363 research outputs found

    Elite Bases Regression: A Real-time Algorithm for Symbolic Regression

    Full text link
    Symbolic regression is an important but challenging research topic in data mining. It can detect the underlying mathematical models. Genetic programming (GP) is one of the most popular methods for symbolic regression. However, its convergence speed might be too slow for large scale problems with a large number of variables. This drawback has become a bottleneck in practical applications. In this paper, a new non-evolutionary real-time algorithm for symbolic regression, Elite Bases Regression (EBR), is proposed. EBR generates a set of candidate basis functions coded with parse-matrix in specific mapping rules. Meanwhile, a certain number of elite bases are preserved and updated iteratively according to the correlation coefficients with respect to the target model. The regression model is then spanned by the elite bases. A comparative study between EBR and a recent proposed machine learning method for symbolic regression, Fast Function eXtraction (FFX), are conducted. Numerical results indicate that EBR can solve symbolic regression problems more effectively.Comment: The 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2017

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    Vehicle logo recognition using histograms of oriented gradient descriptor and sparsity score

    Get PDF
    Most of vehicle have the similar structures and designs. It is extremely complicated and difficult to identify and classify vehicle brands based on their structure and shape. As we requirea quick and reliable response, so vehicle logos are an alternative method of determining the type of a vehicle. In this paper, we propose a method for vehicle logo recognition based on feature  selection method in a hybrid way. Vehicle logo images are first characterized by histograms of oriented gradient descriptors and the final features vector are then applied feature selection method to reduce the irrelevant information. Moreover, we release a new benchmark dataset for vehicle logo recognition and retrieval task namely, VLR-40. The experimental results are evaluated on this database which show the efficiency of the proposed approach
    corecore