5 research outputs found

    CAFS in action

    Get PDF
    For those few readers who do not know, CAFS is a system developed by ICL to search through data at speeds of several million characters per second. Its full name is Content Addressable File Store Information Search Processor, CAFS-ISP or CAFS for short. It is an intelligent hardware-based searching engine, currently available with both ICL's 2966 family of computers and the recently announced Series 39, operating within the VME environment. It uses content addressing techniques to perform fast searches of data or text stored on discs: almost all fields are equally accessible as search keys. Software in the mainframe generates a search task; the CAFS hardware performs the search, and returns the hit records to the mainframe. Because special hardware is used, the searching process is very much more efficient than searching performed by any software method. Various software interfaces are available which allow CAFS to be used in many different situations. CAFS can be used with existing systems without significant change. It can be used to make online enquiries of mainframe files or databases or directly from user written high level language programs. These interfaces are outlined in the body of the report

    ICL Technical Journal 4(4): CAFS-ISP

    Get PDF
    The special issue of the ICL Technical Journal on CAFS-ISP. This closely followed the award to ICL of the Queen's Award for Technology in April, 1985. The contents include the history of the hardware and software, its status and future, perspectives from leading developers and users, and a list of related patents

    Extending functional databases for use in text-intensive applications

    Get PDF
    This thesis continues research exploring the benefits of using functional databases based around the functional data model for advanced database applications-particularly those supporting investigative systems. This is a growing generic application domain covering areas such as criminal and military intelligence, which are characterised by significant data complexity, large data sets and the need for high performance, interactive use. An experimental functional database language was developed to provide the requisite semantic richness. However, heavy use in a practical context has shown that language extensions and implementation improvements are required-especially in the crucial areas of string matching and graph traversal. In addition, an implementation on multiprocessor, parallel architectures is essential to meet the performance needs arising from existing and projected database sizes in the chosen application area. [Continues.

    Flexible database management system for a virtual memory machine

    Get PDF
    corecore