8 research outputs found

    Efficient caching through stateful SDN in named data networking

    Get PDF
    Named data networking (NDN) is an innovative paradigm to provide content-based services in future networks. As compared with legacy networks, naming of network packets and in-network caching of content make NDN more feasible for content dissemination. However, the implementation of NDN requires drastic changes to the existing network infrastructure. One feasible approach is to use software-defined networking (SDN), according to which the control of the network is delegated to a centralized controller, which configures the forwarding data plane. This approach leads to large signaling overhead and large end-to-end delays. In order to overcome these issues, we propose to enable NDN using a stateful data plane in the SDN network. In particular, we realize the functionality of an NDN node using a stateful SDN switch attached with a local cache for content storage and use OpenState to implement such an approach. In our solution, no involvement of the controller is required once the OpenState switch has been configured. We benchmark the performance of our solution against the traditional SDN approach considering several relevant metrics. Experimental results highlight the benefits of a stateful approach and of our implementation, which avoids signaling overhead and significantly reduces end-to-end delays.This work is partially supported by the H2020 5G-TRANSFORMER project (grant no. 761536) and the H2020 HIGHTS project (grant no. 636537). EURECOM acknowledges the support of its industrial members, namely, BMW Group, IABG, Monaco Telecom, Orange, SAP, ST Microelectronics, and Symantec

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Caching Techniques in Next Generation Cellular Networks

    Get PDF
    Content caching will be an essential feature in the next generations of cellular networks. Indeed, a network equipped with caching capabilities allows users to retrieve content with reduced access delays and consequently reduces the traffic passing through the network backhaul. However, the deployment of the caching nodes in the network is hindered by the following two challenges. First, the storage space of a cache is limited as well as expensive. So, it is not possible to store in the cache every content that can be possibly requested by the user. This calls for efficient techniques to determine the contents that must be stored in the cache. Second, efficient ways are needed to implement and control the caching node. In this thesis, we investigate caching techniques focussing to address the above-mentioned challenges, so that the overall system performance is increased. In order to tackle the challenge of the limited storage capacity, smart proactive caching strategies are needed. In the context of vehicular users served by edge nodes, we believe a caching strategy should be adapted to the mobility characteristics of the cars. In this regard, we propose a scheme called RICH (RoadsIde CacHe), which optimally caches content at the edge nodes where connected vehicles require it most. In particular, our scheme is designed to ensure in-order delivery of content chunks to end users. Unlike blind popularity decisions, the probabilistic caching used by RICH considers vehicular trajectory predictions as well as content service time by edge nodes. We evaluate our approach on realistic mobility datasets against a popularity-based edge approach called POP, and a mobility-aware caching strategy known as netPredict. In terms of content availability, our RICH edge caching scheme provides an enhancement of up to 33% and 190% when compared with netPredict and POP respectively. At the same time, the backhaul penalty bandwidth is reduced by a factor ranging between 57% and 70%. Caching node is an also a key component in Named Data Networking (NDN) that is an innovative paradigm to provide content based services in future networks. As compared to legacy networks, naming of network packets and in-network caching of content make NDN more feasible for content dissemination. However, the implementation of NDN requires drastic changes to the existing network infrastructure. One feasible approach is to use Software Defined Networking (SDN), according to which the control of the network is delegated to a centralized controller, which configures the forwarding data plane. This approach leads to large signaling overhead as well as large end-to-end (e2e) delays. In order to overcome these issues, in this work, we provide an efficient way to implement and control the NDN node. We propose to enable NDN using a stateful data plane in the SDN network. In particular, we realize the functionality of an NDN node using a stateful SDN switch attached with a local cache for content storage, and use OpenState to implement such an approach. In our solution, no involvement of the controller is required once the OpenState switch has been configured. We benchmark the performance of our solution against the traditional SDN approach considering several relevant metrics. Experimental results highlight the benefits of a stateful approach and of our implementation, which avoids signaling overhead and significantly reduces e2e delays

    Named Data Networking for Software Defined Vehicular Networks

    No full text
    Named data networking and software defined networking share mutual courage in changing legacy networking architectures. In the case of NDN, IP-based communication has been tackled by naming the data or content itself, while SDN proposes to decouple the control and data planes to make various services manageable without physical interference with switches and routers. Both NDN and SDN also support communication via heterogeneous interfaces and have been recently investigated for vehicular networks. Naive VNs are based on the IP-based legacy, which is prone to several issues due to the dynamic network topology among other factors. In this article, we first see both SDN and NDN enabled VNs from a bird\u27s eye view, and for the very first time, we present an architecture that combines SDN functionalities within VNs to retrieve the required content using NDN. Moreover, we discuss a number of current research challenges and provide a precise roadmap that can be considered for the research community to jointly address such challenges

    Named Data Networking for Software Defined Vehicular Networks

    No full text
    corecore