40 research outputs found

    Informatics and Natural Computation: Final Report

    Get PDF
    The purpose of this grant is to develop an interdisciplinary course in Informatics and Natural Computation that would service undergraduate computer, natural, and physical science majors. Informatics is the science of information, the practice of information processing, and the engineering of information systems. Informatics studies the structure, algorithms, behavior, and interactions of natural and artificial systems that store, process, access and communicate information. Natural computing refers to a collection of disciplines that unite nature with computing in three distinct ways: 1. Nature serves as a source of inspiration for the development of computational tools or systems that are used for solving complex problems. 2. Computers are used as a means of synthesizing the structural patterns and behaviors of natural phenomena. 3. Natural materials such as those molecules found in nature (e.g. DNA) or those designed by humans (e.g. nanotechnology) are employed as the computers. The logical intersection point between natural computing and the sciences is in the field of bioinformatics, a growing interdisciplinary scientific area aimed at analyzing, interpreting, and managing information from biological data, sequences, and structures. By employing natural computing methods, it is possible to solve bioinformatics problems in classification, clustering, feature selection, data visualization, and data mining

    Informatics and Natural Computation: Progress Report

    Get PDF

    Quantum Monte Carlo simulation

    Full text link
    Contemporary scientific studies often rely on the understanding of complex quantum systems via computer simulation. This paper initiates the statistical study of quantum simulation and proposes a Monte Carlo method for estimating analytically intractable quantities. We derive the bias and variance for the proposed Monte Carlo quantum simulation estimator and establish the asymptotic theory for the estimator. The theory is used to design a computational scheme for minimizing the mean square error of the estimator.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS406 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A transportation security system applying RFID and GPS

    Get PDF
    Purpose: This paper is about developing a centralized, internet based security tool which utilizes RFID and GPS technology to identify drivers and track the load integrity. Design/methodology/approach: The system will accomplish the security testing in real-time using the internet and the U.S. Customs’ database (ACE). A central database and the interfaces and communication between the database and ACE will be established. After the vehicle is loaded, all openings of the tanker are sealed with disposable RFID tag seals. Findings/value: An RFID reader and GPS tracker wirelessly connected with the databases will serve as testing grounds for the implementation of security measures that can help prevent future terrorist attacks and help in ensuring that the goods and products are not compromised while in transit. The system will also reduce the labor work of security check to its minimum.Peer Reviewe

    State of the art of Kansei engineering for projection in industry 4.0

    Get PDF
    La ingeniería Kansei es una herramienta metodolÃģgica cuantitativa enfocada al diseÃąo y desarrollo de productos industriales placenteros y emocionalmente aceptados por el usuario. Esta metodología tiene como principal objetivo apoyar a los ingenieros diseÃąadores a incorporar la emociÃģn, afecto y sentimientos como requerimiento en los productos. Partiendo de las aplicaciones actuales de la Ingeniería Kansei se procederÃĄ a realizar un estado del arte de la tÃĐcnica con el objetivo de proyectar la Ingeniería Kansei al diseÃąo y desarrollo de entornos industriales. Se presentarÃĄ una propuesta metodolÃģgica enfocada a robustecer el concepto de ergonomía y de factor humano en los entornos de trabajo, apoyando así el programa de investigaciÃģn Industria 4.0 enmarcado en los enfoques del horizonte 2020, donde el factor humano se presenta como fundamental. El objetivo de la Ingeniería Kansei en la Industria 4.0 serÃĄ dar soporte al diseÃąo centrado en el factor humano, elicitando sentimientos placenteros en los entornos de trabajo, proporcionando motivaciÃģn y confort. Con ello se desarrollarÃĄn “Ergo-Team Work” para diseÃąar entornos compatibles entre el humano y la mÃĄquina, concibiendo desde la perspectiva kansei tanto las estaciones de trabajo como la organizaciÃģn.Kansei Engineering is a quantitative methodological tool focused on design and development of industrial products emotionally pleasing accepted for the users. Methodology's main objective is to support design engineers to incorporate emotion, affection and feelings as a requirement on products. Starting from the current applications of Kansei Engineering we will proceed with a state of the art technology in order to project the Kansei Engineering to the design and development of industrial environments. The proposed methodology is focused on supporting the concept of ergonomics and human factors in work environments, thus supporting the research program Industry 4.0, framed in Horizon 2020, where the human factor is presented as fundamental. The aim of the Kansei Engineering in Industry 4.0 will be supporting the human-centered design factor, eliciting pleasurable feelings in work environments, providing motivation and comfort. This "Ergo-Team Work" will be developed to design environments that support the interaction between human and machine; workstations and work organization designed from kansei perspective

