method is very close to our SCFV (with OConv) base-
line, and its good performance is largely due to their brute force

Texture Synthesis [21] 67.3 using the Gram matrix on conv5-4

layer (VGG net) for classification

Note that the method annotated with “use parts” requires parts annotations
and detection while our methods do not employ these annotations so they are
not directly comparable with our method. Also, the fine-tuning result in [15]
is achieved with a different configuration while our method achieves 80 percent
with the same configuration.

multiple-scale strategy (they have utilized seven scales while we
only use a single scale).

Fine-Grained Image Classification: Birds-200.Birds-200 is the most
popular dataset in fine-grained image classification research. It
contains 11,788 images with 200 different bird species. This dataset
provides ground-truth annotations of bounding boxes and parts of
birds such as the head and the tail, on both the training set and
the test set. In this experiment, we only use the bounding box
annotation. The results are shown in Table 2. As can be seen, the
cross-layer pooling achieves the best classification performance:
77.0 percent when the VGGVD net is used. Also, using the original
convolutional layer achieves much better performance than the use
of the AConv layers. For both the Alex net and the VGGVD net, the
best performance is achieved by using features from the OConv
layer. The underlying reason can be well explained by Section 3.3,
that is, the discriminative information of birds species usually lies
at small regions and it will be more appropriate to extract features
from original convolutional layers due to the image style mismatch
issue discussed in Section 3.3.

Our best performance is among the best for the dataset. The
work in [15] reports higher classification accuracy than us. How-
ever, it relies on a fine-tuning step on two different networks and it
adopts some different experimental settings, e.g., their convolu-
tional layers have a different number of spatial units to ours® (28 x
28 as oppose to 14 x 14 in our experiments); it performs decision
score calibration on the SVM while we just use the standard one-
versus-the-rest SVM.

Object Classification: PASCAL-2007 PASCAL VOC 2007 contains
9,963 images with 20 object categories. The task is to predict the
presence of each object in each image. Note that most object catego-
ries in PASCAL-2007 are also included in ImageNet which is the

3. When the same spatial units configuration is used, our cross-layer pooling
achieves 80 percent classification accuracy which is closer to the result in [15].
Note that we only use one network and do not apply fine-tuning and score
calibration.
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TABLE 3

Comparison of Results on PASCAL VOC 2007
Methods mAP Remark
CNN-Global 71.7% AlexNet
CNN-Jitter 75.0% AlexNet
SCFV [7] 66.8% AlexNet, OConv
CrossLayer 71.3% AlexNet, OConv
SCFV [7] 76.9% AlexNet, AConv
CrossLayer 79.1% AlexNet, AConv
CNN-Global 83.6% VGGNet
CNN-Jitter 84.5% VGGNet
SCFV [7] 82.9% VGGNet, OConv
CrossLayer 84.1% VGGNet, OConv
SCFV [7] 85.1% VGGNet, AConv
CrossLayer 87.1% VGGNet, AConv
Fine-tuning [34] 90.1% VGGNet fine-tuning
Fine-tuning [35] 82.4% CNN-S fine tuning
CNNaug-SVM [3] 77.2% with augmented data
CNN-SVM [3] 73.9% no augmented data
NUS [36] 70.5% -
GHM [37] 64.7% -
AGS [38] 71.1% -
Texture Synthesis [21] 84.7% using the Gram matrix on fc18

layer (VGG net) for classification

training set of the Alex net and the VGGVD net. So ImageNet can
be seen as a superset of PASCAL-2007. The results on this dataset
are shown in Table 3. From Table 3, we can see that again the best
performance is achieved by using cross-layer pooling and the
VGGVD net. Not surprisingly, the AConv layer performs better
than the OConv layer in this dataset because the training categories
of the DCNN overlaps with PASCAL-2007 and the AConv layer
contains this category-level information. The per-class perfor-
mance of three best comparing methods, that is, CNN jitter with
the VGGVD net, SCFV with the AConv layer from the VGGVD net
and cross-layer pooling with the AConv layer from the VGGVD
net, is shown in Table 4. As seen, the proposed cross-layer pooling
achieves the best performance in most classes.

4.2 Ablation Study

From the above experiments, the advantage of using the proposed
method has been clearly demonstrated. In this section, we further
examine the effect of various components in our method.

