A FLEXIBLE DATABASE MANAGEMENT SYSTEM

FOR A VIRTUAL MEMORY MACHINE

by

JANE BARCLAY GRINSON

"heD. Thesis
University of Ldinburgh

1980

A Database Management System, EDANS, is described, which

is designed to run on the Edinburgh Multi-Access System, LMAS.

EDAMS is based on the 1971 CCDASYL DRTG Proposals, but
Zives the user greater flexibility. It allows the formation

of subschema logical records, whose fields can be drawn from

any number of records defined in the parent schema. New sets
may also be created by the user in the subschema. A device

known as a database map, which contains all the set pointers
and pointers to the schema record sources of the subschema

logical records, facilitates this high degree of flexibility.

In addition, EDAMS provides an efficient algorithm for

handlinz the

vroblems of concurrent update in a database,
The operation of this algorithm is assessed on a small test

database.

Finally, the effects of designing a database management
system for a virtual memory Cperating System, such as EMAS,

are examined.

PART I DATAVASLE MANAGEMENT SYSTEMS

Chapter 1 The development of database management systems

Introduction

Definition of a database
Functional development of DBNSs
The objective of this thesis

1.4.1 Layout of the thesis

Chapter 2 A database management system application

2.1
2.2

N o
. . .
U W

Introduction

Hospital Information Systems
2.2.1 Effects of the HIS
The medical record

Patient identification

Concluding remarks

Chapter 3 Flements of database management systems

341
362

IS,
.
\n

Introduction

Data structures

3.2.1 The network or set data structure
3.2.2 The hierarchical structure

3.2.3 The relational data structure
Data independence

3.3.7 Binding

Database integrity

3.4.1 Logical consistency checks

3.4.2 Validation of data

%.4,3 Concurrent update

ool Backup and recovery measures

2ol 5 Consistency of multiple copies of data
Yerminal security

«5.2 Physical data protection

P
34543 Logical data protection

©C O U F W W

[N ¥

11
11
11
13
15
18
21

=il

Chaptér 4 Concurrent update in databases

4 1
4,2

L,

b

Introduction

Guidelines for solution to concurrent update problem
4,2.1 Discussion of the requirements
Existing approaches to concurrent update
Lk.3.1 CODASYL

b.3,2 1IMs/2

L,2.3 DMS 1100

4,3.4 PRIME

4,3,5 Chamberlin et al's solution

Summary of approaches to concurrent update
L.obt,1 Minimum locking

L.,4,2 Cver-locking

Chapter 5 The CODASYL Proposals

5.1
5.2

Introduction

Elements of the CODASYL Proposals
S5¢2¢1 The Data Bescription Language
5¢2.2 The Data Hanipulation Languége
5.2.3 Data structures

5.2.4 The set concept

5.2.5 The storage-schema and Data Storage Description
Language)

An assessment of the CCDASYL Proposals
5.3.17 The AREA concept

5.2.2 The role of schema and subschema
5.3.,3 GSets

S5.3.4 Index structures

Chapter 6 Virtual memory and database management systems

6.

6.2

5.3

Introduction
Virtual memory systems

Direct mapping of the entire database onto virtual
memory

2.7 Database size
2 DNon-lacality of access
6.3.3 Privacy constraints
L Data integrity
The subdivision of database for storage malling

Concluding remarks

51
51
51
53
55
55

58
59
60
63
64
66

69
69
70
70
71

71

73

26

78
78
79
81
82

o Cco oo
= F F

-iii-

PART II THE DESIGN CF EDAMS

Chapter 7 The overall design of EDAMS

741
7.2
743
7ok

7e5

Introduction

The 1role of the IEDAMS schema and éubschema

The IDAMS subschema logical record
Sets in EDAMS '

7,4.17 Use of schema sets in subschemas

Areas in EDAMS

Chapter & The formation of subséhema logical records

8.1

8e2

8.3

S b
8.5

Introduction

The use of the relational model

8.2.1 Record-based formation of subschema logical

records

8§.2.2 Set-based formation of subschema logical

records
8.2.3 Selection expressions

Derived fields

8e3.1 Time of calculation of ACTUAL derived fields

8.3.,2 Time of calculation of VIRTUAL
Rules for encoding and decoding

Frivacy information

derived fields

Chapter 9 Operations on subschema logical records

9.1
Gel

9.3

Introduction

Retrieval

Update »

9.%.1 Lffects of the update

©+43.2 The update anomaly

Creation of a new record occurrence
Deletion | -

Summary of operations on SLRs

Chapter 10 "Concurrent update in ZEZDAMS

1041
10.2
10,3

Introduction

The LDAMS Algorithm

Indefinite blocking of a process
10.3.1 . favoured processes

10,%.2 Wwaiting time priority system

93

93

95
95
96
98
101

103
103
104

106

109
110
110 -
111
113
114
114

117'
117
118
119
120
121
123
126
126

128
128
128
131
133
134

10,4

-1V~

10.%.3 ""Overlocking" for special purposes

Repeated evaluation of locking predicates

PART IIT THE IMPLEMENTATICN OF EDAM3

Chapter 11 4n overview of EMAS

111
11.2
1.3
1.4

Introduction
Director
The standard EMAS subsystem

Updating EMAS files

Chapter 12 The EDAMS HMaster Process

1241
12.2

12.3

Introduction
Placing ZDAMS in a protected area of EMAS
124241 ExpansionAof Director

The FDAMS HMaster Process

Chapter 13 Storage mapping in FDAES

1341
12.2
1343
13,4

Introduction
Database map
Interpretation of lLDAMS DHL
SDAKMS realms |

1%2.4,1 Fapping of ZDAKS database to physical storage

Chapter 14 Database consistency during update

1441
1h,2

Introduction

The effects of the on-~line environment
14.2.1 . Bimple update

1%4.2.2 Complek update

Chapter 15 Implementation of concurrent update algorithm

1541
15.2
15.3

15.4

~
|

Ul

N

1

i

Introduction

.essage communication

Time clock

Actions require: by EHMP

Results for test runs of concurrent update algorithm
finalysis of the results

15.6.1 First-come-first-served

15.642 EDAMS Priority System

135
136

139
139
1329

14

141

143
143
146
147
147

150

150 -

150
156
159
160

162

162

162
164
164

168

-

10
168
169
170
174

8L
185
186

-V

Chapter 16 Conclusions

16.1
16,2

16.3

16,4

‘16.5

Introduction

The implementation of EDAMS on EMAS
16.2.1 Privacy and security

16.2.2 Database integrity
Flexibility of the EDAMS data model
16.3.,1 Sets in schema

16.3.2 Definition of SLRs

16.3,3 Operations on SLRs

16.3.4 Database maps

Concurrenf update in ULDAMS

16.4,1 Evaluation of the algorithm

Future work

References

187
187
187
188
189
190
191
192
194
196
196
198
199

201

PART T

DATABASE MANAGEMENT SYSTEMS

=3a

CHAPTER 1

THE DEVELOPHENT OF DATABASE MANAGEMENT SYSTEMS

1.7 Introduction

The volume of information recofded in the world is
increasing daily. The efficient running of any enterprise -
government, banking, insurance, etc. - is critically dependent
on having the relevant information at the right place and at
the right time. Thus many agencies resorted to the computer
to solve their information handling problems. At first the
simple Information Storage and Retrieval Systems were able to
meet the situation. But gradually many enterprises came to
realize that in order to make efficient use of the computer,
the computer was forcing them to structure their information
in a certain rigorous way, which was not necessarily natﬁral
to that enterprise, Furthermore, each department within an
enterprise maintained its own separate'files'with consequent
problems of data redundancy and accuracy. For exaﬁple,
employees names'and>addresses had to be repeated across
several different files, e.g. payroll, personnel; if an
employee notifies one department of his change of address,
that department's file will be updated with the new address,
but all other files will have the old‘and now incorrect
address. The need therefore arose for a system which would
reflect the real-life situation and éct as slave to the managea.
ment and flow of information, rather than as master of it,

The integrated corporate database with the database management

e

system to support it, represents the attempt to meet these needs.

1.2 Definition of a database

There are many definitions of the terms database and

database management system. An early definition of a

database as a set of logically related files is no longer
considered sufficient; in fact, there is a definite attempt
to get away from thinking of a database in terms of a large
file or set of files.

The CODASYL Report [1] defines a database as follows:

'A database consists of all the record occurrences, set
occurrences and areas which are controlled by a specific

schema.'

This definition is useful only within the éontext of the
Report itself. R.F'eSchubert [2] defines a database in the
following terms:

'A database must be viewed as a generalized, common, integrated
collection of company or installation owned data which fulfills
the data requirements of all applications which access it.

In addition, the data within the database must be structured
to model the natural data relationships which exist in a

company.'
The drawback bf this definiticn is that ‘it hinges upon the
identification of‘the company or installation which is not
always easy to recognize. |
The true nature of the database concept includes the

following:

(a) integrated collection of data
(b) contains data pertaining to several applications without

unnecessary duplication

(¢c) formal definition of the data
(a) independence of physical storage from logical views of
the data.

A database management system (DBMS) is the name given

to the software to support the database and is assumed to

provide for:

(a) maintenance - of data structures

(b) languages for stérage, retrieval and update of data

(c) facilities for ensuring data integrity and security

(d) reporting facilities for the Database Administrator
(DBA)

(e) separation of physical and logical data structures

(f) simultaneous access to the database by many users,
including those who are altering the data (concurrent

update),

1.5 Functional development of database management systems

At the end of the 1960's and the early 197C0's there was
a great surge of interest in the field of DBMSs. Software
manufacturers and users alike hﬁrredly designed systems
which were not always successful.

The first computer files were simple sequentiai files on
magnetic tape. The records on the file were usually sorted
into a specific ordér and updating such files was often very
costly. Even if only one record was to be altered the whole
file had to be recopied, which led to the use of batch updates.,

In a batch update, several updates were grouped together in

T

-

a file sorted in the same order as the records on the master
file and a new version produced. vSuch file systems were
easy to use aﬁd worked well in small, relatively static
situations., If, however, the files were large with frequent
updates, those systems could become too slow and inflexible.
Then came the direct access disc with manufacturer-
supplied access methods such as the Index Sequential Access
Method (ISAM). ISAM allowed records to be processed both
sequentially and randomly (based on the ISAM key) and updating
a single record was possible without recopying the entire file,

Whitney [3] sees this era as the first generation of data

management systems.

However, és computers became increasingly used for
more complex file applications, more sophisticated storage
and accessing methods were required. For example, consider
a file of student records with student number as the ISAM key,
name, address, etc, together with the course(s) the student
is taking. To access information about a particular student
given the student number is easy. To process the file for
a group of students (sorted by student number) is also easy.
However, tolextract the names of all the students enrolled
in a particular course is both time-consuming and awkwérd.
Hence the development of the inverted file which would contain,
for example, all the courses together with a list of all the
addresses of the records in the master file of students
enrolled in each course. A masfer file can be inverted
on any number of key fields, e.g. course, faculty. These
inverted files can therefore bé quite large and so it is

necessary to structure them in such a way that they can be

-
accessed quickly. The general appfoach is to separate the
keyword (e.g. course name in the above example) from its
list of record addresses., These keywords are placed in
a keyword dictionary, which can be structured as a binary
tree, for example, or accessed by means of a hashing function.
This was the era of the Information Storage and Retrieval
Systems and Report Genefators, eg. RPG, MARK IV, EASYTRIEVE

[43, designated by Whitney as the second generation of data

management systems.

| Although these syétems do represent a great improvement
with non-procedural user languages and so on, they do not
solve all the problems. The cost in terms of storage and
maintenance of these massive inverted files, which together
often exceed the size of the master file, is considerable.

Thus database management systems were developed, Whitney's

third generation of data management systems. The aim of

the database managément éysfém (DBMS) is to provide:

(a) more general and efficient management of large amounts
of data

(b) better backup/recovery mechanisms

(c) the elimination of unnecessary, redundant data

(d) perhaps the most important aim, to provide a much higher
degree of data independence,

-The old file systems were very sensitive to changes in the

programs processing the data and vice versa. When each user

application maintained its own.separafe file, this did not

matter since each user could change his file of programs

without affecting other users; this of course led to

inconsistency between files, Once all the applications

ére groﬁped into arsingle database, a means must be found
to maintain this épparent independence from the user's point
of view, Thus DBMSS are intended to separate data processiﬁg
programs from the actual data. Changes made to the overall
logical structure of the data should not affect those data
processing programs, which are not directly involved.
This is known as logical data independence E5]. Furthermore
changes made to the physical layout and ofganization of the data
should not necessitate changes to either the overall logical
stfucture of the data or to the data processing programs.
This is known as physical data independence.

The importance of data independence in DBMSs cannot
be overstressed. If new data items are added, application
programs.should be independent of these changes. It is also
desirable for the environment in which the application programs
are run to remain constant, so that if the DBMS is to be run
on a different Operating System or evén on a different machine,
the application sysﬁem will be unaffected, Clearly, it is
not feasible for the DBMS itself to be independent of such
a cﬁange, but the cost of the reimplementation can bebamortized
over many applications.,

Whitney's third generation of data managemeﬁt systems
represents the first genératiqn of trﬁe“DBMSs such as IDMS,
DMS 1100, IMS. It is interesting to note that some so-
called DBMSs reduired report generation and query languages
to provide the inteffacé with the user (e.g. GIS [6] and
TDMS [7]). Thus while there was'no improvement in user
interface between theJ;econd and third generations of data

management systems, the latter provided a better foundation

for higher level facilities. In recent years there have béen
major developments in the establishment‘of'a theoretical
foundation for DBMSs based on Child's relational approach
[8,9] ana extenaed by Codd [10].

The relational approach to data systems has been used
in deductive quesfion/answer systems for several years., |
It was not until the late 1960's that its applicability
to large, shared data banks was suggested by Codd. The
main aim of this approach is to ensure data independence,
it also provides the user with apowerful algebraic language
to operate on the data,

There has been considerable controversy over whether
the relational approach will in fact gain wide commercial
acceptance, ultimately replacing the CODASYL DBTG approach.
Michaels et al [11] in their comparison between the two
concluded that neither represents the complete solution to
the database management problems of the entire user community.
Indeed, it seems probable that an amalgam of the two systems
will emerge as being the most acceptable, to form the fourth
generation of data management‘systems, the second generation
of DBMSs, .

However, at present most of the implementatiohs of the
relational approach are being carried out on a purely
experimental scale in universities and research establishments,
whereas there are a number of large, commercially-available
partial implementations of thg CODASYL proposal§.

Finally, the mode of use of DBMSs has changed in recent

vears from batch to inféractive. This has had profound

effects on both the design and implementation of these systems.

10~

1.4 The objective of this thesis

The starting ﬁoint fér this thesis was the April 1971
CODASYL DBTG Report and the Edinburgh Multi-Access Operating
System, EMAs; It is intended to show that:

(a) it is feasible to implement a CODASYL-type DBMS on a
virtual memory, multi-access Operating System |

(b} it is possible, within the overall CODASYL framework,
to provide the user with much greater flexibility in
his use of the data in the database by allowing him to
form his own logical records, whose fields can be drawn
from all over the database without restriction

(¢) an efficient and simple algorithm can be devised for
solving the problems of contention between users during

concurrent update of the database.

1.4,1 Lavout of the thesis

This thesis is divided into three parts. Part I consists
of an overview of the field ¢f Database Management Systems
together with a detailed discussion of the application of DBMSs
to Eospital Information Systems. Part II outlines the design
of a DBES called EDAMS, which is baséed on the CODASYL proposals,
but which provides the user with much greater flexibility, and
which uses a new approach to concurrent update (see abgve).

Part III coﬁtains the details c¢f the implementation of TDAMS. -

on the Idinburgh rulti-l‘ccess System, DHAS.

P i P

CHAPTER 2

A DATABASE MANAGEMENT SYSTEM APPLICATION

2.1 Introduction

Database management systems (DBMSs) are used in a very
wide varietybof applications ranging from Airline Systems
(including the highly successful passenger seat reservation
systems) [12], Production Control Systems [13], Management
Information.Systems [14ﬂ to Hospital Information Systems,

The Hospital Information System (HIS) has been selected

for special study in this thesis to provide a background

against which to_design a DBMS for the Edinburgh Multi-Access
System (EMAS). The HIS has been chosen because it is comparat-
ively new area of application for DBMSs, especially in the

U.K., and because the benefits to be derived from it are
practical (improvement in the quality of patient care) as

well asAfinancial (better use of resources).

2.2 Hospital Information Systems

The remainder of this chapter is concerned with a
detailed examination of one application for a DBMS - namely,
the Hospital Information System (HIS). Much of the material
is based on a survey carried out at the Royal Infirmary,
Edinburgh (RIE).

A HIS is a computer system for on-line processing with

real-time responses offln-patient and out-patient data for

one or more hospitals, The use of computers in hospitals

-12-

is still only in its early stages. Even in the United

States their use is aimed at increasing the cost-effectiveness,

through more efficient patient billing and accountiﬁg systems,

rather than to improving the quality of patient care, If

the public and the medical profession can be convinced that

computer systems can ensure the privacy of medical data,

there is undoubtedly a great potential in the field of HIS.

Moreover, as the process of providing medical care becomes

more and more complex, so the need for systems to handle

patient records is becoming incréasingly urgent, especially

in large hospitals. Greenes et al [15] feel that it is

now a matter of the highest priority to develop computer-

based management systems‘for handling patient data. -Moreover,

Asuch‘systems could automafically incorporate both the admin-

istrative and the research functions.

The basic aim of the HIS can therefore be summarized

"as follows:

(a) to provide the medical staff with all the information
required in the provision of medical care, i.e. handling
of patient records, laboratory reports, X-ray reports,
etc.

(b) to provide the administrative staff‘with all the information
required for the efficient management of the hospital,

i.e. handling of admission procedures, bed census, menu
planning, accounts, personnel and payroll (where
appropriate) etc,

(¢) scheduling and resource allocation

(d) as an off~-shoot, tsafacilitate research into the diagnosis

and treatment of disease.,

-13~

2.2.1 Effects of the HIS

Having decided what the basic aims of the HIS are ana

what type of inforﬁation is to be processed, it is necessary
to consider the effects of the system by posing three questions:
(a) who will the system help and in what way?
(b) who might suffer?
(c) what are the relative economics of the HIS versus the

system which existed prior to the introduction of the

HIS?
The answers to the first two.questions are critical. If, for
example, the HIS results in a deterioration in the standard
of medical care, then it is totally unacceptable, no matter .
how marﬁelloUs it is for the medical and administrative
staff. Great care must be taken not to decrease the quality
of patient care and it would not be unreasonable to expect N
it to improve as a result of the more timely provision of
medical data. It was found at the Texas Institufe for
Rehabilitation and Research [16j that their system for on-
line scheduling of patient care activities was, in some ways,
too efficient; the computer was able to fill the patient's
day so completely that he was exhausted by the end of it!
Furthermore, users of the system (doctors, nurses, etc.)
tended to depend entirely on the computer system at the
expense of verbal communication both among themselves and
with the patients, which is a vital part of medical care.
Cn the other hand, the vard Information Hanagement System
at the John Hopkins Hospital [17] has shown that the
computerization of docfgrs' orders (for drugs, diet, invest-

igations, etc.) resulted in a substantial reduction in the

-14-

numbef»of errors in carrying out these orders (previously
15% of orders Qere"nof carried out correctly). This must
surely represent a highly desirable effect of the HIS,

which will result in an improvement in the quality of patient
care, ‘

Another potential pitfall and undesirable.effect of
the HIS is that workloads could be increased to uhacceptable
levels., For example, doctors might be required to spend
long periods of time at computer terminals typing in their
observations, orders and_so on. This activity is purely
clerical and doctors' skills wouid be far better employed
elsewhere, 'However, in order to ensure a low error rate
in the input data, it is always best to capture the data at
source. Doctors should supervise the éntry of their own
clinical data and verify it immediately so that it may be
corrected on-line. A Cathode Ray Tube (CRT), preferably with
light-pen as well as keyboard, is the most widely used terminal
device in hospitals. When large volumes of data have to
be entered into thé system (e.g. patient registration), this
can be done by data preparation personnel, thereby keepingv
the typing by medical staff to a minimum.

As regards the relative economics of the twb systems,
manual or computer, it is unlikely that the computer system
would work out any cheaper; The capital expenditure on the
equipment required to support a HIS Qould take several decades
to recoup. Moreover, the number of staff - in this case
admiﬁistrative staff -~ is hardly likely to decrease. Indeed
if the experience of iﬂaustry ié-anything to go by, the

introduction of a computer results in an increase in the

~15-

number of staff required, but hopefully also with improved

service,

2.5 The medical record

The most fundamental part of any HIS, whether manual

or on a computer, is the medical record. The medical record

contains all the relevant information about a person's health
and consists of three main parts:
(a) personal information
(b) medical history
(c) current.treatment

It is the processing of parts(b) and (c¢) which has
proved to be a major stumbling block in the development
of computerized systems. There is no standard format or
terminology for recording this clinical information. The
doctor very often uses a personal férm of shorthand together
with short pieces of text and aides~de-memoires., To transférk
this‘information directly onto the computer, even in the form
of English narrative, would be very wasteful and would result
in the computer being used as a very extravagant filing system.,
Furthermore, it would probably be considerably more tedious

to use than the manual system it replaced,

The personal information section of the medical record
is quite straightforward, consisting of name, address, sex,
place and'date of birth and so on, This type of information
is common to a11~pérsonnel files, whether‘or not they are
making use. of computer;; its structure is known in advance

and is constant for all patients.,

-16=

The recording of the medical history of a patient,
however, is much more difficult. The information to be
recorded will vary dramatically from one patient to another
and, as indicated above, there is no standard terminology
for recording items such as doctor's observations, physical
examinations and so on,

It is not difficult to handle the recording of the
major medical events in a patient's life, e.g. date,
diagnosis, treatment, with details of periods spent in
hospital etc. In addition, it would probably be helpful
to récord the name of the doctor who treated the patient and
where further information about the illness and treatment
can be found.,

Some research has been done into the use of computers
which interact with the patient by means of a question/answer
system in order to obtain his medical history. The computer
asks the patient a question and, according to the anéwer
given, follows one of a number of paths of further questioning.
If, for example, the patient is asked to indicate whether orl
not he has ever suffered from chest pains and he answers
in the negative, then the computer might go on to ask whether
or not he has ever had liver disease. If the answer to
the question regarding chest pain is positive, then the computer
will ask further questions pertaining to the chest pain
before going oﬁ to ask about liver diseasé.

A summary’of'the patiept's medical history could then
be printed immediately. The doctor examining the patient
can then ask the‘patient for further details and enter them

into the system, if necessary. At this point, the doctor

-]
should be given the alternative of using either the question/
answer system or to enter his remarks in the form of unstrﬁctur-
ed narrative,

The major drawbacks of such systems for obtaiﬁing
medical histories is their unreasonable reliance on the
patient's memory and knowledge; indeed, some may be so
confused as to be unable to reproduce their names consistently.
However, the alternative of a national databank in which the
major medical events in t@e.lives of every mem%er of the
population are recorded is sbme way off, In normal
circumstances, when the patient can be identified, the
medical histories of incoming patients at least for the
immediate past, would be available to the hospital from
the patient's G.P.

The current treatment section of the medical record

will contain a mixture of both structured and unstructured
data.v Among the structured data will be admiésion details
for in-patients, for exampie: date, by whom referred;’doctor-
in-charge, diagnosis (if any), ward number, together with
results'of>ahy number of laboratory tests in varied, but well-
defined formats‘and X=ray reports,. The unstructured data
will include symptoms, doctor's observations and orders

and nurses notes.

As with the taking of medical histories, a question/
answer system with CRT, light—pen and keyboard could be used
to capture the data, It is even more important that the
doctor be permitted to use narrative as an alternative to

the answers suprlied. Abrams et zl [18] quote as an example

the situation where a doctor wishes to record the condition

-

of a patient relative to the last consultatioh. He would
choose one of the following alternatives displayed on the
CRT:
CURED / BETTER / SAME / VWORSE / VERY MUCH WORSE / DEAD /
OTHER
It is by selecting the 'OTHER' category that the doctor can
enter narrative as a‘response, not simply because he feels
that the patient's condition did not fall into any of the
listed categories, but because he wished to elaborate further.
The drawback in using the question/answer systems is'that.they
could tend to lead the doctor too much, rather than allowing

him to use his own knowledge and experience.

2.4 Patient identification

One of the main ﬁroblems associated with a medical
recqrd database is that of patient identification. The
simple and most straightforward method is to use the patient's
name., It is unlikely that a patient will forget his name,
assuming that he is conscious and even if he is unconscious
his name can uéually‘be ascertained without too much difficulty.
It should be noted that a patient's name can change, e.g. 6n
marriage, and cannot therefore be regarded as absolutely
invariant. The survey in the Accident and Emergency (A&E)
Department of RIEZ has shown that with the e#ception of patients
injured in road traffic accidents and who have collapsed in
the street, the names-éf the vast majority of patients can be

ascertained immediately on arrival, either from the patient

~10=

ﬁiﬁéelf or from a relative of friend. However, there are
many obvious problems associated with fhe.use of the name
as an identifier - it.is very far from ﬁnique (eeg. in the’
index for past in-patients at RIE, there are 90 patients
called Alexander Smith), it is prone fo mis-spelling and
in manual systems to mis-=filing.

An alternative to the use of the name as the basic
key to patient identification is tb use the patient's date
of birth, This is the system which is currently in use
at the Central Medical Records Depaftment at RIE. The
main library of medical records is filed by date of birth,
in chronological order; within any givgn birfhdate, records
are stored alphébetically according to name (surname first).
A separate card index is maintained to access the main 1ibrary.‘
This index is in alphabetical order of patient name (surname
first) with date of birth as the secondary key.

The A&E Department at RIE assigns a unique number to each

new patient (pre-printed on the registration form) and uses
a file of names and addresses as an index. With many patients
changing address from one visit to the next and with the non-
uniqueness of ﬁames, this system is also unsatisfactbry for
general patient identification. At least the
date of birth system has the merit that a patient's medical
records can be retrieved without reference to any other
documents. No-one can be expected to remember a completely
arbitrary string of digits, as uéed in the A&E Department, -

It is possibie to envisage somé far-fetched system

which could incorporate names with mother's or grandmother's

maiden name or date of birth, which could identify a large

-20-
population almost uniquely., - However, a friend may well not
know a patient's mother's maiden name, let.alone his grand-
mother's! Systems based on plaee, time and date of birth
have also been proposed, which can guarantee almost complete
uniqueness, but which suffer from the same disadvantages.,

All the solutions proposed above are unsatisfactory
from one point of view or another. Moreover, none of them
solves the problem of the unconscious patient who is brought
into A&E alone without a friend or relative to give any
information, A solutioh which is often put forward half-
seriously is that everyone should wear an identification
bracelet with a unique number on it which was assigned at
birth. It is even p¥oposed, though less seriously, that the
number should be tatooed somewhere on the body. what happens,
however, if the bracelet is loét or the number partially
obliterated?

