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Chapter 1

Introduction
Over the last few years, there has been a growing need to meet min-
imum security and privacy requirements. Both public and private
companies have had to comply with increasingly stringent standards,
such as the ISO 27000 family of standards, or the various laws gov-
erning the management of personal data. The huge amount of data
to be managed has required a huge effort from the employees who,
in the absence of automatic techniques, have had to work tirelessly
to achieve the certification objectives. Unfortunately, due to the del-
icate information contained in the documentation relating to these
problems, it is difficult if not impossible to obtain material for re-
search and study purposes on which to experiment new ideas and
techniques aimed at automating processes, perhaps exploiting what
is in ferment in the scientific community and linked to the fields of
ontologies and artificial intelligence for data management. In order
to bypass this problem, it was decided to examine data related to
the medical world, which, especially for important reasons related
to the health of individuals, have gradually become more and more
freely accessible over time, without affecting the generality of the
proposed methods, which can be reapplied to the most diverse fields
in which there is a need to manage privacy-sensitive information. In
particular, in order to better circumscribe the problems addressed, in
Section 1.1 the context and motivations behind the research carried
out are introduced, then in Section 1.2 the open challenges faced in
the field of interest and finally in Section 1.3 the contributions made
to scientific research, providing a detailed list of publications made
during this doctoral programme in Section 1.3.1.
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1.1 Context and motivation
In recent years, the availability of textual clinical data in electronic
form, known as Electronic Health Records (EHRs) and from which
further information can be extracted to manage various critical
health situations, has grown significantly. However, in order to be
able to use such data, it is necessary to respect the restrictions on the
privacy of individual patients, as outlined by the relevant legislation
and imposed by both national and supranational privacy authorities:
in the United States the current law in force is the Health Insurance
Portability and Accountability Act (HIPAA)1 while in the European
Union (EU) there are both the General Data Protection Regulation
(GDPR)2 and several national legislations generally more restrictive
but also less precise in indicating the exact procedures to follow.

In detail, a fundamental step to allow the sharing and publi-
cation of health data is the so called de-identification, widely used
in the medical area and termed as clinical de-identification, which
aims to avoid the disclosure of personal identities. But, in order to
exploit health information for research purposes, it is necessary to
aim at generalisation through surrogated terms rather than the dele-
tion of privacy-sensitive information contained in medical records,
safeguarding in this way also the readability of the documentation
(Vincze and Farkas 2014). After proper de-identification, hence
anonymisation of the data, it is possible to release and share them
publicly.

According to HIPAA3, there are two possible methods of de-
identification:

• Expert Determination. It requires the employment of a human
domain expert and it is a manual and really work intensive
task.

• Safe Harbor. It can be automated since it defines 18 relevant
identifiers, listed in Table 1.1, that must be removed and/or re-
placed with plausible and realistic surrogates. These identifiers
are also called Protected Health Information (PHI) identifiers.

1https://www.hhs.gov/hipaa
2https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu
3https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/in-

dex.html
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Table 1.1: Excerpt from 45 CFR §164.514

# PHI Identifiers
(A) Names;
(B) All geographic subdivisions smaller than a State, including street

address, city, county, precinct, zip code, and their equivalent
geocodes, except for the initial three digits of a zip code if, ac-
cording to the current publicly available data from the Bureau
of the Census:
(1) The geographic unit formed by combining all zip codes with
the same three initial digits contains more than 20,000 people;
and
(2) The initial three digits of a zip code for all such geographic
units containing 20,000 or fewer people is changed to 000.

(C) All elements of dates (except year) for dates directly related to an
individual, including birth date, admission date, discharge date,
date of death; and all ages over 89 and all elements of dates
(including year) indicative of such age, except that such ages
and elements may be aggregated into a single category of age 90
or older;

(D) Telephone numbers;
(E) Fax numbers;
(F) Electronic mail addresses;
(G) Social security numbers;
(H) Medical record numbers;
(I) Health plan beneficiary numbers;
(J) Account numbers;
(K) Certificate/license numbers;
(L) Vehicle identifiers and serial numbers, including license plate

numbers;
(M) Device identifiers and serial numbers;
(N) Web Universal Resource Locators (URLs);
(O) Internet Protocol (IP) address numbers;
(P) Biometric identifiers, including finger and voice prints;
(Q) Full face photographic images and any comparable images; and
(R) Any other unique identifying number, characteristic, or code [...]

3
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For the sake of completeness, it must be said that the EU GDPR
utilises the wider concept of personal data which includes PHI plus
other sensitive data such as racial or ethnic origin and religion, prov-
ing to be more restricting in EU citizens’ data collection and its us-
age, but it does not provide equally clear guidance on processes for
removing such information.

Anyway, the de-identification process slows down the spread of
publicly available health data sets. Consequently, researchers are
committed to improving de-identification methods also to help the
world of medical research. For instance, the COrona VIrus Disease
19 (COVID-19) is still a global threat opposed by experts, politicians
and researchers from around the world (Hernandez-Matamoros et al.
2020). In particular, everyone is rushing to keep pace with the influx
of potentially relevant studies related to COVID-19 in order to gain
timely knowledge to manage the current pandemic (Røst et al. 2020)
and the availability of these new studies has led to an exponential
increase in the amount of textual clinical data to be analysed: unfor-
tunately, this data cannot be used directly for medical investigations,
due to the privacy restrictions as mentioned earlier.

1.2 Open challenges
In recent years, several communities have pushed towards progress
with the organisation of challenges (e.g. i2b24 and ShARe/CLEF
eHealth Evaluation Lab5) in the de-identification field, encouraging
the development of systems to automate the task, whose progress has
gone from rudimentary rule-based techniques to techniques based on
machine learning first and deep learning later. In this way the prob-
lem of de-identification has benefited from the use of Natural Lan-
guage Processing (NLP) techniques such as Named Entity Recogni-
tion (NER), a task that aims to identify certain entities within texts:
in this specific case, entities have been assimilated to PHI identifiers,
which are handled as the entities to be de-identified and then made
anonymous through appropriate surrogates.

In detail, such techniques were firstly based on handcrafted rules
4Informatics for Integrating Biology and the Bedside (i2b2) then National NLP Clinical Chal-

lenges (n2c2) at https://portal.dbmi.hms.harvard.edu/
5ShARe/CLEF eHealth Evaluation Lab then CLEF eHealth Evaluation Lab at https://cle-

fehealth.imag.fr/
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to identify PHI entities, resulting simple to implement but less flex-
ible with regard to both context and language changes, then based
on machine learning to train a classifier to recognise PHI entities and
their different types, but requiring large labelled data sets and time
to carry out feature engineering (Stephane M Meystre et al. 2010;
Stubbs, Kotfila, and Uzuner 2015).

Recently, deep learning-based systems have been used to perform
sequence labeling, hence identify and classify PHI entities, leverag-
ing large data sets to learn both the right features to be used and the
best word representation in a numerical space (Yadav and Bethard
2018). However, these systems suffer from some limitations from a
word representation perspective. In detail, they represent words as
numerical vectors, statically pre-trained on large corpora and able to
capture hidden information about a language, like word analogies or
semantics. They treat words as atomic and rely on the distributional
hypothesis (i.e. words with similar contexts have similar meanings),
with the side-effect of worsening the quality in word representations
for rarely observed or out-of-vocabulary words as well as for morpho-
syntactic variations typical of handwritten text. In addition, these
systems are not able to handle the polysemous and context-depen-
dent nature of words, and treat each sentence as a single instance,
reducing the representative power given by contextual information
within the whole clinical text.

In this respect, it is important to make a clarification. The iden-
tification and removal of a PHI may seem to be the main tasks of the
de-identification process but this is not actually the case, because it
is also necessary to classify PHI correctly: after de-identification,
anonymisation is often necessary and this process benefits from the
substitution of personal data rather than its deletion for two main
reasons, as stated by Vincze and Farkas 2014. The first lies in the
readability of the text, which is preserved using appropriate sur-
rogates, and the second in the best result obtained with the same
imperfect de-identification: if some data will not be de-identified, it
will be more difficult to distinguish real pieces of PHI from surro-
gates. Therefore, the ability of a de-identification system to analyse
the context plays an important role: the better the classification of
entities the better the result of anonymisation.

Furthermore, the language domain of interest, i.e. English due
to a greater worldwide availability of Electronic Health Records

5
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(EHRs), was taken for granted and de-identification challenges were
organised by i2b2 group, founder in English. Unfortunately, expe-
riences in languages other than English remained confined to a few
sporadic cases, such as ShARe/CLEF eHealth Evaluation Lab and
IberLEF 20196 with specific traces also in French (some Information
Extraction tasks) and Spanish (the Medical Document Anonymisa-
tion track, also known as MEDDOCAN track), as well as a few case
studies in other languages. Hence, outside the Anglo-Saxon-speak-
ing countries, the use of the best performing deep learning methods
is severely limited both by the lack of resources suitable for their ex-
ploitation, i.e. large data sets, and by poor experimentation on such
languages, which are consequently defined as low-resource languages.

1.3 Thesis contributions
With this doctoral thesis work, an effort has been made to respond
to the various open challenges outlined in the previous section.

Firstly, the best performing sequence labeling architecture has
been used, i.e. a Bi-LSTM + CRF network, which exploits both the
sequence modeling capacities of the Bidirectional Long Short-Term
Memory (Bi-LSTM) network and sequence labeling abilities of the
Conditional Random Field (CRF) to predict the target PHI entities.
From this point of view, the main contributions can be summarised
as follows:

• the Flair contextualised and character-level language model
(Akbik, Blythe, and Vollgraf 2018) has been employed in or-
der to represent input words and respectively (1) capture the
meanings associated to the same word in various contexts of
use, i.e. the polysemy of the word, and (2) better grasp, in-
terpret and manage both morpho-syntactic variations, i.e. the
structures of words, such as endings and prefixes, and mis-
spelled and/or rare words, to which a collection of handwritten
notes is subject, so as better classify entities;

• the enhancement of the Flair representation power concatenat-
ing and then stacking its embeddings with a classic word rep-
resentation able to better capture the latent syntactic and se-

6https://sites.google.com/view/iberlef-2019
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mantic similarities. In particular, the GloVe word embeddings
(Pennington, Socher, and Manning 2014) have been chosen for
being used in this work;

• the grouping of more sentences together and their usage as
input instances for the network to broaden the context of rep-
resentation and, thus, improve the learning capabilities, lever-
aging at its best the memory capacity of the Bi-LSTM + CRF
architecture.

Several tests were conducted whose experimental results were anal-
ysed: the distribution of errors showed performances comparable or
superior to the state of the art without the need to engineer rules.
Moreover, through ablation analysis it was possible to further con-
firm the validity of the proposed solution for the English language.

Secondly, a scientific contribution regarding the positioning of
the Italian language in the clinical de-identification scenario has been
made and, to reach this goal, three objectives have been pursued:

• the first objective consisted in the creation of a new data set
for clinical de-identification in Italian proposed for the first
time to the scientific community in this work: starting from
the COVID-19 medical records made available to the public
in pdf format by the Italian Society of Radiology (SIRM)7,
the data were manually annotated according to i2b2 criteria
(Stubbs and Uzuner 2015);

• the second objective consisted in the construction, on the top of
the best performing sequence labelling architecture recognised
by scientific literature, i.e. a Bidirectional Long Short-Term
Memory (Bi-LSTM) plus Conditional Random Field (CRF)
model (Huang, W. Xu, and Yu 2015), of a stacked form of
word representation, not yet experimented for the clinical de-
identification scenario in Italian, exploiting:

– the Flair contextualised and character-level language
model (Akbik, Blythe, and Vollgraf 2018) to represent
input words;

7https://www.sirm.org/
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– FastText sub-word embeddings (Bojanowski et al. 2017)
in order to better capture both the latent syntactic and
semantic similarities;

• the third objective consisted in the execution of several ex-
periments to verify the performance of the models previously
described in comparison with BERT (Devlin et al. 2019), a
Transformer (Vaswani et al. 2017) based architecture, which is
considered the state-of-the-art language model for many NLP
general tasks and also the NER one (Li et al. 2020), which
includes the particular case of de-identification.

These tests have verified the effectiveness of different ways of func-
tioning, for example statically or contextually and at character, sub-
word or word level, on the Italian language which, even with an
alphabet similar to the English one, presents a wide syntactic and
morphological variety. In detail, the stacked embedding consisting of
FastText and Flair has reached the best performance for the Italian
de-identification scenario: the combined ability of handling context,
polysemy and morpho-syntactic variations given by Flair and anal-
ysis at sub-word level given by FastText has surpassed the other
models tested.

Thirdly, an improvement of some aspects of the scientific litera-
ture has been attempted, experimenting the new data set based on
COVID-19 medical records for a low resource language like Italian.
The aim is to investigate the ability of cross-linguistic methods to
transfer knowledge between different languages while retaining the
features necessary to correctly perform NER, which is the basis of de-
identification and anonymisation systems. As far as is known, there
are no multilingual approaches specifically designed for this task, nor
any knowledge of the performance of existing systems with respect to
the Italian language, which is the subject of study. Two different sys-
tem architectures have been tested that showed state of the art per-
formance. To this end, the i2b2 2014 training data set in English was
used and, in accordance with the i2b2 annotation guidelines (Stubbs
and Uzuner 2015), it was extended with the Italian data set created
from the COVID-19 medical records provided by the Italian Soci-
ety of Radiology8 (SIRM). Different training approaches have been

8https://www.sirm.org/
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tested, both monolingual in English with zero-shot test on Italian,
and cross-language with mixed language training and test on Italian.
The results were promising and allowed to identify the best architec-
tural solution for low-resource Italian language cases for the clinical
de-identification task. The application of the method described here
would allow a better de-identification of Italian COVID-19 medi-
cal records, speeding up their public dissemination: more accurate
anonymisation of privacy-sensitive information reduces the distrust
of institutions to release data.

1.3.1 Publications
In different ways, each of these works contributed to outline my
doctoral path, answering a few questions and asking new ones. But,
above all, these works suggested the direction to take from time
to time, in some cases similar to the previous one and in others
completely different, encouraging a continuous tension while looking
for solutions to problems.

The papers published in support of this doctoral thesis are listed
below, divided into journal or conference articles, listed in order of
acceptance from the most recent (top) to the least recent (bottom).

Journal Papers

• Rosario Catelli, Francesco Gargiulo, Valentina Casola,
Giuseppe De Pietro, Hamido Fujita, and Massimo Esposito
(2021). “A Novel COVID-19 Data Set and an Effective Deep
Learning Approach for the De-Identification of Italian Med-
ical Records”. In: IEEE Access 9, pp. 19097–19110. doi:
10.1109/ACCESS.2021.3054479. url: https://doi.org/10.
1109/ACCESS.2021.3054479

• Marco Pota, Mirko Ventura, Rosario Catelli, and Massimo Es-
posito (2021). “An Effective BERT-Based Pipeline for Twit-
ter Sentiment Analysis: A Case Study in Italian”. In: Sen-
sors 21.1, p. 133. doi: 10 . 3390 / s21010133. url: https :
//doi.org/10.3390/s21010133

• Rosario Catelli, Valentina Casola, Giuseppe De Pietro,
Hamido Fujita, and Massimo Esposito (2021). “Combining

9
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Chapter 2

Background
This chapter reviews all the scientific literature supporting this work.
Section 2.1 provides an overview of the automated systems used in
clinical de-identification, then an in-depth examination of systems
based on rules and machine learning is reported in Section 2.1.1
while the more recent ones based on deep learning techniques are
described in section 2.1.2. In Section 2.2 the most recent conceptual
developments in language modeling are illustrated, in Section 2.3
approaches for languages other than English are described. Finally,
Section 2.4 introduces cross-lingual transfer learning approaches, di-
viding between non BERT-based multilingual techniques in Section
2.4.1 and BERT-based multilingual techniques in Section 2.4.2.

2.1 Clinical de-identification through
automated systems

A PHI, as a unit of information, is similar to what the literature indi-
cates as a named entity (Nadeau and Sekine 2009). In the NLP field,
the NER is the process by which such entities are recognized, specif-
ically clinical NER when working on clinical notes (i.e. unstructured
text within EHRs): the information contained therein may be crit-
ical for medical investigations, but it is necessary to de-identify it
before it can be used, even if for research purposes. The subsequent
process of replacing identified PHI with valid surrogates is called
anonymization: it is no longer sufficient to identify an entity but the
system must also be able to classify it in order to replace it correctly,
so it is more correct to talk about Named Entity Recognition and
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Classification (NERC) (Nadeau and Sekine 2009).
De-identification process can be manual or automated. De-iden-

tification is manual when human annotators are required to label
PHI. This approach, as reported by Dernoncourt, J. Y. Lee, Uzuner,
et al. 2017, has three main weaknesses:

1. crowd-sourcing of the activity is not possible because only a
small group of people have access to the identified patient
notes;

2. humans can make mistakes;

3. humans are expensive.

To try to solve these problems, automated systems have been devel-
oped and, from a historical and literature point of view, two major
phases can be distinguished from the beginning to the present, whose
watershed lies in the use of deep learning techniques, so there are
systems and techniques based on deep learning and systems and
techniques that do not use it, the latter extensively described by
Stephane M Meystre et al. 2010 and Stubbs, Kotfila, and Uzuner
2015. More recently, the promising deep learning systems have been
started being applied also to other languages different from English.

2.1.1 Pre-deep learning systems
Early NER systems used rule-based handcrafted algorithms, like
Sweeney 1996. Leveraging not only rules but also specialized se-
mantic dictionaries, gazetteers and patterns, these systems tried to
identify PHI instances in EHRs like discharge summaries and labo-
ratory reports (Friedlin and McDonald 2008) or X-ray reports (Nea-
matullah et al. 2008), or also pathologies (Thomas et al. 2002; Dilip
Gupta, Saul, and Gilbertson 2004; Beckwith et al. 2006). They
were easy to implement and did not require labeled data (except for
system evaluation) or publicly available annotated data sets: this
facilitated their dissemination. But they were not without flaws:
fine-tuning was necessary for every change in the data set and both
language changes (e.g. typing errors, abbreviations, variations) and
word context (e.g. ”Mr. Parkinson’s” is PHI, ”Parkinson’s disease”
is not) were not taken into account. For more details see Stephane M
Meystre et al. 2010.
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Different systems with pros and cons were proposed in NLP chal-
lenges, but from the outset it became clear that there was a strong
limiting aspect associated with languages other than English. In fact,
several automation tools were created (Neamatullah et al. 2008),
used successfully (Tu et al. 2010) but hardly adaptable to languages
other than English (Velupillai et al. 2009; Grouin, Rosier, et al.
2009).