4.2.1  Using Different Convolutional Layers

First, we are interested in examining the performance of using con-
volutional layers other than the 4th and 5th convolutional layers in
the Alex net and the conv5-2 and conv5-3 convolutional layers in
the VGGVD net. We investigate the performance of using the 3rd
and 4th convolutional layers for the Alex net and the conv5-2 and
conv5-3 convolutional layers in the VGGVD net. The results are
shown in Table 6. From the results, we can see that using 4-5th
layers (conv5-3-4th) layers achieves superior performance over
using the 3-4th layers (conv5-2-3th) layers. This is consistent with
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TABLE 5
Comparison of Results Obtained by Using Cross-Layer
Pooling with Fully-Connected Layers

Method MIT-67 Birds200 PASCALO07
FC-18, FC-20 (VGGNet) 77.0% 63.2% 85.9%
conv5-3, FC-18 (VGGNet) 74.1% 68.5% 84.5%
TABLE 6
Comparison of Results Obtained by Using
Different Convolutional Layers
Method MIT-67 Birds200 PASCALO07
CL-3-4 (AlexNet) 59.4% 63.9% 66.3%
CL-4-5 (AlexNet) 63.0% 73.5% 71.3%
CL-conv5-2-3 (VGGNet) 73.7% 77.0% 82.2%
CL-conv5-3-4 (VGGNet) 74.4% 77.0% 84.1%

the observation in [19] that the deeper the convolutional layer, the
better discriminative power it has.

As discussed in Section 3.1, the process of extracting fully-
connected layer activations from multiple local regions can be
viewed as applying a special convolutional layer. Thus it is possi-
ble to perform cross-layer pooling on two fully-connected layers.
For AConv layers, a new fully-connected layer is stacked and re-
trained. Certainly, it is also possible to directly use two fully-con-
nected layers in an existing CNN without introducing new layers,
but the computational cost can be higher due to the high-
dimensionality of the resulting representation, e.g., 4,096x1,000.
Also, it is possible to perform cross-layer pooling on an original
convolutional layer and a fully-connected layer in the above set-
ting. In such cases, multiple spatial units in a convolutional layer
will correspond to one fully-connected layer output, to apply
cross-layer pooling we can either flatten activations from multiple
spatial units into a long vector or using the pooled activation from
multiple spatial units. In this paper, we use the latter approach
since it produces lower dimensional image representations.

In this section we conduct an experimental evaluation of the
above two approaches to performing cross-layer pooling. Specif-
ically, for the first approach, denoted as FC-FC cross-layer pool-
ing, we use the activations from the first fully-connected layer
(4,096 dimensions) and the last fully-connected layer (1,000
dimensions) in the VGG net to perform cross-layer pooling.
PCA is applied to reduce the dimensionality of the first fully-
connected layer activations to 2,000; for the second approach,
denoted as FC-Conv cross-layer pooling, we use the activations
from conv5-4 and the first fully-connected layer in VGG net and
apply sum-pooling (followed by using square-root post-process-
ing) to pool the activations of conv5-4. Thus the dimensionality
of the representation obtained from cross-layer pooling will be
512x4,096. The performance of these two methods is shown in
Table 5. From Table 5 we make the following two observations:

TABLE 4
Comparison of Results on Pascal VOC 2007 for Each of 20 Classes

vV train sofa sheep plant person mbike horse dog table
Global Jitter (VGGVD) 81.9 96.3 729 86.1 61.6 95.2 89.3 91.5 90.9 79.7
SCFV (VGGVD) 82.3 95.7 78.9 84.0 62.6 95.8 89.1 94.1 90.4 82.2
CrossLayer (VGGVD) 85.3 96.7 80.1 87.6 64.6 96.7 91.7 94.3 93.0 82.1

cow chair cat car bus bottle boat bird bike areo
Global Jitter (VGGVD) 77.8 67.4 92.1 91.2 85.2 56.6 92.8 92.9 90.4 97.1
SCFV (VGGVD) 79.8 66.5 92.4 91.5 86.1 59.6 90.7 93.2 90.9 96.6
CrossLayer (VGGVD) 83.3 70.2 93.9 92.8 89.4 59.0 93.8 94.7 94.0 97.8

The classes on which cross-layer pooling achieves significantly better performance are labeled with bold font.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.39, NO. 11,

TABLE 7

The Impact of PCA, /> Normalization and Power Normalization
PCA /5 normalization power normalization Result
Yes Yes Yes 78.2%
Yes Yes - 76.4%
Yes - Yes 77.1%
- Yes Yes 72.6%
Yes - - 69.7%
- Yes - 74.6%
- - Yes 73.2%
- - - 69.7%