    Challenges to Computing

    Get PDF
    In posing the question as to challenges to computing, we consider what will sustain it. That is, we ask if or when will computing and computers come to their end of innovative applications. This is not a discussion about bigger and faster machines. Of course, bigger and faster computers can and will push to new limits ordinary and well explored topics. This is ongoing and will continue for centuries. We are entered into a discussion about the use of computers to solve new, even revolutionary, problems of this world. Innovation is necessary for the simple reason that problems are becoming bigger, more complex, even wicked, and some apparently impossible

    āļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āđ€āļžāļ·āđˆāļ­āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ (Internet of Things) āļāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļē Internet of Things on Education

    Get PDF
    āđāļ™āļ§āļ„āļīāļ”āļŠāļģāļ„āļąāļāļ‚āļ­āļ‡ āļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āđ€āļžāļ·āđˆāļ­āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ (Internet of Things) āđ€āļ›āđ‡āļ™āļāļēāļĢāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļˆāļēāļāļ„āļ§āļēāļĄāļāđ‰āļēāļ§āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ• āđāļĨāļ°āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ‚āļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāļēāļĢāļŠāļ™āđ€āļ—āļĻāļˆāļģāļ™āļ§āļ™āļĄāļēāļ (Big Data) āļˆāļēāļāļ­āļļāļ›āļāļĢāļ“āđŒāļŦāļĢāļ·āļ­āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡āļ•āđˆāļēāļ‡ āđ† āļ—āļĩāđˆāļ­āļĒāļđāđˆāļĢāļ­āļšāļ•āļąāļ§ āđƒāļŦāđ‰āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āđ€āļŦāļĄāļēāļ°āļŠāļĄ āđƒāļ™āļ”āđ‰āļēāļ™āļāļēāļĢāļĻāļķāļāļĐāļē āļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āđ€āļžāļ·āđˆāļ­āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡āđ€āļ›āđ‡āļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĄāļ·āļ­āļ—āļĩāđˆāļˆāļ°āļŠāđˆāļ§āļĒāļ­āļģāļ™āļ§āļĒāļ„āļ§āļēāļĄāļŠāļ°āļ”āļ§āļāđƒāļ™āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļāļēāļĢāļŠāļ­āļ™āļ—āļĩāđˆāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļœāļđāđ‰āđ€āļĢāļĩāļĒāļ™āđāļ•āđˆāļĨāļ°āļ„āļ™ āđƒāļŦāđ‰āļŠāļēāļĄāļēāļĢāļ–āđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļœāļĨ āļœāļđāđ‰āđ€āļĢāļĩāļĒāļ™āļĄāļĩāļŠāđˆāļ§āļ™āļĢāđˆāļ§āļĄāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļŠāļĢāļīāļĄāļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļˆāļēāļāļ—āļĢāļąāļžāļĒāļēāļāļĢāđāļŦāļĨāđˆāļ‡āļŠāļēāļĢāļŠāļ™āđ€āļ—āļĻāđƒāļŦāđ‰āđ€āļāļīāļ”āļ„āļ§āļēāļĄāļ„āļļāđ‰āļĄāļ„āđˆāļēāļŠāļđāļ‡āļŠāļļāļ” āļ„āļģāļŠāļģāļ„āļąāļ āļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•āđ€āļžāļ·āđˆāļ­āļŠāļĢāļĢāļžāļŠāļīāđˆāļ‡ / āļāļēāļĢāļĻāļķāļāļĐāļē / āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļāļēāļĢāļĻāļķāļāļĐāļēThe concept of the Internet of Things is to take advantage of advances in networking for the Internet and an increase in the amount of data (Big Data) or from things that are around them. It can be used appropriately.  Internet of Things in education is a tool to help facilitate the teaching and learning for the different of characteristic learners and more effectively for students collaborating theirs in learning the Internet of Things. Strengthens the utilization of information resources to achieve higher performance. Keyword Internet of Things / Education / Educational Technology
    corecore