Nonetheless, rule-based systems (Guillen et al. 2006) could ac-
curately recognize PHI instances based on repetitive formulas (e.g.
fax or telephone numbers, e-mail), but their complexity increased
significantly when such formulas began to be missing (e.g. names
or places), reducing their effectiveness. Instead, methods based on
machine learning (Szarvas, Farkas, and Busa-Fekete 2007; T. Chen,
Cullen, and Godwin 2015; He et al. 2015) were able to achieve very
good results as long as they had samples both in sufficient numbers
and rich in features during training, so they were poor in complex
and rare cases. Finally, hybrid systems (Wellner et al. 2007; Dehghan
et al. 2015; Z. Liu, Y. Chen, et al. 2015; H. Yang and Garibaldi
2015) were able to achieve the best performance, detecting entities
even in cases of scarcity of data and complex features, by combining
the advantages of their predecessors, provided they also took on the
disadvantages and time required to develop such a sophisticated sys-
tem. Machine Learning (ML) algorithms used in these systems can
be divided into two main categories. On the one hand, the decision
tree (Freund and Schapire 1995) and the Support Vector Machine
(SVM) (Hearst 1998), which modeled de-identification as a classi-
fication problem. On the other hand, the conditional random field
(CRF) (Lafferty, McCallum, and Pereira 2001), the Hidden Markov
Model (HMM) (Eddy 1996) and the structural SVM (SSVM) (Xue,
S. Chen, and Q. Yang 2008) that modeled de-identification as a se-
quence labeling problem: these systems were more efficient than the
former due to the exploitation of dependencies between neighboring
labels and, among these, the CRF was the best, also in the de-iden-
tification field (for instance, see He et al. 2015). At the heart of
machine learning there were hand-crafted features engineering, e.g.
dictionary features (Dehghan et al. 2015; Z. Liu, Y. Chen, et al.
2015; H. Yang and Garibaldi 2015), N-grams, part-of-speech (POS),
word vector features (Z. Liu, Y. Chen, et al. 2015; Tang, Cao, et al.
2013), and data set management in pre-processing (Z. Liu, Y. Chen,
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et al. 2015) and post-processing (H. Yang and Garibaldi 2015). For
a complete overview see Stubbs, Kotfila, and Uzuner 2015.

2.1.2 Deep learning systems
To go beyond machine learning-based systems limitations, re-
searchers have moved forward deep learning area. Deep learning-
based NER algorithms and systems (Huang, W. Xu, and Yu 2015;
Chiu and Nichols 2016; Lample, Ballesteros, et al. 2016; Ma and
E. H. Hovy 2016) have been produced and improved studying their
behavior, then they have been applied to clinical NER systems (Der-
noncourt, J. Y. Lee, Uzuner, et al. 2017; Z. Liu, Tang, et al. 2017).

These NER systems are based on two main building blocks: one
is the embedding (Mikolov et al. 2013) that is the numerical method
to represent words (or characters) and give a manageable input to
systems, and one other is the neural network structure itself that
leverages recurrent neural networks (RNNs) (Elman 1990; Goller
and Küchler 1996) and their evolution, Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber 1997), to improve
sequence-based input representation and long-term dependency is-
sue.

In problems such as the NER, which can be treated as sequence
labeling problems, the Bi-LSTM architecture (Huang, W. Xu, and
Yu 2015; Ma and E. H. Hovy 2016) and character-level representa-
tions (Ma and E. H. Hovy 2016; Chiu and Nichols 2016) have made
great improvements that have immediately spilled over into the clin-
ical domain (Y. Wu, M. Jiang, Lei, et al. 2015; Y. Wu, J. Xu, et al.
2015; Y. Wu, M. Jiang, J. Xu, et al. 2017; Y. Wu, Xi Yang, et al.
2018) then into the de-identification problem (Dernoncourt, J. Y.
Lee, and Szolovits 2017; Z. Liu, Tang, et al. 2017).

Y.-S. Zhao et al. 2018 have experimented with a new method that
better incorporates the special context of EHRs, improving the per-
formance of de-identification systems, but at the expense of the time
required to perform a rather complex feature engineering. Y. Kim,
Heider, and Stéphane M. Meystre 2018 have shown that a stacked
learning ensemble is more effective than other ensemble methods,
but also this time at the cost of expensive feature engineering that
required, for instance, the additional use of a SVM classifier in com-
bination with deep learning techniques.
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The latest transformer-based architectures (Vaswani et al. 2017)
have proven to be superior to other architectures in various tasks, but
not always in NER tasks like BERT (Devlin et al. 2019). Alsentzer
et al. 2019 have shown that their Clinical BERT embeddings are
superior in the general domain (not in de-identification field), and
BioBERT by J. Lee et al. 2020 has also shown higher performance
only for non de-identification tasks. Even in the most recent MED-
DOCAN: Medical Document Anonymization Track in Spanish, Bi-
LSTM + CRF-based systems have proven to be competitive with
BERT-based systems in NER specific tasks, especially for low-re-
source languages, such as de-identification in Spanish (Marimon et
al. 2019). Moreover Tang, D. Jiang, et al. 2019, by combining the Bi-
LSTM + CRF architecture with the BERT neural language model
and exploiting its embeddings, have achieved cutting-edge results in
English.

In a completely transversal way to the task of clinical de-identifi-
cation, important results have been obtained from Giorgi and Bader
2020 and Mehrabi et al. 2020: the former have identified strategies
to improve the NER in biomedical field by increasing the capacity of
generalization of the CRF component, while the latter have provided
an interesting reference point for gender assessment in the systems of
named entities recognition, observing a lower recognition of female
names as ”Person” type entities.

In the meantime, there have been several attempts to use atten-
tion mechanisms (Vaswani et al. 2017): for instance L. Luo et al.
2018 have used them for the chemical NER at the document level
together with the Bi-LSTM + CRF architecture, while Y. Luo, Xiao,
and H. Zhao 2020 for generic NER, trying to merge the information
of the representations at sentence level with the information at doc-
ument level. Hu et al. 2020 proposed a fusion attention mechanism
to augment reliability of the context information of multi-token en-
tities in document-level NER for news articles, then Gui et al. 2020
a novel approach to manage document-level label consistency in an
effective way. But as far as is known so far, only C. Liu et al. 2019
have shown interest in the possibility of document-level analysis for
de-identification, proposing a Bi-Capsule-LSTM-CRF architecture
that has exhibited better results than Bi-LSTM + CRF on the i2b2
2014 data set but far from the state of the art that also makes use
of rule-based methods. Bearing in mind the limitations of both the
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document level analysis and the Bi-LSTM + CRF architecture, a
new approach at the sub-document level has been proposed and its
experimental results confirm performances similar or superior to the
state of the art without any feature engineering.

2.2 Language models and embeddings
Embeddings are defined as vector representations of discrete vari-
ables such as words, characters or, even sentences. It is possible to
obtain ready-to-use pre-trained embedding using large corpora, in-
stead of training them alongside the model on what is frequently a
small data set.

Such numerical representations were initially static with respect
to context, e.g. assigned a numerical value to a word this would
not change as the surrounding words varied, such as for Word2Vec
by Mikolov et al. 2013 and GloVe by Pennington, Socher, and Man-
ning 2014. Bojanowski et al. 2017 have tried to change the way
embedding works with interesting results: instead of associating em-
bedding to words, FastText embeddings break them into sub-words,
i.e. a set of characters that make up n grams, in order to reconstruct
the embedding associated with a single word by looking at the var-
ious sub-word components identified. Then such numerical repre-
sentations started to be contextual, through the use of two identical
architectural components: the first will work on the sequence while
the second will work on the reverse sequence, capturing also the re-
lations among words within paragraphs and developing the so-called
Statistical Language Models or, shortly, Language Models (LM) like
ELMo (Peters, Neumann, Iyyer, et al. 2018), Flair (Akbik, Blythe,
and Vollgraf 2018), BERT (Devlin et al. 2019), GPT (Radford, J.
Wu, et al. 2019) and so on.

An approach similar to FastText embeddings has been used by
BERT, whose tokenizer is based on WordPieceModel segmenter M.
Schuster and Nakajima 2012 which always works on a sub-word level.

Flair Akbik, Blythe, and Vollgraf 2018 have instead descended
to the atomic level of text, seeing it not as a sequence of words or
sub-words, but as a sequence of characters and adding to this contex-
tual capability. This has resulted in state-of-the-art results in several
NLP tasks. Unlike ELMo, Flair embeddings are based on a slightly
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Figure 2.1: Extraction of a contextual string embedding for the word
Villegas. To form the final embedding, the output hidden states from
both forward and backward language models are concatenated. The
first (shown in red) will contain information propagated from the
beginning of the sentence up to the last character in the word, the
second (shown in blue) will contain information propagated from the
end of the sentence up to the first character in the word.

different mechanism: its bidirectional language model (biLM) runs
on a characters sequence instead of a tokens sequence hence called
character level LM. In details, looking at its architecture in Figure
2.1, it shows that the extraction of the Villegas word embedding is
dynamic and goes at the same pace as the surrounding context: it
happens through the composition of pre-trained character embed-
dings from the neighboring text.

Far from being language modeling a solved problem, Peters, Neu-
mann, Zettlemoyer, et al. 2018 showed how the depth of the network
conditions the level of information that can be learned, from local
information to long-range dependent information, through the repre-
sentation of contextual words derived from pre-trained biLMs, while
Khandelwal et al. 2018 indicated room for further improvement by
identifying the limitations of LSTM-based architectures, unable to
take into account more than 200 tokens of context on average.
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2.3 Clinical de-identification for specific
languages

Automatic de-identification and anonymisation systems in languages
other than English, although lacking in language resources, have seen
greater development in recent years. For example, in Danish, Panta-
zos, Lauesen, and Lippert 2017 have tried to balance the system in a
way that both preserves readability and does not degrade the confi-
dentiality of the large public EHR data set available. Also in Dutch,
there have been developments: Scheurwegs et al. 2013 were the first
to test machine learning techniques, whereas Trienes et al. 2020 pro-
ceeded to compare even the most modern deep learning systems. In
both cases it was necessary to request EHRs from Dutch institutes,
which are often not publicly available. In French, both Grouin and
Névéol 2014 and Gaudet-Blavignac et al. 2018 explored the possi-
bilities of rule-based and CRF-based systems on data sets built by
retrieving EHRs from French hospitals. In German, first Tomanek
et al. 2012 and then Richter-Pechanski, Riezler, and Dieterich 2018
developed rule-based techniques and machine learning, but they re-
main proof-of-concepts due to the lack of extensive data training.
In Norwegian, a rule-based method was developed by Tveit et al.
2004. Also in Polish language there has been the development of
some rules-based system Marciniak, Mykowiecka, and Rychlik 2010;
Borowik et al. 2019. Rules-based systems in Portuguese Mamede,
Baptista, and Dias 2016 or machine learning in Swedish Alfalahi,
Brissman, and Dalianis 2012 were developed. Finally, in Spanish
language there was the only other challenge organized besides the
English language ones: the most recent MEDDOCAN: Medical Doc-
ument Anonymization Track Marimon et al. 2019 within IberLEF
20191. As far as we know, there is no research on the subject in
Italian to date.

1https://sites.google.com/view/iberlef-2019
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2.4 Cross-lingual transfer learning ap-
proaches

This section examines how low-resource languages have been man-
aged over time. In detail the techniques that preceded BERT are
described in Section 2.4.1, while BERT and its multilingual version
are illustrated in Section 2.4.2.

2.4.1 Non BERT-based multilingual techniques
In the field of transfer learning, a branch of particular interest applied
to the NLP domain is that of cross-lingual transfer learning which,
as stated by Pan and Q. Yang 2010 is a type of transductive trans-
fer learning where the source and target domain are different, i.e.
training and prediction take place on corpora in different languages,
and cross-linguistic transfer occurs through the use of a single cross-
linguistic representation space. Initially, task-specific models were
popular, based on a coarse-grained representation such as Part of
Speech (PoS) tags, and then exploited a delexicalized parser (Zeman
and Resnik 2008).

Recently, cross-lingual word embeddings have started to be used
in combination with specific neural architectures, obtaining interest-
ing results in various tasks, such as PoS tagging (J.-K. Kim et al.
2017), NER (Xie et al. 2018) and dependency parsing (Ahmad et al.
2019). In addition, several studies have been carried out analyz-
ing the effects of different ways of constructing cross-lingual space:
for example, Ruder, Vulic, and Søgaard 2019 analysed methods for
learning cross-lingual embedding through both joint training and
post-training mapping of monolingual embeddings, whereas Lample,
Conneau, et al. 2018 and Artetxe, Labaka, and Agirre 2018 demon-
strated that with the alignment of two monolingual word embedding
spaces in unsupervised ways it is possible to get better results.

In detail, Lample, Conneau, et al. 2018 introduced Multilin-
gual Unsupervised and Supervised Embeddings2 (MUSE), created
by aligning the embedding spaces of monolingual word embeddings,
without using parallel corpora, in an unsupervised way. Then a su-
pervised version of MUSE, crosslingual fastText-based embeddings

2https://github.com/facebookresearch/MUSE
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(Bojanowski et al. 2017), was also released. These embeddings are
generated by aligning the monolingual fastText embeddings in a
common space using bilingual dictionaries as ground-truth. Only
static embedding vectors have been released and, without the model,
it is not possible to generate embeddings for Out-Of-Vocabulary
(OOV) words.

Instead, Heinzerling and Strube 2018 proposed Byte-pair Em-
beddings (BPEmb) to tackle the Out-Of-Vocabulary (OOV) prob-
lem. Based on Byte-Pair Encoding (BPE) by Sennrich, Haddow,
and Birch 2016, BPEmb create each word embedding by compos-
ing the necessary sub-word embeddings. In particular, Heinzerling
and Strube 2018 found that BPEmb offer nearly the same accuracy
as word embeddings, but at a fraction of the model size, a valu-
able choice to train small models. BPEmb were released in 275
languages and were successfully used in several cross-lingual sce-
narios (Bingel and Bjerva 2018; Yimam et al. 2018; M. Zhao and
Schütze 2019). Moreover, Zhu, Vulic, and Korhonen 2019 showed
the importance of sub-word segmentation, due to the absence of any
”one-size-fits-all” configuration, because performance is both task-
and language-dependent. In addition, Sahin et al. 2020 noted that
sub-word based models perform better than word-based models, like
MUSE and Word2Vec (Mikolov et al. 2013), in several low-resources
languages scenarios.

Contextual language models, such as Embeddings from Language
Models (ELMo) (Peters, Neumann, Iyyer, et al. 2018) and Flair (Ak-
bik, Bergmann, Blythe, et al. 2019), proved to be superior to static
models, like Word2Vec by Mikolov et al. 2013 and Global Vectors for
Word Representation (GloVe) by Pennington, Socher, and Manning
2014, thanks to the ability to analyze the context, and this further
improved performance in cross-lingual scenarios. Flair embeddings
(Akbik, Blythe, and Vollgraf 2018; Akbik, Bergmann, and Vollgraf
2019), which constitute a character-based contextual language model
on which the Flair NLP framework (Akbik, Bergmann, Blythe, et al.
2019) is based, prompted Johnson et al. 2019 to test a novel method-
ology for cross-lingual transfer learning for Japanese NER, based on
a Bi-LSTM architecture and embeddings at both word and character
level as input.

Furthermore, Howard and Ruder 2018 proposed the Universal
Language Model Fine-tuning (ULMFiT), an effective transfer learn-
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ing method based on an appropriate fine-tuning strategy to improve
language models performance, while Radford, Narasimhan, et al.
2018 proposed generative pre-training techniques which led to the
Generative Pre-trained Transformer (GPT) language model, which
uses an encoder based on transformers (Vaswani et al. 2017). Then
Conneau and Lample 2019 extended generative pre-training to cross-
lingual models and obtained state of the art results, while T. Schus-
ter et al. 2019 tested cross-lingual alignment with ELMo embeddings
overcoming the state of the art for zero-shot dependency parsing.

Additionally, Mulcaire, Kasai, and Smith 2019 experimented a
polyglot system based on ELMo, showing relevant results. Indeed,
to create a multilingual system, there are two possible alternatives:

1. train a specific model for each language;

2. train only one model for all languages.

In particular, Mulcaire, Kasai, and Smith 2019 have shown how the
second choice provides better results especially in the case of low
resources languages thanks to the enrichment of the model with the
data of languages that, although different, can be linked together on
different aspects of the language (e.g. semantics, morphology, syn-
tax, and so on). Starting both from this principle and encouraging
results obtained on Slavic languages by Arkhipov et al. 2019, it was
decided to consider pre-trained multilingual models on large corpora
and fine-tune them on the target language, Italian, which is a low
resources language. This way the extremely computationally expen-
sive training procedure can be totally avoided, initializing the model
with the multilingual one.

While the world of research has made an effort to organize knowl-
edge in order to better use it against the COVID-19 (Vaishya et al.
2020; Mohamadou, Halidou, and Kapen 2020; Santos et al. 2020;
Suri et al. 2020; Coombs 2020; Shakil et al. 2020; Hernandez-Mata-
moros et al. 2020; Hazarika and Deepak Gupta 2020; Marques, Agar-
wal, and Torre Dı́ez 2020), on the other hand a series of research with
pandemic focus has followed.

For instance, Arora et al. 2020 released, during the COVID-
19 global pandemic, a multilingual data set containing more than
5 thousand statements in English, Spanish, French and Spanglish
(Spanish + English). This data set was used to study some cross
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lingual transfer learning techniques related to the Intent Detection
task, observing performance improvement in most models with cross
lingual training compared to models with mono lingual training.
Based on this assumption, both zero shot and cross lingual train-
ing approaches were tested.

Finally, Kırbaş et al. 2020 have used a LSTM model for COVID-
19 prediction, detailing evaluation criteria of the models under anal-
ysis and providing a prospective estimate of the total number of
cases.

2.4.2 BERT-based multilingual techniques
BERT is a deep contextual language model, based on transformers
(Vaswani et al. 2017). Unlike ELMo and GPT, BERT is trained
by Cloze Task (Taylor 1953), commonly known as masked language
modeling, which is different from classic right-to-left or left-to-right
language modeling, allowing it to encode information from both di-
rections in each level freely. Furthermore, BERT also optimizes a
target for the classification of the next sentence, so that the paired
sentences during training are half consecutive pairs and half ran-
dom pairs. Lastly, BERT uses a sub-word vocabulary based on the
WordPieceModel segmenter (M. Schuster and Nakajima 2012), a
data-based approach to break down a word into sub-words that is
more effective than operating at the word level. As demonstrated
by Devlin et al. 2019, BERT is able to achieve high performance in
several sentence classification tasks thanks to the fine tuning of the
transformer encoder followed by a softmax classification layer fine-
tuned for 2-3-4 epochs with a learning rate in the order of e-5: in the
case of NER, a sequence of shared softmax classifications produces
sequence tagging patterns.