There is no simple answer to the problem of patient
identification. It is certainly desirable for people who
suffer from chronic diséases or who are allergic to certain
drugs to wear an identification bracelet and/or carry an
identification card at all times. Although these people
form only a small percentage of the total population, they
are a very significant percentage because of the high risk
involved if they are not correctly identified, The general
population, however, would not be so well motivated to carry
the necessary identification, |

Assuming, therefore, that a patient's name, sex and
approximate age ;re kn;wn, it should be possible to devise

an algorithm. which could search rapidly through the patient

-2

‘indexes stored in the cﬁmputer in order to identify him and
ascertain whether any details of his medical history are
known, If an exact match is not found given the identification
information available, a list of the.closest-matches found
could be printed.
In the majority of cases in A&E at RIE, it is not
strictly necessary to match up a patient's notes ~ in fact,
at present, this is done in less than 13% of new cases.,
If a patient comes into A&E in March with a broken arm and
then returns in November with a cut toe, the previous case
notes would not be relevant. If, on the other hand, the
patient had broken the same arm in November, the doctor
might want to consult the March case notés and . X-rays.
in this case, the computer would have to consult the database
immediately for details of the March episéde. If the old casé .
notes were not required, the computer would still have to
link up the two episodeés eventually. Such linkage could
be éarried out when the computer is not busy. However,
with all the problems of patient identification outlined
above, it is possible that the two episodes cannot be linked

reliably by computer without any human intervention.

2.5 Concluding remarks

In this section some broad conclusions will be made
regarding the requirements which a HIS imposes on the DBNMS
which supports it. Clearly, in order to draw detailed

conclusions an exhaustive study of existing procedures in a

=22~ -

full hospital activity analysis would have to be carried out,
which is not within the scope of this thesis.,

There are two distinct aspects to the automation by
computer of the information processing activities in hospitals.
The first is the design of the HIS and the second is the design
of the DBMS to support the HIS, Ideally, the HIS should be
designed first and the DBMS should be constructed in such a
way as to meet the requirements imposed by the HIS.

The design.and implementation of a DBMS involves several
man-years of effort and the hope is that a particular DBMS
will be applicable in a wide variety of situations. Most
of the effort today is being directed towards the design of
these general-purpose DBMSs. This approgch, therefore, ié
based upon the premise that the information handling require-
ments of the various applications are similar. Consider,
for example, airline systems; they are designed as special-~
purpose DBMSs and as such they could be of use only to another
airline, but certainly not for a complete HIS. However,

a superficial comparison between the passenger seat reservation
system aldne and the apvointments system in an cut-patient
department reveals certain similarities. The two processes

of making an appointment and booking a seat are alike. A
patient makes an appointment (sometimes many months ahead)

for a particular clinic, on a pafticular day, at a particular
time, while a passenger usually books a seat for a specific
flight, on a specific day, at a specific time. A significant
difference between.thehtwo systems is that whereas the patient
willAgenerally take thé first available appointment, the

passenger usually wants to book a seat on a specified flight.

In a compariscn between financial systems and Hospital
Information lystems, Dr. Reekie [19] showed that while the
privacy requirements of the two systems are the same, the

volume of transactions per service (laboratories, X-rays, etc.)

is quite different, Cn averase, each patient makes only one
call on each service per day. “hus each service will have

at most somewhere over a thousand transactions per day.
rioreover, expsrience has shown that there are peaks of activity
in a hospitel between 9 a.m. and 11 a.n. with a smaller peak
in the afternoon. Financial systems also suffer from peaks
in the transaction rate and in b%oth systems it is aifficult
to spread the load evenly throughout the day and night.

The distinction ié made between special—purpose and
general-purpose DBEliSs. Although, @35 stated previously,
most of the research is currently focussed on general-purpose
DB, it is undoubtedly true that given a particular application

(and sufficient resources), it is always nozsible to desiim

Y

a more efficient swnecial-purnposes is tailor-made
for that apnlication, than to use even the very best gencral-

purpose system,

<

It is difficult to separate the requirements which a HIS

imooses on the DRES from those it imposes on the Cperating
System and hardware, Increasingly, the logical and physical
aspescts of DBNSs are being separaied. Thus the logical

involve the data struciures,

“he

al aspects are concernsd with the volume of iunformation

24

to be handled, activity rates and so on.

To conclude, the requirements imposed by the HIS on

the DBMS can be summarized as follows:

(1) system reliability - both the hardware and software of a
computer system supporting a HIS have to aqhieve alnost
100% reliability. They have to be available 24 hours
a day, 7 days a week ahd 52 weeks a year. In order to
do this, experience with airline systems has shown that
every item from CPU to data record must at least be
duplicated; indeed most systewrs are triplicated. Such
a dual system would be essential in a hospital which
relied éompletely on a large central computer. It is-
well worth éxamining the possibility of using a network
of mini-computers located in the various departments
throughout the hospital, each supporting its own small
database. A patient attending a number of different
departments in the hospital might have a number of different
specialist clinical records with a central identification,
history and summary section ''passed round" the relevant
departments. The mini-computer network would be linked
together in such a way that if one breaks down another can
take over its urgent on-line work, in addition to its
Owne Such an approach has the added advantages (apart
from enhancing the reliability of the system) that each
department would have control over its own portion of the
database and it would also be cheaper than -a system which -
required a lot.of ?uiit—in redundar.cy.

(2) storage hierarchy’; the DBIS must be able to support a

database which is spread over a number of different

=25-

storage devices, e.g. disc, arum, tape. Records would be
moved automatically by the DBMS, according to rules
specified by the application programs, from one level

in the‘hierarchy to amother; For example, the records

of in-patients would remain at the top level of the
hierarchy, i.e. on an on-line storage device, until the
patient is discharged, when his record would autoﬁatically
move to a lower level until required for the patient's
check-up later. Out-patient records will not move to

the top level until the day (or maybe even the hour) of
their appointment, This is exactly analégous to the
present manual system at RIE where case-notes are '"pulled"
from Céntral Records for out~patient clinics a few days
ahead of the clinic. The lowest level of the hierarchy
would represent archival storage. Presumably most of the
information contained in these records could be safely
destroyed after the patient had been dead for a number.of
years, retaining only those details which would be relevént
for research purposes.

Foreground and background operation - the DBMS would have to
support bhoth high-speed on-line operation and background
batch work. Cn-line operation would gef priority.
tioreover, it might be desirable to have a priority attatched
to each request, based on the type of request And its
source, For example, a doctor in A&E urgently requesting

a patient's case notes would be serviced before a radio- .
logist updating a patient's record.with the result of a
non-urgent K-ray.'f In some situations, the priority

system might not be practical as it could take longer

~26-

to establish the priority than to servicge tﬁe request.,

(4) privacy - it is clearly of the.utmost imgortance to ensure
the confidentiality of medical data. At the London
Hospital [20], where a small computer system is in use
for admissions, it was felt that the records stored in
the computef were better protected than the traditibnal
case-note:folders., In spite of the fact that the folders
are not supposed to be handled by any unauthorized person,
including the patient himself, folders are often left
lying around for anyone to read. However, the London
Hospital Project does take a more positive attitude to
privacy and security than this might suggest. The
video screens are located in rooms to which patients
and members of the public do not have access. The
casual snooper would have to know how to log on to the -
system to obtain any information. Ths consultants can
specify at the time the patient is placed on the waiting
list, whether or not their medical data is to be displayed at
all. Finally, the screens fade very rapidly when not
in use, Thus the DBNS would be required to provide
privacy facilities down to the data item level. These
facilities could take the form of one word keys or of
privacy routines which could.check the identity and
authority of the user. It has been suggested that,
in a nationwide medical database, the patient himself
should be given the key to access his own medical record.
wWhile this w9u1d~viclgte the currently held principle
that patients shouid not be allowed to see their own'

medical records, it is in keeping with modern thinking

27'
on civil rights. Thué anyone who records information
about someone else (e.g. govefnment agencies, credit
rating firms, hospitals, etc.) shéuld allow the subject
of the information to access any factual data. In this
wéy, cases of ill-justice due to incorrect information

can be reduced,

=28

CHAPTZER .3

ELEMENTS OF DATABASE MANAGEMENT SYSTEMS

%e1 Introduction

In this chapter a number of aspects of DBMSs will be
examined, In particular, data structures, data independence,
data integrity, privacy and éecurity will be discussed in
detail.‘
| A well-defihed hierarchy of users of a DBMS can be
identified and the significance of, ,for example, data integrity
will vary according to the user's position in this hierarchy.
Broadly speaking, the users of a DBMS can be divided into

the following categories:

Level 1 (DBMS implementor) - -perhaps not strictly 'user!

2 entire database description implementor - CODASYL

schema writer

3 individual application description implementor -

CODASYL subschema writer
4 application programmers

5 high level users - terminal enquiry etc,
igure 3.1 Hierarchy of DBHS users

It should be noted that where a general framework is

required in which to discuss, for example, data independence,

the CODASYL April 71 DBTG Report [1] will be used.

© =20-

3.2 Data structures

The term data structure is used in DBMSs to describe

the user's view of the data and excludes details of storage
techniques [21]. It therefore spans the data from the level

of individual data item to the complete database. However,

the level at which the greatest divergence in the approach

taken by individual DBMSs arises, is the level of the group

data structure; i.e. what structures the system employs to enable
the user to describe relations between groups of data in the

database. The term group relation, rather than simply

relation is used in order to exclude the implicit association
between data items and fields in an individual record.

There are three main classes of group relation data
structures in DBMSs:
(a) network or set type
(b) hierarchical

(c) relaticnal

%5.241 The network or set data structure

A network data structure is one which permits a many-to-
many relationship between records of which the CODASYL set [1]
is an example. Although the CODASYL set is strictly speaking
a one-to-many relationship, it can be used to represent a
many-to-many relationship (see below). The CCDASYL database
cénsists of many different record types with related records
grouved together-ihto sets. wach set must have one owner
record and one or morébmember records. There will be many

cccurrences of the same set type in the database and to avoid

~30~

confusion and ensure database integrity, a record occurrence
cannot arpear in more than one océurrence of the same set,
i.e, a member record occurrence can have only one owner
record occurrence in a set and owners are all distinct. It
is this restriction which implies that the set is only a one=
to-many relationship, but a many-to-many relationship can be
represented by the simple introduction of a link record.
Thus the set is regarded as a network structure. In the
April 71 CODASYL Report [1], a second restriction was imposed
which did not allow a record type to be both owner 'and member
in the same set, but this restriction has been removed in
the 1978 Journal of Development [22].

Membership of sets can be either MANDATORY (i.e. permameﬁt),
in which case the record occurrence will .only cease to be a
member of the set when it is deleted from the database (or -
altered in such a way that it no longer qualifies as a member
of that set), or CPTICNAL (i.e. temporary). In addition,
set membership can be defined as AUTOMATIC, when records
are inserted into sets automatically by the DBMS, or MANUAL,

when records are linked intc sets by specific user command.

26262 The hierarchical structure

The hierarchical structure, as the name impliesy is a
father/son tree structure representing a one-to-many relationship
only, An examplerof a DBMS using this class of data structure
is IBl 's IMS/2, which is used as an illustration here [ZB;T
241,

The basic data element in the INS5 database is the segment.

e

A segment is of fixed length and contains one or more logically

-31=

related data fields. These segement types are then joined
together into a hierarchical tree structure known as the

logical data base record. The IMS database thus consists

of a number of logical data base records. Each application
forms its own individual view of the database by specifying
the.segements to which it is sensitive, This is analagous
to incluaing certain record and set types of a parent schema
in a suhschema. An application prozram cannot access those’
segments to which it is not sensitive.

A segment of information can participate in more than
one logical data structure, analagous to permitting a record
type to be a member of more than one CODASYL set. The
segment data itself exists only once in the database. In
one structure, the duplicated segment will be replaced by a

pointer to the actual segment where the data is stored:

_——\‘t ’ . \. N
| ADDP‘ESS‘) ‘ FPAYROLL \ NAME /’}POINTER
EXPERIENCE { EDUCATION
N—

Figure 3.2 Targ:t segment in an I¥5 database

There is a total of six retrieval functions:

(a) GET UNIQUE (GU)

=32
(v) GET HOLD UNIQUE (GHU)
(c) GET NEXT (GN)
(d) GET HOLD NEXT (GHN)
(e) GET NEXT WITHIN PARENT (GNP)
(£) GET HOLD NEXT WITHIN PARENT (GHNP)

A GET UNIQUE call is used to retrieve a unique segment
or path of segments; it is a useful means of establishing
positi§n in the database after which GN and/or GNP calls
are used,

A GET NEXT retrieval request réturns the next segment
to which the run-unit is sensitive. The ordering of segments,

corresponding to Knufh's pre-order traverse [25] as shown in

Figure 3,3

Figure 3,3 Segment order in an IMS database

A GET NEXT WITHIN PAREN ‘call will obtain the next
segment(s) within the family of a parent segment. The
appropriate parent is established from the last GU or GN, which
must have been suécés§fu1.

The use of the’HCLD options for a retrieval request

is used to indicate that the user intends to delete or update

-33a

the segmenf; the rules for interpreting the functions remain
unaltered, Under IM3/2, the feature is redundant since it
is forbidden for.two run-ﬁnits to operate concurrently which
have indicated that they intend to delete or update the same

segment(s) in the database.

3e2e5 The relational data structure

The relational model of data developed by Codd [10]
is based upon the mathematical theory of relations: given
sets 51, 52y eecese Sn, R is a relation on these n sets if
it is a set of n-tuples, each of which has its first element

from 51, its second from S2 and so on, i.ee.
] 9

R = {(61’ 92, ecoe en?, <e1’62’ XX en>, .ooo¢<e1’ 62, -o.emjl

e1 €581, e2&82, en& Sn.

The set 5j is defined as the jth domain of R,

Each relation has a primary key associated with it.

A primary key is a domain (or group of domains) in the relaticn
which uniquely identifies each tuple in the relation.
Consider the following example of a relation, supply,
“of degree 4, where the first domain consists of suppliers,
the second of parts, the third of projects and the fourth of

quantities:

supply(supplier part project auantity)

1 2 5 . 17
1 3 5 23
2 3 7 9
2 7 5 4
4 A 1 12

Figure 3.4 The supply relation

_54;

The relation represents shipments in progress of parts, in
specified quantities;'from suppliers to projects., - The
primary key for the relation supply would be (supplier,

part, project), all three domains being necessary to identify

each tuple.

Although not strictly part of the relational data
structure itself, it should be noted thet this model of data‘
automatically supplies functions and a language to operate

on the data.

2.3 Data independence

One of the major reasons for an organization to adopt
a DBMS is that system's ability to mirror the real-life
situation within the organization. Of particular importance
is the ability of the DBMS to handle the ever-changing demands
of the enterprise. For example, radical'restructuring of
the database, as a result of new company policies, will be
necessary from time to time. It is essential that existing
application:systems should be unaffected by these changes

and this insulation is known as data independence.

There are four levels in a DBMS which must be insulated
from one another:
(a) physically stored data
(b) database administrator's logical view of the whole database
(schema)

(¢) application's view of the subset of the data (subschema)

(d) application program itself.

-35-

The distinction is made between logical data independence
and physical data independence [5]. A DBMS thch provides
physical data independence will allow the physical layout
and organization of the data (level a) to be changed without
affecting either thevlogical structure of the data (levels
b and ¢) or the application programs (level d). The provision
of logical data independence, on the other hand, permits the
logical structure of the data (b and c) to be altered without
changing the application programs (d). Of course, many
alterations to the database will necessitate chahges to all
levels of the database management system (e.g. addition
of new daté item), but data indecpendence is intended to
ensure that the only elements requiring alteration in the
system are those which are directly and logically involved
in the alteration,

A change in the method of physical data storage, e.ge.
the reorganization of the data on secondary storage to increase
efficiency, should not in any way affect the application
programs., Whether or not such a change will affect levels
b and c, the schema and subschema, will depend on how the
system is implemented., Ideally, however, it is only the
interface between b and a, presumably in the form of tables,
~which would reguire alteration.,

Consider next the eliminétion of all the records of a
given tybe. Such a change 1s bound to have repercussions
at evéry level, but all application prograﬁs and subschemas
wHich do not use the ?liminated record type, should not.:be
affected. First, thé data records must be removed at level

a, their descriptions and any reference to them in sets etc.

- 50~

removed at both levels b and c, énd of course, in the application
programs themselves at level d. It 'is not necessary to
physically remové the deleted records from the database;
it would be more.efficient to»leave this to the next re-
structuring of the database, It is necessary to consider
very carefully what happens to sets in which the deléted
record participates. For example, if the deleted record
is the only member of a set, the set could be deletéd from
the schema and/or subschema or simply appear as a memberless
set. There is clearly no obvious answer to these problems,
but an agreed standard would clearly be an advantage for
thosé who wént portable programs.

The next case to be examined is the addition of a new
field to a record type. Again, the physical changes must
be made to the database 'simﬁltaneously' with the corresponding
changes to the schema. Data independence should then guarantee
that no more changes will be necessary either to the suSschemas
or to the application programs, even though they may uée the
record type involved, but are not interested in the new field.
Naturally, those application programs which wish to use the

new field, would have to be amended along with their subschemas.

%e3e71 Binding

The degree of data independence of application programs
will be affected by when the binding between the user reference
to the data and the physical access to it takes place [é6].
‘Traditionally, data is bound to programs at compilation
time (sometimes even at program‘design or coding time),

whereas for maximum independence, binding should take place

57 -

as late as possible, i.e. at command execution time; Most
DBMSs adopt a mixed approach to binding with some taking
place .at compilaticn time, some when files (realms) are
accessed for the first time and the remainder at command
execution time [21], resulting in a compromise between maximizing
data independence and maximizing efficiency.

Finally, it is worth mentioning that although the
main aim of data independence is to provide flexibility
in the DBMS to enable it to adapt readily to the changiﬁg
demands of the users, a by-product is also the provision
of a measure of protection; users will not be aware of
or have access to data outside the data defined in their own
subschemas. This approach is also less demanding on the
user, since hé only learns those details of the database

which are directly relevant to him,

3.4 Database integrity

It is clearly of fundamental importance that the data
in a database is correct and time-consistentnand that the
linkages between related data items are correct. If the
database were to be frozen at any point in time when no
changes were.being made to the database, it should be a valid’
picture of the real-life situation it represents. .

There are several aspects to ensuring the integrity
of a database:‘

(a) logical consistency checks

(b) validation of input to the database

-38~

(c) protection against interference between concurrent run-
units, in particular during update
(d) backup and recovery measures

{e) consistency of multiple copies'of data

3.4,1 Logical consistency checks

A database consists not only of data, but also of
relationships between the data, which together form the
data structure (see Section 3.2), Apart from the fact
that a relationship between one or more records maj form
the basis of the storage/retrieval of a record, the relation-
ship itself carries information impliéitly, e.g. father/
son, owner/me&ber. It is therefore of vital importance
tc the overall integrity of the databasg that these relation-
ships are logically consistent. Thus, for example, in the
CCDASYL system, it would be essential td ensure that an
ownerless set had not evolved or, alternatively, that a
record had been made inaccessible by virtue of the deletion
of all.poinfers to it. The detection of such logical -
inconsistency over the eﬁtire database is clearly very costly.
Eowever, much of the checking can be done when updates are
being carried out, especially ﬁhere the alteration of relational
vointers is invblved. -Sincé it is not possible for high
level terminal enquiry_users, application prograrmers or
even subschema writers (levels 6,5,k of‘Figure 2.1) to
be aware of the indirect effects of their updates on other
users, the responsibility of providing the logical consistency
checks falls on the DBES implementor and the schema writers

(levels 1 and 2 of Figure 3.1).

. =39

3.,4,2 Vvalidation of data

No matter ﬁow elaborate the mechanisms in the DBMS
for ensuring database integrity are, they will be totally
useless if the input to the system is incorrect. At first,
the question of the validation of input data would appear to
be more thé concern of the organization whose data is being
storéd in the database, rather than of the DEMS itself,
However, when there are many different users of the data,
the traditional approach of each user program validating
its own input becomes insufficient. Instead, it is necessary
to incorporate validity checking routines within the Data
Definition Languages., For on-line systems it may be more
efficient to aisplay the information for immediate verification-
before transmitting it to the DBMS, - There would still
need to be a further check within the DBYMS before finally
storing the data in the database. Thus the validation
of data involves Both DBMS and the application programn;
some aspects may only be visually checked by the high level

terminal user (level 6 in Figure 3.1).

3.4.3 Concurrent update

The subject of concurrent update of a database is dis-
cussed in detaii in Chapter Se In this section, the problems
which arise when more than one run-unit is uédating the
database at the same time will be explained, but the solutions
will be left mainly to_Chapfer Se

One of the important aims of a DBMS is to allow more

than one user, each with his own view of the data, to access

~40-

the database simultaneously. Concurfent data retrieval
presents no problem of interference, but severe difficulties
can arise when concurrent update is permitted. Apparently
successful updates can be overwritten thus leaving the database
in an invalid state,

There are a number of different forms which the inter-
ference between run-units concurrently updating fhe database
can take. They depend upon the type of update being performed,
Tﬁe simplest situation is:

Run-unit A reads version 1 of record 1
Run-unit B reads version 1 of record 1

Run-unit A updates record 1 changing version 1 to version 2

Run-unit B updates record 1 changing version 1 to version 3

The update of run-unit A is lost as run-unit B overwrites
it. Run-unit B should have been informed that the record)
had been changed after it had read it, or it should have
been prevented from reading a record which had been read
for update, or this conflict should have been resolved in
some other way. |
The standard approach to this problem is to use locks.
A run-unit which wishes to update the database can, before
it reads a record, prevent other users from accessing it
until the update is complete. This is dcne by applying
a lock to the record, thereby claiming exclusive right of
access to the record,
Run-unit A locks and reads version 1 of record 1
Run-unit B attempts to lock and read record 1, but is
queued a&aiting release of the record by run-unit A

Jun-unit A updates record 1 changing version 1 to version 2

Fun-unit A unlocks record 1

ol T} -

Fun-unit B locks and reads version 2 of record 1
Run-unit B updates record 1 changing version 2 to version &

Run-unit B unlocks record 1

Provided a run-unit is 1limited to claiming one lock at a
time, i.e. it must release one record before claiming another,
this simple approach works well and is easy to implement.
However, if a run-unit can claim more than one lock at a
time, deadlock can occur (see below).

A more subtle form of interference can occur wheh
run-units are updating groups of records, i.e. reading a
numbér of records and on the basis of certain criteria updating
one or more of the records. Consider the following example:

Run-unit A reads version 1 of recordé 1 and 2 and - .. =
validates transaction a against version 1 of fecord 1

Run-unit B reads version 1 of records 1 énd'a and
validates transaction b against version 1 of record 2

Run-unit A uses transaction a to update record 2
changing version 1 to version 2

Run-unit B uses transaction b to update record 1

changing version 1 to version 2
Both transactions passed the validation checks against version-
1 of rzcords 1 and 2, but due to the updates neither would
pass against version: 2 of the records, Thus an inconsistent
database has resulted. |
Again, the application of locks will avoid this type
of interference:

Run-unit A locks and reads records 1 and 2

Run-unit A validates transaction a against record 1

Run-unit B attempts to lock and read records 2 and 1
and is queued awaiting run-unit A

Run-unit A uses transacticn a to update record 2

v

Run-unit A unlocks records 1 and =2

Run~unit B locks and reads records 2 and 1

~L4oa

Run-unit B validates transaction b against the new record
2, but the transaction is rejectéd-

Run~unit B unlocks rocords 2 and 1

The example above is of a consistent series of updates,
i.e. a process requires a time-consistent view of»a number
of records before deciding which to update. By locking
all the records involved, even if only one is to be updated,
no interference can‘arise.

Once a process is allowed to claim more than one resource
(record) in a random order, deadlock can occur, The typical
case is:

Run-unit A reads and locks record 1
Run-unit B reads and locks record 2
Run-unit A attempts to lock record 2 and is queued
awaiting run-unit B
4 Lkun-unit B attempts to lock record 1 and is queued
awaiting run-unit A
veither run-unit A nor B can continue. - In order to resolve
the deadlock, either A or B must be pre-empted and its
resources released.

The problems which arise when deadlock occurs are by

no neans trivial. In order to pre-empt run-unit A in the

above example, it is necessary to position it »rior to its
Ry b} Iy £

issuing the 1lock and read request for record 1. This
repositioning is known as rollback. However, run-unit A

may have made changes to other rescords in the database in

the meantime énd all these‘changes would have to be reversed
as well as its own internal variables. What happens to other
processes whick have been affectéd by these charges (i.e.
which have used the altered reéords) is often not considered

in existing systems. Ideally, they too have to be rolled

.

-
back and so the problem mushrooms.

In general, the designers of DBMSs tend to prefer to
-adopt solutions to the coneurrent updaté problem which do not
give rise to deadlock or which enable rollback to take place
to a predetermined place known as a checkpoint, in the program;
without rolling back other run-units.

Deadlock need not occur directly between two run-units,

but also. through a chain of intervening run-units. For example:
Ra = {R1, R2, R3, R4} and Va = §{R5)
Ro = {R6, R7, BR8] = and ‘Wb = {R1)
Re = {R9, R10, R11 and Wc = {Ri}
Rd = {R12, R13, RS} and Wwd = {R9}

where Ri = set of records currently locked by run-unit i
and Wi = set of all records for which run-unit i is

currently queued
The deadlock is between run-units a and d through the intervening
run-units b and c. The detection of this tyfe of chain
deadlock is not straightforward. An algorithm based on a graph
theoretic model of the ‘database involving loop detection
is proposed by King and Collﬁeyer [27]. , However,beven
having detected the deadlock, there still reméins the problem

of which run-unit to pre-empt and how,

SJh. b Packup and recovery measures

There are two ways in which data can be lost completely:
(a) hardware error, e.g. at input terminal, transmission
line, disc head crash .
(b) writing of_data to an area outwith the control of the

database, including data lost due to inaccessibility

following corruption of pointers to the data.

“LhLa

There is little that the DBMS cap do to guard apainst
hardware faults, but it must ensure that users are notified
as soon as possible and that adequate recovery measures can
be taken By the system,

As regards the second manner in which data can be lost,
it is assumed that the DBMS is incapable of setting up the
links betweeﬁ the data incorrectly or of storing the data
at the wrongvaddress. If the data links become corrupte@.
thus leaving the data inaccessible, fhen the restoration of
the links following recovery should also automatically restore
thé data;

There are three aspects to backup and recovery measures:
(a) backup copies of the database or portions of it
(b) journal file of database transactions
(c) checkpoints .

The traditional approach was.to maintain father/son/
grandfather coypies of data files on tape. In the event
of failure, the entire file was then restored from tape.

This would be impractical in the huge databases of today.

