57 research outputs found

    Safeguarding Privacy Through Deep Learning Techniques

    Get PDF
    Over the last few years, there has been a growing need to meet minimum security and privacy requirements. Both public and private companies have had to comply with increasingly stringent standards, such as the ISO 27000 family of standards, or the various laws governing the management of personal data. The huge amount of data to be managed has required a huge effort from the employees who, in the absence of automatic techniques, have had to work tirelessly to achieve the certification objectives. Unfortunately, due to the delicate information contained in the documentation relating to these problems, it is difficult if not impossible to obtain material for research and study purposes on which to experiment new ideas and techniques aimed at automating processes, perhaps exploiting what is in ferment in the scientific community and linked to the fields of ontologies and artificial intelligence for data management. In order to bypass this problem, it was decided to examine data related to the medical world, which, especially for important reasons related to the health of individuals, have gradually become more and more freely accessible over time, without affecting the generality of the proposed methods, which can be reapplied to the most diverse fields in which there is a need to manage privacy-sensitive information

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    A Review on Adverse Drug Reaction Detection Techniques

    Get PDF
    The detection of adverse drug reactions (ADRs) is an important piece of information for determining a patient’s view of a single drug. This study attempts to consider and discuss this feature of drug reviews in medical opinion-mining systems. This paper discusses the literature that summarizes the background of this work. To achieve this aim, the first discusses a survey on detecting ADRs and side effects, followed by an examination of biomedical text mining that focuses on identifying the specific relationships involving ADRs. Finally, we will provide a general overview of sentiment analysis, particularly from a medical perspective. This study presents a survey on ADRs extracted from drug review sentences on social media, utilizing and comparing different techniques

    Antennas and Electromagnetics Research via Natural Language Processing.

    Get PDF
    Advanced techniques for performing natural language processing (NLP) are being utilised to devise a pioneering methodology for collecting and analysing data derived from scientific literature. Despite significant advancements in automated database generation and analysis within the domains of material chemistry and physics, the implementation of NLP techniques in the realms of metamaterial discovery, antenna design, and wireless communications remains at its early stages. This thesis proposes several novel approaches to advance research in material science. Firstly, an NLP method has been developed to automatically extract keywords from large-scale unstructured texts in the area of metamaterial research. This enables the uncovering of trends and relationships between keywords, facilitating the establishment of future research directions. Additionally, a trained neural network model based on the encoder-decoder Long Short-Term Memory (LSTM) architecture has been developed to predict future research directions and provide insights into the influence of metamaterials research. This model lays the groundwork for developing a research roadmap of metamaterials. Furthermore, a novel weighting system has been designed to evaluate article attributes in antenna and propagation research, enabling more accurate assessments of impact of each scientific publication. This approach goes beyond conventional numeric metrics to produce more meaningful predictions. Secondly, a framework has been proposed to leverage text summarisation, one of the primary NLP tasks, to enhance the quality of scientific reviews. It has been applied to review recent development of antennas and propagation for body-centric wireless communications, and the validation has been made available for comparison with well-referenced datasets for text summarisation. Lastly, the effectiveness of automated database building in the domain of tunable materials and their properties has been presented. The collected database will use as an input for training a surrogate machine learning model in an iterative active learning cycle. This model will be utilised to facilitate high-throughput material processing, with the ultimate goal of discovering novel materials exhibiting high tunability. The approaches proposed in this thesis will help to accelerate the discovery of new materials and enhance their applications in antennas, which has the potential to transform electromagnetic material research

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos
    • …
    corecore