The multilingual BERT (mBERT3), differs exclusively for the
different training data set consisting of Wikipedia data in 104 lan-
guages provided as they are, without the typical links of cross-lingual
methods, but appropriately scaled. Leveraging WordPiece, mBERT
thus generated is a model in which common sub-words are shared
between languages even far apart in the form of a standalone lex-
icon. Many have recently started investigating the performance of

3https://github.com/google-research/bert/blob/master/multilingual.md
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mBERT. Among them, Pires, Schlinger, and Garrette 2019 have
carried out a series of experiments showing how the transfer also
happens in languages in different scripts, although it works better
with typologically similar languages. Instead, S. Wu and Dredze
2019 consider a broader spectrum of NLP tasks, comparing mBERT
with different methods of zero-shot cross-lingual transfer and exper-
imenting with different strategies to improve generalization capabili-
ties. Moreover, K et al. 2020 studied the contribution of the different
components of mBERT to its cross-lingual skills, stressing that the
depth of the network is more relevant than the lexical overlap be-
tween languages.

Furthermore, Heinzerling and Strube 2019 found that although
mBERT performs well in scenarios with medium and high language
resources, non-contextual embedding working at the sub-word level,
such as BPEmb, outperforms mBERT in low-resources scenarios. Fi-
nally, Hvingelby et al. 2020 explored cross-lingual transfer for Danish
using several architectures for supervised NER, including Flair, fast-
Text, BPE and both monolingual (Danish) and multilingual BERT,
on a modestly-sized training set, testing different training and fine-
tuning approaches.

Additionally, Neuraz et al. 2020 used both BERT and Bi-LSTM
+ CRF architectures to create a drug extraction model to study the
ability to respond quickly to emerging diseases such as COVID-19.

Finally, Mohammad et al. 2020 proposed a new Artificial Intelli-
gence and NLP based Islamic FinTech Model (based on several NLP
techniques, from rules to deep learning) to analyze the impact of the
COVID-19 pandemic on the poor and small and medium enterprises,
predicting possible future scenarios by leveraging the use of specific
taxes of Islamic countries to deal with them.
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Chapter 3

Materials and Methods
This chapter describes materials and methods used within the re-
search work. Section 3.1 provides an overview of data sets employed
for clinical de-identification, while Section 3.2 shows in detail the sys-
tem architectures implemented. Moreover, Section 3.3 describes use
cases and related experimental setups. Finally, Section 3.4 explains
how evaluation metrics work.

3.1 Data sets
This section explains which data sets have been used. In detail, the
i2b2/UTHealth 2014 de-identification corpus is illustrated in Sec-
tion 3.1.1 and the related pre-processing procedure is described in
Section 3.1.1, while the SIRM COVID-19 de-identification corpus
is illustrated in Section 3.1.2, the related annotation and pre-pro-
cessing procedures in Sections 3.1.2 and 3.1.2 respectively. Finally,
Section 3.1.3 provides more detail on how the data sets were, in some
cases, merged or used simultaneously.

3.1.1 The i2b2/UTHealth 2014 de-identification
corpus

The i2b2/UTHealth 2014 de-identification corpus was used. It was
released by Stubbs, Kotfila, and Uzuner 2015, from the i2b2 National
Center for Biomedical Computing for the NLP Shared Tasks Chal-
lenges, whose de-identification guidelines reported by Stubbs and
Uzuner 2015 conform to the HIPAA Safe Harbor criteria, adding
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doctor and hospital name and all ages to the list of identifiers to
be removed. Finally the data set was hand-labeled and surrogated
before the release. This data set consists of 1304 longitudinal medi-
cal records of 296 patients with 2-5 records selected per patient and
is officially divided into training and testing set, where the train-
ing set contains 790 documents (including 269 for validation) while
the testing set contains 514 documents. Each document is a med-
ical record in xml format and the named entities within the docu-
ments are annotated as text spans with corresponding entity types.
For the purposes of i2b2 annotation project, the 18 categories of
PHI identifiers have been expanded to include more specific identi-
fiers, therefore regrouped into 7 main categories and several sub-cat-
egories. Table 3.1 presents an exhaustive list of PHI distributions in
the i2b2/UTHealth 2014 de-identification corpus. Moreover in Table
3.1, a further detail has been added regarding the division of entities,
separating the pure training entities from the validation entities as
in the original data set.

Pre-processing of the i2b2/UTHealth 2014 de-identification
corpus

At this stage the chosen data set is pre-processed to perform error
correction and format conversion.

First, some errors related to entity information within the ded-
icated spans are detected in the raw i2b2 xml files. In detail, an
error corrector is introduced to resolve the misalignment between
the initial and final offset values of the entity characters, checking
and adjusting them based on the correct position of the entity within
the text. In addition, some errors related to the separation of enti-
ties from other text have been observed: in particular, there is an
absence of the space character before, inside or after the entity in
the text with respect to the related information in the dedicated
span. For example, the entity Gambia was tied to the word Home,
so GambiaHome could not be properly tokenized as it was. To solve
this problem, an entity spacer was introduced that allowed to insert
a space when needed, parsing the entire document and recalculat-
ing the offset values of the initial and final characters of all entities
within the document. In addition, any absence of the space charac-
ter within the entity was conveniently taken into account or not in
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Table 3.1: PHI distributions in the i2b2/UTHealth 2014 de-identifi-
cation corpus

PHI category: subcategory TR VD TS Total
AGE 810 423 764 1997
CONTACT: EMAIL 3 1 1 5
CONTACT: FAX 5 3 2 10
CONTACT: IPADDRESS 0 0 0 0
CONTACT: PHONE 229 80 215 524
CONTACT: URL 2 0 0 2
DATE 5254 2248 4980 12482
ID: ACCOUNT 0 0 0 0
ID: BIO ID 1 0 0 1
ID: DEVICE 7 0 8 15
ID: HEALTH PLAN 1 0 0 1
ID: ID NUMBER 171 90 195 456
ID: LICENSE 0 0 0 0
ID: MEDICAL RECORD 398 213 422 1033
ID: SSN 0 0 0 0
ID: VEHICLE 0 0 0 0
LOCATION: CITY 259 135 260 654
LOCATION: COUNTRY 53 13 117 183
LOCATION: HOSPITAL 928 509 875 2312
LOCATION: ORGANIZATION 85 39 82 206
LOCATION: OTHER 4 0 13 17
LOCATION: STATE 221 93 190 504
LOCATION: STREET 144 72 136 352
LOCATION: ZIP CODE 139 73 140 352
NAME: DOCTOR 1932 953 1912 4797
NAME: PATIENT 879 437 879 2195
NAME: USERNAME 219 45 92 356
PROFESSION 149 85 179 413
Total # of entities 11893 5512 11462 28867
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accordance with the information span of the entity.
Secondly, raw i2b2 xml files are converted to brat standoff for-

mat1, then from brat standoff format to delimiter-separated values
(DSV) format. As a basis for the conversion scripts, the publicly
available NeuroNER tool2 (Dernoncourt, J. Y. Lee, and Szolovits
2017) was used, exploiting spacy as tokenizer and en core web lg as
its language model3. Some conversion errors were noticed, so several
changes to the original python scripts were made before using the
pre-processed text as input for the proposed NER system. In con-
verted files, all the labels of the entities are attached to the tokens
according to the IOB tagging format (Ramshaw and Marcus 1995)
where B-tag represents the beginning of the label, I-tag is attributed
to all the following tokens that still belong to the same named entity
and finally O represents all the tokens not labeled.

3.1.2 The SIRM COVID-19 de-identification
corpus

The Italian SIRM COVID-19 data set, based on a collection of 115
unannotated medical records in pdf format released by SIRM4, was
developed. In order to proceed with the annotations, the guidelines
adopted by Stubbs and Uzuner 2015 for the 2014 i2b2/UTHealth
de-identification track were followed.

Finally, the SIRM COVID-19 data set was split: 65 medical
records were used for training and 50 medical records for testing. To
this end, the Table 3.2 presents an exhaustive list of PHI distribu-
tions in the SIRM COVID-19 de-identification corpus, with further
details on training and testing entities. In the first column C:Sub-
category, C: stands for the category to which the entities belong if
present, in particular C, I, L, N stand for Contact, ID, Location and
Name respectively. In detail, named entities are annotated by using
subcategories as labels. Subcategories are then grouped into the ap-
propriate categories as outlined by Stubbs and Uzuner 2015. Some
statistical data concerning the SIRM COVID-19 data set have been
reported in Table 3.3.

1https://brat.nlplab.org/standoff.html
2http://neuroner.com/
3https://spacy.io/models/en#en_core_web_lg
4https://www.sirm.org/category/senza-categoria/covid-19/
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Table 3.2: PHI entity distributions in the SIRM COVID-19 de-iden-
tification corpus. TR stands for Training data set and TS stands for
test data set.

PHI C:Subcategory TR TS Total
AGE 63 55 118
C:PHONE 3 7 10
C:URL 66 76 142
DATE 64 90 154
I:ID NUMBER 137 129 266
L:CITY 38 63 101
L:COUNTRY 1 5 6
L:HOSPITAL 134 132 266
L:ORGANIZATION 4 9 13
L:OTHER 3 6 9
N:DOCTOR 303 430 733
N:PATIENT 3 0 3
PROFESSION 38 27 65
PHI Category TR TS Total
AGE 63 55 118
CONTACT 69 83 152
DATE 64 90 154
ID 137 129 266
LOCATION 180 215 395
NAME 306 430 736
PROFESSION 38 27 65
Total # of entities 857 1029 1886

Table 3.3: Statistical data concerning the SIRM COVID-19 data set.

SIRM COVID-19 data set stats
Average tokens per document: 262.8
Average NEs per document: 16.4
Average tokens per NE: 2.2
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Annotation procedure

The annotation procedure was carried out as described in the follow-
ing. In detail, data were annotated according to criteria similar to
the i2b2/UTHealth 2014 de-identification corpus, so as to maintain
uniformity between the recognition categories. Where the appro-
priate subcategory was not available, it was decided to opt for the
closest one semantically: for example, the Italian regions were anno-
tated as LOCATION: OTHER, since they belonged neither to the
subcategory LOCATION: COUNTRY nor to the subcategory LO-
CATION: STATE or the street names identifying the hospitals were
aggregated with LOCATION: HOSPITAL entities. In particular,
each document was labeled manually and independently by three
Italian native speakers, who are researchers in the e-health domain,
with the agreement among the annotators calculated by majority.
The global agreement for the entire annotation procedure was mea-
sured using the Observed Agreement index Goodman and Kruskal
1979 which provides a good approximation in multi-annotator con-
texts, also offering robustness against imperfect (textual) data Bo-
bicev and Sokolova 2017. In addition to the Observed Agreement
index, in order to take into account the level of Inter Annotator
Agreement (IAA) in terms of excess over the agreement obtained by
chance, the Krippendorff coefficient α Krippendorff 1980 was also
calculated. The latter expresses the IAA in terms of disagreement,
observed (Do) and due to chance (De): α = 1−Do/De and, not im-
posing a minimum number of items, mitigates the statistical effects
of low sample data sets such as the one used. The Observed Agree-
ment index value was 0.68, while the Krippendorff coefficient α value
was 0.71: according to the grid for the interpretation of coefficients
proposed by Landis and Koch 1977 the values obtained indicate a
”substantial” agreement.

The disagreement among the annotators is generally motivated
by the extreme difficulty, variety and uncertainty of natural language
and, therefore, by a very diverse and often subjective linguistic un-
derstanding of the meaning of each category. In any case, disagree-
ment is not strictly an indicator of low quality annotation, poor
annotator training or insufficient guidelines, especially in semantic
tasks Aroyo and Welty 2015, but can be used directly to improve the
behavior of automatic systems Chklovski and Mihalcea 2003; Plank,
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D. Hovy, and Søgaard 2014.
In Table 3.4 some sample sentences of disagreement among the

three annotators have been reported. In particular in the Sentence
column is reported the sentence under examination with the alter-
nation of red and black colors to indicate different tokens, while in
the macro column Annotator sequence are reported the annotation
sequences for tokens of the first (#1), second (#2) and third (#3)
annotator.

Table 3.4: Annotators’ disagreement examples.

Annotator sequence
Sentence #1 #2 #3

Uomo di 60 anni O O B-AGE O O O B-AGE O O O B-AGE I-AGE
(Man of 60 years)
ASL Latina Paziente Maschio B-HOSPITAL I-HOSPITAL O O B-HOSPITAL I-HOSPITAL O O B-HOSPITAL B-CITY O O
(ASL Latina Male Patient)
COVID-19: caso 98 O O O B-IDNUM O O O B-IDNUM O O O O
(COVID-19: case 98)
Giunge al PS O O O O O B-LOCATION_OTHER O O B-HOSPITAL
(Arrives to the ER)
Performance of radiologists O O O O O B-DOCTOR O O B-PROFESSION
(This is a test sentence)

Pre-processing of the SIRM COVID-19 de-identification
corpus

The data set has been annotated manually, generating the annota-
tions in brat standoff format. In addition, several python scripts have
been written to convert the data. First the pdf files were transformed
into text using the python library pandas, then a python script was
used to convert the brat standoff format to the CONLL format more
suitable for the framework used, using as basis the publicly available
NeuroNER tool Dernoncourt, J. Y. Lee, and Szolovits 2017 with
spacy as tokenizer and it_core_news_sm as language model. To
improve tokenizer results, entities have been separated from the rest
of the text when wrongly attached, inserting a space before and af-
ter when appropriate. As a consequence, the misalignment caused
between the initial and final offset values of the characters of the
entity has been verified and adjusted within the text.

In this case too, in the converted files, all entity labels are at-
tached to the tokens according to the IOB tagging format (Ramshaw
and Marcus 1995) whereO represents all untagged tokens, B-tag rep-
resents the beginning of the label and finally I-tag is attributed to
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all the following tokens that still belong to the same named entity.

3.1.3 Training strategies: mixing data sets
In order to analyze the crosslingual capabilities of the multilingual
NER systems under examination, the English i2b2/UTHealth 2014
de-identification corpus and the Italian SIRM COVID-19 de-identi-
fication corpus (created ad hoc for the investigation of the perfor-
mance of low language resource systems like the Italian one) were
appropriately mixed.

Four methods were tested:

1. EN. It provides a training set exclusively in language with high
resources.

2. IT. It provides a training set exclusively in language with low
resources.

3. MIX. It provides a mixed training set, both in high resource
language and low resource language.

4. EN-IT. It provides two separate training sets for two distinct
training phases: the first with the high resource language data
set, the second with the low resource language data set.

Table 3.5 presents an exhaustive list of entity distributions in the
de-identification corpora used. In particular, with reference to the
first column C:Subcategory, C: stands for the category to which the
entities belong if divided into subcategories, and in detail it can be
C, I, L, N which stand for CONTACT, ID, LOCATION and NAME
respectively. Instead the TRi2b2, TRSIRM and TSSIRM columns indi-
cate the i2b2 training data set and the SIRM COVID-19 training and
testing data sets respectively. Finally, the i2b2 guidelines (Stubbs
and Uzuner 2015) provided the subcategories C:IPADDRESS, I:AC-
COUNT, I:LICENSE, I:SSN and I:VEHICLE, but the same i2b2
data set has none, so it was preferred not to include them in the
Table 3.5.

Finally, to represent at a glance the distribution of the entities
within the data sets used for training and testing, a clustered column
chart has been constructed, shown in Figure 3.1.
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Table 3.5: PHI distributions in the i2b2/UTHealth 2014 training
data set and in the SIRM COVID-19 de-identification corpus

C:Subcategory TRi2b2 TRSIRM TSSIRM

AGE 810 63 55
C:EMAIL 3 0 0
C:FAX 5 0 0
C:PHONE 229 3 7
C:URL 2 66 76
DATE 5254 64 90
I:BIO ID 1 0 0
I:DEVICE 7 0 0
I:HEALTH PLAN 1 0 0
I:ID NUMBER 171 137 129
I:MEDICALRECORD 398 0 0
L:CITY 259 38 63
L:COUNTRY 53 1 5
L:HOSPITAL 928 134 131
L:ORGANIZATION 85 4 8
L:OTHER 4 3 6
L:STATE 221 0 0
L:STREET 144 0 0
L:ZIP CODE 139 0 0
N:DOCTOR 1932 302 425
N:PATIENT 879 3 0
N:USERNAME 219 0 0
PROFESSION 149 38 27
Category TRi2b2 TRSIRM TSSIRM

AGE 810 63 55
CONTACT 239 69 83
DATE 5254 64 90
ID 578 137 129
LOCATION 1833 180 213
NAME 3030 305 425
PROFESSION 149 38 27
Total # 11893 856 1022
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Figure 3.1: Clustered column chart. Distribution of the entities in
the data sets.

3.2 System architectures
This section explains which system architectures have been used.
In detail, the system architecture based on the Bidirectional Long
Short-Term Memory (Bi-LSTM) neural network plus Conditional
Random Field (CRF) is described in Section 3.2.1, while the sys-
tem architecture based on the Bidirectional Encoder Representations
from Transformers (BERT) neural network is described in Section
3.2.2.

These system architectures are currently considered the state of
the art for NER tasks in NLP: the results obtained in the literature
do not allow to identify a significantly superior architecture in the
case of clinical de-identification but, depending on the specific sce-
nario (conditioned by language, size of data sets, training strategies
and so on), one architecture tends to prevail over the other.

A different discussion deserves the time complexity. Given a
sentence of length N (number of tokens composing the sentence),
systems based on transformers like BERT process all tokens together,
so the time complexity is O(1) while for a Bi-LSTM + CRF it is
O(N) (Strubell et al. 2017; Li et al. 2020): this is mainly due to
the fact that transformers were designed to run on parallel hardware
architectures such as GPU, TPU and so on, resulting faster (Vaswani
et al. 2017; P. J. Liu et al. 2018; Kitaev and Klein 2018; Li et al.
2020) whereas the second is intrinsically serial.
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3.2.1 Bi-LSTM + CRF based architecture
One of the best performing sequence labeling architecture recognized
by scientific literature is represented by the Bi-LSTM + CRF model,
as demonstrated by Huang, W. Xu, and Yu 2015, who tested sev-
eral architectures such as LSTM, Bi-LSTM, CRF, LSTM+CRF and
Bi-LSTM + CRF for sequence labeling task. In detail, a network
constituted by a Bi-LSTM layer and by a CRF layer is able to use
more efficiently two types of information: the input features thanks
to the Bi-LSTM network and the relations between the tags at sen-
tence level thanks to the CRF network. Both networks work in a
similar way, exploiting the bidirectionality given by the use of infor-
mation, i.e. input features and relations between tags, coming both
from the past (the preceding words) and from the future (the fol-
lowing words), hence the ability to handle long-term dependencies.
As it has been widely demonstrated starting from the experiments
of Huang, W. Xu, and Yu 2015 and confirmed by the consequent
scientific literature, employing these networks at the same time for
sequence labeling tasks shows superior and more robust performance,
as well as higher accuracy, than employing only (Bi-)LSTM or CRF.
Figure 3.2 introduces the general architecture of the proposed Bi-
LSTM + CRF system. In particular, according to what was said
in section 3.1.3 concerning the possible strategies of fine-tuning and
knowledge transfer, the example input types EN, IT, MIX and EN-
IT are shown below the figure.