This is well illustrated in the Infotech State of the Art
Report on Database Management [28] where the example is given
of the time it would take to dump'the entire warranty files

of the Detroit car manufacturers - namely, 48 hours each day.
The solution therefore is to divide the database into several
physical aréas on different storage devices, so that only one
disc or drum, say, has to be restored foilowing system failure.
Backup copies (dumps) are made éf certain highly active

and vital port;ons of the database at frequent intervals,

supplemented by less frequently taken copies of the entire

~h5a

database., Although this is a‘time-consuming eiercise during
which the portion éf the database being copied will not
be available to users, it is a convenient time to carry
out at least a partial database reorganigation. This
reorganization can take the form of simply compacting empty
spaces but it can also consist of radical restructuring of
the database to increase efficienéy.
In addition to general backup files, it is also necessary
to keep copies on a Journal File of all the transactions
on the database. The entry on the journal file can be
" made either before the update or after the update when the
altered page is being written back to the database or,
more probablj;‘a combination of the two. Generally, the
journal file is made on tape, which means that it will be
quite slow during recovery and is a major limiting factor
on the speed of recovery. DMS 1100 [29] allows the Database
Administrator to specify that copies will be made on a Random
Access file which clearly‘greatly speeds up the racovery
operation. On the other hand, Random Access storage devices
in the past were more liable to suffer hardware failures
then sequentail devices, though this is becoming less true.
The final aspect of backup and recovery systems is the
checkpoint. when a checkpoint is made, a copy of central
storage is made and the position on the journal files marked.
Checkpoints can be inifiated either by the DBMS,.e.g. at the
start of a run-unit or from within the application program,
€.5. at the start of an update. The use of checkpoints
enables rollback and recovery to take place automatically

and quickly. It is preferable for checkpoints to coincide

=bba

with quiesceﬁt points, i.e. points at which there is no-

transaction active. The conseduences of inadequate backup
and recovery measures are potentially so serious that the
provision of full facilities' is becoming one of the most

important aspects of DBMS design [30].

3.4.5 Consistency of multiple copies of data

It was stated in Chapter 1 that an important aim of
the DBMS is to control data redundancy, i.e. the unecessary
duplication of data in the database. It should be noted,
vhowever, that it is sometimes desirable to incur the overhead
of the extra storage required by repeating a data field
in order to greatly increase efficiency.

‘McCall in the Infotech Report [28] quotes the example
of where it is much cﬁeaper to duplicate customers' names
and addresses at a cost of 37000 extra for the second record
rather than to incur the cost of the extra processor usage
which would be required to obtain the information from two
different places,

The problem with data redundancy in DBMSs, just as in
the older systems, is the difficulty of ensuring that all
copies of the field in question are the same at any time.

If they are not idzntical, then there may be no way of telling
which copy is the correct one. Thus if one copy of a duplicated
field ié updéted, all éther copies must also be updated
aﬁtomatically and ‘'simultaneously’. The question of the
consistehcy of multiple copies of data therefore becomes a
question of consistency during a group update, which was

discussed in Section 3.4,3. Thus all duplicated fields

-47-

must be locked together., The user (application programmer
and high level user, leévels 4&5 of Figure 3.1) should of
course be unaware of the chain reaction of his update which

will be carried out automatically by the system.

3.5 Frivacy

The main threat of computers as seen by the layman is
their use in establishing huge databanks in which all inform-
ation on an individual is integrated. This information
would be gathered from many different sources, e.g. bank,
income tax, mortgage companies, job applications, police,
educational institutions and so on. Thus the provision of
adequate privacy controls becomes of vital importance to the
designer of the DBMS. Even the most elementary controls
are going to cost something, both in real terms and in terms
of.performance. The analogy can be drawn with the physical
protection of valuables - the more valuable the items, the
stronger the safe used and the more elaborate the Security
arrangements. Similarly, it can be expected that the more
sensitive the information stored in the database, the more
expensive the provision of security controls will be.

Before the teleprocessing era, the provision of security
for a computer system was really simply a questidn of ensuring
the physical security of the computer room and associated disc
and tape libraries. liodern teleprocessing systems are much
more vulherable. Apart from the difficulty of ensuring

the security of hundreds of terminals, sophisticated bugging

48~

devices enable the communication lines themselves to be tapped.
Assuming therefore that the snboper manages.to log on to the
system, *he next line of defénce must come from thé DBHS
itself, The final line of defence is the Operating System
and hardware. If the DBMS provides a high degree of security,
then the skilled, professional spy will attempt to byvass the\
DBMS and possibly also the Operating System to gain access

to the database. To frustrate such spies an elaborate

code could be used to encode the data when it is stored

and then décoded by the DBMS when the data is retrieved.

In this way, meaningful access would be expénsive other

than throﬁgh the authorized DBMS routines. The code used
must change ‘in an unpredictable waylbecause the longer the

code is in usé, the greater the chance of someone breaking

it and the greater the gain for him if he succeeds.

No matter how secure the system may be, it is important
to make provision for the detection of anyone who does succeed
in accessing the databése illegally., In order to do this,
it is essential to maintain an activity log of all events

on the system, which is repularly and fully analyzed.

3.5.1 Terminal security

Terminals connected to the DBES could be kopt locked
with keys or access cards held only by authorized personnel.
To log.on to the system, users would be required to give a
password, which would either not be displayed at all at
the terminal or else;be‘overtyped. Such an approach has the
merit of being chea?, but it would only be effective against

the curious snooper and not the skilled professicnal.

~49=

- To frustrate the line-tappers all.data using the cémg
munication links to the DBMS could theoretically be encoded
by a hardmare device at the terminal and then decoded by a
reciprocal device at the computer. It would also be possible
to store all the data in the database in coded form. However,
the problem of how to distribute the current encryption key
securely over an entire teleprocessing network is far from

being satisfactorily solved.

ZeDel Physical data protection

The most straightforward case of data protection ds to
ensure that no-one accesses those~fieids for which . they haVé
no right of access, i.e. physical data protection. There
are a number of different approaches té this problem:
(a) DBMS can maintain, as part of the Data Definition Language,
a list of authorized users of each field/record; if a
user's name is not on the list then the DBHS wili not

allow him to access the field/record (or the inverse of

this specifying the range of permitted access for each

user)

(b) each seﬁsitivé field/record can have a lock associated
with it and thoée wishing to access it must first give
the correct key; again this would be specified in the
DDL

(c) execution of a datébase procedure to determiﬁe whether or
not the user is permitted to access the field/record.

In the case of databases which are stored on removable
devices,ie.g. tapes, discs, header labels can be checked for

access permission. This would also ensure privacy in the event

=50~

of an operator accidentally mounting the wrong tape or disc,

2.5.3 Logical data protection

An increasingly important aspect of protection to which
little attention has beeh paid is thét of logical data protect=-
ion. It is possible to have a situation whereby a user is
permitted to access the name field in the personnel record and
the salary field in the payroll record, but he would not be
permitted to link the two fields together, i.e. he would
not be able to find out how muﬁh a particular person earns.,
Even if database procedures were available to monitor a
user's activities, it might still be bossible for him to
list the two‘sets of data and associate them outside the
system using his knowiedge of the realfworld. The DBHS

could not resasonably be expected to do anything about this.

-51=

CHAPTER 4

CONCURRENT UPDATE IN DATABASES

4,1 Introduction

The difficulties which arise when more than one run-unit
is concurrently updatinsg the database were explained in Section
3eb, 30 In this chapter, the general aims to be achieved
by a solution to the update problem will be discussed and the
approaches taken by some existihg and proposed systems will

be examined.

L.2 Guidelines for solution to concurrent update problem

The following is a list of the desirable attributes of.
a solution to the concurrent update problem (see also [31]);
note that these attributes are ideals and not necessarily
simultaneously realizable as is discussed in Section 4.2.7.
(a) The basic aim of a solution to the concurrent update
problem is to dectect and avoid interference between concur-—
rent users of the database. This must be totally
rransparent to the users and must give each user the
illusion that he alone is accessing the database - or
at leasé the portion in which‘he is interested. Thus
solutions of the type which inform a user that a record
has been changed by another user since he first read it
are unsatisfactory. |

(b) Users should have the illusion that they arc permitted free

-52~

and unrestricted access, both for reading and writing,
to those portions of the database in which they are
interested, subject: of course; to any privacy constraints.
Users should ideally not have to spécify in advance
what operations they wish to perform. For example,
they should be allowed to step unconstrained through
the database reading and updating records.

(c) Solutions which necessitate rollback are unsatisfactory
in an on-line environment due to the unrepeatability of
the work., The exception to this is any system in which
rocesses are not updating the database when they are
pre-empted or rolled back., If an actively updating
process is rolled back through a change in data which
might affect the decisions made by other users accessing
that data, it is possible that these users would not -
still be logged on to the system. Rollback in a batch
environment, however, is quite satisfactory; the user
simply indicates the beginning and end of his group
updates and need not be aware of whether or not rollback
has taken place. Using a differential file and resetting
all local and global variables, the system rolls the process

\

back to the start of the update. Such an approach
can be useful to the programmer in that it could be used
to initiate a voluntary rollback in the event.of an
error béing detected.

(d) The solutioﬁ must guarantee that all users will eventually
be able to run. If a user's resource demands are |

considerable, he may have to wait until there are virtually

no other users of the system. Such users effectively

-53%=

run their programs in b:tch mode, when, in general, the
problém of concurrenf update does n§t arise. If, however,
the transaction to be performed is urgent (e.g. flight
cancellation) the demands must be met quickly and therefore
a priority system may be required.

(e) The solution must not involve too high an overhead especially
for simple operations. In many applications, updates
are simple in structure and involve only a single record,
i.e. group updates are comparatively rare, although'fhis
may well be because they are difficult to proéram.

(f> Cnly those records which are logically involved in the
update should be locked, i.e. a process should claim
and be‘given no more resources than it actually needs
and should release them at the earliest possible ﬁoment

consistent with the logic of the update.

L,2,1 Discussion of the requirements

The requirementsAlisted above are not logically compat-
ible. The aim of giving each user apparently his own view
of the database while at the samé time maximizing the concurQ
rency are in effect contradictory. If only one user at a
time is accessing the database, then he can simply read and
update records freely, even for group updates. quever,
once other users are allowed to access the database at the
same time, interference can easily occur as illustrated in
the examples in Séction B a2,

In order to avoid possible interference between concurrent
updaters of a database, it is necessary to ensure that they

are accessing disjoint portions of the database. However,

~5h-

requirement (b) stipulates that users should not ideally

have to specify in advance what their access requirements
afe.< Thﬁs the DBMS would have to examine each users demands
in order to ascertain whether they overlab with another
concurrent user, It is not possible for the system to
deduce the individual record occurrences required by a user
(especially when requests are content-based) without actually
executing the user program. Thus the DBMS could only deduce
the user's requirements in broad terms, e.ge. realm or record
type, from the subschema DDL ahd/or declaratives in the
application program. Even if the user simply wished to update
a single record, the system would only be able fo state in
advance that the program would require exclusive access to,
for example, all the record occurrences of that type or

all the records in the realm in which the desired record)
is located. It would therefore issue locks on that basis.

A concurrent user wishing to update a single different record
in the same reaim, or of the same type, would therefore

have to wait until the first user terminated. Such an
approach runs contrary to resquirement (f) which states that
no process éhould'be given more resources than it logically
needs and that it should not retain those resources for
longer than necessary.

Thus at the very least the DBMS must know béfore a
process reads a record of its possible intention to subsequently
update the record, However, this is not sufficient since
even this information is not enough for the system to guarantee
no interference between users. Hence a system of locks is

introduced which must be claimed by a process prior to reading

~55=

a record which it intends subsequently to update. This lock
can be claimed by the process explicitly using a special
LOCK command or automatibally by the system when the process -
issues a special type of READ (e.g. GET HOLD in IMS). This
approach works well when users are restricted to claiming
a single record at a time, i.e. they must release a lock
prior to obtaining the next one. This is not an unreasonable
restriétion for some users, but it is totally impractical
for the remainder who perform group updates. To handle
group updates, it is necessary to allow processes to hold
more than one lock at a time and to release them separately
or all together. However, if the user is allowed to step
freely through the database claiming locks and updating
records, deadlock can easily occur. Requirement (c) prohibits
solutions of this kind. -

It is therefore necessary to compromise even further
in order to perform group updates successfully, Users
must specify in advance all their rzquirements which form

part of logically consistent updates.

4,2 Txisting approaches to concurrent update

In this section the solutions adopted by CODASYL, IKS/2,
DMS 1100, PRIME and the proposal by Chamberlin et al in [32]

will be discussed.

4,3,1 CODASYL

CODASYL allows for two levels of locking = at the area

~56-

level (using DML OPEN command with qualifiers) and at the
record level (DML KZEP/FREE commands).

A run-unit may open an area for EXCLUSIVE use -~ either
update or retrieval -~ which prohibits all other users from
accessing the area for the duration of that run-unit or until
it issues a CLOSE on that area. The KEEP command on a record
is used to notify the DBMS of the intention of the run-unit
to re-~access that record. While a KEEP on a record is in
‘force (i.e. until a corresponding FREE is issued), any attempt
by that run-unit to update the record will be successful only
if the record has not been changed by other run-units since
the KEEP was issued. Such a system is clearly easy to imple=...
ment but it places the onus entirely on the user to decide
what action to take if the update is unsuccessful, This
system has been generalized since the. April 71 Report to
recognize two modes:

(a) monitored mode

(v) extended monitored mode.

Only the current récord (i.e. the record most recently accessed)
of a run-unit can be in monitored mode, but any record (incl-
uding the current) can be in extended monitored modes The
current record is placed in monitored mode automatically and
remains in this mode until it ceases to be the current record
or is the object of a REMONITCR statement. The execution

of a KEEP statement on the current record of the run-unit
alters its mode.to extended monitored mode. Fxtended monitor-
ed modencontigues until a. FREE statement removes the record
from that mode or a RIMCNITCR statement rcferences the record

or the realm in which it is stored is removed from the ready

=57 =
mode. The purpose of a RBHONITOR statement "is to alter
the records currently in extended monitored mode and to ensure
that the.current record continues to be monitored even after
it ceases to be the current record of the run-unit.

Although this system is more precise than the straight-
forwérd KEEP/FREE of‘the April 71 Report, the effect from the
user's point of view is the same; namely, the user is notified .
if a monitored or extended monitored record is altered by a
concurrent run-unit since the record entered monitored
or extended monitored mode. It should be noted that, as
with many other aspects of CODASYL, the role of the KEEP/FREE
command is under review.

The use of the area locking mechanism can lead to
inefficient sharing. Although, in theory, the records
-involved in group updates (i.e. 'inter-dependent updates
of a number of records) should be located in the same area,
in practice, with large databases and many users with conflict-
ing requirements for record placehent, this may not be possible.
Hence one run-unit could lock a single portion of the database
even if it was only updating one record, which particular
record depending on several other records in different areas,

all of which would have to be locked together.

L,3,2 IN3/2

IBM's IMS/2 [25,24] in a sense avoid; the problem of
concurrent update altogether by simply restricting concurrent
usage of the Qata to disjoint portions of the database.

This is based on th; specification of segment sensitivity

for each run-unit in the Job Control Language (see Section

-58~
3.2.2). If a run-unit has indicated that it intends to
delete or update a segmentvwhich another run-unit has also
indicated it may wish to delete or update, then IMS will
ensure that the two programs will not be écheduled together
(cf. CODASYL OPEN command for areés). This approach greatly
limits the degree of concurrency in the system since even
if the two run-units only have one segment occurrence to
be updated in comiion, the second run-unit will have to wait
until the first one has terminated.

Under IMS/2 the DML HOLD option on retrievél requests
is redundant, but under IMS/VS it will enable locks to be
applied at block level, A locked block being updated will
not be released and written back to the database until a |
FREE command is issued or the run-unit terminates. This
system can give rise to dzadlock which will be resolved -

.by rollback of one of the run-units involved.

L,3,3 DMS 1100

UNIVAC's DMS 1100 [29] implements the area locking
mechanisms as proposed in the CODASYL April 71 Report.
However, the operation of the DML KEEP/FREE commands is slightly
different, The KEEP statement places a lock on a page of
the database and the FREE command releases it. While one
process holds the lock for a page, other processes cannot
access it,

Deadlock can occur and a rollback mechanism is put
into operation whenhit is detected. The user specifies

in his application ' program a rollback paragraph which must

be executed when rollback is reqguired. Only a single process
is rolled back and its effects on the behaviour of other
processes is nét considered. = Furthermore, if no entries

on the random access Audit Trail (quick-before-looks) have
been specified in the schema for the areas involved, then the
database can be left in an inconsistent state following

rollback.

4.3,4 PRIME

Although based on thé CODASYL DBTG proposals, the
PRIML DBMS [33] takes an individual approach to the cdncurrent
update problem. PRIME introduces a unit known as an update
Database Transaction (DBT), which is initiated by the applic=-
ation program by means of a START TRANSACTION command and
terminated by an END TRANSACTION command’ or an ABORT TRANSAC%ION
command., All logically related updatés are grouped together
into an update DBT.V The system makes use of before-images
of‘blocks which are taken before each block is updated. .
These before~images can then be used to rollback the transaction
when the user aborts the transaction or when it is aborted
automatically. If a user attempts to read or write a block
that has been modified by a concurrent update DBT, the |
system will order him to abort his transaction. If the user
complies, using an ABORT TRANSACTION command, he may perform
his own recovery before abérting, bt if he fails to comply,
the system will abort the transaction automatically. It
is felt that coﬁcurgent conflicts are transient andé usually
clear quickly. Hénce, after aborting a transaction, a user

can start a new update DBT immediately and try again.

~60-

4,3,5 Chamberlin et al's solution

At the 1974 IFIP Congress a paper was presented by
Chamberlin, Boyce and Traiger [52], in which a deadlock free
scheme was put forward as a solution to the concurrent update
problem, The main complications aftributable to resource;
sharing in large databases are seen és:

(a) non~unique resource names
(b) non-static resource categories - a process operating on
a resource may change its nature
(c) interdependent locks - further lock requests may be issued:
on the basis of the first set of lock requests
(d) increased complexity -~ to maximize concurrency the basic
lockable unit must be small, e.g. a record, but‘this |
approach implies millions of lockable resources.
‘In their solution Chamberlin et al assume the existence
of SEIZE and RELEASE primitives in the application programming
languare. The code between the SEIZE and its END statement

is known as a seize block. Within the seize block, no

procedure can be carried out except the claiming of records =
in particular, no changes can be made to the database. It
is also permissable to issue lock recuests which are dependent
on the data values of records.
SEIZE; ,
X=EMPLOYEES WHERE SALARY %> '10000"';
DEPARTHMENTS WHERE DEPTNC=X.DEPTNO;
ENDj;
The reason for the restriction on the type of operation
which can be carried out within the seize block is obvioﬁs -
namely, that a process can be pre-empted safely within this

block without affecting other processes. Once outside its

-7

seize block, a process cannot be pre-empted and has exclusive -
access to the records it ﬁas locked., It relinquishes all
locked records simultaneously using the RELEASE statement.

In this way changes it Has made to the database will appear

as a single logically-consistent unit. Clearly, all records
locked in a seize block must be released beforec the next

seize block is entered.

The algorithm for locking records envisages a search
engine which can examine records and set locks on the ones
which qualify. It can also examine the non-updated version
of locked records. If the search engine for one process
wishes to lock a record which is already locked by another
pfocess, fhe requesting process is said to Ee blocked and
must wait until the record is released. For every record,
there is an ordered queue of processes = the process at the -
head of the queue holds the record and the remainder are
blocked waiting for it,

Cleérly, it is possible for deadlock to occura Chamberlin
et al say that this can be detected easily using King and
Collmeyer's method [27] and can be prevented by defining a
priority ordering among processes. Thus if P1 requests
a record held by P2, the record is pre-empted if and only if
P1 has higher priority than P2 and P2 is still in its seize
block., iiecord queues are held in priority order. However,
such a schéme can lead to unnecessary pre-emption and it would
be better to pre-émpt only when deadlock has actually occurred.
To avoid the possibility of one process being blocked indef-
initely, it i; possible to favour a process in such a way

as to guarantee it will run. It should be pointed out that

-62-

" the favouring of a process involves a further.o§érhead for
the algorithm, Chamberlin et al propose the following
modification to_their algorithm:
(a) when process P1 requests a record which is locked by P2,
the record is pre-empted if and only if:
(i) P1 is favoured and P2 is blocked or
(ii) P2 is not favou}ed and P1's queueing behind P2 would
result in deadlock
Otherwise P1 queues immediately behind the favoured process
P3, if and only if P3 is on the quéue, else immediately
.behind P2
(b) When a process requests a free record, it is immediately
granted‘a lock and placed at the top (holder ﬁosition)
of the queue for that record “
(c) When a process P1 becomes blocked, it releases to the
- favoured process P3 ali qf its records for which P3
is queued and places itself next in line for these records
(d) wWhen a process becomes favoured then wherever it appears
on the queue, it moves to the top of the gqueue if the
record is held by a blocked process, pre-empting the record,
or to the second position in the quéue if the holding
process is not blocked (it could be outside its seize
block)
(e) A record when released is given to the next process in
the queue.
When a process wishes to release its records, it must
wait until ali othep pfocesses are either blocked or outside
their seize blocks in order to ensure that a consistent view

of the database is always available to all processes.

63

Chamberlin insisfs'that if two processes A and B are simultan-
eously updating records of the same type that the 'snapshot'
obtained by process A will reflect either all of the updates
made by process B or none of them, All the updated records
are dhecked against the locking predicates of blocked processes,
Two situations are of interest:
(a) One of the newly released records may be found to meet
the locking predicate of several processes, Pi. In
this case to avoid deadlock, a total ordering of processes
is generated which is consistent with all the existing
queues, The processes Pi are placed on the queue for
the newly released record in positions consistent with
the total ordering
(b) One or more of the blocked procesées may be queued for
a newly released record, but may now discover_that it no
longer meets their locking predicates, These proéesses
delete‘themselves from the queue- for the record.
In both the abhove situations, the interdependencies of the
locking predicates ma& necessitate re-examination of all the
predicates and pre-emption of all the records held by that

process as it is rolled back to the start of its seize block.

4.4 Summary of approaches to concurrent update

An examination of the approaches given above to the
concurrent update problems reveals that they fall into twe

categories - minimum locking and over-locking. Sometimes

a system uses a combination of these two approaches. Minimum

-6ha
locking involves only those records which are logically
involved in the update and over-locking involves (in general)

locking more than is necessary, but which is easier to implement.

4,4,1 Minimum locking

The critical feature of minimum locking is the type of
locking predicates which are allowed, If these are restricted
to specific identification of records by means of database key,
then the system is easy to implement and operate. The
important aspect of this restriqtion is that the‘set of records
requested is invariant, i;e. it does not depend upon the
state ofvthe database,

If, héwever, time-varying locking predicates which are
dependent on the content of the database are allowed, the

problem is infinitely more complex. For example, requests

of the type:
LOCK EMPLOYEE RECORDS WHERE DEPARTHMENT=X

will depend upon which employee records have department=X
at a given time, Requests of this type are quite recasonable
and shonld be handled by the system.

In order to evaluate such locking predicates, a time- -
consistent snapshot of all the records involved is required.
However, it takes a finite length of time to evaluate the
locking predicates. This time can be considerable when

requests of the form:
LCCK PATIENT -RECORDS WHERE SYMPTOM=Y

are made and there is no inverted symptom file, It is worth

noting that if, as seems likely, CODASYL provides for non-

~55-
disjoint realms, then with locks applied to compléte realms,
requests of this form could be handled quite efficiently.
While the process is evaluating the lockiﬁg predicates, other
processes can be making changes to the database which might
affect the evaluation. If the process is restricted to
examining only those records which are not currently 1ocked-‘~
and if the locking predicates have been correctly written
to include all records which are logically involved in the
update, then in theory there should be no problem. Practically,
however, this means that in the case-of a symptom request of
the type giveh above, the locking predicate would fail even
if only 6ﬁe patient record in the entire database were locked.
Thus the entire locking predicate would have to be re-evaluated.
Clearly, with this type of request, it would be much more
sensible simply to keep track of all the patient records witk
SYMPTOM=X and check each newly updated record as it is
released, until all patient records have been examined.

In general, a process whose locking predicates are
content-dependent can be thought §f as tracing a time-varying
path throuch the database from record R1 to Rn. Having
reached a recorcd node Ri, the path to be followed from Ri,

i.e. the next node Ri+1 to be seleéted,'depends on the value
of a field in Ri, or, more generally, on
{R1,R2,....,Ri} . Thus the entire time-varying set of
records {R1,RZ, escey an are logically involved in the
update and must all be lock=2d by the process before it can
be released,) Clearly, with an operation of this type, it
is not possible to7éont§nue the evaluation oi locking predicates

once a :locked node Rj is reached. If records {R1,R2,....Rj-1}

-G6m

have been locked as each node is reached, then this set is
still valid and can be rétained by the process until Rj is
releasea and the locking predicate evaluation continued.,
With a long and complex path through the database, a process
could be locked for a very long time, while at the same time,
preventing other processes which might require a.single record
from the loéked set {R1, R2,....Rj-1} from being released.
To avoid this, it is preferable not to lock the records
{R1,R2,,Rj-1} as the path is being traced through
the database. However, in this case once a locked record
Rj is reached, the process is blocked and the
records {R1,R2,....,Rj-1} can be released to other waiting
processes, if required., In this way, the entire path from
R1 would have to be re-evaluated since any change in record
Rf€ {R1,%2,.....,Rj=1} may well affect [Rf+1,Rf+2,ees,Rj=1]
such that a different path will be followed.‘

It is important to realize that in complex path tracing
algoritnms, the logic required in the seize block will probably
have to be repeated again outside the block when the records

are actually being processed and updated.

4,4,2 Cver-locking

The essential feature of over-locking is that it involves
locking more than is actually required and therefore the INMS
scheme based on segment type and the CODASYL scheme based on
areas are examples of this type.

How efficieﬁtly the area locking mechanism works is
entirely depend=ant on how close ths areas are to those portions

of the database used by individual application programs,

| The CODASYL areas physically resemble the files of traditional
data management systems and therefore there could bé a good
correlétion between areas and portions of the database required
by particular application programs. However, one of the
fundamental reasons for the introduction of the DBMS was to
eliminate the unnecessary redundancy in the tradifional
multiple file systems.v In general, it was standard practice
to design the files such that the payroll program used one

or two files, the personnel programanother file and so on,

even though there might be considerable duplication of inform-
ation (e.g. employee name and address) across fileé. Given
thereforé that all these files are merged into a single
database with the elimination of most of the dulicated data
and that the database is divided into'hon—overlapping segments,
it is unlikely that these segments will correspond neatly to
the original files,

An alternative to the area as the basic locking mechanism
is the record type. On consideration of traditional "filing
systems in which each file was cémposed of a sihgle record
type, this approach may weizl be quite logical. Thus, for
example, the payroll program will be concerned with the payroll
record, the. personnel program with the personnel record and so
on, Clearly, in order to avoid the disadvantage of non-

overlapping areas, it is the logical record type which is

Ao

used. It is the responsibility of the DBMS to translate
this into one or more physical record types. A queuing
mechanism will évbig déadlock - if an application program
required more than one logical record type, it must claim them

all together. All processes are guaranteed to run although

~-68-

complex path tracing algorithms involving many different record

types may well have to wait a long time before being released.