(1) by cross-referencing the performance in Tables 1, 2, and 3,
we observe that FC-FC cross-layer pooling achieves similar per-
formance to cross-layer pooling using the AConv layer, but mar-
ginally worse. This may suggest that the good performance of
the AConv layer based cross-layer pooling mainly comes from
the cross-layer pooling strategy, although the re-trained new
convolutional layer can further boost classification performance.
(2) FC-Conv cross-layer pooling achieves better performance
than FC-FC cross-layer pooling on Birds200 but it is inferior to
FC-FC cross-layer pooling on MIT-67 and PASCAL-07. Consid-
ering that the pooling operation of FC-Conv cross-layer pooling
is performed on the OConv layer, this observation is consistent
with the conclusion in Tables 1 and 3, that is, cross-layer pooling
on AConv layers leads to better performance than pooling with
OConv layers for MIT-67 and PASCAL-07.

4.2.2 The Impact of PCA and Normalization

In our implementation, we have applied three operations to
obtain the final image representation, that is, performing PCA
on the local feature, performing ¢, normalization on each pooled
coding vector and power normalization. In this section, we
investigate the impact of those three operations. We conduct our
experiment on MIT-67 with the AConv layer features and test
the performance under various settings of those three opera-
tions. Table 7 shows the results. From Table 7, we observe some
interesting phenomena: (1) The three operations have a big
impact on the performance. If none of them is applied, the per-
formance drops significantly. (2) Applying either ¢, normaliza-
tion or power normalization leads to similar performance
improvement. (3) Applying PCA with normalization, ¢, normali-
zation or power normalization or both of them, can lead to fur-
ther performance improvement. (4) The best performance is
obtained by applying all three operations together.

TABLE 8
Comparison of Alternative Pooling Methods

Method Conv5-3 Conv5-4 Conv5-3 + Conv5-4
max-pooling, SPM level0 57.3/67.7/75.5 60.7/69.0/80.5 60.6/55.8/77.8
max-pooling, SPM levell 66.3/67.6/76.8 67.7/70.2/81.6  66.0/59.1/78.9
max-pooling, SPM level2 68.0/67.6/76.8 69.3/69.9/81.9 67.9/61.5/79.8
sum-sqrt-pooling, SPM level0 66.4/66.4/77.7 68.2/69.3/81.7 69.9/65.8/80.9
sum-sqrt-pooling, SPM levell 68.0/64.1/77.5 70.0/69.8/81.7  70.7/63.6/80.6

sum-sqrt-pooling, SPM level2 69.0/64.1/77.4 70.3/69.8/81.9 70.9/64.1/80.7

Two pooling methods, max-pooling and sum-pooling (with square-root post-
processing) are applied. Different levels of spatial pyramid [40] configuration
are applied for both pooling methods. Level 0: pooling over the whole image
(1x1); level 1: 1x1+2x2; level 2: 1x1+2x2+4x4; Those pooling methods are
applied to the convb-3 layer, the conv5-4 layer and the concatenation of conv5-3
and convs-4 layers of the VGG network. The experimental comparison is made
on MIT67, Birds200, and PASCALOQ? three datasets. Results are reported in the
order MIT67/Birds200/PASCALO7. For reference, cross-layer pooling on
conv5-3 and convb-4 achieves classification accuracy 74.4/77.0/84.1, which is
higher than the results of all the alternative pooling methods.
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TABLE 9
Results Obtained by Using Feature Sign Quantization
Dataset Feature sign quantization Original
MIT-67 (VGG, Aconv) 77.9% 78.2%
Birds-200 (VGG, OConv) 76.5% 77.0%
PASCALO07 (VGG, AConv) 85.1% 87.0%

4.2.3 Feature Sign Quantization

As has been discussed in Section 3.4, feature sign quantization is a
promising strategy to reduce the memory cost of cross-layer pool-
ing. Here we demonstrate the effect of applying feature sign quan-
tization. Feature sign quantization quantizes a feature to 1 if it is
positive, —1 if it is negative and 0 if it equals 0. In other words, we
use 2 bits to represent each dimension of the pooled feature vector.
This scheme greatly reduces the memory use. Here we only report
the result on the best performing setting for each dataset. The
results are shown in Table 9. As can be seen, this coarse quantiza-
tion scheme does not degrade the performance much, and for two
datasets, MIT-67 and Birds-200, it achieves almost the same perfor-
mance as the original feature. Note that a similar quantization
scheme has been also explored in [39], however there is caused a
significant performance drop if applied to convolutional layer fea-
tures. For example, in the Table 7 of [39], by binarizing conv-5, the
performance drops around 5 percent. In contrast, our representa-
tion seems to be less sensitive to this coarse quantization.