Figure 3.3 shows an overview of the processes required for NER-
based clinical de-identification. First of all, a collection of clinical
records documents is needed, which have to be re-organised in the
form of an annotated dataset. Secondly, there is a preliminary step to
prepare the input data, i.e. tokenization: it is performed in order to
split each input sentence s = w1w2...wn (where wt, with 1 ≤ t ≤ n,
represents the generic token) within raw clinical notes into a se-
quence of tokens. At this point the real neural network comes into
play, whose first input layer is called the embedding layer: here the
tokens (which can be words, sub-words or characters, depending on
the type of embedding chosen) are transformed into numeric vectors
that, in the more sophisticated versions, try to incorporate different
aspects of the tokens (grammatical, morphological, syntactic, se-
mantic and so on) from a general point of view. Then, the Bi-LSTM
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Figure 3.2: Bi-LSTM + CRF overall system architecture. EN, IT,
MIX and EN-IT types represent the possible inputs according to
training strategies.

specialises these representations by exploiting the ability to analyze
the bidirectional context (taking into account its memory limits), i.e.
the correlations between the tokens according to the texts in which
they are placed. Finally, the CRF layer, working in an analogous
way to the Bi-LSTM layer, takes care of providing the predictions of
the output labels, trying to preserve their coherence: for instance,
it is unlikely that the sequel of a token of type ”beginning of person
name” is a token of type ”continuous of thing name”. Finally, a high-
level algorithmic representation of the proposed NER-based clinical
de-identification management method is illustrated with Algorithm
1.
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Figure 3.3: NER-based clinical de-identification processes overview.

Algorithm 1: Algorithmic representation of the proposed
method.

Result: Most likely PHI label for each token
Given pre-processed EHRs;
while EHRs not finished do

Tokenize documents;
if Tokenization is successful then

Embedding tokens;
Specializing embeddings through context analysis
given by Bi-LSTM;

Providing probabilities of each PHI label for each
token given by CRF;

else
Change EHRs pre-processing steps;

end
end

Embedding layer

The embedding layer was chosen on a case-by-case basis according
to the requirements to be met. In detail, different types of embed-
dings have been selected and mixed, so an exhaustive overview of
the different solutions adopted for this layer is given below. It is
important to remember that, as shown by Alsentzer et al. 2019, the
use of specific embeddings for the clinical de-identification task, i.e.
clinical or biomedical versions, does not provide improvements, so
versions of embeddings trained on generic domains have been used.

FastText Built and pre-trained over very large corpora by Bo-
janowski et al. 2017, these embeddings are static related to context
and work on the subword-level. In this way FastText embeddings
attempt to capture morphological information to induce word em-
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beddings and deal better with out of vocabulary words.

MultiBPEmb It5 is the multilingual version of BPEmb6 (Heinz-
erling and Strube 2018). The basis of these embeddings is one large
multilingual segmentation model. Consequently, corresponding em-
beddings with a sub-word vocabulary, i.e. pre-trained sub-word em-
beddings, are shared among all 275 supported languages. The train-
ing corpus is based on Wikipedia: thanks to the underlying algo-
rithms, which are language-agnostic but not language-independent,
the article texts of all Wikipedia editions can be concatenated. This
way, a sub-word segmentation model and sub-word embeddings are
learnt. In detail, SentencePiece7 (Kudo and Richardson 2018), the
open source version of Google WordPiece, is used to learn the BPE
sub-words segmentation model, while GloVe (Pennington, Socher,
and Manning 2014) is used to train sub-word embeddings. In par-
ticular, the dimensionality of the sub-word embeddings is set at 300,
while the vocabulary size can be 100000, 320000, 1000000. Gener-
ally, embedding a word though BPE means that the word is sub-
divided into sub-words, whose embeddings vectors are subsequently
combined. In sequence tagging problems with word-based gold an-
notations, these sub-word embeddings vectors are usually condensed
into one, and this procedure can be done in several ways (e.g. ar-
bitrarily choosing one then losing some information, using a compo-
sition function such as addition, leveraging a RNN, and so on). In
this case, in order to condense the sub-word embeddings into one,
the first and last sub-words embedding vector have been concate-
nated, leaving GloVe as the embedding algorithm. The vocabulary
size has been chosen equal to 1000000, so that words can be more
easily represented through sub-words.

Flair Recently, Akbik, Blythe, and Vollgraf 2018 proposed their
embeddings, called Flair and described as contextual string embed-
dings, along with their Flair NLP framework (Akbik, Bergmann,
Blythe, et al. 2019). The novelty of these embeddings is the ability
to capture latent syntactic-semantic information, unseen by stan-
dard word embeddings, leveraging two important principles: firstly,

5https://nlp.h-its.org/bpemb/multi/
6https://nlp.h-its.org/bpemb/
7https://github.com/google/sentencepiece
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they model words as sequences of characters because they are trained
without any explicit notion of words and, secondly, the surrounding
text contextualizes them so that the same word will have different
embeddings derived from its contextual use, generating appropri-
ate embeddings for polysemic words. Such embeddings are usually
employed taking advantage of both forward and backward version,
pre-trained on large unlabeled corpora.

Multilingual versions are also available. It is possible to dis-
tinguish between the multi version, pre-trained on more than 300
languages using the JW300 corpus as proposed by (Agic and Vulic
2019), and the multi-fast version pre-trained on English, German,
French, Italian, Dutch and Polish, mixing several corpora (Web,
Wikipedia, Subtitles and News). The embeddings dimensionality
is set at 1024 and 2048 for multi-fast and multi respectively, one for
forward and one for backward embeddings. The interesting property
of these character-level embeddings is related to their vocabulary
size: it is not as computationally heavy as word-level embeddings
that have millions of distinct words to consider, but it only counts
a bunch of hundreds of distinct characters, so it is really easy to
train. Finally, character-level language models deal well with Out-
Of-Vocabulary (OOV), rare and misspelled words and sub-words like
prefixes and suffixes, hence with morphologically rich languages like
Italian.

Stacked Each embedding can detect different features within
the text, so their combination through concatenation, ensemble or
weighting (Y. Kim, Heider, and Stéphane M. Meystre 2018; Akbik,
Blythe, and Vollgraf 2018), can be useful and further improve perfor-
mance as demonstrated by several studies also in the field of clinical
NER (Y. Wu, Xi Yang, et al. 2018; Si et al. 2019; M. Jiang, Sanger,
and X. Liu 2019; Kalyan and Sangeetha 2020).

GloVe and Flair As suggested by Akbik, Blythe, and Vollgraf
2018, stacking Flair with GloVe (Pennington, Socher, and Manning
2014) through concatenation potentially adds more capacities.

As a result, each input token wt is transformed into its numeri-
cal representation xt, in the form of a stacked embedding with the
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following shape:

xt =

[
xGloV e
t

xFlair
t

]
(3.1)

where xGloV e
t is a classic word-level embedding while xFlair

t adds its
own capabilities.

The concatenated embedding is generally followed by a reprojec-
tion layer : a map on top of the pure concatenated embedding layer.
This is a fully connected linear layer on each concatenated embed-
ding: in essence it is a layer that remaps the concatenated embedding
to another embedding space, making it possible to achieve some of
the effect of fine-tuning modifying the embeddings representation
before moving on to successive layers.

MultiBPEmb and Flair Another concatenation was made
using MultiBPEmb and Flair for a multilingual scenario, getting the
stacked embedding xt of each word as:

x(t) =
[
xMultiBPEmb
t

xFlair
t

]
(3.2)

where xMultiBPEmb
t and xFlair

t are respectively the MultiBPEmb word
embedding and a type of Flair contextual string embedding.

As said, Akbik, Blythe, and Vollgraf 2018 have demonstrated
how the combination of Flair embeddings with GloVe embeddings
is the one capable of achieving the best performance for NER. But
the use of a stacked embedding in multilingual environments is able
to achieve better performance when the pre-training languages have
similar characteristics, otherwise the risk is to increase the confu-
sion introduced in the network then degrade its performance. For
this reason, in a bilingual scenario like the one under consideration,
the optimal choice would have been to use English-Italian bilingual
embeddings but, unfortunately, both Flair embeddings and GloVe
embeddings are not available in such combinations. Therefore it was
decided to use Flair embeddings multi fast (with far fewer languages
than Flair embeddings multi) together with MultiBPEmb, which con-
tinue to use the GloVe algorithm but adding the ability to work at
sub-word level, as already explained.
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LSTM layers

A LSTM layer works through its hidden layers h. It takes in input a
sequence of embeddings [x(1), x(2), …, x(n)] where each x(i) is the
numerical representation sequence of the i-th token. The represen-
tation of the generic i-th token at step t, i.e. xt(i), will be referred
to as xt for simplicity of notation. In detail xt = d1d2...dm, where
di is the i-th digit and m is the dimension of the embedding vector
xt. The LSTM layers output a new token representation sequence
ht = [

−→
ht ,
←−
ht ] with

−→
ht and

←−
ht representing the concatenated outputs

of forward and backward LSTM respectively, at step t. In detail, the
so-called forward LSTM produces a representation of the left con-
text of the sentence for each token, while another LSTM that reads
the same sequence in reverse, the so-called backward LSTM, obtains
a representation of the right context of the sentence for the same
token. Hence, the overall output ht is the concatenation of both left
and right context representations. This couple of LSTMs is referred
to as a bidirectional LSTM, whose superiority over unidirectional ar-
chitectures for sequence tagging tasks such as NER has been widely
demonstrated in literature Graves and Schmidhuber 2005 thanks to
its ability to efficiently make use of both left (via forward LSTM)
and right context (via backward LSTM) representations. Therefore,
the representation of a token, e.g. a word, obtained using this model
is an effective representation of a token in context.

In particular, the LSTM unit is composed by three gates (an i
input gate, a f forget gate and an o output gate) and a c memory
cell implemented to work at step t as follows:

it = σ(Wxixt + Whiht-1 + Wcict-1 + bi) (3.3)
ft = σ(Wxfxt + Whfht-1 + Wcfct-1 + bf) (3.4)

ct = ft � ct-1 + it � tanh(Wxcxt + Whcht-1 + bc) (3.5)
ot = σ(Wxoxt + Whoht-1 + Wcoct + bo) (3.6)

ht = ot � tanh(ct) (3.7)
where σ is the element-wise appropriate sigmoid activation function
(i.e. logistic or softmax) and � is the element-wise product; it, ft, ct
and ot are the input gate, forget gate, cell and output gate vectors,
which all have the same dimensions as the hidden vector ht; W_i,

41



Safeguarding privacy through deep learning techniques

Figure 3.4: Long Short-Term Memory cell representation.

W_f , W_c, W_o (with subscripts x, h or c in place of _) are the
weight matrices for input xt, hidden state ht and memory cell ct re-
spectively, to be calculated during the training process: for example,
the notation Wxo represents the weight matrix of the input-output
gate. Lastly bi, bf , bc and bo represent the bias vectors. Figure 3.4
represents a Long Short-Term Memory cell as described in Huang,
W. Xu, and Yu 2015.

CRF layer

It was demonstrated that, using the CRF (Lafferty, McCallum, and
Pereira 2001) layer at the top of the Bi-LSTM, the overall predic-
tion performance of the sequence tagger classifier can be improved
(Huang, W. Xu, and Yu 2015).

A CRF layer associates to the h = h1h2...hn input sequence, that
is a generic token representation sequence for sentence s outputted
by the Bi-LSTM layer, the output y = y1y2...yn that represents the
most plausible label sequence for the sentence s, e.g. I-tag should
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not follow O. Said TR the generic training set and said θ the generic
CRF layer, the parameters of the latter are estimated maximizing
the following log-likelihood function:

L(θ) =
∑

(s,y)∈TR

logp(y|h, θ) (3.8)

Said Zθ(h, y) the score of label sequence y for the sentence h, the
conditional probability p can be calculated as:

p(y|h, θ) = eZθ(h,y)∑
y′ e

Zθ(h,y
′)

(3.9)

where y
′ is a possible sequence of labels of h. Therefore the log-

likelihood of p is equal to:

logp(y|h, θ) = Zθ(h, y)− log
∑
y′

eZθ(h,y
′
) (3.10)

To take into account the dependencies among neighboring labels, a
transition matrix T is added to an emission matrix E to provide
Zθ(h, y) in this way:

Zθ(h, y) =
n∑

t=1

(Eyt,t + Tyt−1,yt) (3.11)

where Eyt,t is the probability of the token ht versus the label yt, and
Tyt−1,yt is the probability of the token ht−1 with the label yt−1 followed
by ht with the label yt.

It is possible to maximize the log-likelihood of the equation 3.8
on the whole TR training set by taking advantage of dynamic pro-
gramming (Rabiner 1989), and find the best sequence of labels for
each sentence s by maximizing the score given by the equation 3.11
using the Viterbi algorithm (Forney 1973), therefore exploiting an
argmax function, during the test.

3.2.2 BERT based architecture
The Bidirectional Encoder Representations from Transformers (De-
vlin et al. 2019), is a general purpose language model trained on
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Figure 3.5: Simple BERT network topology for Entity Recognition
Task

a large text corpus (like Wikipedia), which can be used for vari-
ous downstream NLP tasks, such as NER, Relation Extraction, and
Question Answering, without heavy task-specific feature engineering.
In detail, BERT architecture is based on 12 encoder layers, called
Transformers Blocks, 12 attention heads or Self-Attention (Vaswani
et al. 2017), and feed forward networks with a hidden size of 768. A
simple network topology is shown in Figure 3.5.

BERT accepts embedding and encoder input/output vectors that
have a dimension of 512, called Maximum Sequence Length. Some
special tokens are employed: the first is [SEP], used for segments
separation. The second one corresponds to the first input token sup-
plied, the [CLS] token (CLS stands for Classification), which pro-
duces an output vector, of hidden size dimension, that can be used as
the input for an arbitrarily chosen classifier. In particular, for NER
tasks, BERT is fine-tuned following a general tagging task approach
without a CRF layer as output layer. As input to the token-level
classifier, working over the NER label set, the representation of the
first sub-token is used.

Formally, the final hidden representation hi of each token i is
passed into softmax function. The probability P is calculated as
follows:

P (t|hi) = softmax(WoHi + bo) (3.12)
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where t ∈ T , Wo and bo are weight parameters. Furthermore, during
the training, categorical cross-entropy as loss function is used.

Transformer

At the base of BERT is the Transformer (Vaswani et al. 2017). Say x
and y a sequence of subwords from a couple of sentences. The token
[CLS] is placed before x and after both x and y the token [SEP].
Called E the embedding function and called LN the normalization
layer (Vaswani et al. 2017), it is possible to get the embedding in
this way:

ĥ0
i = E(xi) + E(i) + E(1x) (3.13)

ĥ0
j+|x| = E(yj) + E(j + |x|) + E(1y) (3.14)

ĥ0
. = Dropout(LN(ĥ0

. )) (3.15)
Hence the embeddings follow M transformer blocks. Defined

the element-wise Gaussian Error Linear Units (GELU) activation
function (Hendrycks and Gimpel 2016) and called MHSA the Multi-
Heads Self-Attention function and FF the Feed Forward layer, in
each of these blocks it applies:

ĥ.i+1 = Skip(FF, Skip(MHSA, h.i)) (3.16)

Skip(f, h) = LN(h+Dropout(f(h))) (3.17)
FF (h) = GELU(hW1

> + b1)W2
> + b2 (3.18)

where hi∈R(|x|+|y|)×dh, W1∈R4dh×dh, b1∈R4dh, W2∈R4dh×dh, b2∈R4dh

and one new position ĥi is calculated as follows:

[..., ĥi, ...] = MHSA([h1, ..., h|x|+|y|]) =

WoConcat(h1
i , ..., h

N
i ) + bo

(3.19)

While in each attention, also called attention head, it applies:

hj
i =

|x|+|y|∑
k=1

Dropout(α
(i,j)
k )Wj

V hk (3.20)

a
(i,j)
k =

exp
(Wj

Qhi)
>Wj

Khk√
dh/N∑|x|+|y|

k′=1 exp
(Wj

Qhi)>Wj
Khk′√

dh/N

(3.21)
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where N is the number of attention heads, hj
i∈R(dh/N), Wo∈Rdh×dh,

bo∈Rdh and Wj
Q,W

j
K ,W

j
V∈Rdh/N×dh.

To date BERT is released in two sizes BERTbase and BERTlarge.
BERTbase is made of 12 layers (transformer blocks), 768 hidden size,
12 attention heads, and 110 million parameters, whereas BERTlarge is
composed of 24 layers, 1024 hidden size, 16 attention heads and, 340
million parameters. The multilingual version of BERT is released
only in the base size and is case sensitive. However, additionally,
experiments by the scientific community have widely demonstrated
that Cased versions of BERT and variants are superior to Uncased
versions in the NER task, where the relevant entities often have
capitalized initials (Mayhew, Tsygankova, and Roth 2019). For this
reason, the cased version of mBERT has been used in this work.

3.3 Use cases and experimental setups
In this section, the use cases and their experimental setups are pre-
sented. In particular, Section 3.3.1, 3.3.2 and 3.3.3 describe the three
use cases examined.

3.3.1 First use case
The first use case is related to the employment of a stacked embed-
ding consisting of Flair and GloVe in combination with an appro-
priate exploitation of the full memory capacity of the Bi-LSTM +
CRF architecture, using the English i2b2/UTHealth 2014 de-iden-
tification corpus. Figure 3.6 shows the architecture overview of the
proposed NER-based clinical de-identification system.

This implementation used Flair8 (Akbik, Bergmann, Blythe, et
al. 2019), a straightforward framework for NLP tasks, such as NER,
part-of-speech (PoS) tagging, sense disambiguation and classifica-
tion. For this study, stochastic gradient descent (SGD) algorithm
was used to estimate neural networks parameters, using the hyper-
parameters shown in Table 3.6. Each training was started using
a learning rate equal to 0.1: after 3 (patience parameter) succes-
sive epochs without any loss reduction, the learning rate is multi-
plied by the annealing factor. When learning rate becomes smaller

8https://alanakbik.github.io/flair.html
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Figure 3.6: First use case: architecture overview.

than 0.0001 the system reaches an early stopping condition. So the
number of training epochs equal to 500 constitutes an upper-bound.
Therefore, all neural network models have the same hyper-parame-
ters shown in Table 3.6 but the training time changes depending on
the early stopping condition. Gradient clipping value was 5.0, Bi-
LSTM hidden size 256, word dropout 0.05 and variational dropout
0.5. Lastly, batch size was set to 4. In the system used the di-
mensionality of a reprojected embedding is equal to 4196 that is the
sum of the dimensionalities of the stacked embeddings, i.e. 4096 for
Flair Forward and Backward embeddings plus 100 for GloVe embed-
dings. Furthermore, the versions of embeddings used are all trained
on generic domain: as demonstrated by Alsentzer et al. 2019, us-
ing domain-specific embeddings for the de-identification task does
not lead to an improvement in performance. All experiments were
performed on an IBM POWER9 cluster with NVIDIA V100 GPUs.