THE CCDASYL PROPCSALS

5,1 Introduction

It is undoubtedly true that the publication which heas
had the greatest impact on the field of Database lManagement
Systems is the 1969 Report of the CCDASYL Data Base Task
Group [34] together with its sequel, the April 1971 Report [1].
CCDASYL (anference on Data Systems Languages) is a voluntary
organization composed mainly of users and implementors and
was set up in.1939. It is this organization which was
responsible for the development of COBOi. One of its three
tain committees, the Frogramming Languages Committee. (PLC),
is concerned with approving changes to COROL,. The Data
Base Task Group (DRTG) was a sub-committee of the PLC. The
April 1971 Report of the DBPG was intended to discuss
enhancements to COBOL to incorporate more sophisticated data

agement facilities., The report has since been reworked
with various modifications and incorporated into the COBOL
Journal of Develonment [55] and the CODASYL Data Definition
Language Committee (DDLC) Journal of Development, 1978 [22].
Invspite of this, the 6riginal 1971 repecrt and its subsequent
alterations in the JCDs is seen, if not as a proposal for a

DBiS, at least as a discussion of the sort of facilities

a DBIS should be expacted to handl Above all, the 1971

Qenort provided a clear ancd well-defined framework as well as

2 terminology in wnich to discuss DEHSs, It is not proposed

P,

70~

to describe the CODASYL proposalé in detail here, but rather
to give a brief.description of them and then to discuss
some aspects more fully,

The CODASYL view of DBMSs is a continually evolving
process with many working parties which examine all the
various aspects in detail and make recommendations for
changes to be made in the two Journals of Development, Apart
from its great initial impact, the dynamic nature of CODASYL
has maintained its vital role in the field of DBMSs today;
However, the ultimate aim of CODASYL is to provide a 'standard".
The field of DBMSs is still developing rapidly and to impose
a standafd which necessarily has to be fairly static, could be

detrimental.

5.2 Elements of the CODA3YL Proposals

The two main elements of the CODASYL 1971 Proposals

(a) Data Description Language (DDL)

(b) Data Manipulation Language (DML)

A third language, the Device/Media Control Language (DMCL)

is also briefly mentioned. The DMCL provides the mapping
between the physical database and the physical storage devices,
whereas the DDL and DML are concerned mainly with the logical

database,

5.2.1 The Data Description Language

The Data Description Language is used to descrilbe the

)] -

data and thé relationships between fhe data at two distinct
levels - the schema and the subScheﬁa. The schéma‘is seen
as a logical description of the entire database, i.e. of all
the data itéms, records and relationships between them (sets
in CCDASYL terminology). The subschema, on the other hand,
is a.description of only a portion of the database as required
and viewed by a particular application. Thus each application
has its own subschena, The subschema is r-ally just a subset
of its parent schema, since it may differ from it in onaly
relatibely minor ways, e.g. the omission or renaming of
certain areas, records and sets (see Section 5.2.3 for defin-
itions of these terms) and the ordering and/or characteristics
of data items within records.

The subschema is host language dependent at least at
the data item level. Thus each host language, e.g. FORTHANy
PL/I, COBOL reguires its own subschema DDL; e.g. FORTRAN

subschema DDL etc.

5.2.2 The Data lManipulation Language

The Data Manipulation Language is the language used to
access theAdata ase. It consists of a variety of commands
embedded in a host languerse. Initiaily, CCBOL was the only
host language which was discussed in any detail but since then

a FORTRAN D¥L JCD has been published [36].

5e2e5 Data structures - -

The smzllest unit of named data in the CODASYL proposals
is the data~-item; an occurrence of a data item is a represent-

ation of a value. A data-agrmegrate is a named collection of

-2

data items within a record. There are two types - vectors
and repeating groups. A vector is a one-~dimensional ordered

collection of data-items, all of which have identical character-

istics. A repeating-group is a collection of data that

occurs an arbitrary numbervof times within a récord occurrence
and may consist of data-items, vectors or repeating groups.

A record is a collection of zero, one or more data-items or
data-aggregates and is the basic addressable unit in the

DBMS. There may be an arbitrary number of occurrences'in

the database of each record type specified in the schema

for that database. In the April 1971 Report, each record

has a unique identifier called a database key, which is assigned

when the record occurrence is first stored in the database and
remains its permament identifier until that record occurrence
is deléted. Database keys are assigned by the system
according to rules specified for that record type in the
schema and arguments, if any, sﬁpplied by the process adding
the record occurrence to the database. The keys are available
to the program. In the latest DDLC JOD 1978;[22], databasé
keys are for system use only and are no longer accessible

to the application program; they are in use for the duration

of the program aﬁd not throughout the life of the record,

A set is a nawmed collection of record types. As such,

it establishes characteristics of an arbitrary number of
occurrences of a named set, Each éet type specified in

the schema must have one record type declared as its owner
and one or more record types declared as its member records.
Each occurrence of a set must contain an occurrence of its

owner record and may contain an arbitrary number of occurrences

-7 3=

of each of its member record types. An area is a named
subdivision of the addressable storage space in the database
and may contain occurrences of records and sets or parts of
sets of various types. Areas may be opened. by a program with
USAGE MODES which‘permit or do not permit concurrent programs

to open the same area, Since the April 1971 Report, the area

has been complemented by the realm and the storage-area. A
realm is a logical subdivision of the database and the storage-
area is a subdivision of physical storage,

A database consists of all the record occurrences, set
occurrences and areas which are controlled by a specific

schema,

5.2.% The set concept

The CODASYL set concept has already been discussed as an
example of a network data structure in Section 3.2.1. It is
interesting to note that although many aspects of the April 1971
Report have been changed or modified, the set has remained in-
tact.

The April 1971 Report describes two different modes in
which sets can be implemented, namely CHAIN and POINTER ARRAY.
The members of a chained set are linked together by a system
of pointers known as NEXT pbinters, which sfarts with the
owvner, then passes through each member in turn and ehds withv

the owner as shown in Figure 5.1.

b

OWNER
RECORD

[\
)

MEMBER
RECORD

T

MEMBER
RECORD

Figure 5.1 A chained set with NEXT pointers

In addition to NEXT pointers, the LINKED TO PRIOR option can

be used to include PRIOR pointers to link backwards as well as

forwards through the set.

Finally, each member can be linked

individually to the owner using the LINKED TC OWNER option, -

Figure 5.2 shows all the possible pointers.

OWNER
RECORD

7]

ol
MEMBER
RECORD

o

1,

Lol
HEMBER
RECORD

Figure 5.2 A

1

chained set with NEXT, P

R

IOR and OWNER pointers

~75=

.In the POINTLR ARRAY mode, the NEXT pointers are stored
not in member rzcords but in the owner records; the only
pointers allowed in the records themselves are the pointers to

the owner as shown in Figure 5.3.

WNER LIST CF _
RECORD |MEMBERS M

MEMBER
nECCRD

e

o

Figure 5.3 Pointer array set

Cne of the most difficult features to understand in the
CODASYL April 1971 Report is the SET OCCURRENCE SELZCTION
clause of the DDL. It is this clause which governs how the
rarticular occurrence of a set is to be selected from all the
other occurrences of the sef. A set can he identified by
its owner record, so assuming the o&ner can be located directly,
then the appropriate éet is selected. Alternéfively, the
CODASYL currency indicatois can be used. CODASYL maintains
several currency indicators during database processing which
show which occurrence of each area, set type or record type

was last accessed. Thus the current occurrence of the

-76-

particular set is the one to be selected, Apart from the
hierarchical relationship within sets between owner and
member records, it is clearly possible for sets themselves
to be organized in a hierarchy. Thus a member record of
one set becomes the owner of another set one lgvel down the
hieraréhy. A third method of set selection depends on
selecting the root set (using either of the methods above),
set f, and providing‘sufficient identifiers to trace down
the hierarchy from set 1, set 2, ... in such a way that the
owner of set 2 is a member of set 1 etc., until the required
set is found. The decision of which method of set selection
to be adopted must rest with the Database Administrator

and the application programmer's task is to supply the

necessary parameters to the database procedure.

Ce2.5 The storape-schema and Data Storage Description Languacne

A significant structural development from the April 1971
Report to the present CODASYL position is the introduction of
the storage~schema in the 1978 DDLC JOD [22] and the Data
Storage Description Language by the Database Administration
tVorking Group (DBAWG) [37 & appendix to 22]. The subschema
is the application programmer's view, the schema is the
Database Administrator's logical view and the storage-schema
is the DBA's piysicalrview. The storage-schema would be
written in Data Storage Description Laﬁguage (D3DL) and is
used to describe a storagé environment for a database and
an associated schema to storage mapping. The schema is defined
first and it describes all the data in the database. A

subschema describes a local view and the mapping between that

-77=

view and the schema, The storare~schema defines a phgéical
view and defines a mapping between this view and the schema.
Since both subschema and storage-schema map on to the schema,
the subschema to schema mapping is independent of the schema
to storage-schema mapping and application program independence
from storage structure may be improved. N

A storage-record is a variable length record which is

stored physically contiguously within a page of a storage-area.

A storase-area can be considered to consist of both an integral
number of pages and an integral number of storage~récords. A
storage~record is of variable length. Thus a single schema
recorc may be mapped directly onto a storage-record or several
schema records may share several storage-records. It would
also be possible for a schema-record to span several storage-
records., The particular mapping chosen would depend upon
consideration of storage and retrieval efficiency. The
flexible nature of the mapping (both one-to-many and many-to-
one) means that schemé records may be designed without
consideraticns of the efficiency constraint that they be stored
as a single unit. Hence the schema records may be designed
according to the logical application requirements.

In addition to the D3DL, DBAWG have also described
other extensions *to the original April 1971 Report concerned .
with data gdministration aids., These include facilities for
intesrity control, gafhering statistics on database use and

restructuring and reorganization of the database [37],

=78=

“e3 An assessment of the CODASYL Proposals

The CODASYL April 1971 DBTC Report was intended as a set
of very carefully worked out proposalé, which were to open to
discussion and cfiticism. It is certainly true to say that
it generated considerable interest and stimulated much debate
on the subject of DBMS3s, It is proposed in this section to
present some of the criticisms which have been made of the

report.

S5.3.1 The AREA concept

The April 1971 Report outlines'possible uses of an area
as:

(a) a means whereby the Data Administrator could conveniently
subdivide a larger database into smaller and more manage;
able sections - this cén be exploited for sélective
duplication, backup and recovery

(b) the placement of complete areas can be controlled in order
to lead to more efficient storage and retrieval - an
unused_area could, for example, be stored off-line in
archivél stofage.

The strong association with the physical storage structure

(e.g. (b) abvove) points to fhe traditional file concept.

For example, in the DMS 1100 implementation of the CCDASYL

Proposals [29], areas have a one-to-one relationship with

the standard Operating Syétem file.

Apart from its storage role, the area also acts as
the basic access and locking mechanism. The choice of the

area to fulfil this role undoubtedly makes the writing of

application programs more difficult. The WITHiN clause,
which dzfines in which area a record occurrence is to be placed,
vallows for more than one area toc be specified for a single
record type, the actual area name being given by the value
of the data-base-area-name when the record occur¥ence is being
stored in the database. For example, it is required to
retrieve record occurrence R, which was defined as being
stored WITHIN AR¥A-A or ANEA-B. Prior to executing the
FIND command, the program must initialize the data-base-
area-name to either AREA-A or AREA-B. In order to do this,
the programmer must knbw in which of the two areas the record
R was actually placed whgn the STORE command for R was originally
issued. I£ should not be necessary for an application
programmer to know such details. |

Considering now the use of areas as the basic locking
mechanism of the DBMS; it is clearly wasteful for a run-unit
to have control over more of a resource than it actuallyneeds,
although it can be safer for group updatess. By requiring
2 run-unit to lock at the area level, it can therefore have
control over the whole area even though it may only be updating
one record, This can lead to very inefficient sharing and
limit concurrcncy. As was indicated in Section 5.2.3%, the
area has now been replaced by the realm and the storage-area.
The role of the realm is still evolvings, but it is possibleA
that the final result together with the storage-area will

remove ithe anomalies described above.

5.3%3.2 The role of schema and subschena

CCDASYL regards the schema as a description of the

entire database and the subschemas as descriptions of portions
of it required by various appiicafions. The main objective
here is to give the users access only to the data they actually
requiré, both in order not to confuse them with irrelevant data
and also to provide a certain measure of security. The hope
is also that such a structure will provide a degree of data
independence, i.e. that changes made to a database which do
not involve the data used by particular application programs
should not necessitate changes torthose_programs. However,
Dee et al [28] found that as fheir CODASYL database grew
and the schema was altered, programs had to be changed which
did not use the new déta.

Essenfially, a CODASYL subschema consists of portiﬁns
of DDL copied from its parent schema with a few minor alterations,
e.g. privacy information, attributes of data items, method
of selection of member records of sets (sée Section 5.2;1).
This is very restrictive. If, the subschema issintended to
represent truly the view of the database by a particular
application, it is not unreasonable to expect greater flexi-
bility. It would be desirable to allow the user to define
new sets iﬁ the subschema. Also the only major difference
allowed between the subschema record and its parent schema
record is the omission of certain fields in the subschema
record, The order of fields may also be changed and the
attributes of data itéms. It wouid be useful to be able
to form new record types in the subschema whose fields may
be drawn from a number of different psrent schema records
without restrictions. A natural extension to this new subschema

record type would be to allow the definition of new sets’

-831-

in the subschema. The ramifications if this are discussed

in more detail in a later chaptér.

De3.3 Sets

In [38] Professor King cites the example of a restriction
in the CODASYL Report on the use of sets. Consider a data-
base containing peoples.names and their interests. There
would be two record types, PERSON and INTEREST and two set
types; PERSON-INTEREST with owner PERSCN and member INTEREST,
which liﬁks one person to.all“his interests and the inverse

INTEREST~-PERSON with owner INTEREST and member PERSON, which

links one interest to all the people)with that particular

A

INTEREST=-

interest (see Figure 5.4).

INTEREST-A
PERSON=-1

PERSON-2

et v,

PERSCON=-1

% INTEREST-A

INTEREST-B

PLRSON-2

"INTEREST-B

INTEREST-B

. i,
\ TRSON—
INTEREST-C PERSON-3

N

PERSON-3

INTEREST=-D

Figure S.4 Cccurrences of the PE:SCN-INTEREST set and the
INTZREST-PERSON set

82

_Take'member record‘occurrence INTEREST=B (of the PERSON-INTEREST

set) and it will be found to be a member of three occurrences
of the PERSON-INTEREST set, owned by different owner record
occurrences, PERSCON-1, PERSON-2 and PERSON-3, The same is
true in reverse in the INTEREST-PERSON set. Such a situation
is expressly forhidden by CCDASYL. The reason for this
restriction is said to be that if member recérd INTEREST-B
had been selected and the DBMS3 was théﬁ asked to find its
owner, the system would not know which of these owners to
choose. It has been shown in [38] that the problem can

be circumvented by the introduction of a redundant relation
record. Such a solution is not within the spirit of a

DBMS which aims at the elimination of as much redundancy

in the database as possible, A proviso should be added

here that in some situations such a link record may have
valuéble significance and be an important part of the logical

structure of the database.

S5.3.4 Index structures

A major omission from the CCDASYL proposals which has
réceived widespréad criticism is the lack of any provision
for an index structure or associative mechanism. Such a
facility would be based on fecords themselves using record
keys and would be independent of how the sets themselves
are(chained together (see Section He2elt) Index structures
such as the Index Sequential file organization, inverted
files and associative mechanisms such as hashing techniques

are well-known and widely used and could be emcloyed to great

advantage in a DBKS,

-83-

CODASYL does provide for a fecb;d locafion mode (CALC), a-
type of hashing function,‘which could be implemented as an
Index Sequential organization, but the necessary removal (since
the April 1971 Report) of database keys from the user's view,
means that it would not be poséible for an application program
to exploit this knowledge. Alternatively, an index mechanism
on a sorted system-owned set could be used to equate to ISAM.

CODASYL also makes no provision for the implementation of
a content-addressing mechanism. The provision of such a facility
is becoming increasingly important.és users move furthér away
fr&m viewing data in terms of physical representation on storage
towards seeing it in;terms of its representation of the real

world,

CHAPTER 6

VIRTUAL MiMO-Y AND DATABASE MANAGEMBNT SYSTEMS

6.1 Introduction

During the last ten years there has been a general nove
awéy from conventional operating systems towards virtual memory
systems, This trend is not so apparent in the literature on
DRiSs (e.g. CODASYL proposals) and &et the type of operating

svstem underlying the DBMS is of vital importance to the design

and efficient operation of the DBNS. This chapter consists of

a brief discussion of some of the aspects of virtual memory

systems which are significant from the poinf of view of a DBHS.

6.2 Virtual memory svstems

In the early days of computing the only memory device
directly available to the executing program was main memory
(core storage). The programme£ therefore divided his program
into a number of sections which would overlay one another in
main memory. With the advent of high level programming lang-
uages and increasingly complex overlay strategies, an automatic

storage management system became essential and a consequence of

multiprogramming. The. introduction of multi-programming systems

with their associated problems of resource sharing, in particular,

the memory resource, together with the desire to achieve

independence for programs led to the development of a storage

~85-

allocation systém which became known as Qirtual memory [39].

In a virtual memory system, the programmer has the illusion
that he has availéble to him a very large one-level store,
which appears to him as main memory. In fact, this virtual
kmemory consists of a hierarchy of storage devices composed of
main memory and usually magnetic drums and discs. All address:s
‘references in the program are virtual addresses and it is
only when the program is actually executing that the.system
trénslates them into physical machine addresses.

Of fundamental importance in a virtual memory system is
the concept of a page, which is the unit of storage which is
transferred between the levels in the storage hierarchy. Thus
if an executing pfogram requests a particular piece of data,
the whole page on which the data is to be found will be
brought into main memory. Clearly, the choice of page size
is vital, A small page size could minimize the amount of
unnecéssary information brought intc main storage, whereas a
large page size could be more efficient [401a

Much of the literature on DBlMSs and virtual memory systems
is concerned with the effects of using buffer pools in an
attempt to reduce I/C accesses to the database [41, L2, 43,

Ly, These pools are commonly used in non-virtual systems by
programs requiring a lot of I/C. Sherman and Brice [§1] point
out that an increase in thg buffer space may cause a decrease
in performance due to increésed competition for real memory
between program and buffer, They analyze the effects of
différent algorithms for buffer management and page replacement
as well as the effedts of varying the size of buffer space

an¢ real memory. The results are compared on the basis of

~86-
the cost of running a DBMS, where cost is defined to be the
sum of the number of database faults and pége faults. A
database fault occurs when a requested database address is not
found in the virtual buffer, while a page fault occurs when a
- requested virtual memory addrsss is not found in real memory.
The usé of buffers in virtual memory systems can therefore

give rise to a phenomenon known as double paging which occurs

when a database request gives rise to both a database fault
and a page fault. Sherman and Brice concluded that the
advantages, in terms of increased éfficiency, of virtual
buffers can overcome the disadvantages éf double paging
resulting from their use.

A detailed étudy of the effects of different page
replacement algorithms for relational databases has also

been done by Casey and OUsman [us].

6.5 Direct mapping of the entire database onto virtual memory

The theory and literature on virtual memory [e.g. 46]
is mostly concerned with the analysis of program behaviour
rather than data usage. The principle of locality, which
has been observed eXperimentally; states that a program
favours a subset of its pages and that this set of favou}éd
Pages changes membership siowly. The aim of the Database
Administrator is to establish just such a locality in the
physical mapping of the database to secondary storage.

A goal of a virtual memory system is to minimize the

rnumber of paze faults (i.e. the number of times an executing

-0/

program rgquests a page which is not currently in main memory);
each fault requires an access to secondary storage, albeit %0 a
fairly fast device such-as a magnetic drum, In the same way,

a goal of the Database Administrator is to minimize the number

of accesses to secondary storage.

In any DBMS, the method of mapping of the data to secondary
storage is critical to the efficiency of the system. An-
intuitive approach to this mapping in a virtual memory system
would be to map the database onto the whole virtual memory and
leave the virtual memory sjétem to handle the entire physical
management of the data. There are four main reasons why such
an approach would be undesirable:

(a) limitation of the size of the database to the size ofvvirtual
memory

(b) non-locality of access _ -

(¢c) privacy constraints

(d) data integrity problems.

6.3.1 Database size

The database would be limited to the size of virtual memory
less the space reguired by the program and the system. Although
the 32-bit address machines now available would accomodate the
‘majority of databases in use today, there would still remain
a few which were too big. The number of these very large
databases is bound to grow; but at the same time the vast majority
of new databases willvbe much smaller., Also, it is guite
conceivéble that 27diménsiona1 virtual memory systems will be
introduced which have 32 bits to identify the segment and 32-bit

addresses within each segment. These systems would undoubtedly

-88-
accomodate all the databases to be designed in the foreseeable
future,
Hﬁwever, the virtual memory would have to contain not
oniy the database, but also the DBMS routines, application

program, tables, indexes etc. plus system routines and data.

5.3.2 Non-locality of access

As was stated earlier, it has been shown that programs'
do exhibit locality of access [46], but it seems unlikely
that the same would be true of datébase usage. For example,
by definition, transaction processing on a large database, shows
no locality of access. Thus mapping the database directly onto.
viftual memory derives no advantage from the automatic memory

management facilities in the virtual memory Cperating Svstem
8 y)

which depend, in part, for their efficiency, on locality.

65,3.,3 Privacy constraints

Most virtual memory (VM) Operating Systems (e.g. the
Edinburgh Multi-Access System [47]) have more than one level
of access to a process' virtual memory. For example, the
system may access the entire VM, while the user process may
access only part of it, The users of the DBMS do not have
uniform rights of aécess to all the data in the database. Thus
the database could not be mapped directly onto a single level
of virtual memory. In fact, several levels would be required
and with privacy controls operéting at area, record and field
level, this could be vary complex., The DBMS would still have
its own privacy controls (see Section 3.5) in addition to the

automatic security provided by the VM OS through the various

levsls of access., However, if a sensitive data field, record
or area is mapped directly onto a process' VM, it is easier to

bypass the DBMS and so gain illegal access.

6.3.4 Data integrity

Cf all the reasons given above for not mapping the database
directly onto the VM, perhaps the most impontant i& the fourth,
namely, the difficulty of ensuring data integrity. Consider,
for example, a transaction which involved several changes to
the database, which together formed a single logical unit. In
order to guarantee the integrity of the database, either all
the updates involved in the transaction are completed or none.
In a VM OS this wéﬁld be impossible. An update operation is
complete and secure only after the page in;glved has been
written back from VM to secondary storage. In a group trans-
acfion, altered pages will be written back to secondary storage
at irregular time intervals, depending upon many factors,
including page fault patterns, processor allocation etc. It
would therefore not be possible to ensure that all the updated

pages involved in the transaction are written back to secondary

storage at the same time,

6.4 The subdivision of database for storage mavpping
5} [&)

Since it is not advisable to map the entire database
directly onto VM, it is necessary to subdivide the database
into units for storage. In the same way, the Database Admin-

istrator (DBA) running on a non-virtual memory system must

-90=-

divide the database into CS files. In fact, the difficulties
are the same for both systems - namely, the conflicting require-
ments of *the various applications for physical record placement
and the DBA's desire for overall efficiency;

Having divided the database into several large physical
sections, the VM system itself becomes significant. In a non-VH
system, records in files are grouped together into I/O blocks,
each blqu being the same size in order to reduce secondary
storage accesses. This is noldifferent from the VM system
dividing the files into fixed size pages. Thus although, from
the programmer's view, the entire file appears to be in main
memory and all records equally rapidly accessible, in reality,
as sStacey in [48]'points out, the two-level storage environment
still exists with the penalty of sepondary'Storage accesses,

It is worth noting the usefulness of the concept of a
Frame, as described by Senko in [49]. The frame provides a
unit for the physical grouping of space allocation, record control

fields etc., waich may map onto one or more pages in VH.

6.5 Concluding remarks

L]

The V¥ system gives the application programmer the illusion

of a one-level storage system with all advantages. The

3

PEBHS designer and DRA, however, have to taske into sccount the

v
A

Tact that the storage system only avppears to consist of a single

]

level, whereas in reality it is composzed of at 1 t two levels.

¢
1,

a
ties of data transfer betwien secondary and primary

storage which exist in non-Vl systems, must still be considered.

~91-

The problems of devising efficient methods for 5oth the
subdivision of the database into“storage units (files) and
for physical record placement, still exist whether or not the
DEH5 is running on a VM system,

In the final analysis, however, although the VM system
may not soive any of these difficult problems for the DRMS
designer and the DBA, it undoubtedly makes the solutions
simpler, Thus while they must bear the multi-level stofage
environment in mind, the DBIMS files can still be handled

through the VM systen.

PART IT

THE DESIGN OF EDAHMS

Q3

CHAFTER 7

THE OVERALL DESIGN OF EDAMS

e Introducfion

The second part of this thesis is conce:ned with a descrip=-
tion of a database management system called EDAMS (EMAS Database
lanagement System) designed to run on the Edinburgh Multi-Access
System, EMAS (see Chapter 10).

EDAMS is based on the CODASYL proposals [1, 19, 32] although
there are several fundamental differences. Ratner than
describe FEDAMS in detail, the main differences between EDAMS
and CODASYL will be explained and discussed in this part of the

thesis,

7.2 The role of the IDAKS schema and subschema

The role of the CCDASYL schema and subschema was discussed
in Section 5.3.2 and zlso the changes proposed by DBAWG [34] in
Section 5.2.4 following the introduction of the storage schema.
LDAMS takes a different view of the relationship between the
parent schema and its subschemas.

The EDAMS schema is a description of all the entire data-
base. For simp’icity, in the initial version of EDAMS, the
schema is seen as a description of -“he complete physical data=-
base, i.e. of the record; themselves and the fields they contain.

This is not an essential rostriction, however, since a DBAWG-

-9k~

type storage-~schema could.easily be placed underneath, thereby
providing three levels of data description - storage-schema,
schema and subschema, Thus the EDAMS schema is a description,
in tefms of records containing fields, of the pool of data
available to the user community, With this view of the schema
it becomes irrelevant whether or not one schema record is
physically stored as a single storage record.

In order for the user to be able to uniquely identify
each schema record, it is necessary for the DBA to define one

field of each schema record type as a schema record key. The

keys must be distinct for all records of the same type. It

is most unlikely that the DBA will have to add an extra field
to a record for the key, since good database design generally
insists that records be distinguishable from within (i.e. apart
from system-assigned database keys).

The EDAMS subschemas are descriptions of the logical portions
of the database required by varioﬁs arplications. All oper-
ations on the data in the database are carried out via a sub-
schema, No dirzct access through the schema is possible. It
is important to realize that the subschema does not simply
rrovide the user with a window into the database. If this
were not so, then the storage and deletion of data in the data-~
base would only involve making the window bigger or smaller,

i.e. adding or removing data from “he user's view. It would
not involve physical changes bein; made to the aatabase itself.

It is more accurate to think of the EDMAS subschema as
providing the user_with a door into the database through
which the user can see,'But can also gain access, if he has

the right key.

-95m
There are two major consequences of these altered roles_for
the LDEME schema and subschema: |
(a) introductiom of the subschema logical record

(b) alteration of the role of the set in the schema

7.3 The EDAMS subschema logical record

It was poimted out in Section 4.3.2 that the rules
governing the derivation of subschema records from pafent
schema records are very restrictive under the CODASYL proposalse.
The order of fields in the subschema record may be al tered,
certain fields may be omitted completely and the attributgs
of data items may be changed. EDAMS removes these restrictions

entirely by introducing the subschema logical record,

A subschema logical record is a racord whose fields may
be drawn from a number of different parent schema records as

shown in Figure 7.1.

schema record 1 schema record 2 schema record 3
LI[12 |13 [1u]r5 2.0 2bks 30 [3203.3 | 3%
\:—.l | /‘/ .\ ,
§/.5]3,3 2.0 {r2 | 34

subschema logical r¢cord

Figure 7.1 Derivation of subschema logical record
The method of formation of subschema logiczal records is discussed

in detail in Chapter 8,

All rescords in the EDAMS subschema are regarded as

-06-

logical, in the sense used above, A CODASYL-type subschema
record can be defined by simply selecting the fields of the
logical record from a single schema record as shown in Figure

7.2’

schema record 1 schema record 2 schema record 3

3122{33 |34

~

4
3713

W %

3.2

subschema logical record

Figure 7.2 Subschema logical record derived from single
schema record-

7.4 Sets in LDAMS

In the CCDASYL proposals, sets may only be decfined in the
schema; a subschema may use the sets of its parent schema, but
may not create ne- ones, The introduction of the subschema
logical record in EDAINS requires that this structure is
altered, EDAMS therefore allows the user to create new sets
in the subschema to link together the logical records.

