183 research outputs found

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page

    Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking

    Full text link
    Content-Centric Networking (CCN) is an emerging networking paradigm being considered as a possible replacement for the current IP-based host-centric Internet infrastructure. In CCN, named content becomes a first-class entity. CCN focuses on content distribution, which dominates current Internet traffic and is arguably not well served by IP. Named-Data Networking (NDN) is an example of CCN. NDN is also an active research project under the NSF Future Internet Architectures (FIA) program. FIA emphasizes security and privacy from the outset and by design. To be a viable Internet architecture, NDN must be resilient against current and emerging threats. This paper focuses on distributed denial-of-service (DDoS) attacks; in particular we address interest flooding, an attack that exploits key architectural features of NDN. We show that an adversary with limited resources can implement such attack, having a significant impact on network performance. We then introduce Poseidon: a framework for detecting and mitigating interest flooding attacks. Finally, we report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013

    A proposal for secured, efficient and scalable layer 2 network virtualisation mechanism

    Get PDF
    El contenidos de los capítulos 3 y 4 está sujeto a confidencialidad. 291 p.La Internet del Futuro ha emergido como un esfuerzo investigador para superar estas limitaciones identificadas en la actual Internet. Para ello es necesario investigar en arquitecturas y soluciones novedosas (evolutivas o rompedoras), y las plataformas de experimentación surgen para proporcionar un entorno realista para validar estas nuevas propuestas a gran escala.Debido a la necesidad de compartir la misma infraestructura y recursos para testear simultáneamente diversas propuestas de red, la virtualización de red es la clave del éxito. Se propone una nueva taxonomía para poder analizar y comparar las diferentes propuestas. Se identifican tres tipos: el Nodo Virtual (vNode), la Virtualización posibilitada por SDN (SDNeV) y el overlay.Además, se presentan las plataformas experimentales más relevantes, con un foco especial en la forma en la que cada una de ellas permite la investigación en propuestas de red, las cuales no cumplen todos estos requisitos impuestos: aislamiento, seguridad, flexibilidad, escalabilidad, estabilidad, transparencia, soporte para la investigación en propuestas de red. Por lo tanto, una nueva plataforma de experimentación ortogonal a la experimentación es necesaria.Las principales contribuciones de esta tesis, sustentadas sobre tecnología SDN y NFV, son también los elementos clave para construir la plataforma de experimentación: la Virtualización de Red basada en Prefijos de Nivel 2 (Layer 2 Prefix-based Network Virtualisation, L2PNV), un Protocolo para la Configuración de Direcciones MAC (MAC Address Configuration Protocol, MACP), y un sistema de Control de Acceso a Red basado en Flujos (Flow-based Network Access Control, FlowNAC).Como resultado, se ha desplegado en la Universidad del Pais Vasco (UPV/EHU) una nueva plataforma experimental, la Plataforma Activada por OpenFlow de EHU (EHU OpenFlow Enabled Facility, EHU-OEF), para experimentar y validar estas propuestas realizadas

    Networking Solutions for Integrated Heterogeneous Wireless Ecosystem

    Get PDF
    As wireless communications technology is steadily evolving to improve the offered connectivity levels, additional research on emerging network architectures is becoming timely to understand the applicability of both traditional and novel networking solutions. This chapter concentrates on the utilization of cloud computing techniques to construct feasible system prototypes and demonstrators within the rapidly maturing heterogeneous wireless ecosystem. Our first solution facilitates cooperative radio resource management in heterogeneous networks. The second solution enables assisted direct connectivity between proximate users. The contents of the chapter outline our corresponding research and development efforts as well as summarize the major experiences and lessons learned

    Why We Shouldn't Forget Multicast in Name-oriented Publish/Subscribe

    Full text link
    Name-oriented networks introduce the vision of an information-centric, secure, globally available publish-subscribe infrastructure. Current approaches concentrate on unicast-based pull mechanisms and thereby fall short in automatically updating content at receivers. In this paper, we argue that an inclusion of multicast will grant additional benefits to the network layer, namely efficient distribution of real-time data, a many-to-many communication model, and simplified rendezvous processes. These aspects are comprehensively reflected by a group-oriented naming concept that integrates the various available group schemes and introduces new use cases. A first draft of this name-oriented multicast access has been implemented in the HAMcast middleware

    SoK: Distributed Computing in ICN

    Full text link
    Information-Centric Networking (ICN), with its data-oriented operation and generally more powerful forwarding layer, provides an attractive platform for distributed computing. This paper provides a systematic overview and categorization of different distributed computing approaches in ICN encompassing fundamental design principles, frameworks and orchestration, protocols, enablers, and applications. We discuss current pain points in legacy distributed computing, attractive ICN features, and how different systems use them. This paper also provides a discussion of potential future work for distributed computing in ICN.Comment: 10 pages, 3 figures, 1 table. Accepted by ACM ICN 202

    ANDaNA: Anonymous Named Data Networking Application

    Full text link
    Content-centric networking -- also known as information-centric networking (ICN) -- shifts emphasis from hosts and interfaces (as in today's Internet) to data. Named data becomes addressable and routable, while locations that currently store that data become irrelevant to applications. Named Data Networking (NDN) is a large collaborative research effort that exemplifies the content-centric approach to networking. NDN has some innate privacy-friendly features, such as lack of source and destination addresses on packets. However, as discussed in this paper, NDN architecture prompts some privacy concerns mainly stemming from the semantic richness of names. We examine privacy-relevant characteristics of NDN and present an initial attempt to achieve communication privacy. Specifically, we design an NDN add-on tool, called ANDaNA, that borrows a number of features from Tor. As we demonstrate via experiments, it provides comparable anonymity with lower relative overhead.Comment: NDSS 2012 - Proceedings of the Network and Distributed System Security Symposium, San Diego, California, US
    corecore