An additional test criterion was adopted in the wake of consider-
ations made by Khandelwal et al. 2018, who found that LSTM-based
systems have an effective context size of about 200 tokens on average.
First, a sentences grouping factor (SGF) was defined: it indicates
the number of sentences grouped in the clinical training, validation
and testing notes before producing the training, validation and test-
ing files for the proposed system and conducting what is hereafter
called a sub-document level analysis. Then SGFs were chosen equal
to 1, 2, 4, 8, 16 and 32 taking into account the average extent of
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Table 3.6: Hyper-parameters

Hyperparameter Value
Annealing factor 0.5
Batch size 4
Dropout 0.05 (word) - 0.5 (variational)
Epochs up to 500
Gradient clipping value 5
Hidden size 256
Learning rate from 0.1 up to 0.0001
Patience 3
RNN Layers 1

the sentences in terms of number of tokens (see Table 3.7) found for
each SGF in the training, validation and test files thus generated.

Finally all models were trained, evaluated and tested using the
official division of the data set, repeating the procedure five times for
each configuration and reporting the arithmetic mean of the results,
rounded to the fourth decimal place.

Table 3.7: Average of tokens per sentence

SGF Training data set Validation data set Test data set
1 7.3240 7.3858 7.5039
2 14.6150 14.7432 14.9676
4 29.1031 29.4298 29.8001
8 57.8398 58.6173 59.1131
16 113.5571 115.9395 116.3578
32 219.2904 228.6881 225.3407

3.3.2 Second use case
The second use case is related to the experimentation of a stacked
embedding consisting of Flair and FastText, never tested before for
the clinical de-identification scenario in Italian, on a novel ad-hoc cre-
ated data set, the Italian SIRM COVID-19 de-identification corpus.
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Figure 3.7: Second use case: architecture overview.

The architecture overview of the proposed clinical de-identification
system is shown in Figure 3.7.

These experiments used Flair framework9 (Akbik, Bergmann,
Blythe, et al. 2019) for Bi-LSTM + CRF model implementation.
It provides state-of-the-art general-purpose architectures with thou-
sands of pre-trained models in over a hundred languages for NLP
tasks, such as NER, part-of-speech (PoS) tagging, sense disambigua-
tion and classification.

Flair framework was used with the hyper-parameters reported in
Table 3.8 and stochastic gradient descent (SGD) algorithm was used
to estimate neural networks parameters. On the one hand we used
only Italian FastText embeddings or only Flair (forward and back-
ward) embeddings, on the other hand we stacked Italian FastText
and Italian Flair (forward and backward) embeddings concatenating
them.

As far as we know, there are no other works for the particular
NER task of clinical de-identification in Italian, since there are no
publicly available Italian data sets. Hence, beside the Bi-LSTM

9https://alanakbik.github.io/flair.html

49



Safeguarding privacy through deep learning techniques

Table 3.8: LSTM-based model hyper-parameters.

Hyperparameter Value
Annealing factor 0.5
Batch size 16
Dropout (Variational) 0.5
Dropout (Word) 0.05
Epochs up to 500
Gradient clipping 5
Hidden size 256
Learning rate from 0.1 up to 0.0001
Patience (early stopping parameter) 3
RNN Layers 1

+ CRF model, the BERT model was tested too, which is another
common state-of-the-art language model for different NLP tasks. In
detail, the Hugging Face Transformers10 framework for BERT-based
models was used, the main architecture is shown in Figure 3.8.

In particular, the BERT architecture Devlin et al. 2019, which
stands for Bidirectional Encoder Representations from Transform-
ers, is a general purpose language model trained on a large text
corpus (like Wikipedia), which can be used for various downstream
NLP tasks, such as NER, Relation Extraction, and Question An-
swering, without heavy task-specific engineering. BERTBASE archi-
tecture is based on 12 encoder layers, known as Transformers Blocks,
12 attention heads (or Self-Attention as introduced in Vaswani et al.
2017), and feed forward networks with a hidden size of 768. Instead,
BERTLARGE is based on 24 encoder layers, 16 attention heads and
feed forward networks with a hidden size of 1024. For simplicity, if
not specified, we will refer to BERTBASE in the following.

BERTBASE Maximum Sequence Length fixes the accepted em-
bedding and encoder input/output vectors dimension to 512. Two
special tokens are used: [CLS] and [SEP]. The [CLS], which stands
for Classification, is the first input token and produces an output
vector of dimension equal to hidden size that can be used as the
input for an arbitrarily chosen classifier. Instead, [SEP] stand for
segments separation.

10https://github.com/huggingface/transformers
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Figure 3.8: BERT architecture overview.

BERT, when used for NER, is fine-tuned without a CRF layer as
output layer, following a diffused tagging task approach. Operating
on the NER label set, the input provided to the token-level classifier
uses the representation of the first sub-token. In detail, the final
hidden representation hi of each token i passes through the softmax
function and the probability P is then calculated as follows:

P (t|hi) = softmax(WoHi + bo) (3.22)
where t ∈ T while Wo and bo are weight parameters. During

training the loss function used is categorical cross-entropy.
In particular, the Italian BERT models used with the Hugging

Face framework are those made available by the MDZ Digital Li-
brary team at the Bavarian State Library11. For this study, the
hyper-parameters shown in Table 3.9 were used. In detail, BERT-
based models have 110M of parameters. Batch size and Maximum
Sequence Length were set to 32 and 512 respectively, while the model
was fine-tuned for 5 epochs. Attention heads, hidden size and hid-
den layers were 12, 768 and 12 respectively. The Italian BERT was
trained on a source of data consist made by a recent Wikipedia dump
and various texts from the OPUS corpora12 collection with a final
corpus size equal to about 13 GB and more than 2 billions tokens.
Both the cased and the uncased versions were used.

11https://huggingface.co/dbmdz/
12http://opus.nlpl.eu/
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Table 3.9: BERT-based model hyper-parameters.

Hyperparameter Value
Attention heads 12
Batch size 32
Epochs 5
Hidden size 768
Hidden layers 12
Maximum Sequence Length 512
Parameters 110 M

All experiments were performed on an IBM POWER9 cluster
with NVIDIA V100 GPUs. All models were trained and tested using
the chosen division of the data set between training and testing,
reporting the results rounded to the fourth decimal place.

3.3.3 Third use case
The third use case is related to the investigation of strategies for
cross-linguistic transfer learning between high and low resources lan-
guages, specifically English and Italian, when applied to clinical de-
identification, leveraging the mentioned corpora.

For the sake of clearness, an overview of the research aspects
covered by this use case is given in Figure 3.9. In detail, Italian
Medical Records constitute the primary input information, while
English Medical Records constitute the broader additional informa-
tion indicated in Figure with a red arrow and an extended graphical
representation. The output is given by PHI predictions that rep-
resent the information to anonymise in order to make the Italian
input documents compliant with privacy regulations. The central
block represents all the different combinations of (i) network topolo-
gies, (ii) pre-trained embeddings and (iii) different training strategies
as detailed in the yellow balloons.

To implement the systems described in this use case, two different
frameworks have been used that offer different possibilities for NLP
tasks like classification, NER, Part-of-Speech tagging, sense disam-
biguation and so on. The first one is Flair13 (Akbik, Bergmann,

13https://alanakbik.github.io/flair.html
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Figure 3.9: Third use case: research aspects overview.

Blythe, et al. 2019), written in Python: this framework has been
used to implement the neural network based system Bi-LSTM +
CRF, leaving default values not of interest and setting as shown
in Table 3.10 the values relevant to the experimentation. The sec-
ond is Hugging Face Transformers14, also written in Python: this
framework has been used to implement the system based on Trans-
formers, so BERT. Similarly to what was done previously, only the
values relevant to the experimentation have been modified and re-
ported in Table 3.11. The hyper-parameters modified and reported
in Table 3.10 and Table 3.11 are described below.

Regarding Flair, the stochastic gradient descent (SGD) was used
to update neural network parameters. Every 3 epochs without im-
provement the learning rate is reduced according to Patience hyper-
parameter, by multiplying the annealing factor, so it goes from 0.1
to 0.0001, the latter being a system condition of early stopping. For
this reason, the 500 limit of training epochs is never reached but the
number of epochs used is different for each trained model. Other
hyper-parameters are: gradient clipping 5.0, Bi-LSTM hidden size
256, variational dropout 0.5, word dropout 0.05 and batch size 16.

14https://github.com/huggingface/transformers
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Table 3.10: Bi-LSTM + CRF hyper-parameters

Hyperparameter Value
Annealing factor 0.5
Batch size 16

Dropout 0.5 (variational)
0.05 (word)

Epochs up to 500
Gradient clipping 5
Hidden size 256
Learning rate 0.1 - 0.0001
Patience 3
RNN Layers 1

Table 3.11: BERTbase and mBERT hyper-parameters

Hyperparameter Value
Attention heads 12
Batch size 32
Epochs 5
Hidden size 768
Languages 104
Hidden layers 12
Maximum Sequence Length 512
Parameters 110 M

Regarding HuggingFace Transformers, BERTbase and mBERT
implementations have both 110M of parameters. Batch size and
Maximum Sequence Length were set to 32 and 512 respectively, while
the model was fine-tuned for 5 epochs. Attention heads, hidden size
and hidden layers were 12, 768 and 12 respectively.

An IBM POWER9 cluster with NVIDIA V100 GPUs was used
to run the experiments. In detail, the tested models were based on:

1. Bi-LSTM + CRF with stacked embedding consisting of
MultiBPEmb and Flair embedding multi-fast (both forward
and backward);

2. mBERT Cased.
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The models were trained using the strategies introduced in Sec-
tion 3.1.3. In particular, the EN and IT strategies perform a train-
ing on i2b2 2014 and SIRM COVID-19 data sets respectively, while
the MIX strategy provides a single concatenated i2b2 2014/SIRM
COVID-19 data set for training, finally the EN-IT strategy performs
a first training on i2b2 2014 data set and a second training on SIRM
COVID-19 data set. All models were tested on SIRM COVID-19
testing data set (50 of 115 clinical records).

Finally all models were trained and tested repeating the proce-
dure five times for each configuration and reporting the arithmetic
mean of the results, rounded to the fourth decimal place.

3.4 Evaluation metrics
To assess the performance of the models and compare them the F1

measure was used, defined as the harmonic mean of precision P
and recall R. Defined TP as the number of true positives, FP the
number of false positives and FN the number of false negatives,
these metrics can be defined as:

F1 =
2 ∗ P ∗R
P +R

(3.23)

P =
TP

TP + FP
=

# of correctly predicted items

# of predicted items
(3.24)

R =
TP

TP + FN
=

# of correctly predicted items

# expected items
(3.25)

where items are entities or tokens, depending on the evaluation cri-
teria used, hereinafter described.

In the case of multi-class problems, the calculation of precision
and recall can be done in different ways, considerably changing the
resulting F1 value. The most common calculation methods are the
following:

• Micro-Averaging. The number of correct, predicted and ex-
pected entities of each class is added up. With their total val-
ues, precision and recall are calculated. In binary classification
problems, Micro-Averaged F1 is the same as accuracy.
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• Macro-Averaging. The precision and recall values are calcu-
lated for each class. Then precision and recall are calculated
as the arithmetic average of the precision and recall values.
Hence F1 is calculated by 3.2315. It should be reported its
standard deviation also.

• Weighted Macro-Averaging. The precision and recall values
are calculated for each class. Then precision and recall are
calculated as the weighted average (related to the number of
expected entities for each class) of the precision and recall val-
ues. Hence F1 is calculated by 3.2315.

In order to have the best degree of comparability with the base-
line systems Micro-Averaging was used. Five evaluation criteria were
adopted to produce the results: on the one hand, entity and token,
on the other hand binary, i2b2 category, i2b2 subcategory. The entity
criterion checks if a predicted entity exactly matches the correspon-
dent in the so-called gold standard (also known as ground truth),
i.e. when all tokens belonging to the entity are correctly recog-
nized, while the token criterion checks only if there is a token match,
which is considered correct even if it only partially covers the entity.
This reasoning applies with increasing difficulty using the second
set of criteria: in the case of binary criterion it is sufficient to dis-
tinguish entities and non-entities (or tokens and non-token), then
for i2b2 category and i2b2 subcategory it is necessary to recognize
categories and subcategories to which the entities or tokens belong
respectively. Therefore, in token-binary cases the highest scores are
obtained, while in entity-subcategory cases the lowest scores are ob-
tained: the latter should be the main criterion to adopt.

15The final F1 value should be calculated by 3.23 and not by arithmetic or weighted average
of the F1 values of the classes.
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Chapter 4

Results and
Discussions
This section collects results and discussions concerning the three use
cases presented in the previous Section 3.3, presenting them in the
same order in the following Sections 4.1, 4.2, 4.3 respectively.

4.1 First use case
In Table 4.1 the Micro-Averaged F1 scores of the analysis at sub-
document level are reported according to the criteria given in Section
3.4. In detail, the results were listed by different SGFs and grouped
by entity and token levels, which in turn were divided by the i2b2
sub-category, i2b2 category and binary criteria.

Among the 6 different SGFs, the sub-document level with a
SGF = 32 achieves the highest Micro-Averaged F1 scores by adopt-
ing any possible combination of the criteria. Comparing the best
configuration with SGF = 32 to the reference system at sentence
level, i.e. SGF = 1, there are increases of 2.41%, 1.34% and 1.28%
at entity level in sub-category, category and binary cases respec-
tively. On the other hand, at token level, for sub-category, category
and binary there are increases of 2.35%, 0.79% and 0.76%.

The detailed results of the best configuration, i.e. SGF = 32,
with regard to i2b2 subcategories, categories and binary are reported
in Table 4.2. Precision P, recall R and Micro-Averaged score F1 are
reported with E or T subscripts depending on whether they are at
entity or token level.
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Table 4.1: Sub-document level analysis - Micro-Averaged F1 scores

Entity Level Token Level
SGF Sub-category Category Binary Sub-category Category Binary
1 0.9239 0.9445 0.9486 0.9443 0.9713 0.9756
2 0.9343 0.9481 0.9508 0.9581 0.9741 0.9784
4 0.9409 0.9523 0.9559 0.9631 0.9760 0.9805
8 0.9435 0.9545 0.9581 0.9646 0.9774 0.9821
16 0.9446 0.9552 0.9590 0.9655 0.9776 0.9822
32 0.9480 0.9579 0.9614 0.9678 0.9792 0.9832

For the sake of completeness BERTbase was also tested in its de-
fault configuration, batch size of 32 for 5 fine-tuning epochs to per-
form NER on the data set, also experimenting different sequences
grouping factors. In detail, it was evaluated both with SGF = 1
(and maximum sequence length fixed to 256) as baseline and with
SGF = 11 (and maximum sequence length fixed to 512): this choice
is dictated by the limit of BERT to be able to manage maximum up
to 512 token, so it has been chosen a SGF that prevents the 512 to-
ken from being exceeded in training, validation and testing data sets.
The maximum number of tokens detected by BertTokenizer, accord-
ing to which the maximum sequence length was chosen, is shown in
Table 4.3 for each data set and for each SGF. Although a further re-
search point could be to compare the results of BERT versions that
have a maximum sequence length of 1024 or 2048, it must be taken
into account that the hardware resources already required to fine-
tune BERTbase are much higher than those required by Bi-LSTM +
CRF-based systems. The results of BERT obtained with the two
different SGFs are in Table 4.4, showing worse results than the best
setup.

In Table 4.5 the Micro-Averaged F1 scores obtained with the best
configuration are reported, then compared with those reported by H.
Yang and Garibaldi 2015, Z. Liu, Tang, et al. 2017, Y. Kim, Heider,
and Stéphane M. Meystre 2018 and Tang, D. Jiang, et al. 2019 which
are the highest obtained for clinical de-identification using the i2b2
2014 data set to date. Where NA is reported means that no results
have been provided for that level of analysis. In particular, the best
system always obtains better scores compared with H. Yang and
Garibaldi 2015 and Y. Kim, Heider, and Stéphane M. Meystre 2018,
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Table 4.2: Best SGF - Averaged scores

i2b2 Sub-category PE RE F1E PT RT F1T

AGE 0.9644 0.9442 0.9542 0.9668 0.9418 0.9541
CITY 0.8230 0.8800 0.8506 0.8645 0.9159 0.8894
COUNTRY 0.8029 0.6615 0.7254 0.9228 0.6985 0.7951
DATE 0.9821 0.9776 0.9798 0.9918 0.9874 0.9896
DEVICE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DOCTOR 0.9629 0.9550 0.9589 0.9735 0.9740 0.9738
EMAIL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FAX 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HOSPITAL 0.9145 0.8679 0.8906 0.9529 0.9263 0.9394
IDNUM 0.8746 0.8226 0.8478 0.9506 0.8890 0.9188
LOCATION_OTHER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MEDICALRECORD 0.9683 0.9834 0.9758 0.9751 0.9837 0.9794
ORGANIZATION 0.7834 0.5293 0.6317 0.9046 0.5852 0.7107
PATIENT 0.9409 0.9354 0.9382 0.9766 0.9561 0.9663
PHONE 0.9729 0.9684 0.9706 0.9858 0.9778 0.9818
PROFESSION 0.8511 0.7665 0.8066 0.9575 0.8238 0.8856
STATE 0.8491 0.8768 0.8628 0.9021 0.8592 0.8802
STREET 0.8833 0.9015 0.8923 0.9588 0.9856 0.9720
USERNAME 0.9955 0.9565 0.9756 0.9955 0.9565 0.9756
ZIP 0.9802 0.9914 0.9858 0.9879 0.9932 0.9906
Total 0.9552 0.9409 0.9480 0.9754 0.9602 0.9677
i2b2 Category PE RE F1E PT RT F1T

AGE 0.9644 0.9442 0.9542 0.9668 0.9418 0.9541
CONTACT 0.9796 0.9697 0.9746 0.9953 0.9815 0.9883
DATE 0.9821 0.9776 0.9798 0.9918 0.9874 0.9896
ID 0.9588 0.9386 0.9486 0.9838 0.9645 0.9740
LOCATION 0.9170 0.8777 0.8969 0.9748 0.9344 0.9542
NAME 0.9724 0.9641 0.9682 0.9908 0.9835 0.9871
PROFESSION 0.8511 0.7665 0.8066 0.9575 0.8238 0.8856
Total 0.9653 0.9506 0.9579 0.9870 0.9716 0.9792
i2b2 Binary PE RE F1E PT RT F1T

NAMED ENTITY 0.9693 0.9536 0.9614 0.9910 0.9755 0.9832

Table 4.3: Maximum number of tokens detected by BertTokenizer

SGF Training data set Validation data set Test data set
1 212 242 203
11 474 425 464
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Table 4.4: BERT results

Entity Level Token Level
Model Sub-category Category Binary Sub-category Category Binary

BERT SGF=1 0.9215 0.9430 0.9509 0.9470 0.9698 0.9758
BERT SGF=11 0.9302 0.9452 0.9520 0.9598 0.9730 0.9786

while it has slightly different performance, at category level and at
binary level, compared with Z. Liu, Tang, et al. 2017 and Tang, D.
Jiang, et al. 2019.