It was stated earlier that all EDAKS subschema records
are regardad as being logical and are treated in the same way.
The question therefore arises as to whethef or not sets should
be removed entirely from the séhema. It is clearly not
~essential to confine.theﬁdefinition of sets to the subschema.

But in order for the schema set to have meaning in the subschema,

it would be necessary for the owner and member records in the

-97-

subschema to bevsubsets of the owner and mehber records in the
schema, In othker words, the subschema logical records would
have their fields drawn from one and only one schema record,
as illustrated in Figure 7.2.

EDAMS treats each subschema separately. No sharing of
logical records of sets between subschemas is possible. There
are two main reasons for this. | Firstly, the first subséhema'
to define the new logical record or set would in a sense be
dictating its structure to a second subschema whiéh wished
to use that record. Such an arrangement would be satisfactory
if the second subschema were a subset of the first, but this
would not generally be the case. The second problem assoc-
iated with subschema sharing is the difficulty of deciding
what rules should apply to such sharing. Should the logical
records be identical in all respects, including‘field order
and attribute? Or should the rules which operate between the
CODASYL schema records and its derived .subschema records apply?
For example, suppose subschema S31 d=fined a record cémposed
of fields I'1, F2, F3 and F4, which subsequently subschema $52
discovered would also be useful, but omitting field F2. . If
the CCDASYL-type rules applied then subschema 332 could use the
record. If, on the other hand, it was subschema S$S52 which had
first defined a logical record composed of fields F1, F3 and
Fh, then with CODASYL-type rules subschema 851 could not use
the record. Of course, it would be possible using the EDAMS
rules for the formation of logical recofds for subschema £81-
to form a "logicall iogigal recérd, so to speak, by adding
field F2. A hierarchy 6f subschemés could be envisaged but-

it is easy to see how confusing the situation could become,

aQ

Given the structure of EDAMS, if several subschemas wish
to use the same logical record (or even just a gfoup of fields
€efo 'y F3 and F4 in the above example) then it would surely
be more efficient to reorganize the schema so that the fields in
the logical record, or part thereof, are grouped together to
form a new schema record. The advantages of an underlying
storage~scheﬁa, whose records are baséd on subschema records,
become clear in such situations.

The same problems also arise with the sharing of sets
between subschemas which make it impractical in EDANMS. Return-
ing therefore to the question of whether of not sets should
be allowed in the EDAMS schema, it becomes apparent that unless
they are permitted, no sharing of relationships between data
will be possible in EDAMS = other than the mere juxtaposition
of fields in a record (physical or logical). This is clearly
unsatisfactory and could lead to an unacceptable level of
duplication between subschemas, Moreover, although the set
is a logical concept and therefore does not perhaps belong
in the schema, the fact remains that certain relationships
between records are inheréntly part of fthe structure of the
database. For examplé, all tﬂe various records pertaining

to one employee, or one project do belong together, no matter

what the application. In other words,. the set itself carries
information which has to be stored somewhere. Thus EDAMS

retains the set at schema level while, at the same time,

allowing the user to define new sets in the subschema.

«+e]l Use of schema sets in subschemas

It is necessary -now to examine the rules which govern

-99-

the use.of a schema set in a subschema. CODASYL rules restrict
the subschema records to be subsets of their parent schema

records, Thus sets which link together schema records will

be meaningful in the subschema. The situation in EDAMS is
complicated by the SLR, Consider the diagram below in Figure

7e3 of schema set S,

schema owner
{01 jo2[03 oy (€

schema set S

/ —
i Imz\ M3[my L m5 M6 | M7 [

schema member 1 schema member 2

Figure 7.3 Schema set S

Suppose three SLRs which contain fields from the owner and member

-records of schema set S, as shown in Figure 7.4

o o35 [=] [almlx[% ns >]

subschema record 1 subschema record 2 subschema record 3

where % indicates fields from records which are not part of

schema set S

' Figure 7.4 SLRs derived from records in schema set S

In Figure 7.4, two fields in subschema record 1 are taken from
the schema owner, two fields in subschema record 2 are taken
from schema member 1. and one field in subschema record 3 from
schema member 2, Thus the schema set 5 could still be meaning-

ful in the subschema, as shown in Figure 7.5.

-100~

subschema owner

o1 [03 [|+ &

subschemal record 1

subschema set 3

(M2 (M4] % [wp— M5 | %

subschema record 2 subsceham record 3

Figure 7.5 Subschema set S

If, however, the SLRs contained a mixture of fields from the
schema owner and schema member records, the use of the schema

set S in the subschema is confusing, as shown in Figure 7.6.

[R O R T T
subschema record 4 subschema record 5 " subschema record 6

Figure 7.6 Alternative SLRs derived from records in schema set S

SuBschema records 4 and 5 each contain fields from both the
schema owner and member record of set &, It is therefore not
obvious which should be the owner and which the member, if the
subschema set S were to be established.

The purpose of retaining the schema set in EDAMS was to
enable sharing of sets as well as data across subschemas. Thus,
it would not be illogical to restrict the subschema records
definedAas forming »art of the schema set, to be subsets of their
parent schema records, i.e. single-source SLRs. As Figure
7«5 shous, this rest:iction is more severe than is absolutely
necessary. It would benpoésible, for example, to insist that{
the subschema owner recﬁrd contained at least one field from

the parent schema owner record and that each subschema member

-101=-

record contained at least one field from ifs parent ééhema

member record. Other fields in the subschema records can be

drawn from anywhere in the database. However, the more
severeArestriétion, of single-source SLKs, is more straightforward,.
Above all, however, this restriction also applies to other
uses of SLRs, as is shown in Chapter 9, It is clearly much
simpler to have one restriction applied in all neceSsary
situations, rather than one restriction in one group of
situations, another restriction elsewhere and so on. The
restriction is, in fact, the same as that which applies between

CCDASYL schema'and subschema records,.

Mo

75 Areas in HDAMS

In Section 5.3.1 the difficulties associated with CCODASYL

-

areas vere discussed, The area performs directly or indirectly

jO)

11 the following functions:

~~
]
~

provides the hasic access and locking mechanism

(b) divides the database into both logical and physical
sections

(c) provides the mapping between the database and the Operating

System files,

The area is basically a physical concept, vt CODASYL requires

that the user is aware, in certsin circumstances, in which

or

a nuriber of areas, the record he reguires is located. The
user should not be reauired to nossess such information.

“he replacement of the area by the realm and storage-arca

in the current CODASYL position, has helped to rzmove some of

~102-

tHe anomalies, - The realm is moving further away from physical
storage and is being seen more as a logical subdivision of

the database. In this way, the idea of overlapping realms,

as mentioned in Section 4.4.1, becomes feasible.

In EDAKS the role of the area/realm is more complex
because of the introduction of SLRs. Howéver; the distinction
between recalm and storage-area becomes sharper, The storage=-
area is é physical entity and is defined as a subdivision of
rhysical storage. Thus the storage-area belongs in the EDAIS

schema, at least initially, when there is no separate ZDAMS

storage-schema, The realm, on. the other hand, as a logical
concept, belongs in the EDAMS subschema, EDAMS SLRs may be
assigned to one or more realms. This assignment -

is defined when the 1ogi¢al record is defihed iﬁ the éubschema
DPL. The rule for the assignment can be based upon a number
of criteria:
(a) logical record type - all logical records of that type

are assigned to one realm |
(b) set membership - all members (and owners) of a set are

laced in a given realm

e}

(¢) field values - realm assignement is based upon the value

o=

of a particular field in the logical record.

)|

m 5

Hence realms may overlap. The EDALS realm can therefore

b

be thought of as a shorthand for referring to a group of
(logical) records, other than by content. It caﬁ be used as
2 logical device, in_additipn to the‘algorithm ﬁhich is
discussed in detail in Chapter 10 and as a unit for privacy

control,

-103-

CHAPTER 8

THE RORMATION OF SUBSCHEMA LOGICAL RECORDS

8.1 Introduction

The EDAMS subschema logical record is composed of fields
drawn from one or more parent schema records., Such a tool
is potentially wery powerful but if the database were badly
designed, severe inefficiencies could result. One logical
access to the database could require seﬁeral physical accesses
to collect the fields together comprising the logical record.
In a two-level architecture, i.,e. schema and subschema in the
initial version of EDAKS, the aim would be to ensure that the
fields of fregquently used logical records éfe drawn from a
single parent schema‘record. The advantage of a three-level
architecture comes frém relating subschema and storage-schema
records, i.e., not schema and storage-schema or schema and sub-
schema. The reason for this is that the database is always
accessed through the subschema.

One of.the maiﬂ objectives of this thesis is to provide
the user with much greater flexibility at subschema level.
The ZDAMS subschema logical record (SLR) plays a major role
in the provision of this increased flexibility. Before
discussing the use (retrieval ard update) of SLRs by the
application programmers and high level users, it is essential
to examine the method of formation of S5LRs as defined in the”

subscnema DDL.

- 104

8.2 The use of the relational approach

Consider the portion of a sample database given in Figure

8.1 below.

SCHEMA
/ "’M“J“‘\
Ar*’/’)/’ ‘ o
TEAME ADDRESS | EMPNO {EMPNO | CURSAL | 1ST SAL §2ND SAL |
PERSONAL-INFO PAY-HISTORY

SUBSCHEMA FOR PAYROLL APPLICATICN

L

NAME | ADDRESS | CURSAL
PAYREC

oy

Figure 8.1 Portion of a sample database

A structural definition of the SLR PAYREC would be given in

the PAYRCLL subschema DDL as follows:

DEFINE RECORD TYPE PAYREC;

FIELD 1 IS NAME; SOURCE IS NAME FIELD OF RECORD TYPE
PIERSONAL=INFO

Fxi
|
L
[
(w/
no
H
[ép]

ADDRESS:; SOURCE IS ADDRESS FIELD OF RECORD
TYPE PERSCNAL-INFO

FIELD 3 IS CURSAL; SOURCH IS CURSAL FIELD OF REGCORD
TYPE PAY-HISTORY ‘ : - ' oo

Figure 842+ Definition of SLR structure

This definition defines the source record types, namely

~105=
PERSONAL-INFO and PAY-HISTORY, for the fofmation of the PAYREC
SLR. It does.npt, however, specify the rules for associéting
a_ particular occurrence of a PERSONAL-INFO record with a
particular occurrence of a PAY-HISTORY record to generate
the corresponding occurrence of the PAYREC SLR.

EDAMS uses two methods, which can be used separately or

together, to solve the problem of source record identification.

Both methods incorporate some usefui features of the relational
model [10]. The first meﬁhod is based on records and the
se;ond on sets,

The relational data model has already been discussed
in Section B.é;B, but the operations which can be performed on
relations were not discussed in that section. = Two operations,
JOIN and PROJECTION, are of interest, The JOIN operation
iz simply a means of combining two relations on a common
domain (field) and PROJECTION is a means of selecting desired
domains'from a relation, Consider the example given in

Figure 8.3

supp(supplier part) part(part project)
1 1 1 !
2 2 2 4
2 3 3 2

Figure 8,3 Two joinable relations

The join of supp and part would be the relation ’ in Figure. .-

8.k

-106-

R(supplier part project)

1 1 1
2 2 n
2

3 2
Figure 8.4 The join of relations supp and part

Consider the relation supply(supplier, part, project, quantity)

as shown in Figure 8.5.

supply(supplier part project quantity)

1 2 5 17
L 3 5 23
2 3 7 9
2 7 5 y
b4 1 1 F

Figure 8.5 The supply relation

The projection of the supply relation over the domains (supplier,

project) would be the relation 5 shown in Figure 8.6.

S(supplier project)
1 5
2 7
2 5
L 1

mna

igure 8.0 The projection of supply over (supplier, project)

8.2.1 Record-based formation of subschema logical records

The record-based formation of SLRs regards the schema

record types as relations and forms a series of joins (and

-107~

projections, if necessary) on them in‘order to form a new
relation, the required set of SLR occurrences,

Consider the sample database given in Figure 8,1 above,
To form the PAYREC SLR, the following statement is ali that is

required:

JOIN PERSONAL-INFO, PAY-HISTORY ON EMPNO TO FOi:M PAYREC;

This would result in a set of records containing the NAME and

ADDRESS fields from the PERSONAL-INFO record, EMPNO from both

(common field) and CURSAL, 1ST SAL and 2ND SAL from PAY-HISTORY.

It is therefore necessary to select the required fields. This
can be done either by means of individual field listings as in
Figure 8.2 placed before the JOIN command or, alternatively,

by making use of the relational operation of PROJECTICN: |

JOIN PERSONAL-INFO, PAY-HISTORY ON EMPNO TO- FORM TEMPRYC;
PRCJECT TEMPRIC OVER NaMZ, ADDRESS, CURSAL TO FORM PAiYREC;:

Although projection is undoubtedly a much shorter way to describe

the selection operation, the more verbose DDL of Figure 8.2 might

be useful when information other than the field's inclusion in
the SLE is required, e.g. privacy information, field character-
istics where they are different from the schema and so on.

| In the above example, the EMPNO field will be a unique
identifief for both sets of records. Thus two different
employees could notAhave the same EMPNO, For every value of
EMPNO, there will be only one matching pair of PERSCNAL-INFC
and PAY-HISTCRY records. Such a join is known ss an equijoin.
If, however, the‘”joining” fieid is non-unique, then the EDAMS
rule is to generate all possibl: pairs,

Consider the following ekample given in Figure 8.7 below.

-108«

Record Type A .Record Type B
Occurrences Fields
F1 F2 F3 T4 F5
1 7 3 2 7 9
2 8 b4 9 7 6
3 8 1 0 7 3
L 9 2 1 9 5
5 9 7 6 9 4

Figure 8.7 Two '"joinable" relations A & B where cardinality

increases

The result of a join operation on the above relations, Record

type A and Record type B:

JOIN ?ECORb TYPE A, RECORD TYPE B ON F1 TO FOHM RESULT;

is given in Figure 8.8 below.

Result
Occurrences _ Fields

F1 F2 F3 F5
1 7 3 2 9
2 7 3 2 6
p) 7 3 2 p)
L ° 2 1 5
5 9 2 1 4
5 S 7 6 5
7 9 7 6 I

Figure 8.9 Join of relations A & B

Thus every possible combination of records is produced based

on the common field over which the join takes place.

-109-

-8.2.2 Set based formation of subschema logical records

The second approach to the formation of SLES is based
upon the set membership structure of the parent schema records
from which the SLRs are derived. Once again, the relational
model is used except that in this case the '"handle" for the
-jéin operation is a set type rather than a field type.

Consider the employee database given in Figure 8.1
and suppose there is a schema set called EMPLOYEE of which

ERSCNAL-INFO is the owner record and PiY-HISTORY a member,

as shown in Figure 8.10,

[PERSONAL-INFG]

EMPLOYEE SET

' Y
[PAY-QISTORq

Figure 8.10 Employee schema set structure

The subschema DDL for defining the PAYREC SLR could then be:

DETINE RECORD TYPE PAYREC

FIELD 1 IS RNAM:.3; SCURCE IS NAME FIELD OF RECCRD TYPE
PERSONAL-INFO OWNER CF EMPLOYEE SET;

FIELD 2 IS ADDRESS; SOURCE IS ADDRESS FIELD OF RECORD
TYPE PERSCONAL-INFOs o ' ‘

FIELD 3 IS CURSAL; SOURCE IS CURSAL FIELD OF RECCRD TYPE
PAY-EISTCRY MaMBER OF EMPLOYEE Sit;
JCIN PERSONAL-INFO, PAY-HISTORY THRU SET EMPLOYES TO FOZM
TEMPREC 5

PRCGJECT TEMPREC COVER NAME, ADDRLSS, CURSAL TO FORM PAYREC;

Figure &.11 DDL for set-based formation of PAYREC SLR

The fact that PERSONAL-INFGC and PAY-HISTORY have a common field

-110-

is irrelevant. The join operation will cause the two schema
records PERSONAL-INFO and PAY-HISTORY, to be merged to form the
SLR PAYREC, accerding to the schema records occurrences in the

EMPLOYEE set.

8.2.3 Selection expressions

Not only is it possible to use a combination of the two
approaches described above, but also to introduce selection
expressions to produce subsets of the join. For example,

JOIN PERSCNAL-INFO, PAY-HISTORY ON EMPNO WHERE CURSAL £
10000 TO FORM TEMPREC;

Only those PAY<HISTCRY records for which the CURSAL is less
than 10000 will be included in the join.

The implementation of the EDAMS SLE is therefore making
extensive use of the relational approach to DBMSs. This has
the advantage of retaining the flexibility and data independence
of the relational model without detracting from the CODASYL
user model, It is worth noting that the relational sublanguage
described above is highly relevant to data retrieval and query

languages.

8.3 Derived fields

It is debatable whether derived fields (S5CURCZ and RESULT)
should be permitted in the EDAHS schema at-all, To allow tﬂe |
existence of VI:TUAL fieid would be confusing considering that
all EDAMS subschema fields are VIRTUAL in one sense. The

COD~5YL ACTUAL SCURCE and RESULT fields are physically stored

-1&1-
in ‘the databaseAand hence their inclusion in the EDAKS schema'.
" is reasonable, CODASYL insists that a SCURCE field must be
derived from a field in its owner record but such a restriction
would be insufficient in EDAMS, since not all schema records
belong to sets. Record type alone is not enough to ﬁniquely
identify the soufce record. An EDAMS ACTUAL SOURCE field can
be derived from a field 'in any schema record type. To uniquely
identify the source record, EDAMS uses the schema record key
(see Section 7.2). The paramters for an EDAMS ACTUAL RESULT
field can be taken from ;n;where in the physical database,

as in the CODASYL proposals.

8.2.1 Time of calculation of ACTUAL derived fields

The time of calculation of derived data items is important
since it affects not only the efficiency of retrieval and update, :
but also the integrity of the database. It is not necéssary,
nor is it possible, to insist that the values of two duplicated
fields be identical at all times, but rather only when they are
expected to be identical, i.e. whenever an application program
needs them, However, in order to ensure the integrity of the
database, it is necessary to insist that if the two fields differ
at any moment, e.g. after system failure, there must be some
rigorous means of telling which of the two versions is correct.
CODAZYL allows the derived data item to be updated, hence
altering the source as well, This therefore implies that
the two fields have equal status. Thus the only way to
ascertain which version is correct in the event of a disagree-
ment is to use the jourhél tapes, which is in keeping with the

resclution of other update anomalies which might occur following

-112-

a system failure,

There ar= two possible apfroaches to when the value of
a derived field (source or result) should be calculated, namely;
(a) only when the derived field is aﬁtually accessed
(b) every time the source is altered for a source fiéld

and every time any paraméter is altered for a result fieéld.

The first of these two alternatives (a) has the advantage
that re-calculation of the derived data item takes place only
when absolutely necessary., However, which of the two approaches
operates more efficiently overall depends on whether the
derived item is read more often or written more often. If
the item is written more often, then the first approach would
be better. However, this raises the gquestion as to why the
duplicated field was necessary, if it is not used very often.
The main reason for the repetition of fields is when it is
worthwhiie because of high access frequency (see Section 3.k.h4)
in order to improve the efficiency of retrieval, If the
derived field is recalculated only when the field is accessed,
then this will add an overhead to the retrieval operation,
At the very least, a check will have to be made as to whether
or not the source field has changed since the derived field
was last updated. If the source field has altered, then it is
necessary to change the derived field. There is also the
overhead of storing flags of scme sort to indicate changes
to the source. On the other hand, no such operations are
reguired if the second approach (b) is adopted, namely the
recalculation of the derived field takes place at the same time
as the source field or résult parameters are updated; this

would be treated as a group update. Thus the derived field

-113~

always contains the up-to-date version of the item,

Th;se considerations therefore favour the‘second approach,
which is adopted by EDAMS (and also by CODASYL), i.e. derived
fields are calculatéd every time the source is altered for a
SOURCE field and every time ahy parameter is altered for a
RESULT field. Furthermore, EDAMS also allows the derived
field to be updated with the automatic updating of the source

field taking place at the same time.

8.3.,2 Time of calculation of VIRTUAL derived fields

In EDAM>all subschema fields in the logical records
correspond to the CODASYL VIRTUAL SOURCE or to the CODASYL
VIRTUAL RESULT. Since the values of VIRTUAL fields are not
physically stored within the record, calcﬁlation of their values'
can only take plage when a GET command involving those fields
is executed. Given the relationship between the EDAMS sub-
schema and its schema, it is not meaningful to restrict the
derivafion of VIRTUAL SOURCE fields to fields from the owner
record of the set as in the CODASYL proposals. Note that the
majority of subschema fields (in logical records) will be VIRTUAL
SOURCE, ‘The EDAMS VIRTUAL RESULT field will operate in the
same way as its CCDASYL counterpart - namely, parameters may
be drawn from any record(s) in the database (i.e. defined in
the EDAMS schema) and calculation takes place only when the
field is actually retrieved. An EDAMS VIRTUAL RESULT field

cannot be the subject of a STO?E or MODIFY commaﬁd.

-114-

8.4 Rules for emcoding and decoding

For every field in a CODASYL database, encpding/decoding
procedures can be specified in the schema. The procedures
can be invoked every time the field is stored (encoding) or -
retrieved (decoding) or only when the attributes of the data
item differ from schema to subschema (USAGE clause>. The
encode/decode facility cén be used for:

(a) encryption/decryption

(b) data compression/expansion

(c) unit changes, attribute variation etc.

In terms of the three-level data description structure, both
encryption/decryption and data compression/expansion could
operate between schema and storage-schema as well as between
subschema and schema. EDAMS allows their specification in
both the schema and subschema DDL. However, there would seem
little point in using the facility at both levels for the same
field.

Where the third use of the encode/decode facility is
concerned, namely for unit changes and attribute variation,
it would not be logical to allow this to be specified in the
EDAMS schema, EDAMS therefore restricts the use of this

facility to the subschema DDL,

8.5 Privacy information

Another ramification of the introduction of the concept

of logical records in LDAMS is the specification of yrivacy

-115-

| information. = In the original April 1971 DBTG Report [1], privacy
locks at subschema level overrode those ét schema levei. A
rule such as this isvnecessary to avoid confusion, This
approach, though not entirely logical, has the merit of being
quite straightforward. The EDAMS schema represents the DBA's
view of the database and it is his responsibility to apply
locks to sensitive data items and records and to surpply
approved users with the appropriate keys. The question
therefore arises as to whether those locks are applied at
éubschgma or schena level (see Section 3.5, Figure 3.1 for

a definition of the hierarchy of DBMS users). Consider the
por:ion of a sample database given in Figure 8ele Suppose
that the current salary, CURSAL, field is sensitive and access

restrictions are placed on it. If locks were set on CURSAL

in both the schema and subschema, the payroll application -

would then have to give two keys each time the CURSAL field was
accessed. This is confusing since the user sees the database
through the subschema only and is not really concerned with
the schema at all. The situation in EDAMS is further éomplic-
.afed by the fact that subschema records can be composed of parts
of several different schema records. Thus multiple keys might
be required to satisfy the schema locks as well as a subschema
lock on the logical record and its fields,
In EDAMS privacy contréls exist at two levels:

(a) between sﬁbschema and schema

This is to permit the inclusion of sensitive fields and

records in the subschema logical record and could take the

form of restrictionA;f access to the Data Directory.

Alternatively, locks could be set in the schema DDL for

(b)

-116-

which keys, to be checked by the subschema DDL compiler,

would be given in the subschema DDL,

between application program (and high level users) and
subschema

These locks or privacy procedures are set in the subschema
and are satisfied at execution time - they therefore operate
in the same way as the CODASYL subschema iocks. Apart

fgom locks on individual fields and records in the subschema,
it would also be necessary (as in CODASYL) to have a lock

on the subschema itself. Thus only authorized users

could gain access to the subschema.

-117=

CHAPTER 9

OPERATIONS ON SUBSCHEMA LOGICAL R:ZCORDS

9.1 Introduction

There are four basic operations which can be performed

on data in a database:

(a) retrieval

(b) update - in the sense of the alteration of the value of
an existing field

(c) creation of a new record occurrence

(da) deletion of én existing record occurrence,

All access to the'EDAMS.database is ;ia a subschema, Thus
all the above operations must be carried out through subschema)
logical records, Before discussing the operations on SLRs,
it is necessary to describe briefly how SLRs are implemented;
the detailed description of their implementation is left to
Part III of the thesis. The LR as it is physically stored
in an IDAMS database, consists of a series of pointers to
(logical addresses of) the source schema record fields from
which the SLR fields are derived. Figure 9.1 illustrates,
diagrammatically, how the sample database given in Figure 8.1

would be physically implemented in EDAMS.

PERSONAL~-INFO PAY-HISTORY

[NAME | ADDRESS | EHPRO) | BITEN0 [CURSAL | 15T GAL | 2ND_SAL]
= = - '

SUBSCHEMA

> [> 141 -

PAYREC

Figure 9.1 Implementation of PAYREC SLR

These pointers are established when the SLR is defined in the
suﬁschéma DDL and become part of the permament database as an
entity in the database map (see Section 13,2), until the SLR is
deleted, As far as the high-level user of EDAMS is concerned,
however, the PAYREC 3LR looks likeAFigure‘ﬁ.ﬂ not Figure 9.1.

In other werds, the pointers are tranéparént to the users; they

do not concern him and he does not have access to them.

9.2 Retrieval

The retrieval of an SL® is straightforward. As an example,
consider the retrieval of an occurrence of the PAYREC SLR given

in Figure 9,71, as shown in Figure 9.2,

PERSCNAL-INFO PAY-HISTORY
name address empno empno salaries
bCHN SVITH|41 NEWHLVEN RD.,EDINBURGH[&1926H 419265 [7198 5214 [3606 |

™~

™~ ,
1 v []

name address cursal pointers

PAYREC

Figure 9.2 Diagrammatic representation of an occurrence of PAYREC SLR

-=119=

For simblicity; assume thaf the user has fixed pésition_in the
database. A request to

GxT NEXT PAYREC
will retrieve the one belonging to JOHN SMITH in Figure 9.2.
To satisfy this request, LDAMS locates the particular PAYREC,
extracts the pointers (logica; addresses) and uses them to
access the physical databasé in order to extract the required
fields, The user is then presented with the record shown in

Figure 9.3 below,

name address cursal
{JOHEN SMITH | 41 WEWEAVEN RDa,=DINBURGH | 7198]
PAYREC

Figure 9.3 The retrieved occurrence of PAYREC JLR

9.% Update

Update of an SLR, in the sense of the alteration of an
existing field value, is also straightforward. For example,
suppose JOHN SHITH in Figure 9.2 changed his address, The

user would specify

MCDIFY PAYRZC; ADDRESS=48 MARCHEONT RD.,EDINBURGH
To obey this command, EDAMS follows the address pointer in
the PAYREC SLR and alters the corresponding address field in

the PIRSCNAL-INFC schema record. The resulting position of

the database is given in Figure 9.k

-120=~

PERSONAL-INFO . PAY-HISTCRY
__hame ' address empno _ empno salaries
[JCHN 3KITH[LE HMARCHHONT RD. ,BEDINBURGH (419264} 1519264]7198[521412698
y, 7

[» | & | & |

name address cursal pointers

PAYREC

Figure 9.4 Updated PAYRLEC SLR
Note that the PAYREC SLR itself has remainsd unaltered.