4.3 Comparison with Alternative Pooling Methods

Finally, we compare several alternative pooling strategies against
cross-layer pooling. The baseline method that we compare against
directly pools convolutional layers. There are many possible var-
iants of such an approach, however, which we characterize accord-
ing to three criteria:

e Pooling methods. We consider both sum-pooling with
square-root post-processing (which is better than direct
sum-pooling) and max-pooling.

e Spatial pyramids [40]. Three spatial pyramid partitions,
that is, the 1 x1 (level 0), 1 x1+2x2 (level 1) and
1x14+2x24+4 x4 (level3) are considered.

e Pooling layers. The conv5-3 layer, conv5-4 layer and the
concatenation of conv5-3 and conv5-4 layers of the VGG
net are considered.

The classification results on MIT67, Birds200 and PASCALO07
are reported in Table 8. As can be seen, the best performance
achieved by tuning those pooling strategies is 69.0 percent on
MIT67, 64.1 percent on Birds200 and 77.4 percent on PASCALOQ7. In
comparison, the cross-layer pooling counterpart achieves 74.4, 77.0
and 84.1 percent on MIT67, Birds200 and PASCALOQ?7 respectively,
which is much better than the traditional pooling approaches.

Another possible variation of cross-layer pooling is to change the
channel pooling method from sum-pooling to max-pooling. We also
tried this setting and achieved 72.8 percent on MIT67, 71.6 percent on
Birds200 and 85.2 percent on PASCALQ7. As can be seen, its perfor-
mance is worse than sum-pooling. Thus we suggest using sum-
pooling as the default pooling method for cross-layer pooling.

4.4 Experiments for Image Retrieval

For image retrieval, we evaluate cross-layer pooling on the
Oxford5K [41], Holiday [42] and Sculpture6K [43] datasets. These
three datasets represent several common scenarios in image
retrieval. The objects-of-interest in Oxford5K are buildings which
have rich texture patterns. For the Holiday dataset, the to-be-
retrieved images are more general scenes and objects. The sculp-
ture6K dataset focuses on sculptures which have relatively smooth
surfaces. We adopt a similar setting to [5] to evaluate performance
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Fig. 4. Performance of cross-layer pooling on image retrieval. For our method, the feature maps of the conv5-4 layer with top k average activations are selected as pooling

channels.

by directly using the query image without the object bounding box.
We re-implemented the baseline method of [5] by strictly following
its experimental protocol. Specifically, we apply PCA whitening
and calculate the PCA projection matrix from external datasets.
For Oxford5K, we learn the PCA projection matrix from Paris6K;
for Holiday, we learn the PCA projection matrix from 5 K Flickr
images (although those 5 K Flickr images might not be same as
the one used in [5]); for Sculpture, we also calculate the PCA
projection matrix from the same 5 K Flickr images. The VGG net
is used in this experiment, the baseline in [5] is performed on
the conv5-4 layer since it leads to the best performance. Our
approach is applied on conv5-3 and conv5-4 layers. We use
binarized cross-layer pooling vectors and select the pooling
channels with top-k largest average activation value on conv5-4.
Different %k are evaluated and the comparison of cross-layer
pooling and the baseline method in [5] is shown in Fig. 4. From
Fig. 4, it is clear that cross-layer pooling performs much better
than the direct convolutional layer pooling baseline [5] once a
sufficiently large k is chosen. Selecting k = 50 is typically suffi-
cient to achieve good performance. Considering that all the fea-
tures are binarized, the computational cost is still reasonable
despite the fact that the dimensionality is higher than that of the
baseline method. Note that if we directly binarize the feature
obtained from the convolutional layer pooling baseline, this
leads to significant performance drop, while our method does
not. Also, it is interesting to discover that when & becomes too
large, that is, when we are close to using all of the available
pooling channels, the retrieval performance will start to drop.
This is probably because including channels with small average
activation values tend to introduce more noise during retrieval.

5 CONCLUSION

We have proposed a new method termed cross-convolutional layer
pooling to create image representations from the activations of two
consecutive convolutional layers of a pre-trained CNN. We realize
this idea on two types of implementations of convolutional layers
and show that these two different implementations are particularly
well suited to different recognition tasks. Also, we propose a varia-
tion on the cross-convolutional layer pooling approach for the
image retrieval task. By conducting experiments on popular image
classification datasets and image retrieval datasets, we show that
the proposed method leads to superior performance over various
existing methods of using a pre-trained DCNNs to extract image
representations.
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