Table 4.5: Micro-Averaged F1 scores comparison

Entity Level Token Level
Model Sub-category Category Binary Sub-category Category Binary

H. Yang and Garibaldi 2015 NA 0.9360 NA NA 0.9611 NA
Z. Liu, Tang, et al. 2017 NA 0.9511 0.9650 NA 0.9698 0.9828

Y. Kim, Heider, and Stéphane M. Meystre 2018 NA 0.9573 NA NA NA NA
Tang, D. Jiang, et al. 2019 NA 0.9550 0.9685 NA 0.9748 0.9870

SGF = 32 0.9480 0.9579 0.9614 0.9678 0.9792 0.9832

The results show the effectiveness of the sub-document analysis
method introduced, thanks to which it is possible to identify the
best grouping of sentences to be provided to the system in order to
maximize the exploitation of contextual information, as stated by
Khandelwal et al. 2018. In this way it is possible to obtain results
that improve the state of the art of the NER task applied to de-iden-
tification as a multi-class problem, therefore at category level which,
unlike previous works focused on the binary level, is much more
important to be able to properly exploit such systems for anonymi-
sation.

With regard to BERT, its performance confirms what was re-
ported by Devlin et al. 2019, i.e. the way BERT works is problem-
atic when applied as a feature-based approach to NER. Moreover,
the need to insert special tokens inside the text by BERT, such as
[CLS] and [SEP], reduces the number of useful tokens managed by
BertTokenizer and consequently the useful context.

Compared with the other state-of-the-art systems, the proposed
system obtains better scores at category level: this is extremely
relevant in a de-identification scenario, where the next step is
anonymization and, thus, it is important to get the best possible
results at a finer level than binary to better replace entities with
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their surrogates. Moreover, even if the proposed system obtains a
slightly worse score at the binary level than Z. Liu, Tang, et al. 2017
and Tang, D. Jiang, et al. 2019, this is counterbalanced by not using
feature engineering and handcrafted rules, saving time for analysis
and implementation. In fact, based on the data publicly available, Z.
Liu, Tang, et al. 2017 and Tang, D. Jiang, et al. 2019 get better re-
sults at the binary level for those categories (e.g. fax, email, device)
that are present both in small amounts and in different forms, and
often split into multiple tokens, which is the worst case for learn-
ing by a neural network without the help of, for example, regular
expressions.

4.1.1 Some examples of entity classification with
the proposed system

In the proposed approach embeddings that work both at word and
character level and in a contextual manner are stacked: in this way
it is possible to detect more entities and classify almost all of them
correctly.

In particular, working at character level the proposed system
identifies entities introduced by an abbreviated form or an acronym,
for instance entities of type NAME: DOCTOR, like David Mccall,
that are preceded by the abbreviated form Dr.. In the same way,
some tokens after the full name, both the shortened names of doc-
tors, such as RX and GV, and those written with a lowercase initial,
such as rosenberg, are correctly detected. Morpho-syntactic varia-
tions caused by writing errors are also overcome: for example en-
tities of type PROFESSION buidling construction and mathmatics
are correctly recognized. Similarly, ’s that are part of DATEs are
detected correctly. Moreover, polysemy is correctly managed within
the embeddings: as reported in Table 4.6, the token Jordan is an-
notated in some cases as LOCATION: CITY, in others as NAME:
DOCTOR, and the recognition system is able to take into account
the multiplicity of meaning by predicting the exact label depending
on the case.

The use of word level embedding, such as GloVe, allows us to
identify entities never seen before. An example are the two PRO-
FESSION s Ironworker and vocational instructor : Ironworker is se-
mantically similar to the word worker, already present as PROFES-
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Table 4.6: Polysemous entities

i2b2 category: subcategory Extracted sentence
LOCATION: CITY Thank you for referring this interesting patient. She was seen and examined with

Dr. Voss. Sincerely, Pamela Imperial, M.D. PI / waldron cc: Charles Van, M.D.
Jordan, FL 83712

LOCATION: CITY Record date: 2074-06-20 HHH Cardiovascular Division CVD Rm 5 89 Buck St JOR-
GENSON, VIVIANLEE Sioux City, FL 76546 47190847 (179)732-8159 06/20/74
Charles F. Van, M.D. 66 Kessler Farm Drive, Puite # 9488 Jordan, FL 83712

NAME: DOCTOR Return to see in a week’s time, understands. He can discuss any management issues
regarding his insulin doses or others anytime. Yale Jordan, M.D. YJ: isenberg:
74:585:40; 00-10142

NAME: DOCTOR Thank you for allowing me to participate in the care of your patient. I will continue
to follow along with you. Sincerely, Jordan N. Akers, M.D., Ph.D. Department of
Neurology Stroke Division Orange City Hospital Prestonsburg, MS 54151

SION in the training data set, while for vocational instructor the
semantic similarity is exploited with other labeled terms of which,
for the sake of completeness, both cosine similarity and number of
occurrences in the training data set are reported in Table 4.7. In the
same way, the never seen entities of type LOCATION: CITY, such
as Pecos and Turlock, are identified thanks to the presence of the in-
troductory formulas life in and came from respectively, semantically
close to similar forms present in the training data set to introduce
entities of type LOCATION: CITY such as lives in, lived in, living
in, from, comes back from.

Table 4.7: The most semantically similar words to instructor in
GloVe embeddings

Word Cosine similarity Occurrences
instructor 1 1
instructors 0.7111440300941467 0
teacher 0.7077120542526245 1
training 0.6565847396850586 0
technician 0.6412791013717651 5
taught 0.6199019551277161 0

mechanic 0.6190917491912842 0
gunnery 0.6142827272415161 0
sergeant 0.6117113828659058 0
graduate 0.6066259145736694 0
teaching 0.5975379943847656 0

Finally, by exploiting a wider context thanks to a higher SGF,
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the neural network is able to find the necessary patterns to identify
other unknown entities. Some examples are provided in Table 4.8
where, for clarity, it is reported only a subset of relevant sentences.
So, using only SGF = 1, an entity like goods purchaser belonging to
the i2b2 category PROFESSION is not detected within a short sen-
tence like Used to be goods purchaser for 34 years.. This is because
with SGF = 1 the generally recurrent patterns that allow to rec-
ognize entities despite the little contextual information content are
different in these particular cases. For example, in the case of PRO-
FESSION s, the common pattern recurring within short sentences is
similar to Was a or Retired, thus followed by the profession. Instead,
in the cases examined there are either (1) different phrasal expres-
sions, such as Used to be and Used to do, or (2) expressions with
both grammatical errors that contribute to changing the meanings at
stake, for example He is retried, and longer entities composed of more
than one or two tokens, for example Motor Vehicle Body Repairer,
complicating recognition. Or, in the case of LOCATION: ORGA-
NIZATION s, there are (3) mainly unusual expressions, e.g. Then,
compared to more canonical introductory formulas, e.g. worked for,
but, extending the context, there is a list of organizations still intro-
duced by a known pattern. By looking at the sentences in Table 4.8
it is possible to observe how the extended context can provide fur-
ther information. Professions and organizations are often reported
within a specific part of the structure of the medical record titled
Social History, written in full or abbreviated, upper or lower case, so
that it is reasonable to wait for such an entity in the next sentences:
in essence the pattern Social History influences the weights of the
network in relation to the most appropriate label prediction.

Moreover, it is interesting to note that with the use of the pro-
posed system that work with a character-level language model able
to take into account the context as Flair, it was possible to correctly
recognize a badly annotated entity with a pattern not perfectly iden-
tical to the training or validation entities. An important example in
this regard is the entity 778 210-2105, which was annotated as CON-
TACT: PHONE, even if within the text it is preceded by the text
Fax:. In this case the proposed system recognizes it correctly for us
humans as CONTACT: FAX, but being wrong the annotation this
unfortunately contributes to a lowering of the score.
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Table 4.8: Entities identified through an extended context with
SGF > 1

Extracted sentences with identified entities in bold
His father died at 65 from Alzheimer’s disease, and his mother at 50 from an
unspecified cancer. No other known family members with heart disease.
SOCIAL HISTORY Presently lives in Lake Pocotopaug with wife and son
Brandon. Used to be goods purchaser for 34 years. He has a 60 pack -
year smoking history, but has since quit. Last drink of EtOH was 1.5 years ago.
Allergies Penicillins - Angiodema, Hives, Erythromycins - Hives, Iv Contrast -
convulsions, Hypotension Social History: Single, divorced. 3 children, 4
grandchildren. Retired, used to do immigration policing. Lives in Havre De
Grace with his brother. Dating current girlfriend x 3 years now, sexually active.
Family history: Noncontributory. No coronary artery disease or MI. Social
history: He is retried Motor Vehicle Body Repairer. He used to work at
GM. He lives with his wife, who comes in today with him. He has three
children. Nondrinker.
Social History Married. Lives with wife. Sexually active, usually needs Viagra.
Communications senior manager, marketing, worked for Brinker International,
now Facebook. Then Twitter.

4.1.2 Error analysis and distribution
In the following sections, in order to understand the limits of the
proposed system, its errors are examined in detail trying to under-
stand the reasons for missing or wrong classifications. In particular,
false positives and false negatives distribution are analyzed, hence
some examples of unidentified entities in Section 4.1.2 are reported.
Instead, in Section 4.1.2, those entities that are difficult to identify
are inspected.

FP and FN distribution

The performance of the best system are analyzed in detail, examining
the distribution of False Positives (FPs) and False Negatives (FNs),
whether at entity or token level, whose results are summarized in
the Figure 4.1.

The different distribution of false positives and false negatives of
the categories between entity level and token level is also justified by
the different token-entity ratio for each of them, as shown in Figure
4.2.

64



Safeguarding privacy through deep learning techniques

Figure 4.1: Error distribution helps to understand the weaknesses of
the specific architecture used for the specific data set. This figure is
related to the best proposed system with SGF = 32.

Moreover, FPs and FNs have been associated to four main
sources of errors, in line with Dernoncourt, J. Y. Lee, Uzuner, et al.
2017: (1) the abbreviations, due to brevity and vagueness; (2) the
ambiguities, due to the tokens themselves and/or the context; (3)
the debatable annotations, i.e. the tokens and the entities marked
as PHI in a questionable way; (4) the scarcity and sparsity of data,
with respect to the training, validation and testing data sets.

In Table 4.9 some examples of unidentified entities due to previ-
ous listed error types are shown: in detail AB, AM, D, S stand for
error types (1), (2), (3) and (4) respectively as reported above. The
examined entity is underlined and the unrecognized part is in bold,
while the black/red variation indicates tokenization. There were
no entities of type LOCATION: ZIP CODE to which no label was
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Figure 4.2: The token-entity ratio of i2b2 categories.

assigned, so NA is reported. Instead, for the entities of type CON-
TACT: EMAIL, CONTACT: FAX, ID: ID NUMBER, and LOCA-
TION: OTHER the main source of error leading to non-recognition
or misrecognition is due both to the scarcity and poor distribution
of data within data sets and to non-repetitive patterns: there is a
dedicated analysis to these entities in Section 4.1.2.

Challenging entities analysis

The most challenging entities in the i2b2 data set are listed in Ta-
ble 4.10 to better investigate. They belong to i2b2 subcategories
CONTACT: EMAIL, CONTACT: FAX, ID: DEVICE and LOCA-
TION: OTHER and are fully reported, i.e. there are no other en-
tities in the 2014 i2b2 data set other than those enumerated. The
black-red variation indicates the tokenization: for example, the first
entity of the CONTACT: FAX subcategory in the test data set, i.e.
(385)031-7905, consists of 6 tokens. For each of the four subcate-
gories there are important considerations to be made.

Consider CONTACT: EMAIL and CONTACT: FAX : in both
cases there are few examples but there is an important difference
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Table 4.9: Unidentified entities examples
PHI category: subcate-
gory

Context Error
Type

AGE Synthroid (LEVOTHYROXINE SODIUM) 150MCG TABLET PO variable
Torsemide

D

FH: M & # 8211; CAD 60s, F & # 8211; CAD 80s AB, AM
CONTACT: PHONE Wheatland Manor: 154-735-1487, x 557 (4th floor) AB, AM

type 2 Hypertriglyceridemia H/O paroxysmal afib VNA 171-311-7974 ======= AM
DATE HISTORY: -ESRD (FSGS) on HD Mon, We d, Fri s/p failed in renal transplants AB, AM

Month(s) Supply, Q Sun, Mon, We d, Fri Aspirin (ACETYLSALICYLIC ACID) AB, AM
ID: ID NUMBER By: CHANEY, QUENTIN eScription document: 7-9617124 SJZvdbs ***** *** D, AM

Qiana Solomon, MD eScription document: 9-2784353 KUQlhv Egq DD: 03/06/87 D, AM
ID: MEDICAL RECORD Patient: Vincent Ware (71417347 2Y) Student: Casey Best, AM
LOCATION: CITY She never has felt the Pecos as home and is home sick for D

M.D. cc: Dirk O. Reece, M.D., PCP, Pune, ME SRH / valdovinos AM
LOCATION: COUNTRY AS HPI : 54 y/o Columbian speaking male with HTN D

General Appearance PLEASANT GENTLEMAN OF GERMAN EXTRACTION D
LOCATION: HOSPITAL Mike Ivan, MD, EHMS pager 84710 AB, AM

Dr. Earle to contact from the WBM office, however, my calls AB, AM
LOCATION: ORGANIZATION some high in Na (atkins he tried) and others not good for AM

Formerly in the marines. Had lived in Poland. AM, D
LOCATION: STATE M.D. cc: Dirk O. Reece, M.D., PCP, Pune, ME SRH / valdovinos AM
LOCATION: STREET POC 112 11/05/2095 HGBA1C 7.8 (*) Spanish 30 Dan Chan AM, D
LOCATION: ZIP CODE NA NA
NAME: DOCTOR Attending: YBARRA CODE: FULL HPI: 70 AM

He has met with Drs. Eagle and Yzaguirre. AM
anti-biotics as outlined by Dr. Infant-Nickel. His ARF has AM
Best wishes, O AB

NAME: PATIENT Your patient Earnest Branch came in the office today for S
UHER, OLGA 12/31/63 instituted to achieve an LDL cholesterol S

NAME: USERNAME Peter Quale, IJ6 pgr 20951 AM, S
PROFESSION Social History NP in Laplace AB, AM, S

Volunteers - animal rescue. No current or previous tobacco. AM, S

between the two categories. While in the first case there is at least
one entity in the validation data set and the same pattern is always
respected, i.e. with @ and .org, in the second case a greater presence
of examples corresponds to an absence of recurrent patterns between
the training, validation and testing data sets: this situation can only
worsen the performance of a recognition system whose learning is
based exclusively on deep neural networks.

Look at the cases of ID: DEVICE and LOCATION: OTHER.
This time, in addition to the scarcity of examples and the absence
of repetitive patterns, there is also an improper distribution of en-
tities in the data set, resulting in the complete absence of examples
in the validation data set and contributing to confusing the learning
system that becomes more susceptible to overfitting. Between the
two categories, however, there is an important difference: if in the
first case no features suitable for recognition seem to have been ac-
quired, in the second case the presence of two successive words both
with capital letters seems to be a strong clue for the presence of an
entity: this assumption is supported by the massive presence within
the data set of this pattern also in other categories, such as LOCA-
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Table 4.10: Challenging entities
Entity sub-category Train data set Validation data set Test data set Proposed system prediction
CONTACT: EMAIL yfcooley@wsh.org vmeadows@sbhnc.org iparedes@oachosp.org CONTACT: EMAIL

yfcooley@wsh.org
gmichael@KCM.ORG

CONTACT: FAX 966-221-9723 192 7991 (385)031-7905 CONTACT: PHONE
595-442-5450 320.821.2954 (251)628-xxxx O
664-577-0339 320.821.2954
534-184-9285
648-875-5821

ID: DEVICE 193062 QQ 626 O
358892 CTE 226 O
8068103 5435 O
17722GNP 4712198 ID: MEDICAL RECORD
30058 5167DH/20 O
56520YOG SQ462162 ID: ID NUMBER
9YS7EZ 0049EO/46 O

LX39426 ID: ID NUMBER
LOCATION: OTHER the Midwest Cape Cod LOCATION: CITY

the midwest Central Park LOCATION: CITY
Fountain Of The Four Rivers Rockefeller Centre LOCATION: ORGANIZATION
GOLDEN GATE BRIDGE global O

Storting O
Capitol O
Rockefeller Centre LOCATION: HOSPITAL
global O
Storting O
Acropolis O
long island O
long island O
long island O

TION and NAME, which constitute almost half of the annotations.
In fact, other entities are either too generic to be identified (perhaps
even annotated), like global, or suffer even more ambiguity caused
by the absence of capital initials, like long island. Finally, entities
like Storting, Capitol and Acropolis fall within the problem of out-
of-vocabulary words: other de-identification systems, unlike the one
proposed, have solved this problem through the use of gazetteers and
improved F1 accordingly.

4.1.3 Ablation analysis
To establish the importance of the various main components making
up the proposed Bi-LSTM + CRF-based architecture, 5 variants of
the model are tested by eliminating several elements one at a time or
in pairs, as Dernoncourt, J. Y. Lee, Uzuner, et al. 2017 and Akbik,
Blythe, and Vollgraf 2018. Figure 4.3 presents the results of the
ablation tests.

GloVe embeddings have the lowest weight, whose removal leads
to a reduction of 0.33% and 0.31% at entity and token level respec-
tively, compared to significant -7.13% and -3.98% by removing the
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Flair embeddings. Although there is a decrease in recognition abil-
ity probably caused by a poor capture of polysemy and therefore of
semantics due to the removal of GloVe embeddings working at word
level, removing Flair embeddings is an evidence of the fact that their
ability to work at character level and capture morpho-syntactic vari-
ations is particularly useful in the case of handwritten texts due to
the second lowest score obtained.