9.3.1 Effects of the update

Even a simple update operation such gs'the one described
above can have repercussions, which may require data in the
database to be altered in addition to the single‘field which
was the subject of the update operation. Consider the following

portion of a company database.
SCHEMA

BMPLOYEE DEPARTHENT

NAME'IADDﬁéss [BMPN@” DEPT |, [DEPT [DEBT | DEPT | T0.5HDS |
, CODE | |CODZ | NAME | MNGR | IN DEPT

O,

SUBSCHEMA

. .
| NAME | BMPNC | DEPY | DEPT
CODE | MMNGR

S

&
t=!
Y
U

o
=

MPDE

Figure 9.5 Portion of COMPANY database 1

-121=

Suppose that the SLR had been formed by use of the following

DDL:

JOIN EMPLOYZEE, DEPARTHMENT CN DEPTCODE

The EMPDEP SLRs are set up when this subschema DIL is
executed., Supgose, however, that employee TOM BROWN is
transferréd from the ACCOUNTS department (code 01) to the
PAYROLL department (code 02). Clearly, the simple alteration
in the DEPTCODE field via the SLR and hence in the DEPARTMENT
schema record would resulf.in an invalid database. |
Thus before executing an update, EDAMS must first examine
the field to be updated to ascertain whether it is a key in the
formation of that (or indeed of any other) SLR. In the above
example, therefore, EDAMS must coﬁsult the DDL definition tables
for the formation of EXPDEP SLR, Using this information,
EDAMS scans the DEPARTHMENT records for the one with DEPTCCDE=02,

It will then join this with the original EMPLOYEE record for TOM

BROWN to form a totally new occurrence of the EMPDEP SLR, In

this case, the formation rules for the EMPDEF SLR are relatively
simple, but 1f they involved a nest of join operations, the

whole process could become quite involved,

9.3.,2 The update anomaly

wWhere the subject of the update is the key to the join
operation, it is always poésible for EDAMS to interprét the
formation rules for the new SLR correctly. It is, however,
possible to envisage é situafion where the update of a field,
which is not itself a key to the join operation, results never-

theless in an incorrect database,.

-122-

Consider, for example, an amended EMFDEP SLR, called

EMPDEP2 as shown in Figure 9.6.

EMPLCYEE DEPARTMENT
B e - g bae € - 1
IJOHN SMITH| 41 NEWHAVEN RD.,EDINBURGH]419264[91“01!ACCGUNTS[ROY!}ﬂ

-7

S KR ,,,
N e

name empno. deptname

EMPDEP2 SLR
Figure 9,6 Portion of CONMPANY Database 2

Note that as before the EMPDEP2 SLR is formed using the following

DDL

JOIN EMPLCYEE, D®PARTHENT ON DEPTCODE

If JCHN 3HITH is moved from the Accounts to the Payroll Deps
artment, ZDAM5 treats the deptname field in EMPDEP2 as a normal,
non~key field and updates it accordingly. The resulting

database is shown in Figure 9.7

LMPLOYEE DEPARTMENT

|TOBN SHITH[L1 NEJHAVEE RD.,EDINEﬁﬁGéT@?@E€4301u01?PAYROLLfﬁbY[31
; S L e et et s v e d H 'x L :

‘////;7 h///////ZV
LI A

name empno deptname

e
i
]
b

Figure 9.7 Incorrect COMPANY Database 2 arising from the update

of EMPDEPZ2

Cn further examination, it becomes clear that, in
general, the alteration of any fi:1d in an SLR which is formed

as a result of a join operation on two or more schema records,

-123=

can result in aminvaiid database. The one exception to this
is in fact the join key field itself, since EDAKS has sufficient
information to select the new schema recofd to form the new SLR.
There are two possible solutions to this problem, namely:
(a) to rely on the DBA and users not to specify updates'in a form-
which could result in an invalid databaée
(b) to disallow all update operations on SLRs other than those

which are strict subsets of a single parent schema record.

The first solution of relying on the user and the DBA to
police the system, is clearly totally impractical and can be
dismissed. Therefore the second solution of restricting
update to simple SLRs must be adopted. This is in some ways
an unfortunate reétriction, since it does remove a degree of
flexibility at the subschema level. Moreéver, many update
overations can be carried out on SLRs with@ut problems, such
as the changé of address in the example above. However, the
restriction is clearly essentiai to safeguard the integrity of
the database. Furthermore, it will also prove useful in the
third database operation, that of the creation of a new record

occurrence, which is discussed below,

9.4 Creation of a new record occurrence

In 3DAMS a differentiation is made between the addition of
a new logical record occurrence and the storage of ore. The
addition of a new 1oéica} record simply consists of establishing
the pointers for the 1oéical'records to link in to the existing

fields in the schema records, i.e. no new physical data is

12k

added to the database; the user is simply adding more data to.
his own logical view. The storaze of a new logiéal record,
on the other hand, results in new physical data being added to
the database.

To illustrate the distinction between these two operations,
consider the follbwing portion of a physical EDAMS database:

SCHEMA

Foila st Boalzealz) 1520052050505 5.5]

record 1 record 2 ‘record 3

Figure 9.8 Portion of an EDANS database

The addition operation is represented by the user who wishes to
- add a new logical record to his subschema which consists of

fields 1.1, 1.3, 2.2, 3.2 and 3.5 as shown in Figure 9.9.

b:1j1.2{1.3{1.gjIé:?[é.éfﬁ:?}f?:ﬁf%.é}3;3f3.4§3.5L
Vm_‘\ N -

< AN
\i\\“ \\ S /

..\,\~\ \ -
S N N I

subschema logical recor

Q

Figure %,9 Addition of new subschema logical record

The second type of operation, storage, is quite different,
Suprose that the new subschema logical record represents data
on an entirely new entity. Hence schema reeords 1, 2 and 3 in
Figure 9.8 would not exist. Thg result of the storage of the
new SLR which consisted of five fields, formed by definition in
the subschema DLL by a join operation on schema record-1, schema
record 2 and schemg'fecord 5, followed »y a projection to

select the required fields, is shown in ¥Figure 9,10,
1_ k] >

~125=

SCHEMA
(LAl FEE 55,2l s
Sy N N A A
-~ \ \\ \\ / / //
~ \\‘ \ / /

. \ Y 4
RECHANEA P4

subschema logical record

where * indicsztes an unassigned field

Figure 9.10 Storage of new subschema logical rccord

The LEDAMS storage operation corresponds to the CCDASYL STCRE,
Fields in the schema reco;d are unassigned if they do not appear
in the corresponding CODASYL subschema record definition for
which the STORE command was issued. Of course, the CODASYL
STORE operation can only result in unassigned values being
recorded in one schema record, whereas EDAMS.can geperate as
many néw schema records as there are sour;e records for the
SLR. It is as a result of this that a problem analagous to
the update anomaly discussed in the previous section arises.
The difficulty occurs when another SLR is stored which contains
not only some of the unassigned fields in Figure 9.10, for
example, but also some of those which have already been assigned
as a result of the STORE on the first SLR, If these already
-assigned fields are updated with the new values, an incorrect
database could result; however, not to update them but at
the same time assign values to the previously unassigned fields
coild also result in an invalid database.

The simple solution tc this problem is the same as to
the update anomaly, namely to restrict the storaée of new.redords

to those which are a strict subset of a single parent schema

record.

-126-

9.5 Deletion

Corresponding to the addition and Sto;age operations,
there are thevremoval and deletion operations, although the
distinction is mot so clear-cut,

The removal of a subschema 1ogical record occurrence
implies only its removal from the user's view. It cannot
involve the deletion of any physical data from the database
even if the fields involved are not referenced by any other
subschema,

The deleticon of a logical record, én the other hand, does
involve the physical removal of the data from the database. The
source fields for all the fields in the SLR are deleted from the
source schema records, i.e. they are flagged as deleted. As
with the update and storage of multi-source SLRs, difficulties
can also arise with their deletion, when fields which are keys to
join operations for other SLRs. As before, therefore, it is
necessary to restrict the deletion of SLRs to those whiéh are !

Strict subsets of a single schema record.

9,6 Summary of operations on SLRs

The only operations which can be performed on multi-source

SLRs are:

(b) creation

(a) retrieval . . L
(¢) removal

-127~

However, singleQﬁource SLRs can
subject of:

(d) update

(e) storage -

(f) deletion.

in addition to the above, be the

~-128~

CHAPTER 10

CONCURRENT UPDATE IN LDAMS

10.1 Introduction

In the light of all the difficulties associafed with
existing solutions to the concurrent update préblem in DBMSs,
a nevw algorithm is proposed for FDANMS,

The system is not dissimilar to the Chamberlin et al
scheme [32] described in Sect;on 4,%2,5, There are three
undesirable features of the Chamberlin et.al scheme:

(a) by allowing blocked processes to hold locks for records;
single record updaters could be discriminated against and
caused to wait an unnecessarily long time

(b) the algorithm is tedious to implement with a proliferation
of small gqueues, one for each locked record which has been
requested by another process

(c) arbitrary method of favouring processes,

10.2 The LDAMS algorithm

Under this new method ins:tead of a gueue of processes
for each record, there is a single queue of blocke: processes
awaiting the release of locked rocords by ofher processés.

As soon as a process has all the records it has requested, it
will be released, regardless of its position in the queue.

All records involved in a group update must be claimed in a

«12G=

single seize block, operations Qifhin the Blpck being restricted
in the same way as in the Chamberlin et al schenme, The position
of processes in the queue is solely determined by their time

of arrival (at a seize block)., It is necessary to insist

that once the search engine has been allocated to a process,that
~process will run until cpmpletion of the seize block or until it

is blocked, Consider two concurrent processes P1 and P2:

Search engine allocated to P1

P1 reads and locks records R1 and R2

P1. reads R3, but decides not té lock it
Search engine allocated to P2

P2 reads and locks R3 |

Znd of searcﬂ engine for P2

P2 updates record R2

P1 reads and locks R4 and R5

Ind of search engine for P1

while executing the update, P1 finds that R3 has been altered

in such a way that it now satisfieé its locking predicates.
Thus in order to ensure that P1 does obtain a time-consistent
snapshot of the.database the search engine must be allocated to
P1 until it sétisfies all its locking predicates in a single
attempt or until it is blocked because it wants to examine or
claim a locked record.

Consider the following example:

PRCCESZES CON QUEUR - 3BT CUF LCCK REQUESTS

Pa Va = 1R1,72,R3,Rk4,R5}
‘Pb Wb = {R2,RX5,R6,R7,R8}

Pc We = [R1,R5,R6,R9,R10}

where Wi = set of lock requests made by process. Pi

-13%0-

Process Pa is at the head of the gqueue and assume that all
records are iﬂitially unlocked. Hence process Pa can be
released. The search engine will then examine all the locking
predicates fpr processes Pb and Pc.for the first time and will

ascertain that both are blocked and place them on the queue.

PROCESSES SET OF RECCRD3S LOCKED SET OF RECORDS REQUESTED

BY PROCESS Pi BY PRGCESS Pi
- ? y f
* Pa Ra = {R1,R2,R3,RL,R5] Wa = D
Pb Rb = P wb = {R2,R5,R6,R7,R8]

Pc Re = & We = {R1,R5,R6,R9,R10]

* indicates executing process
Note that the set Ri of records currently locked by process Pi

~is null for all processes within their seize blocks. Thus a
process is not granted the lock for any record unless it can
obtain all the records it requires iﬁ one go and be released.
Assume for simplicity that Pa releases all its records simul-
taneously, although this is not an essential restriction as in
Chamberlin's algorithm. .Under Chamberlin's algorithm, processes
are permitted to examine the non-updated versions of locked
records and hence if records were released singly instead of

in one go, a concurrent updater could obtain a snapshot of
records some of which are updated versions (relegsed records)
and some of which are not (locked records) (see Section bo3.5).
After the simultaneous release of Pa's record. , the search
engine re—execufeé the locking predicates of Pb and -discovérs
that all its requests can be @et and it is feleased. The
locking predicates of Pc are then examined, but this process

is 57111 blocked.

-137~

EXECUTING Pb Rb

1]
1}

v

Pe Re = b e = {R1,R5,R6,1k9,210}

{r2,r5,86,57,R8} Wb

Pb will then release all its records, allowing Pc to run,

For clarity in the above example, static Wi sets have
been used.» However, in the‘general case, the locking predicates
will depend upon database content and hence will vary with time,

The algorithm is still valid in this situation.

10.3 Indefinite blocking of a process

It is possible under this new algorithm for a process
to be indefinitely blocked, even though it is at the‘head of
the queue, Consider the case where two processes, Pa and Pb, ~
are concurrently ﬁpdating the database (their lock sets must of
course be distinct). A third process, Pc, is the first process
on the aueve., Pa releases its records so Pec's locking predicates
arz re~examined in the light of the newly-released records, Pc
finds that it is 5till blocked as it requires some rccords
currently held by Pb. The requirements of a fourth process, Pd,
in position two in the queue, are then examined and the search
engine finds that all its requests can be ﬁef, so it is released.
Process Pb terminates, so once again the lncking predicates of Pc

are examined, but it is still blocked since it reqguires some of the

records now held by Pd. The search engine will then move down
the gueue and release the next process, if possible. In theory,

thnercfore, it is possible for a process such as Pc to be blocked

indefinitely, Although this is unlikely to occur in practice,

“132-
the fact that the systemvcannotlmuarantee that all processes will
be released eventually (short of being the only process in the |
system) is unacceptable. In order to avoid this, it is necessary
to maintain the gueue discipline throughout and not release‘
a process‘until it is at the head of the queue. As in the
case of Chamberlin et al scheme, this could lead to unaccept-
able and totally unneccesary delays for processes which oniy
want a single known redord.

A variation of this situation would result if processes
are allowed to release records one by one instead of.all
together. Such an aprroach attempts to meet the requirement
that no process should retain a resource for‘longe: than is
absolutely necessary. Consider a process Pa which is updating
the database ﬁaving locked records iR1,R2,,Rn}. Pa
releases R1, but for consistency must retain {R2,R3,...,Rn} .
until the update is complete. Process Pb at the head of the
gqueue requires {R1,R2§ so it cannot be released, while. process
Pc further down the queue r=quires only R71 and can therefore
be rnleaéed. It is‘possible for Pb to remain blocked indefin-
itely. Consider, for éxample, the case where Pb's lock set
is identical to Fa's, namely {R1,R2,...,Rn5 _ and Pa releases
_each record separately.

It would be impractical to take the attitude that the user
who carries out the type of operation which demands a lot of
resources 1s anti-social and will just have to wait until those
resources are.available, i.e. effectively, giving him a very
low priority. In the ultimate extreme, this could mean
waiting until all other hpdating processes had logged off the

syaztem, which might never happen!

-133-

" 10.3%.1 Favoured processes

The first approach to the problem of the indefinite blocking
of a process, is the one taken by éhamberlin et al, namely of
arbitrarily and externally favouring a process to guarantee
that it will run. Apart from solving the problem of the
indefinite blocking of»a process, this approach has the advantage
of giving the DBA some direct control over potentially extra-
vagant users.of the database, Moreover, the method of
favouring can be used in certain urgent operations whicﬁ
require a time-consistent view of the database, e.g. calcul-
afion of the bedstate in a hoswpital, daily totélling of credits
and debits in a financial system. Both these operations can
be carried out very rapidly oncé the resources (records) are
available. To introduce a system of favouring a particular
process to the algorithm effectively means that until that process
has built up its c~mplete lock set, no other users can be allowed
to Llack records, i.e. enter seéize blocks, This is necessary
in order to guarantee that the process will be released given
-the potentially time-varying nature of locking predicates.

Say, for example, that process Pa is favoured and Pb enters its
seize block and requests a lock for record R10, Furthermore,
assume that record R10 has been examined by process Pa but

rejected as it did ndt meet any of its locking predicates. Now

if the system were to grant process Pb the lock for record R10,

it is quite possible that process Pa (still.in its seize block)could
decide as a result of some other newly released record, that

it wishes to re-examine R10 only to find it locked by Pb; Thus
.in order to ensure that Pa, the favoured process, will run, it

is essential to prevent any other process from entering a seize

-13ha

block. Gradually, those processes which currently hold locks

on records, will release them and the favoured process will be
able to‘build up its entire lock set and be released, Since

the permission to favour a process would only be given by the
DBA, it is natural to assume that it would only be used in
extreme cases where it is important., A favoured process is
therefore a special process. In addition to the command to
favour a ?rocess, the DBHMS must also be supplied with a list of
all the logical record types involvgd in the update. Thus

other processes using logically disjoint portions of the database

could be allowed to continue unaffected.

10.3%.2 YWaiting time priority system

An alternative to the external favoufing of a process to
solve the problem of the indefinite blocking of a process, is an
internal priority system which requires no outside trigger to
guarantee the release of a process. Under the waiting time
priority system, each process is alloczted a priority based on
the time spent waiting. ThHus the longer the pirocess has been
waiting (blocked) the higher will be its priority. A threshold
value limits the difference between the process at the head of
the queue (i.e. the one which arrived{at the seize block first)
and the proeess to be considered next for release. No
special priority queue 1is required to implement this system as
the EDAMS algorithm can simply use its standard process queue,
since it is ordered purely by time of arrival at-a seize block,
Thus when a process join§ the gueue it is allocated a priority
of zero, which is‘incréﬁented the longer it has to wait. wven-

tually, tnen the priority difference of the process at the head

-135-
of the queue which has been blocked for a iong time, will
become so high that no other procesées can execute their seize
blocks and the process will then be released. The effectvof_
this sjstem'is the same as the external favouring of a process
(see above), except that it has the advantage of being auto-

matic and less arbitrary. EDAMS therefore adopts this approacﬁ.

10.3.3 "Overlocking" for special purposes

It is the realization that favoured processes are special
processes which leads té a third approach to the problem of the
indefinite blocking of a process. It is not intended as an
alternative té the priority system described ébove and adopted
by EDAMS, but rather as a suprlement to it. This approach
consists of locking potentially more records than are actually
required by‘the logic of the update, in one go, rather than

evaluating a locking predicate one record at a time to build up

the lock set. The obvious choice for the specification of this
"overlocking' is the logical record type. Thus the locking

predicate will simply be:
LCCK ALL RECCRDS OF TYPE-X

Note that the evaluation of this locking predicate does not
involve any examination of the database itself, The search
engine merely has to ascertain whether any other process
currently holds locks for any records of TYPE-X, If not, then.
the process can be released immediately. If so, ‘then it is
plaped on the gueue of bloqked.processes.in the hormal way;
Clearly, howéver, in order to guargntee that processes

:

using this '"overlocking' facility will be released quickly, there

=150

-

would still have to be a waiting~time priority system as outlined.
above, The use of the ”overlockiné” facility would have to
be regulated and only available to srecial processes.

For exaﬁple, consider the calculation of the bedstafe of
a hospital, This involves the very brief examination of gll
the current in-patient records, which would presumably form a
single logical record type. Thus no ﬁoverlocking” would be
involved and the process would be released as quickly as possible
with minimum overhead (no delay to evaluate locking predicates).
The fact that all the records of a given logical type are
regquired simultaneously for the bedstate calculation is typical
of those processes which require a snapshot of a la}ge portion of
the database, e.g. daily totalling of credits and debits in a
financial system. Thus the specification.of the locking
rredicate by means of the logicél record type will greatly -
increase the efficiency of these processes.

To summarize, therefore, the over-locking facility is not
an alternative to the priority system, but rather an extension
of it in order to increase the efficiency of certain special
processes, where for example,
(a) t-e number of records to be considered for locking is large
“or
(b) the number of unsuccessful attempfs before the locking

predicates are satisfied is large.

10,4 Reneated evaluation of locking predicates

Associated with the problem of the indefinite blocking of

-1%7~

a yrocess is the problem of the repeated evaluation of locking
predicates of such érocesses each time they are cénsidered for
release. This subject has already been discussed invdetail in
a general context in Section 4.2,2. In the context of the
IEDAME algorithm, the problem will be alleviated either by the
use of the waiting-time priority system or the "overlocking"

facility.

PART III

THE IMPLEMENTATION OF EDAMS

~139-

CHAPTER 11

AN OVERVIEwW OF EMAS

11.1 Introduction

In this chapter a brief description of the Edinburgh
Multi-pAccess System (EMAS) will be given with particular
emphasis on those aspects which affect a DBMS implemented
on EMAS. EMAS is a general-purpose virtual memory tiﬁe-
sharing system for the ICL System 4-75 computer [47,50,51}.
The paging unit provides 256 segments of 16 pages each, each
page being 4096 Bytes. Each user has his own virtual memory
of up to 256 segments of 2116 bytes each. Segments 0=31 of
each virtual memory are used by the Director processes (see
Section 11.2) and aré not available to the user. In EMAS, the
distinction is made between the heart of the system provided
by the system software and the part which is more visible to
the user, the subsysteh software, The.aspect of the system

software which is of direct interest to a DBMS is the Director.

11.2 Director

Lach usexr process has a director process which can access
the user's entire virtual menory, The mailn purpose of the
director process is to pegrform file syster and console commun-
ication services for the user, It.is stored on a rgplaceable

disc unit and is paged in and out to drum and core as required.

All direc
physical
core ér o}
The
files.
number of
files are
them into
file onto
user's vi

a

pages it
once the
to refere
case all
Fil
unshared,
unshared.
he

one proce

particula

~110-
|

tor processes share the same code and access the same

CODY e Thus the director is almost always either in

n édrum all the time.
File 3ystem provided by director contains all user
Fach file consists of an arbitrary, but integral,

pages.of totally unstructured information, A1l

stored on~line on disc and are accessed by connecting =
the user's virtual memory, i.ec. mavnping the complete
a segment (or several contiguous segments) of the

rtual memory., While a file is connected, the system

between disc and drum and core as required. Thus

file has been connected the virtual address is used

nce it, Files can be shared between users and in this

users access the same physical copye.
es can be connected in one of four modes - read

read shared, read and write shared, and read and write

facility exists in EHMHAS for messages to be sent from

e

ss to another which, as will be shown lsater, is of

r significance for a DRES. The user service PON is

used to place the message (limited to 32 bytes) onto the queue

and the r

If no mess

until the
a rerply,

reply usi

ecelver removes the message by issuing a POFF request.
aze is on the gueue, the receiver is suspended

message 1s available. The rccelver can then send

if appropriate, using PON and the sender receives the

POFF.

ng

.

;11,3 The standard EMAS subsystem

_The standard LEMAS subsystem.brovidrs users with a variety
of facilities including virtual memory managemeht (ekcept for
the first 32 segments containing director), file organization
conventions Sy means of file headers, command interpretation
and so on.

Although all these functions are vital to the DBMS, many,
e.gs command interpretation, can be taken for granted. The
File Directory Package (FDP) which is responsible for virtual
memory management is however significant. All file requests
to director are via the FDP which maintains a map of virtual
mamory and information concerning the size and mode of access

of all files currently connected in the user's virtual memory.

11.4 Updating TMAS files

An important feature of ENMAS from the poinf of view of
a DBMS is how EMAS updates files; in particular, at what point
are the altered vages in core transferred to disc? It is only
wien this transfer is complete that the update can be regarded
a3 successfully executed. It is important to ensure, for
example, that all the altered vages associated with a group
update are written back to disc ”simultaneously“.

There are three situations when pages invcore which have
been updated by a process are written onto disc:
(a) when the file is disconnected (this would also include the

user logging off, when all files currently connected are

he)

-142-

automatically disconnected

(b) when the system wishes to reduce or change the processes'

working.set
(c) when the user service Make Disc Consistent (MDC) is requested
In all three situations, EMAS guarantees to ensure consistency
by writing all pages altered by a process back to disc at the

same time,

~-143a

CHAPTE:R 12

THE EDAM3S MASTER PRCCES

12.7 Introduction

The obvious starting point for the design of a CODASYL-type
DBMS for EMAS was the conceptual DBMS given in the April 71

Heport [1] which is reproduced in Figure 12.7

N_PR IMARY _STORAG &

r .. R i o
1 A OPERATING SYSTEM
i :
SECONDAE \/ R, ..:5 et e e e it Av s S+ e . s < a .‘ .
SToRAGE i 7 ScHEMA | SUR-SCHEMA =) Sug-
N (06TECT VERSION) {(0aTECT VERSION) |SCHEMA-
| P N
! ;- ...,.,...2.,_.,__,‘._,é,_m_......_m,. bl
. VSER -PROGEANM = | USER~ PROGRAM -N N
i DATAGASE :
L. MANMAgE- !
i MENT . .
i SYsTEm
, N S
% - ? R
; : ¢ | . !
" DATRGESE ! : 9 - »~~—~» ey 2
. : i :] H
! ‘ ’ 7 ?.
: ' ¥ ' | s !
s | 1 ;
SYSTEM ’, g’ |
LOCATIONS 9 [:
i
e §
; ¢ i T B :
SYSTEM : L N : i SYSTEM ?
"-*—"‘J.«? 3 ! - H
QuPFERs ;| toceTioms

B C USER-WORKING
_,\- - ; P <
e JQ _ AREA ; : . DSER- WoRwx:ni5
\.\: .) E : ' ARZA
%“‘ il
e i - _ ‘

Figure 12.1 CODASYL's conceptual DBMS

The operations designated by the numbers 1 to 9 in Figure 12.1

are explained below,

—1hb

1T a call for data by a user program to the DBMS. All calls

for the services of the DBMS are made in the DML

2 the DBMS analyzes the call and supplements the arguments
provided in the call itself with information contained in
the object version of the schema for the database, and in
the object version of the subschema invoked by the user
program originating the call. The schema describes the
database in terms of the characteristics of‘the data and
the implicit and explicit relationships between“data items,
The subschema is a subset of thé ;chema. It describes the
data known to the program invoking it in the form in which
the DBMS makes it available, and expecfs to find it, in that
program's USEﬁ WORKING AREA (UWA). In this conceptual
system it is assumed that the object vefsion of the subschema
contains only the differences from the schema aﬁd is not
complete in itself. The source form of the schema is
written in the schema DDL and the source form of the subschema

is written in the subschema DDL,

%2 on the basis of the call for its services and information
obtained from the object version of the schema and Subschema,
the DBMS rsquests physical I/0 operation, as required to

execute the call, from the Operating System
4 The Operating System interacts with secondary storage

5 'The Operating System transfers data between secondary
storage and system buffers
6 The DBMS transfers data, as required to fulfill the call,

between the system buffers and the UWA of the programs

-T45=

originating the call. Any required data transformations
between the representation of the data as it appears in
secondary storage and the repreSentation of the data as it

appears in the program's UWA, are handled by the DBMS,

7 the DBMS provides status, information to the calling program
on the outcome of its call. The information provided is =
currency status information, error status condition codes,

area name, record name,

I

8 data in a program's UWA may be manipulated as required,

using the facilities of the host language ,

9 +the DBMS administers the System Buffers. The System Buffers
are shared by all programs serviced by the DBMS, User
programs interact with the System Buffers entirely through

the DBNS, -

It is clear from Figure 12.71 that the CODASGYL DB&G has assumed
that the DBMS would be implemented on a non-virtual Operating
System. Under EMAS the user has access to his entire virtual
memory (except the first 32 segments which are used by Director).
It should be noted that other VM systems may have more *than one
protected area, In particular, in ENMAS the user wculd have
access to the 3System Buffers of Figure 12.1, in which EMAS

would place the data retrieved from the database. CODASYL
envisages that these buffers would be available only to the

DBES which would translate the data in them, according to

the informatinon contained in the schema and snbschema, into

the form reguired by the user and place it in the UWA. Further-

more, since the schema, subschemas, database indcxes, etc. are

required by the DBMS to service user requests, the files in

=146

which they ére contained would have to be connected, at least
in read-only mode, in the user's virtual memory as would the
database itself, This negates the fundamental concept of
CODA3YL, or indeed of any DBMS, that the user should only be
permitted to access the data to which he is entitled. There
are two possible solutions to this problem. The first is to
place all, or at least part of EDAMS, in a priviledged
(protected) section of the Operating System. The secénd is
to introduce a separate EDAMS process which qould communicate

with the user process.