The Bi-LSTM + CRF was replaced with a linear feedforward ar-
chitecture, i.e. a multinomial logistic regression (Menard 2002), with
and without CRF decoding layer. In fact, starting from the linear
hidden layer ht = Whxt + bh given by the feedforward network,
the label prediction is given by P (yt = j|ht) = softmax(ht)[j]. It
is interesting to note that the removal of the LSTM layers and the
CRF layer has different impacts depending on whether you analyze
the entity level (-3.69% and -3.13%) or the token level (-2.16% and
-1.04%): the Bi-LSTM has a greater impact on performance at both
token and entity level than the CRF. This is due to the fact that
sentence level tag information passing through a CRF layer makes it
more efficient to use closer past and future tags to predict the current
tag, while observing a long series of close tags through the Bi-LSTM
layer provides the best representation of the context and, therefore,
of structurally correct tag sequences, helping to correctly recognize
more single and multi-token entities. The non-linear and exception-
ally large reduction obtained by removing both layers (-14.95% at
the entity level and -5.7% at the token level) presents a discrepancy
of about 10 percentage points between the entity and token levels,
underlining the importance of the former as the main measure for
the evaluation of NER systems. Overall, in these approaches pre-
dictions are made directly on the basis of the embeddings provided
without further learning from both the recurrence of Bi-LSTM and
the presence of the context, justifying lower scores.

Finally, each removal has resulted in a more or less marked re-
duction in performance. This suggests that the insights at the basis
of the choices made to build the proposed architecture have each its
own dignity, all contributing to improve the results.
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Figure 4.3: Ablation test performance.

Table 4.11: Micro-Averaged F1 results.

Entity Level Token Level
Model Embedding Subcategory Category Binary Subcategory Category Binary

Bi-LSTM + CRF FastText 0.7034 0.7130 0.7297 0.7821 0.8155 0.8395
Bi-LSTM + CRF Flair 0.8100 0.8224 0.8289 0.8797 0.9045 0.9211
Bi-LSTM + CRF FastText + Flair 0.8063 0.8294 0.8308 0.8850 0.9116 0.9211
BERTBASE Uncased - 0.6442 0.6667 0.6848 0.7667 0.8083 0.8796
BERTBASE Cased - 0.7553 0.7880 0.7969 0.8561 0.8979 0.9260

4.2 Second use case
The Micro-Averaged F1

1 scores of all tested models and related em-
beddings are shown in Table 4.11, ordered in accordance with the
criteria given in Section 3.4.

In regard to the Bi-LSTM + CRF model, FastText embedding,
working at the sub-word level and managing semantic similarity ac-
cordingly, can better detect entities. Flair embedding, instead, re-
lies more on its ability to exploit the context and manage polysemy.
While individually FastText and Flair embeddings have comparable
performance, a stacked embedding of their combination improves
overall performance and is also the best method.

In addition, BERTBASE Uncased achieves significantly lower re-
sults than the Cased version: this underlines the importance of train-
ing systems capable of distinguishing upper and lower case for clinical

1Depending on how precision and recall are calculated, different types of F1 can be obtained.
In Micro-Averaging, the number of correct, predicted and expected entities or tokens of each
class is added up and, with their total values, precision and recall are calculated. In Macro-
Averaging, precision and recall values are calculated for each class, then overall precision and
recall are calculated as the arithmetic average of class values. Instead, in Weighted Macro-
Averaging, overall precision and recall are calculated as the weighted average (related to the
number of expected entities or tokens for each class) of the precision and recall values.
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de-identification. In fact, in this sub-task of the NER, the Named
Entities are often proper names, of people, places, or things, and
therefore written with capital letters.

According to the results obtained, the Bi-LSTM + CRF model
with the proposed stacked embedding (FastText plus Flair) performs
better than all the others. It outperforms models made with Fast-
Text or Flair embeddings only and the BERTBASE Uncased model.
Instead, the BERTBASE Cased model is outperformed in all metrics
except one: it is important to underline that the BERTBASE Cased
model outperforms the Bi-LSTM + CRF model with the FastText
plus Flair stacked embedding only at binary token level, the least
significant to evaluate the performance of a NER system. It is of
particular importance to consider this aspect in a de-identification
scenario: in fact, the next step in this process is generally anonymi-
sation, so it is necessary to obtain correct results at the most refined
level of classification in order to replace the identified entities with
valid surrogates Vincze and Farkas 2014, e.g. replacing a date with
the surrogate of an ID number would allow the reader to easily iden-
tify the point of substitution by opening the door for an unwanted
re-identification.

Therefore, although the data set is modest in size, using pre-
trained embeddings and language models it is possible to obtain
good performance. The Bi-LSTM + CRF model with the proposed
stacked embedding made by FastText plus Flair showed superior
performance compared to all other models analyzed: its detailed
results are reported in Table 4.12. The subscripts E and T indicate
Entity or Token level respectively.

Analysing the results obtained, it is possible to identify some as-
pects undoubtedly related to the type of data set. To better support
this analysis, it is introduced in Table 4.13 the Token/Entity ratio
(indicated as T/E in the Table for short) for each subcategory, cal-
culated on the basis of the entities present in the data set and on
how many tokens make up each entity.

First of all, the AGE category is the only one to obtain high and
identical results both at entity and token level: this is due to the
general coincidence between the two levels, being the Token/Entity
ratio equal to 1 in this case. Moreover all the entities are of numerical
type, with few exceptions as for example the entity sei (six) and 47aa
(47yo).
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Table 4.12: Detailed results obtained by the best model Bi-LSTM +
CRF with stacked FastText + Flair embedding

i2b2 Sub-Category PE RE F1E PT RT F1T

AGE 1.0000 0.8909 0.9423 1.0000 0.8909 0.9423
CITY 0.4872 0.4191 0.4494 0.8452 0.4804 0.6108
COUNTRY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DATE 0.9022 0.7445 0.8151 0.9414 0.6914 0.7966
DOCTOR 0.8893 0.8312 0.8590 0.9825 0.8659 0.9203
HOSPITAL 0.6073 0.7955 0.6884 0.8891 0.9490 0.9180
IDNUM 0.9981 0.8140 0.8966 0.9981 0.6562 0.7919
LOCATION OTHER 0.5000 0.1000 0.1643 0.5000 0.1000 0.1643
ORGANIZATION 0.3186 0.3555 0.3305 0.8620 0.6000 0.6830
PHONE 0.9600 0.5428 0.6897 0.9600 0.5428 0.6897
PROFESSION 0.8773 0.5778 0.6960 1.0000 0.5692 0.7246
URL 0.9422 0.9421 0.9421 0.9974 0.8064 0.8918
Total 0.8323 0.7819 0.8063 0.9408 0.8355 0.8850
i2b2 Category PE RE F1E PT RT F1T

AGE 1.0000 0.8909 0.9423 1.0000 0.8909 0.9423
CONTACT 0.9426 0.9084 0.9251 0.9951 0.7881 0.8796
DATE 0.9022 0.7445 0.8151 0.9414 0.6914 0.7966
ID 0.9981 0.8140 0.8966 0.9981 0.6562 0.7919
LOCATION 0.6785 0.7080 0.6928 0.9499 0.9341 0.9419
NAME 0.8893 0.8312 0.8590 0.9825 0.8659 0.9203
PROFESSION 0.8773 0.5778 0.6960 1.0000 0.5692 0.7246
Total 0.8626 0.7986 0.8294 0.9691 0.8606 0.9116
i2b2 Binary PE RE F1E PT RT F1T

NAMED ENTITY 0.8664 0.7982 0.8308 0.9792 0.8697 0.9211
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Table 4.13: Token/Entity ratio per subcategories.

PHI C:Subcategory # of Tokens # of Entities T/E
AGE 118 118 1.0000
C:PHONE 10 10 1.0000
C:URL 160 142 1.1268
DATE 200 154 1.2987
I:ID NUMBER 297 266 1.1165
L:CITY 139 101 1.3762
L:COUNTRY 6 6 1.0000
L:HOSPITAL 1297 266 4.8759
L:ORGANIZATION 56 13 4.3077
L:OTHER 9 9 1.0000
N:DOCTOR 1564 733 2.1337
N:PATIENT 3 3 1.0000
PROFESSION 96 65 1.4769

The CONTACT category, although not as high and symmetrical,
still obtains important results. In detail, this category is composed
mainly of entities of type URL and minimally by entities of type
PHONE. In particular, the entities of type URL can rely on rather
repetitive patterns and, if broken on several tokens, on always the
same introductory formulas (e.g. http and www). In the case of the
entities of type PHONE, the only entity present is 118: the sub-
category is reduced in this case to a single numerical almost always
recognized.

The DATE category, both at entity and token level, averages
around a F1 of 80%. Several considerations about the existing enti-
ties come into play here. The most often recurrent pattern is that
of the type gg/mm/yyyy but not always in the same variant and
for this reason it is not always identified: in some cases it is found
g/m/yyyy or gg/m/yyyy or gg.mm.yyyy or g/m or gg/m or yyyy -
mm - dd. Equally often there are the single entities 2020 or marzo
and febbraio but it is often possible to find the English variants of
the months of the year January, February or Feb, March and April
or April because they refer to international studies of medical col-
leagues. Therefore the abundance of patterns not always numerous
makes the recognition task less easy.
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The category ID presents instead many mono-token entities in-
troduced by the same formula (e.g. the numbers from 1 to 115 that
indicate the medical records preceded by the pattern COVID-19:
caso (COVID-19: case)) that contribute to keep the result espe-
cially high at entity level. However, the presence of a few scarcely
recurrent if not unique and multi-token patterns lowers the perfor-
mance at token level: in fact we have entities of the type e200067,
S2352302620301095, ehaa254 or multi-token as 10.1148/radiol.2020
200823 in which the black-red alternation indicates the different
component tokens.

The category LOCATION gets good results at token level but
not entity. This behavior is generally due to the presence of several
subcategories, such as CITY, COUNTRY, HOSPITAL, ORGANI-
ZATION and OTHER. If for the entities of type CITY and HOSPI-
TAL there is a sufficient number of samples more or less distributed
between training and test sets, the same cannot be said for the other
three categories, mainly present in the test set and with a small num-
ber of samples. In addition, for the CITY type entities there is an
additional disadvantage due to the presence of a certain number of
abbreviations, such as VV, CE and VR for Vibo Valentia, Caserta
and Verona respectively, which are not very numerous and therefore
difficult to recognize. On the other hand, for the HOSPITAL type
entities there are tokens that are often repetitive components within
the entities, as for example UOC, ASST, AO or PO even in the dot-
ted versions, e.g. U.O.C., but the disturbing element is often the
presence within the entity, as part of the hospital name, of entities
that could also be indicated as NAME or LOCATION.

The category NAME achieves good results and in practice con-
sists only of the subcategory DOCTOR. In this case, despite the
token/entity ratio greater than 2, the results at entity level are not
very far from those at token level. In fact, there are two recurring
patterns: Name Surname or N. Surname, although in the latter case
it may happen to find the entity constituted by a single token N.Sur-
name which becomes more difficult to interpret, explaining the lower
F1E.

Finally, the PROFESSION category has the worst performance:
this result is not unexpected as in NER tasks, and in de-identifica-
tion tasks in particular H. Yang and Garibaldi 2015; Z. Liu, Tang,
et al. 2017, it is quite common. This behavior is due to the peculiar-
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Table 4.14: Examples of polysemous entities

i2b2 category: subcategory Extracted sentence
LOCATION: HOSPITAL Viene ricoverato inizialmente nel reparto di Osservazione Breve - Covid.

(He was initially admitted to the Short Observation department - Covid.)
PROFESSION presidio Ospedaliero di Vigevano, direttore ff reparto di radiologia Elena Belloni

(Vigevano Hospital, director ff radiology department Elena Belloni)
LOCATION: HOSPITAL UOC Radiologia Pediatria PO G. Di Cristina ARNAS Civico Palermo

(UOC Radiology Pediatrics PO G. Di Cristina ARNAS Civico Palermo)
NAME: DOCTOR Cristina Veirana, Alessandro Gastaldo UOC Radiologia, Ospedale San Paolo

(Cristina Veirana, Alessandro Gastaldo UOC Radiology, San Paolo Hospital)

Table 4.15: Cosine similarity between words in Italian FastText em-
beddings

Word 1 Word 2 Cosine similarity
vibonese Vibo 0.50009230
lodigiano Lodi 0.58718747
Veneto Lombardia 0.62249140

ity of this category: the professions are various and hardly recurrent
in the medical records if used as a descriptive part of the personal
information of patients, as for example dipendente di un albergo (ho-
tel employee) and medico di continuità assistenziale (continuity of
care doctor). On the other hand, to describe the roles in hospital
facilities, if the medical records are rather sectorial as in this case,
it is possible to find recurrent entities, such as Direttore (Director),
which are always recognized.

4.2.1 Qualitative analysis
The Bi-LSTM + CRF model with the proposed stacked embedding
made by FastText plus Flair works both at the sub-word level and at
the character level exploiting the context: the results show that this
proposed stacked embedding is particularly effective in improving
the ability to detect and classify entities.

The presence of Flair embedding and its ability to work at
character level allow the identification of a series of entities that
FastText embedding alone is not able to detect, such as DOCTOR
type entities where the surname is attached to the pointed name,
such as U.Burgio, M.Castiglia, L.Ferraro, M.Finazzo, G.Marsala,
L.Putignano and A.Re. Instead, the ability to exploit polysemy
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and context is effective both when entities are multi-token hence
difficult to identify like HOSPITAL type entities such as reparto
di Osservazione Breve (Short Observation Department), U.O.C.
di Malattie Infettive (Infectious Disease Complex Operating Unit),
PO G. Di Cristina (PO G. Di Cristina) and when entities are in
foreign language, hence unusual, but mentioned in a specific context
like DOCTOR type entities such as Wang, Ruchong and Chunli.
In a similar way these capabilities make it easy to identify URL
type entities such as https://doi.org/10.3760/cma.j.cn112147-
20200217-00106, https://doi.org/10.2214/ajr.20.22954 and
https://doi.org/10.1148/radiol.2020200823. Some examples of
polysemous entities are reported in Table 4.14.

The use of sub-word level embedding, such as FastText, allows to
identify semantically similar entities. In fact FastText embedding,
unlike Flair one, is able to identify entities like vibonese and lodi-
giano: these are other ways to indicate the provinces of Vibo Valentia
(often recurring as Vibo) and Lodi respectively and, although these
entities are never seen before, their semantic similarities at sub-word
level allow the system to recognize them. Similarly the entity Veneto
when introduced by the term regione (region) is correctly recognized:
in the training data set there is a similar introductory formula for
another region, i.e. Lombardia. For the sake of completeness, the
cosine similarity between entities are reported in Table 4.15.

The combination of Flair and FastText embeddings, despite the
contextual capabilities, is not always able to recognize single to-
ken entities. Some examples in this sense are given by the entities
domenica, April and March of type DATE, or by the entity Reggio of
type CITY, as well as numerous DOCTOR type entities belonging
to foreign but particularly short names such as Han, Shi, Cao, Pan
and Sun.

It is interesting to note that there are some entities that are
detected by the Bi-LSTM + CRF model with FastText plus Flair
embeddings but not by BERTBASE Cased model, and this is prob-
ably due to a different work at character and sub-word level: for
example we have the 118 entity of type PHONE, or the SOC Radio-
diagnostica (complex radiodiagnostic operating structure) entity of
type HOSPITAL only partially detected by BERTBASE Cased model.

Some significant examples of challenging entities for all the mod-
els have been reported in Table 4.16. In some cases, as for the entities
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Table 4.16: Examples of Unidentified Entities; in blue are identified
the entities belonging to LOCATION category whereas in red the
ones belonging to PROFESSION category.

[...] La Pz viene assistita e trattata in MU (reparto dedicato ai pazienti COVID-19)
e dopo circa 1 settimana dimostra notevoli miglioramenti [...]
[...] The patient is assisted and treated in emergency medicine

(department dedicated to COVID-19) patients and after about 1 week
shows significant improvements) [...]

[...] in accordo con i colleghi clinici del Pronto Soccorso con attribuzione di uno
score radiologico per quantificare l’estensione di malattia. [...]

[...] in agreement with clinical colleagues in the ER with the attribution of a
radiological score to quantify the extent of the disease. [...]

[...] esami ematochimici con PCR lievemente aumentata. Mamma
dipendente di industria chimica con casi positivi al tampone naso - faringeo. [...]
[...] blood chemistry tests with slightly increased C-reactive protein. Mother

employee of chemical industry with positive cases of nose - pharyngeal swab. [...]
[...] Giunge al PS di Serra San Bruno (VV) per riferita febbre (da almeno 5 giorni) [...]

[...] He arrives at the emergency room of Serra San Bruno (VV) for reported fever
(for at least 5 days) [...]

of type PROFESSION clinici (clinics) and dipendente di industria
chimica (chemical industry employee) the recognition is difficult due
to the lack of examples in the training data set combined with am-
biguities and complex patterns respectively. On the other hand, the
HOSPITAL entity reparto dedicato ai pazienti COVID-19 (ward ded-
icated to COVID-19 patients) is rather ambiguous and annotated in
a questionable way, therefore difficult to identify. Finally, among
CITY entities, it remains very difficult to recognize VV which is an

Figure 4.4: Ablation analysis.
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abbreviation, albeit present in an extended form and with capitalized
initials within the context.

Entities of type COUNTRY, such as Italy, Inghilterra and China
are not recognized by any system because of the lack of representa-
tiveness and disparities within data sets: in the training system we
find only Italia of type COUNTRY.

4.2.2 Ablation analysis
The ablation analysis allows to understand the weight of the main
components of a system within a given scenario (Dernoncourt, J. Y.
Lee, Uzuner, et al. 2017; Akbik, Blythe, and Vollgraf 2018). Here it
can be seen which layer makes the greatest contribution to clinical
de-identification in a low-resource language scenario with a small
data set. In the specific it goes to compare a baseline, constituted
by the best model that is the BiLSTM + CRF with FastText plus
Flair embedding, with three ablated models: one will not have the
CRF layer, the second one will have a simple Feed Forward layer
instead of the BiLSTM layer and the third one without both CRF
layer and Bi-LSTM layer (substituted by the Feed Forward one).

When the Bi-LSTM layer is replaced by a linear Feed Forward
layer, i.e. when a multinomial logistic regression (Menard 2002) is
applied, then the label prediction is obtained as P (yt = j|ht) =
softmax(ht)[j] where the hidden layer ht is equal to Whxt + bh.

This analysis allows to highlight two key aspects for this partic-
ular scenario:

• the combination of a BiLSTM layer and a CRF layer always
achieves better performance than the individual layers;

• as the level of classification difficulty increases, it is possible
to better distinguish the contributions of the different layers:
in fact, if the CRF layer and the BiLSTM layer seem to have
almost the same weight in a binary token scenario, the differ-
ence in favor of the model with the CRF layer becomes more
evident proceeding towards the entity subcategory scenario.