12.2 Placing EDAMS in a protected area of EMAS

The obvious choice for a protected area of EMAS is the -
director. The files containing all the privileged inforﬁation
could then be connected only in Director and the user process
wouid not be able to access them directly. However, there
would be at most 4 segmentslof Director available to EDAMS.

The EDAMS routines themselves could be connected.in read-only

!
riode to the usexr's portion of VM, but the database . itself (or
those portions of it required at any moment), schema, subschemas,
indexes, tables, backup files would all have to be connected
into this comparatively small area. Cbviously, they could not
all be connected simultaneously and therefore the overhead of
frequent file connection and disconnection would have lo be
considered, File connection is not an expenéive procedure as

it only invelves checking access permission and noting the mapping

information in the Director for that process, No access to

=149~

J

secondary storage is required until the file is actually used
-and no supervisor calls are made. However, there is potentially
quite a‘high overhead involved for file disconnection., The
mapping information in the Director is removed and a call made

to the Supervisor fo remove any pages written to in tﬁe filé

back from core or drum to disc. In fact; all pages'belonging

to that process which have been written to are removed back

to disc for consistency.

12.2.71 Expansion of Director

tven if the LDAMS schema was not required on-line during
execution (cf. IDHS) the saving of Director space would not
be sufficient. It is therefore worth considering the poésibility
of expanding the Director to accomodate all the necessary info- N
rmation. Such an approach would be feasible given the structure

of ENAS, but was rejected in favour of the simpler and neater

system described in Section 12.3,

12.3 The EDAMS laster Process

A neater and more efficient way to implement EDAMS is

to introduce a separate process, the EDANS Master Process (EMP).

This process would contain the entire DEMS, schemas, sub~
schemas, tables, indh#es and would also ke the unshared owner
'of the database itself. .

In order to implement the EXP, it would be necessary to

make use of the EMAS inter-process communication facilities

‘-1h8-

(see Section 11.2). The 32 bytes allowed by EFKAS for the
message is clearly not enough to give even the simplest DML

commands A Communication Area (CA), equivalent to the User

Working Area of Figure 12.71, is required which would simply be
a standard EMAS file connected in read énd write sharea mode
by both the EMP and the user process. There would be a
separate CA for each user process., The PON and POFY commands
indicate the service and destination of the messages, i.e.
from a user to EMP or vice versa, The EMAS message area
itself gives the name of the CA, .Details of users access
rights, subschema in use, etc. would be contained in his Ch.
Also, the details of the DML request would be placed in the
CA. A message indicating that a request had been made would_
be PONned on the message cueue. T%e‘EMP would then POFF the
information, execute the request using EDAMS, place the result
in the CA and PON a message to ‘he user indicating that the
reply is available to be POFFed by the user.

Although the overhead of communicating with EDAMS via a
messare queue is greater than, say, simply calling an external
routine, it is still considerably less than the connection/
disconnection overhead of the Director solution. Moreover,
the EMP vprovides a neater solution which fits in.with the
architecture of #MAS (only very minor alterations to Director
are required to enable a process to use the inter-process
communication facilities) énd with the architecturé of CODASYL=-
type DREHSs,. It was therefore decided to implement ZDAMS using
an =DAHS faster Process,

ine LDAMS lYaster Frocess operates in the same way as

Rrinch Hansen's monitors [52,53,54]. FKonitor data is only

-'-1L|'9—

accessible to the monitOr procedure and ohly one process can be
progressing in a moéonitor at a time, duriﬁg which time it has'
exclusive access to the monitoring da*a. In the same way, EMP
data is acceésible only to the EME and the EMP handler requests
messages from the user processées one at a fime.
It should also be noted that the use of a separate EDAMS

iaster I'rocess has two further advantages:
(a) it is easy to ensure that seize blocks cannot be inter-

rupted (see Section 10.2)
(b) it would be easier to move an EMP out to a stand-alone

filestore which could be useful in highly-shared situations.

-150=

CHAPTER 13

STORAGE MAPPING IN EDAMS

13,1 Introduction

The mapping between subschema through schema to the
physical database is of vital importance to the efficiency

of EDAMS, In this chapter, the various levels of mapping will

be discussed and the concept of the database map will be

introduced,

13.2 Database nmap

The April 71 CODASYL Report implied that the owner/member,
member/member set pointers should be embedded within the data
records (except for pointer arrays), although the current DDLC
JOD [22] makes no reference to implementetion. However, most
implementations of the CODASYL proposals (e.g. DHS 1100 [29]) do
embed the set pointers in the records themselves. One notable
exception is the PRIME DBHS [35]. Ingles [55] has pointed
out that‘such chained structures suffer from two main disadvan-
tages:

(a) they are only as strong as the weakesﬁ link

(b) they can be %fime-consuming to search on direct access devices.
However, such sfrugtures do héve many advantages. For example,
records can be added ancd desleted relatively easily without

moving other records about, It would therefore seem desirable

-151=

to incorporate the flexibility of chained structures, but to
separate thé dafa,records themselves from the links which
connect them. The PRIME DBMS [33] is an example of such a
system; it uses-B-trees to describe the set structures and
these are stored in entirely separate files from the data. ;
'As regards Engles! first criticism of chained structures,

the normal DBMS backup facilities for thé data would of course
élso apply to the pointers regardless of where they are stored.

It is therefore proposed in EDAMS to store all pointers

separately from the records themselves in a database mav. A

database map is a reprcsentation of a database (o; pbrtion of
it) giving its structure and the relationships which exist
between records,'but where the actual data records themselves
are replaced by their database keys. . The EDAMS database key
is similar to the 19771 CODASYL database key in .that each EDAMS _
record is assigned a unique key for all time. It is envisaged
that these keys would he generated by, say, a haéhing function
on record type, etc. In order to obtain the physical address
of the record with a specified database key, a high-speed

table look-up technigue is required. For example,‘the hybrid
technique described in [56], which is a combination of a hash
and a binary tree, could be used.

There will be one database map per subschena. However,
certain parts of the map may be common to several subschemas -
namely information relating to schema sets and their owner and
member records,

Consider, for example, the situation where user a, via
subschema 51, adds a new member record occurrence to schema-

defined set s, This addition must be visible to all users

-152«

of the set s, beth those who access the database via subschema S1
and those who wmse other subschemas. It would be voth dif-
ficult and céstﬁy to ensure that all the necessary changes
were made to all the appropriate database maps. There are-
two possible sokutions to this problem of database sharing and
integrity:
(a) a common root section for all subschema database maps

which describes the records and sets defined in the schema
(v) a separate database map for the schgma.

The diffieulty of the first épproach is that it provides
the subschema and hence,, indirectly, the user with information
which may not be relevant to the particular application. This
is contrary to oné of the main aimé of the schema/subschema
structure - namely, both for security and for achieving data
independence, to give the user access only to the‘data which he
actually requires for his own database application.

The second approach does not suffer from this particular
difficulty as the schema database map is owned and used only by
the DRA, Individual database maps will access the schema
database map by_means of cross references to it. Thus only
those parts of the scHema database map waich are relevant to
the particular subschema will be cross referenced.

Trhe main objective of the éatabase map (db mep) is to
riake access to the database more efficient and also to simplify
consistency (integrity) checking of the databése. _ it also
provides a convenient method of infroducing sets at the subschema
level, - |

It is envisaged, for examnle, that access Keys. could be

centained in the nodes of the database map as well as database

!
l
;
i
|

keys, Thus access paths through the database could be traced

‘until the desired record is found, thereby gzeatly reducing the

number of accesses to secondary storage. The PrRIME DBMSValso
permits the inelusion of search keys in its B-trees.

It is difficulﬁ to illustrate the concept of a &b map
diagramatically because of the multiplicity of pointers in all
directions. The map can be thought of as being obtained by
rémoving all thevdata from the record occurrences in a chained
database and replacing it by a pointer (the database key) to
the data. In EDAMS, the map would be based on subschema records.

Figure 13.1 shows the general set linkage structure in

©wDAMS
,SET hgﬂbﬂa \
A\ FoR SET S
/Ow/uf-‘/‘ Fa/t OWNER FOR

ALAST OCCURREANX,
OF SET S

owu ~ Fo/::
GCC!JR:(‘ENL‘- 2 - e
S‘T;;)

e L““‘“‘“x
{MEMBER £ DF
DECLRRENCE 2)

OCC URREMNCE 4
OF ivz:'f.) TS .

S /A
[MEMBER L OF

\QCs.Lh\f'.uNf. 4

N U, A

/ Mth}@cﬂ 2 oF " MEMBER 2 DF\

\OCCUI\A-rJ"‘" A7 ')[CU(/(EN‘:" 2/

o !
: N

/7467 rmEmaER ™, 'LAST’”EMGEﬁ‘\
\”" Ocuﬁf\’En/c,: 2. !

&CV OCCURRErIc e 2t T

.._......'.__.......'-"

S

I |

Figure 13.1 Set linkage structure in EDAMS

In addition, each member record could be linked to its owner
and predecessor, as well as to-its successor; also each owner
could be connected back to the set header. This could also
be implemented either by placing the nodes contiguously or by

storing them in a tree structure.

=154
In Figure 13.1 each node is shown separately, whereas in
the database map, there would only be one node per subschema
record occurrence. Figure 13.2 is an attempt to.illustrate

the database map for the example given in Figure 5.4,

PERSON-

PERSON set

Header for ; Header for
INTEREST set i

INTEREST- ;
1

8 denotes owner of set occurrence
——> denotes linkages within the PERSON-INTEREST set
~—-» denotes linkages within the INTFREST~-PERSCON set

Pn node in database map for nth person record

IX node in databa

9]

e map for Xth interest racord

Figure 13.2 Diagrammatic representation of a sample database map

Thus each node in tlie map will have a number of pointers each

one 1inking a records into a particular set occurrence. The

~155=

key to the representation of these pointers is the unique
identification of every set and of every occurrence of
every set across the database and the distinction

made between owner and member Tecords. ~Further

classification of pointers wouldbbe necessary to indicate

whether the pointer is a forward pointer or a backward pointer
(for doubly linked sets) or a pointer to the owner. TFor the
purposes of this example, only forward pointers will be consider-
ed. Note that in Figure 13.3 the pointef values following the
identification information refer tb table addresses. In

reality, the database key would be used,

TABLE DB e

ADDRESS| KEYS PGINTERS
1 P1 | PI1=-0=F-l IP1-M-F=2 IP2-K-F-2
2 P2 | PI2-0-F-4 IP1-M-F-4 ID2-M-F-3 .
3 P3 | PI3~CuF=5 IP2-M=F=5 IP3-M-F=6 IPL-M-F7
L IA | PI1=H=F=5 PI2-M~-F-5 IP1-0-F-1
5 IB | PI1=FwF~] PI2-K-F-2 PI3-M-F-6 IP2-0-F-1 .
6 | IC | PI3-}-F-7 IP3~0-F-3 |
” i ID | PI3-i-F-3 IPL-0-F-3 %
where

PIi denotes the ith occurrence of PEISON-INTEREST set
IPj denotes the jth occurrence of INTZREST-PERSCN set
@ denotes owner record; M denotes member racord

F denotes forward pointer

Figure 13.3 Tabular representation of sample database map

The number of entries in the entire database map shown in
Figure 13.3 is equal to the number of records in the subschema

datnahase, which participate in sets. The possibility of

~156=

records in an EBAMS database which do not belong to any set is
not precluded amd they could readily be incorporated into the
database map. Thus the map will be very large and some type
of strﬁcture to facilitate speedy lookup based on database key
will be essential [e.g. 56].

The CCDABYL restriction that a record occurrence cannot
appear in more than one occurrence of the same set does not apply
to ©DAMS, All EDAMS set occurrences are treated separately
in ﬁhe database map and thus there can be no ambiguity in
interpreting the data structure.

However, this does alter the use and interpretation of

DML commands such as IFFIND NEXT and FIND OWHNER,

15.3 Interpretation of EDAMS5 DML

In the CODASYL proposals, DML commands such as FIND OWNER
and FIND NEXT for a given set type, identify unique occurrences
of records. This is not true in EDAMS since record occurrences

may appear in more than one occurrence of the same set,

Consider the diagram shown in Figure 13,4 overleaf,

occurrence - 810

\ S1M1 S1M2
owner ﬁ

occurrence 2 520 S52M1 —47 S2M2 S2M3
owner

v

occurrence 3 830 =34 53M1 8312 S3M3 S3Mh.
owner : .

wvhere Si0 is the owner record of the ith occurrence of set S

and SiMj is the jth member record of the ith occurrence of set S

Figure 13%.4 Set occurrence structure

Now replace the symbolic record names, Sil{j,.by actual records

as shown in Figure 13.5 below.

lset
@ (e F A R3
R4 RS 1\ ro) > k6\
O o A2)——A%)
j
\V\ e,
R7 /QE\L \Jg; Xk,

1\7f =

TN

G

Figure 13.5 Zxample of actual set occurrences

-158~

Note that the record R2 appearé in both the first and second
occurrences of the set, A FIND OWNER for R2 (in the context
of set S§) under the CODASYL proposals would not know wﬁich of
R1 or R4 to select. |

If the application program is processing the database in
the context of the first occurrence of the set 5 (EDAM3 naturally
maintains currency/context indicators in the same way as CODASYL)
and issues a command to FIND OWNER of R2 (in set &) theﬁ the
system will return R1., If, on the other hand, the program
confext is the second occurrence of the set, then R4 will be
returned, However, if R2 has been reached either directly or

in the context of its participation in. another set, a réduest

to
FIND OWNER OF SET S
will return R1. To locate R4, a new EDAMS command
FIND ﬁEXT CWNER CF BET 8
can be used. Whenever a FIND (NEXT) OWNER command is encounter-

ed, in addition to the owner rscord itself, a flag will»also
be returned. This flag will be set if another owner record
occurrénce‘is found for the particular member record occurrence,
The cost of sefting the flag is minimal and avoids an extra
access to the database map when a FIND MNEXT OWNER command is
issued aﬂd there is only one owner., FPIND NRAT OWHNER can
be used repeatedly to lccate all the owners until the flag
is returned unset,

An znzlogous situation exists in EDAMS for the FIND NEXT
command., If the context of the set occurrence is clear, then
there is no confusion, Thus, in the context of the first

occurrence of the set § in Figure 13.5 (owner R1), with R2

~159=
the currént fecord,
FIND NLXT ZECORD OF SET S
will return R3. But if the context is‘the seéond occurrence of
set S (owner RE) then R6 would be returned. As in thé case
of FIND OWNER, when R2 is not reached through set S,
FIND NEXT RECORD‘OF SET S
is ambiguous., EDAMS' solution is to return the next record in
the first set occurrence in which R2 participates, i.es R3.
A flag is set to indicate that R2 participates in more than
one occurrence of the set, To loéate the next record in this
sccond occurrence, R6, the user must issue a
FIND ALTERNATIVE NEXT ®zCORD OF SET § ‘
As with the FIND’(NEXT) OWNER command, EDAMS sets a flag to

indicate that an alternative 'next record‘lexists.

13%2.4 EDAMS realms

In Section 5.3%.7, the difficulties associated with CODASYL
areas were discusned, The area performs directly or indirectly
both the following functions:

(a) basic access and lockiﬁg mechanism (concurrent update in
addition to KEEP/FREE DML statements)

. (b) provides the mapping between the database and Operating
System files. |

In Section 7.5, it was stated that in EDAMS crigid
distinction between the realm and the storage-area would be
made . Therrealm is a logical subdivision of the databa=e and

exists only at the subschema level, Subschema records may

~160-

be assigned to one or more realms and thus realms may overlap.
The EDAMS realm Can_theréfore be fhought of as a_shorthand for
referring to a grbup of logical reccrds and will therefore be
useful for privacy cdntrols,'concurrency controls and so on;
In fact, the ¥DAMS realm can be treated and implemented as an
ownerless sét, forming part of the database map. Normal set
operations can therefore bevused to manipulafe records within
a realm, e.g.

FIND .NEXT IN REALM R

FIND LAST iN REALM R

FIND FIRST IN REALM R

13.4,1 Mapping of EDAMS database to phvsical storage

The second rolé of the original CODASYL area has been
replaced in EDAMS by the modern CCDASYL storage~area. The
mapping of the database to physical storage is part of the
physical description of the database and is placed initially
in the EDAMS schema. The éim of this mapping is to divide the
database into segments’which can be mapped convenientlj onto
LHMAS files. The specification of the mapbing must be based
on physical rather than on logical entitieé and must be
transparent to the user. The allocation of subschema records
to realms corresponds to the allo;ation of schema records
(or storage-schema records) to the storage-area.

CODASYL gives the DBA three alternative ways of specifying
the record placement strategy: N
(a) DIRECT |

The database key specified determines the placement of the

record,

-161=~

(b) CALC
A database ey is formed from the parameters of the commaﬁd
using either a user or system defined procedures
(c) VIa
The placememt of the record is determined by its membership
of a set. To evaluate this option, the DBMS must use the
SET CCCURRENCE SELECTICN clause for the set,
In addition, for every record type defined in the schema, the
user must specify a WITHIN clause indicating in which of ocne or
more areas the record should be stored.‘ In situations where
an option is giwen, the application program must initialize
ihe appropriate parameter with the correct area-name, In
other words, the programmer is required to know in which area
a particular record was stored, |

Such an anrroach would not be possible in EDAMS since
storage-areas are completelyfg;aﬁsﬁarent to the user. Thus
the system must be able to decide from its own informétion into
which of a number of possible storage-areas a given reéord should
be placed.

There is no natural way to map the logical database onto
physical EMAS files., The simplest appreach would be to allow
the DBA total flexibility in the placement in storage of physical
records, Thus in “he schema DBL, DBA procedures could be
specified‘which would dscide in what storage-area to place an
occurrence of a recora. In these procedures, the DBA can
make usc of record type, the schema record key (see Section 7.2) -
or . setmembershipdefailé, for example. The full CCDASYL VIA
SET option could not be.available under EDAMS because of the‘

potential difficulty of uniquely identifying an owner record,

-162-

CHAPTER 14

DATABASE CONSISTENCY DUERING UPDATE

14.1 Introduction

An important feature of a DBPMS is how it ensures the
consistency of the database in the event of a system failure
and, in particular, of failure during an update operation,

To alter an item in a database may involve not only the
changing of the data itself, but also the updating of tables
and indexes, It is of vital importance that, if failure
occurs, the catabase can be restored to the state which existed
prior to the start of the uncompleted updafe.

ENMAS alone qannot ensure this degree of consistency

and hence EDAMS must provide the necessary facilities.

14,2 The effects of the on-line environment

An update in BiDAMS is not secure until the Make Disc
Consistent (HDC) routine (see Section 11.4) has been executed,
i.e. updated page covied back to disc. Other concurrent users
of aﬁ altered page see the new version in core and not the old
version on disc,

In a batch environment, such a situaticn does not present
a problem since ifhféiluge occurs before the update has been
secured, other processeé, which have used the '"new'" version

-of tha rscord can be rolled back automatically. The majority

-163

of users of EDAMS will be on-~line and hence automatic_rollback
would be very difficult. For example, the system might find
thét a user who should be rolled back, or at least notified of
failure, has logged off. The overhead involved in the execution
of an MDC is not insignificant. However, in order to ensufe
éonsistency in an on-line environment, an MDC should be issued
when the lock on a reccrd, or group of records, is released.

In this way, each update (individual or group) will be
complete in itself, However, what should happen in the sit-
uation where a progrgm,which has béen updating the database and
whose updates.are already secured, aborts? Ciearly, in an
6n-line environment, there is no definitive answer to this
question, As wés indicated above, users who have logged off
the system cannot be rolled back and indeeé rollback of any
interactive proceés, even if it is still active, is difficult.
The solution to be adopted will depend more upon the application
system than the DBMS, The best the DBA can hope to
achieve is to insist on high and rigorous programming standards
for users of the database, especially those permitted to alter
its contents. A common ‘approach, even in batch systems, is
to debug application .programs on a specially designed test
database which.incorporates as meny of the "deviations" as
possible in the main database. ‘This was the system adopted
in the University of Toronto Information System [57], for
example, A deferred update system, such as is used.in
PRINE [331, whereby updates are written to a temporary file
and the database is only updated when the grdup transaction
is complete, can alleviate some of the difficulties o%»working

in an on-line environment.

-16k4a

The only gag facility available to EDAMS is the MDC,

which is inadequate. EDAMS really requires an MDC operation

which is not page oriented, but operétes only on specified
extents in virtual memory, rather than on altered pages.
lowever, EDAMS was designed to run on EMAS as it stands,
without alteration. The problems with EMAS, as far as
EDAMS is concerned, are discussed in détail in the last

chapter of the thesis.

14.,2.1 Simple update

Consider the prcoblem of altering one data field within a
record, assuming that this requires no movement of data or that
.such movement is’confined to a single page.,

(a) Run-unit (RU) obtains update lock on fécord

(b) RU processes record and calls on EDAMS to make change

(c) EDAMS through EMAS makes change - note that page is still
" in core »

(d) RU releases lock on records

The immediate execution of an ¥DC will make the update secure,

‘Unfortunately, when the MDC is executed, the entire page 1is

written to disc. Thﬁs, changes made to that page by other

partially completed transacticns will be written back also.

Although this does not necessariiy present an integrity

problem, it makes rollback in the event of failure considerably

more complex, as will be explained in the next section.

14,2,2 Complex update

A complex update is one which involves consistent changes

~165~

to more than one page in the database, whether they are data
paées and/or poinfer/index pages. The problem arises if
failure occurs during the HDC operation (whether automatically or
manually triggered), e.g. pointer page updated, but not data
Page. The user can be made aware of what has happened but
since he is not concerned with pointer files, indoxes, maps,
etc., he will not be in a position to do anything about it.
.Hence EDAMS will have to handle the situation and ensure the
consistency of the database with the aid of a Journal File,’

Traditionally, the Journal File was stored on magnetic
tape, since this medium was much less vulnerable to failure
than, say, magnetic disc and wés also considerably cheaper.
However, this has become less true and it is an increasingly‘
common practice to use a small, dedicated disc for
journalling. Each group update is assigned a unique transaction
sequence number (TSN). The following sequence of events
takes place:
(a) uéer successfully executes seize block and holds locks on

required records

(b) start transaction block marker for TSN set on Jcurnal File

(¢c) Record entry made on Journal TFile as follows:

TRANSACTICN RECORD ID CPERATION BEFOR%/AFTER IMAGES .
SEQUENCE NOC. ' - TYPE OF RECORD

where

(1) there is an arbitrary number of these entries per

transaction
(1i) 2RECCRD ID includes page number in VM
(iii) CPHZRATICN TYPE indicates update, deletion, etc,

(iv) BETFCRE/AFTER IMAGES contain the minimum portion of

-166=

the record for update only.
(d) update performed
When user requests release of locks on records
(e) MDC executed
(f) End transaction block mérker for TSN set on Journal File
to indicate the successful completion of the update
(g) Locks on all records released;

During recovery the end transaction block markers can be
checked. If the marker is not set, then EDAMS must examine the
cdatabase using the information given in the before and after
images of the recérd on the Journal to ascertain whether or not
the update has in fact been carried out successfully. If not,
then EDAMS must either complete the update or reset the record(s)
(and tables/indexes) to their original state.

As in the case of the simple update, the execution of
the MDC will also cause the changes made to the particular pages
by other incomplete transactions to be written back to disce
Since the update is not of%icially comﬁiete (i.e. records are
still loqked) untii the user releases the locks after execution
of the XDC, thé logical integrity of the database is ensured.
lHowever, in the event -of failure, rollback can become quite
complex. Any given page may contain the results of completed
and partially completed transactions. In order to facilitate roll-
back, it Qould be helpful to include a iist of all nages
involved in an FDC when the end of transaction block marker
is set.

In addition to the Journal Tile (vhich must be 100%

reliable) & Log of all other database activities - retrieval

z
&

requests, console activity etc. -~ is maintained to provide a

-167=

complete record of DBMS usage for statistical purposes. Although
of importance, the Log is not so vital to eﬁsuring database
integrity.as tﬁe Journal.

As part of the recovery facilities of EDANMS, it is
envisaged that dumping of the entire database or of selected
portions of it will be carried out at regular intervals. In
the event of catastrophic failure, tﬁe database can be restored

by rolling forward from the dump using the Journal File.

-168=~

IMPLEMENTATION OF CONCURRENT UPDATE ALGORITHM

15.17 Introduction

In order to fu11y eva1uate the EDAMS algorithm for handling
concurrent update, it was necessary to implement the algorithm
using a test database. To do this, a basic core of EDAMS
consisting of a Master Process and message communication
facilities was required. A small test database containing
26 records of 5 different types was set up. In many database
.applications, 90% of the accesses are made on 10% of the data
and the purpose of this implementation is to extract this 10%
and scale down, The Master Process maintained the search
engine, process queues and lock lists for the concurrent update

algorithm. .

15,2 Messape communication

In order to implement the concurrent update algorithm, it
was necessary for the EDAMS Master Process (EMP) to handle four
types of service requests from user processes:

(a) service indicating that the user had entered a seize block
(b) service indicating a lock request (locking predicate)

(c) service indicating the end of a seiée biock

(d) service indicé£ing the release by a process of all its

currently locked records.,

-169«

Thus the sequemce of requests by any one user process wéuld be

abb...cd. The sequence a to d constitutes one transaction.