To sum up, if on the one hand each removal has resulted in a
marked reduction in performance suggesting that the choices made
to assemble the analyzed architecture are correct, on the other hand
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it is possible to underline that, unlike what previously proposed by
the scientific literature, it is not sufficient to conduct such a study
limiting itself to the binary token layer as it could obtain misleading
indications on the performance of the different layers composing the
model.

4.3 Third use case
The Micro-Averaged F1 results are shown in Table 4.17. In particu-
lar, column Model indicates the trained model, while column Strategy
indicates the training strategy adopted. On the other columns, as
explained in Section 3.4, there are six evaluation critera: S, C and B
represent respectively i2b2 subcategory, i2b2 category, binary, while
the subscripts E and T stand for entity and token.

Table 4.17: Micro-Averaged F1 results

Model Strategy SE CE BE ST CT BT

Bi-LSTM+CRF: BPEmb (IT) + Flair (IT) IT 0.8110 0.8278 0.8317 0.8856 0.9115 0.9190

Bi-LSTM+CRF: MultiBPEmb + Flair multi fast

EN 0.2662 0.2948 0.3134 0.4103 0.4914 0.5797
IT 0.7910 0.8118 0.8159 0.8826 0.9060 0.9183
MIX 0.8371 0.8602 0.8618 0.8970 0.9304 0.9417
EN-IT 0.8391 0.8595 0.8619 0.9033 0.9321 0.9449

BERTbase (IT) Cased IT 0.7553 0.7880 0.8561 0.7969 0.8979 0.9260

mBERT Cased

EN 0.4585 0.5029 0.6878 0.5498 0.6097 0.6878
IT 0.7768 0.8207 0.9449 0.8923 0.9353 0.9449
MIX 0.7696 0.8105 0.9379 0.8833 0.9245 0.9379
EN-IT 0.7228 0.7576 0.8969 0.8241 0.8678 0.8969

In particular, two pre-trained Italian language models were used
as baselines: the Bi-LSTM + CRF: BPEmb (IT) + Flair (IT) and
the BERTbase (IT) Cased models. In these cases the only possible
training strategy involves the exclusive use of the Italian training set.
Observing the results it is possible to understand how it is feasible
to obtain better performance by using strategies based on transfer
learning approaches: in this way it is easy to increase the training
set by using data available in languages with high resources such as
English.

Furthermore, the results further confirm what (Devlin et al. 2019)
have already expressed in the literature: although the results at to-
ken level suggest the use of BERT-based architectures for the NER
task, this assumption is actually misleading. It is important to re-
member that the NER, hence de-identification as the basis of the
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anonymisation process, should be evaluated at the level of multi-
class entities, i.e. category and subcategory. In all other scenarios,
in fact, entities could be replaced by the wrong surrogates, which
would leave ample room for re-identification (Vincze and Farkas
2014). As a result, it is possible to consider the model Bi-LSTM
+ CRF with MultiBPEmb + Flair multi fast stacked embedding
trained with strategy EN-IT as the most suitable for the clinical de-
identification in a low-resources scenario such as that of the Italian
language. Hereinafter, the Bi-LSTM + CRF: BPEmb (IT) + Flair
(IT) will be referred to as monolingual system, while the Bi-LSTM
+ CRF: MultiBPEmb + Flair multi fast model trained with MIX or
EN-IT strategies as crosslingual systems.

4.3.1 Embeddings ablation analysis
For the sake of completeness, it was analysed the importance of each
embedding type within the EN-IT crosslingual system. Results are
reported in Table 4.18.

As can be easily seen from the results, neither Flair alone nor
MultiBPEmb alone can achieve results comparable to their combi-
nation: exploiting a contextual model that works at character level
proves to be a less performing choice compared to the use of a sub-
word model in the case of a low-resources language. But the consid-
erable detachment that is obtained by combining the two different
embedding suggests that, in a clinical de-identification task such the
one under analysis, the use of a subword model that can also exploit
contextuality is particularly effective.

Table 4.18: Micro-Averaged F1 results for embeddings ablation anal-
ysis of the EN-IT crosslingual system.

Embedding SE CE BE ST CT BT

MultiBPEmb 0.7614 0.7743 0.7914 0.8201 0.8569 0.8835
Flair multi fast 0.7621 0.7851 0.7972 0.8529 0.8801 0.8963
MultiBPEmb + Flair multi fast 0.8391 0.8595 0.8619 0.9033 0.9321 0.9449
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4.3.2 Embeddings space analysis
The Figure 4.5 reports an embedding scatter plot obtained applying
a 3D Principal Component Analysis (PCA) on the original embed-
ding space representing the Original-Embedding (MultiBPEmb +
Flair multi fast) on the first row and the Reprojected-Embedding
after the double training strategy (EN-IT) on the second row. On
the other hand, the first column presents the tokens related to En-
glish sentences whereas the second column the ones related to Italian
sentences.

The two data sets used for the plots are:

• the Italian SIRM COVID-19 test set composed by 1185 sen-
tences;

• the first 1185 sentences of the English i2b2 2014 training set.

This choice was made in order to have about the same data points
for both English and Italian scenarios.

Figure 4.5: Scatter plots of three dimensional principal component
analysis of the embedding points.

For the sake of clarity, only the two most represented categories
were considered, C:Name and C:Location, respectively the red and
blue points for the English set and the orange and black points for
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the Italian set. All other categories are labeled with C:Other, using
the colors yellow (EN) and green (IT).

The scatter plots highlight two major insights:

1. Column view: the training process has generated a redistribu-
tion of clusters on the reprojected embedding space depending
on the NER task adapting their own position on the analyzed
categories;

2. Row view: the better alignment of embeddings clusters consid-
ering the relative position of the clusters related to each cate-
gory: in fact, in the reprojected embedding space, the clusters
of the same category remain in the same area for both lan-
guages.

4.3.3 Considerations
The results obtained allow to identify what may be the best ap-
proaches to manage clinical de-identification using NER systems for
Italian language. First of all it is possible to notice that the use of
the crosslingual system trained in English and tested in Italian does
not obtain exciting results, on the contrary it obtains worse results
than a monolingual system with training and testing in Italian.

In detail, this study allows to highlight that, even if used in a
scenario of limited resources such as that of the Italian language,
crosslingual systems properly used can obtain better results than
monolingual systems provided some caution during training, so as
to take full advantage of the beneficial effects due to the transfer
learning. In fact, crosslingual systems that are trained with a mixed
English - Italian data set or with a double training first in English
then in Italian, can obtain better results than monolingual systems.
Moreover, this study shows that it is slightly preferable to adopt
a strategy with double training, rather than single training with a
mixed data set: this finding leads to think that in the first case the
”noise” introduced within the network is more limited, favoring a
better settlement of the weights of the neural network.

Along with these aspects, it is important to add another crucial
consideration: the world of research today is strongly interconnected,
which is why it is increasingly common to come across bibliometric
references, often in English or transliterated Chinese, within medical
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records written in any other language. Hence there is a phenomenon
sometimes similar to code-switching, although references do not con-
stitute expressions in different languages within the same expression,
but rather sentences disconnected from the rest of the discourse and
reported as notes at the bottom of the page. For these reasons,
crosslingual systems can, in addition, succeed in obtaining superior
performance, at least in terms of recognition of entities in languages
other than the target language. An example can be the entity State
Administration of Traditional Chinese Medicine, written in English
within a predominantly Italian text and correctly recognized only by
the crosslingual systems as LOCATION: ORGANIZATION.

4.3.4 Strengths and weaknesses: monolingual vs
crosslingual systems

In order to clarify the advantages and disadvantages of the best
crosslingual system, i.e. trained with EN-IT strategy, compared to
the monolingual system, a comparative analysis of the entities sur-
veyed is proposed below. For simplicity, the monolingual system will
be indicated by the abbreviation IT while the crosslingual system
with EN-IT training strategy will be indicated by the abbreviation
EN-IT.

Entities analysis

Table 4.19 shows the entities that are correctly recognized only by
one system, IT or EN-IT. The output of the tokenization process is
emphasized by the alternation of black and red colors.

First of all, the only type of case study in which the IT system has
an advantage over the EN-IT system: it refers to all those situations
in which there are multi-token entities in the target language that
are complex and specific. An example is given by the entity of type
LOCATION: HOSPITAL Unità di terapia intensiva ”Intensive Care
Unit”: the IT system correctly recognizes the entity, instead the EN-
IT system succeeds in a random way because of the complexity and
peculiarity of the entity, which neither presents the same number of
tokens as the English correspondent (4 vs 3) nor has the same roots
for all the words in the other training language (terapia vs ”care”).
On the other hand, the EN-IT crosslingual system has a number
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of advantages in different scenarios, which can be grouped in three
cases.

The first case concerns all those entities in languages other than
the target language, but present because they may be quotes. A fre-
quent example is the one given by foreign names, English or Chinese,
such as the entity Liu, Bin of type NAME: DOCTOR. Even if the
Beginning or Inside of the entity is not correct, maybe because of an
unusual pattern compared to the Italian, i.e. Surname, Name, it is
possible to get better results at token level. Here the crosslingual is
clearly superior to the monolingual approach.

The second case, on the other hand, concerns those entities which
generally belong to the LOCATION category. What can be identi-
fied is a higher accuracy, especially finer-grained and therefore at
subcategory level, of the EN-IT system than the IT system. In
detail, some entities of type LOCATION: CITY or LOCATION:
OTHER as Milano, Marcianise, Vibo Valentia, Wuhan and Veneto
are generally correctly identified by the EN-IT system, instead with
wrong subcategories or unseen by the IT system. The motivation
is probably to be found in the ability of the crosslingual system to
rely to a greater extent on contextual patterns derived also from the
English language that suggest the presence of an entity of type LO-
CATION: CITY. Instead, the IT system tends to identify them as
LOCATION: HOSPITAL: this error is induced by the fact that in
the Italian language the names of cities or places are often used also
to give the name to the hospital that oversees the city or place.

Finally, the third case considers those entities of type AGE, CON-
TACT: PHONE, DATE which, although not present in large num-
bers, are expressed through recurrent patterns also in other lan-
guages such as English: some examples can be 47aa ”47yo”, 118,
12.02.2020.

4.3.5 Challenging entities
In this section the focus is on the entities that are difficult to identify
for both systems, with the aim of providing some explanation. As
already mentioned by (Dernoncourt, J. Y. Lee, Uzuner, et al. 2017),
the main sources of error are generally due to (1) abbreviations,
whose brevity and variety contribute to confuse the learning system,
(2) ambiguities, due to polysemic tokens used in unclear contexts,
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Table 4.19: Examples of recognized entities. The alternation of black
and red words is used to emphasize the output of the tokenization
process.

i2b2 Category: Subcategory Entity Recognized by
AGE 47aa EN-IT
CONTACT: PHONE 118 EN-IT
DATE 12.02.2020 EN-IT
LOCATION: CITY Milano EN-IT

Marcianise EN-IT
Vibo Valentia EN-IT
Wuhan EN-IT

LOCATION: HOSPITAL Unità di terapia intensiva (inten-
sive care unit)

IT

LOCATION: OTHER Veneto EN-IT
NAME: DOCTOR Liu, Bin EN-IT

(3) debatable annotations, i.e. annotation errors, shortcomings or
variations with respect to the guidelines and (4) both scarcity and
sparsity of certain types of entities within the data sets. These error
sources have been indicated by the abbreviations AB, AMB, D and
S, respectively, and used in the Motivation column of Table 4.20. In
detail, this table shows the entities that are most difficult to iden-
tify and the alternation of the colors black and red indicates how
tokenization works.

Some examples are LOCATION: CITY entities such as Fabrizia
or Melito, scarcely present, or LOCATION: CITY abbreviations
widely present as VV and CE to indicate the cities of Vibo Valentia
and Caserta respectively, or LOCATION: OTHER entities such as
vibonese and lodigiano, which represent unusual ways of identifying
the provinces Vibo Valentia and Lodi.

Moreover, the systems under analysis are not able to successfully
identify those complexly structured entities such as reparto dedicato
ai pazienti COVID-19 ”COVID-19 patient department” or HUB di
riferimento Covid ”Covid Reference HUB”, labeled as LOCATION:
HOSPITAL but not predicted in any way, probably because of the
too ambiguous way of identifying specific places without even using
capital letters.

While ID: ID NUMBER or CONTACT: URL
entities such as 10.1186/s40779-020-00240-0 and
http://yzs.satcm.gov.cn/zhengcewenjian/2020-02-19/13221.html
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Table 4.20: Challenging entities. The alternation of black and red
words is used to emphasize the output of the tokenization process.

i2b2 Category: Subcategory Entity Motivation
CONTACT: URL http://yzs.satcm.gov.cn/

zhengcewen-
jian/2020-02-19/13221.html

AMB

DATE domenica (sunday) S
ID: ID NUMBER 10.1186/s40779-020-00240-0 AMB
LOCATION: CITY Fabrizia S

Melito S
VV AB
CE AB

LOCATION: HOSPITAL reparto dedicato ai pazienti
COVID-19 (COVID-19 patients
department)

AMB, D

HUB di riferimento Covid (Covid
reference HUB)

AMB, D

LOCATION: OTHER vibonese AMB, S
lodigiano AMB, S

PROFESSION clinici (clinician) S
dipendente di industria chimica
(chemical industry employee)

S

medico di Pronto Soccorso (Emer-
gency Room medical doctor)

S

that the tokenizer tends to break into several sub-tokens are
never correctly recognized by either system and, in addition, also
ambiguities contribute to lower the score: for example, within the
second entity it might be easy to confuse the 2020-02-19 part with
an entity of type DATE.

Furthermore, those entities of type PROFESSION, such as clin-
ici ”clinicians”, dipendente di industria chimica ”chemical industry
employee” or medico di Pronto Soccorso ”Emergency Room doctor”,
are not detected by the systems because of the scarcity, as the num-
ber of entities in training is too small.

Likewise, entities that do not recur in the training set but that
also present a completely different morphology such as domenica
”sunday” (type DATE) are not detected at all.
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Chapter 5

Conclusions
The purpose of this final chapter is to summarise what was seen in
the previous chapters and to summarise the most important results
obtained in the various proposed use cases.

Firstly, a novel approach to clinical de-identification through
NER was proposed. The evaluation on the i2b2 2014 de-identifi-
cation data set showed that leveraging the proposed method is pos-
sible to obtain results that are on par or outperform the state of
the art without any feature engineering or the use of handcrafted
rules, which indicates the validity of the model. As main results,
the proposed de-identification system has achieved the highest Mi-
cro-Averaged scores of F1 of 94.80%, 95.79%, 96.14% and 96.78%,
97.92%, 98.32% at entity level and token level respectively for i2b2
subcategory, i2b2 category and binary recognition with SGF = 32
and in detail it establishes a new state of the art at the category level
which is the main evaluation method for de-identification aiming to
replace entities with surrogates for anonymisation purposes. The
main limitations of this research work concern (1) the limited vali-
dation scope due to the restricted diffusion of other de-identification
data sets and (2) both the scarce memorisation capacity and the lack
of parallelism of the Bi-LSTM + CRF architecture. All the results
leave a further room for improvement: in future works it will be
possible to both create other de-identification data sets of the same
dimensions on which the method proposed will be validated and ex-
periment other architectures, such as those based on Transformers,
to manage long documents. In addition, the impact of the re-pro-
jection of pre-trained embeddings as input to the Bi-LSTM + CRF
architecture will be deeply investigated, by considering more data
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sets and addressing other NER problems. Furthermore, clustering
techniques, such as the ones proposed in (Abualigah, Khader, and
Hanandeh 2018; Abualigah 2019), will be investigated to facilitate
and improve the annotation process of entities for creating novel de-
identification data sets as well as to extend the set of features useful
for the sequence labelling and the classification of PHI. Finally, simi-
larly also to other Artificial Intelligence-based applications (Xiaohui
Yang et al. 2020), it will be possible to investigate how to combine
big unstructured medical records with incremental learning in order
to continuously refine the performance of the proposed system in
real-world scenarios.

Secondly, a novel Italian data set was proposed for clinical de-
identification. This data set was created from the COVID-19 medical
records made available by the Italian Society of Radiology. It was
labelled by three Italian native speakers and assessed by using two
different indexes with a substantial agreement between them. More-
over, a Bi-LSTM + CRF architecture in combination with a stacked
embedding composed by FastText embedding plus Flair (forward
and backward) embeddings was tested for clinical de-identification,
on the proposed Italian data set. Furthermore, another state-of-the-
art architecture, i.e. BERTBASE, was tested leveraging the Italian
models made available by the MDZ Digital Library team at the
Bavarian State Library. The Bi-LSTM + CRF architecture with
the stacked embedding obtained the best results among the others.
These results showed that it is desirable to adopt both contextualised
and character-level language models in combination with sub-word
embeddings: this way the system is capable to capture, on the one
hand, the polysemy of words, their morpho-syntactic variations, rare
words and/or misspelled ones and, on the other hand, the latent se-
mantic and syntactic similarities. In the future it might be interest-
ing to compare other Italian versions of BERT or existing language
models to see which ones are best suited for a clinical de-identifica-
tion scenario and to assess if they can outperform the combination
of the Bi-LSTM + CRF architecture with Italian FastText plus Flair
stacked embedding herein tested.

Thirdly, two cutting-edge NER architectures, Bi-LSTM + CRF
and BERT, suitable for de-identification, were analysed in order to
understand their behaviour on COVID-19 medical records with re-
spect to a low-resource language scenario like the Italian one. For
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this purpose, both English i2b2 2014 and SIRM COVID-19 de-iden-
tification data sets were used. Additionally, four strategies were
tested to pinpoint the best to apply in this particular context. Per-
formed tests showed that the best strategy to adopt was a double
training, before in English then in Italian, exploiting a Bi-LSTM +
CRF architecture in combination with MultiBPEmb and Flair Mul-
tilingual Fast embeddings. The results obtained leave further room
for improvement, although they have allowed to highlight how, in
this situation, it is desirable to proceed with clinical de-identifica-
tion given the low-resources language problem. An interesting future
development could be the comparison of different architectures even
among those not available for multilingual purposes, to understand
if at the moment the results obtained are the best possible. The real
limitation of this research area remains the size of the data sets avail-
able for clinical de-identification: it would be appropriate to increase
the availability of de-identification data sets of the same size as the
English i2b2 2014, so as to allow a fair comparison with monolingual
systems and provide strong baselines of reference before attempting
necessary approaches to low resources case studies.

Further studies of interest could include the development of mod-
els capable of automatically choosing the best knowledge transfer
strategy based on the input data and the task to be performed,
or capable of standardizing the different possible input PHI into a
predefined high-level set whatever the set of input labels, as well as
testing and then extending the techniques employed to datasets from
other areas.
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