Note that any mumber of lock requests,(b% can be enclosed between

the beginning and end of a seize block. There could also be

an abort transaction_ser#ice, but this was not implemented. As

was explained in Section 10.2, it'is not necessary to insist

that a process release all its records simultaneously, as the

EDAMS search engine does not examine locked records. Thus

the snapshot obtained by an updating process will aufomatically

reflect none of the updates (if it arrives first at the seize

block) or all of the updates of a second concurrently updating

process. . However, for simplicity, in this implementation it

was decided to release all records simultaneously (service (4d)).
To implemént the four service rejuests, four routine calls

are required at the DML level:

(a) SEIZE

(b) LOCK

(c) ENDSHIZE

(d) RILLASE

15.% Time clock

In a complete BDAMS system, a number of users would be
using the system simultaneously. Hence service requests would
be arriving at the “MP in a péeudo—random fashion from all
users, Clearly, the time interval between service requests for
a given user will vary greatly and will depend, among other

things, upon the tyve cf request. Thus, for example, one

o

~170-

would expect a certain-time interval, t1, between the user logging
on and entering his first seize block. This would be followed
by a probably shorter time interval, t2, prior to the issue of
the first lock request. :Therevwould be an average interval, t3,
between lotk requests with a shorter interval, similar to t2,
before the ENDSEIZE, Cne would expect a much longer time
interval, th4, before the user releases all his locked records.,
Tt is during this time that the actual update is carried out.
Broad assumftions couvld bg made as to the relative lengths
of the various time intervals t1, f2, t3 and th, but other
factors such as “thinking time'", typing speed etc, if the user
is working truly interactively will play an important part.
Rather, therefore} than attempting to devise an elaborate time
clock mechanism, it was decided simply to Use a random number
generator to decide from which user the nekt message to the EMP
would come., Naturally, the messages from each individual user

must follow the sequence described above,

15.4 sctions requived by EKP

When a proceés enters a seize block, the only action ﬁaken
by the EMP is to place the proceés on the queue and set its
status to active, i.e. not hlocked.

tYhen a process issues a lock request, the requést is
vlaced in a buffer Sy the EMP and control is passed back to the
user, This continues until the user process issues an ENDIEIZE

request, at which time th- E®¥P will service all the lock

requests (in that seize block) for that user, Zssentially, this

-171-

consists of ascertaining whethéf or not the lock request(s) c;n
be granted, If so, the database keys of the requested recofds
are placed together with the user name of the requesfing process
on the list of currently locked records, namely the lock list,

If the fequest(s) cannot be granted because one or more of the
records is already locked by another process (i.e. it appears

on the lock list with another user name), then the status of

the requesting process is set to blocked on the gueue, Further-
more, the process is rolled back to the first lock request in the
seize block and all records currenfly held by that user in the
160k list (as a result of previous successful.requests within

the same seize block) are taken away.

Three;typeé of update were considereds:

(a) basic type consisting of a list of the records the user
wishes to lock
(b) content-based lock request, €.ge

LOCK ALL EMPLOYEE RECCRDS FOR WHICH DEPARTIENT TFIELD = 40

(c) path~tracing - lock ali records on a content-dependent path;
this type of request would also cover, for example, locking
an entire set occurrence,

A basic 1bck request of type (a) consists of a list of the
records tb be locked. Lach record in the list is immediafely
and uniquely identifiable without involving access to fhé database
itself, e.zg. using a key which can be translated directiy inta
a database key. The actibn required by the EMP is simply to
check fhis (generated) list of -database keys against the lock
list. If any one record appears under a different: user name:
the failure cf the request is signified, otherwise success.

Lock request.type (b) consists of a record type name

-172-
followed by the name of a field within that record, followed
by an upper and lower bound for the value into which the field
must fall to satisfy the lock request e.g.
EMPLCYEE ZECCRD DEPARTHMENT FIELD BETWEEN O AND 10
This will attempt to lock all employee records whose department
code is in the range
0 £ DEPARTMENT CODE < 10

The action taken by the EMP is to examine all the department
fields of all employee records and make a list of the database
keys of all those which fall within the given bounds. This
list is then checked against the lock list to ascertain whether
or not the request is successful,

The lock request type (c) consists bf the unique identif-
ication of the record at which the path tracing algorithm is
to start followed by the lengthof the path. This is a somewhat
artificial represéntation of the real situation, where the user
would fix pésition in the database, move along the pafh and
finish when a particular record is reached; Howéver, as regards
the concurrent update algorithm, a path length represents an
analogous method of terminating the lock request. loreover, for
testing purposes, a random number generator was used to determine
each node in the path, The database key of each node is ﬁoted
and then checked against the lock list as in type(b) above.

when the ﬁNP can successfully grant all the lock requests
for 2 user in a seisze block, the user is granted .the locks and
allowed to proceed outside the seize block. The process
is removed from the queue.

For ease of implementation, the processes relesase =ll their

currently locked records simultaneously before entering another

-173~

seize block, This is easily accomplished with the structure
of EDAMS. Firstly, all the process' entries on the lock list
are removed. A messapge is sent to the user to proceed.
Secondly, the location of the first blocked process, if any,
on the queue is found. Its status is then set to active

and the process restarted, i.e, instead of using the random
number generator to calculate where the message is coming from,
the implementation forceé it to be the first blocked process
on the queue, The reason for this is that it is oﬁly when

a process releases locked records fhaf there is any point in
restarting blocked processes,

If the process remains blocked then the search engine
finds the next bioéked process on the queue. If its priority
difference with the head of the queue 1is léss than a certain
threshold value, the search engine will attempt to release it
and so on down the queue until there are no more blocked

processes or the threshold is reached. Cn completion of its

[

set of lock requests, a process is assigned a time priority of
Zero, Thus if the priority of the process at the head of the
queue is less than the threshold, the search engine will attempt
to release the incomiﬁg process, otherwise it is placed at the
end of the queue,

To restart the seize block.for a process is a simple
matter, which is completely transparent to the user, EDAMS
must store all the lock requests for each user in a Suffer
until the ENDSEIZE command is reached. Thus to restart a

seize block all that is resquired is sinmply to reposition the

message pointer to the beginning of the buffer for that user.

L)

=174

15,5 Results for test runs of concurrent update algorithm

The algorithm was run with a random mix of concurrent
update request in the test database with
(a) 5 users
(b) 10 users
(c) 15 users
“he occasional request to lock almost the entire database was
inserted.

The problems associated with a realistic time clock and
hence of the priority threshold system have already been
discuszed in Section 15.3. On completion of a set of lock
requests in a seize block, a user is assigned a priority of
Zero, This is incremented by one for every incoming command to
the FMP (issued by other active users) until the user is
released. Two threshold values - 5 and 10 units - were
seiected and were compared with a threshold of zero, which
corresponds to a first-come-first served operation (FCF3).
Ilote that a very high threshold value corresponds to the sitj
uation where the search engine attempts to release all users.
on the queue in order, irrespecti?e of their priority relative

to the head of the queue.

-175-

!seize block fuser no.} records requested no, of priority
i number g failures jon release
t
|
?
1 3 27 0 0
| 2 b &9 10 11 22 & 0 0

3 |5 7 15 18 0 0

b 1 115 13 20 ¢ 0
/ 5 ‘ 2 1812 239 14 22 26 25 | 1 2

! §24 3 10 20 18

6 é 1 {12 12 19 0 0

7 ; 4 191152512 2 13 0 0

8 f 3 113461215 24 0 0

9 L 212 4% 26115 23 20 17 o) o)

16

Figure 15.1 Results for 5 users for all threshold values -

0, 5 and 10

;176_

seize block; user no; records requested no, of g priority
number) failuresion release
1 LS 7 15 18 | o | o0
2 f’ 119 13 20 ‘ 0 0
i 3 9 entire database ! 1 14
TR 54823 o 12
5 2 11 8 12 23 9 14 22 26 25 1 11
| 24 3 10 20 18
6 4 18910 11 22 & L 11
7 3 27 ‘ oo 19
‘ & 7 72132k L L 10
9- 10 §18 g 1 11
: 10 6 119 11 2 11
11 1 1212 9 S 1
12 9 Izus | .0 0
13 2 911 525 12 2 13 ! 1 6
‘ 14 g 126 | _ P 5
& 15 6 31234 : 1 L. "
16 3 51‘34612 15 24 | 1 1
17 4 121 2 & 26 1 15 23 20 17 1 2
H i 6 '
18 8 2242526 0 0

Figure 15,2 Results for 10 users for threshold = 0O (first-

come-Tirst-served

-177- '

oy g Y Bt s e

seize block]user nol records requested no. of | priority
number (failures jon release
1 5 7 15 18 0
2 1 119 13 20 0
3 8 54 8 23 0
4 9 entire database 2 13
5 2 118 12 23 9 14 22 26 25 3 9
24k 3 10 20 18
6 3 27 1 7
7 b 8910 11 22 &4 3 12
8 7 |7 213 241 26 2 8
9 10 18 2 g 11
10 6 119 11 11 10
11 K 1212 19 (I
12 19 345 o | o
1318 |26 | o | o
Mk 911 525 12 2 13 2 1 7
15 g 1234 1 2 2 -
16 (8 2L 25 26 10
17 3 134612 15 24 o2 b2
18 i 212 4261152320176 . 1 % 1

Figure 15.% Results for 10 users for threshold=5

-178-

. seize blockuser no, records requested no. of .§ priority '
number failures;on release |
1 5 17 15 18 0 0
2 1 119 13 20 0 0
3 8 15 4 8 23 0 0
n 3 2.7 0 0
5 b 8 9 10 11 22 & 1 4
6 2 18 12 23 9 14 22 26 25 3 9
24 3 10 20 18
7 9 entire database S 19
8 ? 7213 2k 1 26 1 11
9 10 18 2 12
10 6 19 11 2 10
11 1 1212 19 1 1
12 L 9 11 525 12 2 13 1 1
13 8 2 6 1 4
14 3 13461215 24 g 0 0
| 15 9 345 1 5 .
! 16 8 2L 25 26 1 4
; 17 5 t12 34 3 5
! 18 b ‘2124 2615232017 6 i i

Tigure 15.4 Results for 10 users for threshold=10

-179=

seize biock

i g

g ’ 7 USLT no. records reguested no. of »pridrity |
é number g : failures|on release
§ 1 B 18391011 22 k 0
2 3 27 0
% 3 MW 1926248 2 8
: L G fentire database 1 22
‘ 5 12 3571 1 34
5 13 9876 1 %0
g 7 é 10 21 8 1 38
i 8 P05 17 15 18 0 37
! 9 g 15 135791 2 5h
f 10 % 8 55 Leg 23 1 27
; 1 j 1812 23 9 14 22 26 25 | 1 27
5 324 3 10 20 18 ;
12 [(1 19 13 20) 1 25
13 ; b ?26 19 24 1 9 ? 1 23
w7 2z ok 26 o 22
15 ; 11 3 % 0 19
; 16 . 6 119 11 | | 2 26
: 17 oob 9 11 52512 2 13 g 1 27
E 18 . 3 13461215 24 § 11 25
i 19 1 9 345 T T
20 i 11 27 g o L
21 14 L8 22 g 2 ? 6
22 1 12 12 19 : o L
é 25 . 6 1234 g 2 5
24 18 2% 1 6
§ 25 119 1234 : 70 4
§ 26 (o 20 2 4 26 1 15 23 20 17 6: 1 3
; 27 i 8 2k 25 26 i o - 0
I ! . . ¥ i

Figure 15,5

Results for 15 users for threshold=0 (first-come-
first-served

-180-

seize block;user nol records requested no. of ! priority
number, failuresion release
1 4 8 910 11 22 4 0 0
2 3 27 o] 0
3 12 3571 1 4
4 11 19262438 3 9
5 9 entire database L 25
g 10 18 1 26
7 5 7 15 18 1 25
8 13 110 9 8 7.6 3 ko
9 15 1357911 2 35
10 8 5 4 8 23 127 {
11 1 119 13 20 b % 22 :
12 2 1812239022225 . | 2 | 28 |
24 3 10 20 18 § - !
13 W 2619 21 9 o1 22 §
14 11 '8 Lo | 6 é
5 15 7 7 213 2k 1 26 L2 e
| 16 b 8910 11 22 4 o | o1s L
% 17 6 1911 T R-t° |
| 18 9 345 Lo e i
i 19 513461215 24 L2 e |
? 20 1M 27 o 6 i
} 21 14 L4 8 22 ? 1 f 1 §
3 22 1121219 S
§ 25 { b 2124261152520 6; 1 | 3
| 2k b6 1234 ; 13
§ 25 11 1234 Lo 3
‘ 26 g 26 o1 b 2
| 27 8 ek 25 26 Lo 1o

Figure 15.5 Results for 15 users for

threshold=5

-181=- -

seize block |user nol records requested ? no., of priority ?

number failures{on release E
1 L 8910 11 22 & 0 0
2 3 2 7 0 0
3 12 i3 571 1 L
4 11 19262548 3 9
5 9 entire database b 25
6 10 18 1 26
7 5 7 15 18 1 25
8 13 109876 3 4o

9 15 13579 11 : 3 35 !
10 8 548 23 E 3 27
11 1 1119 13 20 L 22
12 2 11812239422 26025 | 4 28

, gzu 3 10 20 18 % :
13 L 1L 126 19 2% 1 9 g b ; 22
14 Lo 8 ; 11 16
15 1 7 472132k 1 26 § 5 1 23 -
16 | 4 891011224 : 5 0 16
7 L9 3ks s
18 L6 19 § 5 % 29
19 3 113 L4612 15 24 ! 3 1 24
20 P11 §2 7 ; 0 é 6
21 Lk k8 22 ! 1 1
22 1 1121219 P 1
23 L %21 2 4 26 115 23 20 17 6% 1 g . 3
24 6 11234 L2 3
25 1M 123k I R
26 I Y ﬁ 1 2
27 8 izu 25 26 % 0 é 0
-] i

15.7 Results for 15 users for threshold=10

Figure 15.7

-182-

Tikreshold

o, of failures

O

1

all walues

Breakdown of number of unsuccessful attempts

to execute seize blocks for 5 users - 9
seize blocks

; Threshold

No. of failures

0 1 2 3 ¢+ & 1 5
e : ‘ :

i ! i g
0 6 11 1 . g
; .
: ;
5 5 6 5 2 |
P ! i

10 5 7 2 2 i1l

Figure 15.8

Breakdown of number of unsuccessful attempts
to execute seize blocks for 10 users - 18
seize blocks

No, of failures . ?
M 3 - . 3
Threshold 0 § 1 R . 3 : 4L 5 i
e s f % i
- |
P ;
0 7 1 13 5 : ‘
] i
! :
5 71 M 5 b2 2
10 419 1 S 3 2

Figure 15,9

Breakdown of number of unsuccessful attempts
to execute seize blocks for 15 users - 27
seize blocks- ' :

=183«

Threshold

Average no.
per seize

Average priority
on release

of failures
block

a1 o v b e+

Lall values

0.1

0.2

Figure 15.10 ‘Average number

on release per

of failures and average priority
seize block for 5 users

Threshold Average no. of failures § Average priority
: per seize block i on release
. i
i
{
0 0.6 6 i
5 1.2 o7 l
10 1ok 4.9 i

Figure 15.11

Average number of failures and average priority

on release per

seize block for 10 users

Average priority

Threshold gvAverage no, of failures ! !
j per seize block : on release i
] i
; { !
|
¢ ; 0.9 ! 1841
5 ? 1.3 15.2
10 2.0 15.0

Figure 15.12

Average number of failures
on release per seize block

and average priority
for 15 users

-184~

15,6 Analvsis of the results

In order 'ﬁo'fully evaluate the efficiency of an algorithm-
for handling concurrent update, it would be preferable to do it
in a "live" sitmation. = As this was not possible, it was
decided to use asmall test database with several users whose
record requests overlapped considerably. Zven in a large
database with veral users running concurrently, one algorithm
will perform much the same as another if their requests do not
‘overlap. However, there is evidence to show thét in many
applications there is considerable clustering of update requests,
both in time and locality. vFor example,'when a horse closes
its entry for a race [58], the horse's racing history and the
owner's and trainer's accounts must be upd;ted and the details
for the race altered. Such transactions arrive at the rate
of one per second throughout Thursday-and Friday mornings and
at a higher rate beforé a Bank Holiday weekend. This is in
addition to the other normal activity in the Horse Racing
Administration System at Wetherbys, such as foalings, registrations,
etc. Moreover, two or more hofses may close fof the same race
at the same time and dften for the s:me owner or trainer for
different races. Thus the test situation used in EDAMS is
not totally unrealistc with several users updating a small
nunber of records.

The reason for the double peaks of activity in each of
the runs (e.g. Figures 15.3 and 15.4) is that the experiment
was conducted in such a way that all users start from scratch
by entering seize blncks and finish by releasing locked rgcords.

Although the individual commands from users arrive at random,

_185;

the commaﬁd sequence is the same for each user, Thus, at the
beginning of each run all users will be entering seize blocks,
then locking records and then releasing them, mainly before the
second set of seize blocks for each user is started. In a
"live" situation at any point in time, one would expect that
users would be at various different stages in execution, i.e.
not all entering seize blocks. It would have been preferable
to use a randomly staggered start and collect statistics in the

middle of the test run.

15.6.1 First-come-first-served

The first-qome-first-éerved (FCFS5 operation corfesponds
to an EDANS Priority System with threshold=0; i.e. only the
head of the queue can be released evén if the lock reguests of
processes further down the gueue are distinct. Thus no attempt
is made to evaluate a user's lock requests unless it is at the
head of the queue. In this way, the number of unsuccessful
evaluations of seize blocksi is minimized, but so also is the
degree of concurrency with only one user active most ofvthe
time. The results show (Figures 15.1, 15.2, 15.5, 15.7-15.12)
that even in a moderately concurrent situation, representec by
10 users, the average priority on release is considerably higher

for FCFS than for the set threshold in the EDAMS Priority Systema

15.6.2 LDAIS Priority System

In spite of the rather artificial priority mechanism used,
the trend of the results for the IDAHS Priority Svstem with

increasing threshold value is clear. A very high (infinite)

-186-

value of the threshold corresponds to the situation where the
lock requests for all processes on the queue are checked each
time a user releases locked records. The effect of this is

very clear in the 15 user run (Figures 15.9 and 15.12). A

small féauction in the average priority on release'is accompanied
by a very large increase in the number of unsuccessful executions

of th: seize blocks,.

-187=
CHAPTER 16

CONCLUSICNS

16.1 Introduction

The objectives of this thesis as outlined in 3ection 1.4 - |
are threefold, namely, to show that
(a) it is feasible to implement a CCDASYL-type DBMS on a Virtual

Memory (Vii), multi-access Cperating System, such as the

Edinburgh Hulti-Access System (EMAS),

oy

(b) it is possible, within the errall CODABYL framework, to
provide the user with much éreater flexibility in the
creation of logical records whose fields can be drawn from
all over the database without restriction, N
(¢) an efficient and simple algorithm can be devised for solving
the problem of contention betwéen users during concurrent
update of the database.
In this final chapter, the degree to which these objectives
have been met in the thesis through the design of EDAMS (EHAS
‘Database Hanagement System), will bé discussed, together with

the difficulties encountered in meeting them,

16.2 The implementation of ®DANS on EMAS

In Chapters 11,12 and 13, it was shown how a CCDASYL-type

cra

LZ.5 could be implemented on a VI sw¥stem such as ZiHA3. The

(¥}

Vii svstem offers the DBHS designer many advantages, especially

~100~

w#ith regard to the automatic management of memory and ease of
implementation programming. However, a number of difficulties

were encountered, which will be sumwarized below.

16.2.1 Privacy and security

EMAS has two levels of access to a process' VM. The
first 32 segments (0-31) of a user's YV} contain “he Director
to which only the system has access.’ The remaining

segments (32-255) can be accessed@ by both the user and the

system, 3uch a two-tiered structure presents privacy problems
for the DEMS designer. For example, consider a user process

requesting a fccord which for simplicity is ddentical to a
physical record in the database. If the EMAS file mapping
facilities were used, then the entire filefcontaing the requested
record, would be mapped onto (connected into) the user's Vii.
In this way, the user could have unrestricted access to the
whole file,

In order to ensure privacy, it is therefore necessary to
mapy the database, or pcrtions of it; onto parts of the VK to

4.
9

-which the user does not have direct

access. In

o this problem, namely To p ace

[

le solutions

o
o’

are two possi

the data in either

(a) Director or

(b) another process' V
These two approaches are discussed in detail in Chapter 12.
bssentially, the problem with th=s first solution, that of

vhe limited space available.

]

mapping the database onto Director, i
wome of the 2 segments are already used for system and file

information and there would not be sufficient left for database

~189-

connection as well as the indexes, subschema and schema tables
and so on, which would also :ave tb be protected. It would be
possible to expand Director, but it was decided to adopt the
second solution, namely the use of a second process. This
procesé is called the EDAﬁS_Haster Process, EMP.. The EMP

can be regarded as the DBMS, All requests for service by the
DBHS are passed to the EMP via the inter-process message
communication facilities in LMAS. All data, tables, indexes,
etc. are connected into the ZiF''s VM, before being passed back

to the user. 4 Communication Area is set up hetween the #IMP and

S read-write shared file) to

each user procéss (simply an

contain dstabase requests, replies and so on.

16,2.2 Database integrity

One of the main problems encountered when implementing the

2

DBMS on LEMAS concerned the difficulty of ensuring database

v

integrity during update of the database. An update in a VM

system cannot be considered complete and secure, until all the

&)

pages invoelved have heen written back to secondary storage. The

& 2

EHAS service of significance is known as the bMMake Disc Consistent

(¥DC). When requested, this service writes back to disc all
pages altered by a particular process, LEAS autometically

3

uses the LDC when eithar the process' working set o

{ pages 1in

& <

o

cove changes or when a user file is disconnected (including

The 1iC, as it stands, is too blunt an instrument for
direct use by ths DBMS fo ensure DB integrity during update.

5 written back to disc as a result of “the HDC could

contain wpartially completed as well as totally conmpleted

~190-

transactions,.

The solution adopted by EDAMS is to make use of the Journal

File. Gvery update transaction is assigned a Transaction
Sequence Number, TSN, Once a user process holds the locks on

all the records involved in the transaction, an entry is made

on the Journal File containing the'TSN, before and aftér images
of the rccord(s), page nﬁmbef‘in VM, and so on. Once the
entire update is complete and éecure (MDC for the process
executed), an End of Transaction for that TSN is set on the
Journal Filé. Thus in tﬁe event of failure, rollback caﬁ be
initiated{

As a result of the fact that the MDC is page-oriented,

such rollback will be guite complex as those pages written back
ES Pay

™

to disc following an KDC, may contain partially cémpleted
transactions belonging to othef processes as well as completed
transactions. The situation would be greatly simplified if

the ®DC could be much more selective, based on extents in VH,

In this way, only the actual records involved in the transaction
will be written hack to disc,. It is understood [59} that such
an extent-based MDC routine could be incorporated into BHAS

and this would greatly facilitate the maintenance of DB integrity
during update, especially when rollback following failure is

required.

4 major contribution of IZDAMS to the design of a CCDASYL-

based DRHMS is to provide the user with much greater flexibility.

This flexibility is broﬁght by allowing the user to fofm.sub-
schema lerical records (SLRs) which can be coméosed of fields
taken from any recbrd(s) in the parent schema. An obvioug
extension of this is to éllow the user to define new sets in
the subschema to link the SLRs fogether.

The introduction of the SLR poses a number of problems
for the design of LEDMAS such as:
(a) inclusion/exclusion of sets in the schema
(b) identification of source schema records for definition

of SLRs

(c) operations on SLRs.

16.3.1 Sets in schema

wWith the introductiqn of the S5LE and subschema sets, the
guestion arose as to whether or not sets in the EDMAS schema
were necessary. 1t was felt that the relationships between the
datae (either implicit or explicit) are as much part of the
database as the data itself. If scﬁéma sets were excluded, then
fhe informaticn concerning these relationships would have to be
repeated in each subschema which required them, ioreover, a
fundamental concept in the use of databases is that of. sharing
and the elimination of unnecessary redundancy. It was there-
fore decided to retain the schema set in ZDMAS and to augment
it by allowing new sets to be defined in the cubschema,

However, the retentionvpf the schema set-poses proble@sﬂ
in relation to its use in the 3SLR eﬁvironment of the subschema.
For exarple, if a groupfbf S5LRs contained a mixture of fields

.

from voth ‘the owner and the member records of a schema set, the

-192~

use of that set to link together the SLRs could be confusing.

It would be difficult to identify which SLR should be the

owner and which a member,

Thus the subschema records

defined as forming part of a schema set must be subsets of

their parent schema records, i.e. single-source SLRs.

In

this wa there will be no ambiguity as to the use of the set
M) g y £

in the subschema.

16.3.,2 Definition of SLRs

In order to define a new S5LR type in the subschema DDL,

it is necessary to identify the source schema records

the new set of S5LRs is generated to uniguely identify

and when

the

particular group of schema record occurrences which provide the

sources of

selection),

a ziven SLR occurrence (cf. CODASYL set occurrence

The solution to this problem of source record identification

adopted by =ZDAMS incorporates some useful features of the

relational avproach to DBMS. There are

first is base on records and the second

The record-based aprroach consists

rules for the formation of a set of SlLRs

relational JCIN and F:CJECT operations.

siven in TPigure 16.71

two methods, the

on sets.
expressing the
in terms of the

For example, consider

HAME {ADDRZSS]EMPNO EMPNO |CURSAL | 1st3AL | 2ndSAL

PERSONAL-INFOC PAY-HISTCRY

SUESCHEMA FCR PAYROLL APPLICATICN

HAME | ADDRZSSE {CURSAL

PAYREC SLR

-~
+j

-
")

3
j
N
[§23
Y
[AY
3
.Y

Fortion of a sample database

Having defined the source fields for PAYREC, e.g.

DEFING RLCORD TYPH PAYRD

&)
FPIELD 1 IS NHiMEy SCURCE IS cIELD OF RECCRD TVPH

DHRB0NAL-TEFC; etce, . -

PAY-HISTORY CON IHPNO TC FCRH

NAKE, ADDUVISS, CUR3AL TC FChM

The result of th~ JCIN operation is a set of rscords, merged on
the LIFEC field, each containing
HAME, ADDRZISS, EMPHC, CULSAL, 1stS8AL, 2ndSAL.

The PRCJLCT operator is then used to select only those fields

ADBREES and CURSAL, Hote that in this,

aple, ths JCIN is an EQUIJCIN, i.e. only one pair of schema

T ZHPHNG,. If, however, the '"joining"

vy
I
[¢]
O
~
Q.
01
Hy
o]
+3
@
3
(¢}
e
]
jo3
’_.l
i
&)
o
b

R

field is non-unique, then the ZDLAIS rule is to generate all

possible pairs.

ot

“ne second dpproach to the formation of SLis is based

upon the set membership structure of the parent schema records
A
’ o

from which the SLRs are .derived. Suppose the following set

&L

structure existed for the sample database given in Figure 16.1
above:
PiLRSONAL-INFO
EMPLOYEE SET

AY-HISTORY

r

Figure 16.2 FBEMPLCOYZE set structure in schema

The source field definition of the FAYREC SLR in the DDL would
be slightly different, e.g.
DEZFINE RECORD TYPE PAYRHCS

NAME; SCURCE IS NAME FI.LD OF RLCORD YYPL

FG OWNER CI' BMPLOYELR SLET; etc.

The set based JGIN and PROJECT commands for forming PAYREC are then:

JCIMN PLRSONAL-INFC, PAY-HISTCRY THRU SET EMPLOYEE TO FORM

PROJECT THHPRSC OVES NAME, ADDRESS, CURSAL TC FOWM PAYRIC:
) 1)

16.%.3 Ovnerations on SLRs

411 access to the *DAMS database nust be via a subschema.
Thus all storage, retrieval and update operations are carried
out on ZLRs.

Yetrieval of an 3LR is straightforward and consists merely

4

retrieving the fields from the source records and putting

Hi

o}

T

them together to form the SLR before paszs

k

ng it to the user.

SLI

SR
o

Update, in the sense of the altesration of an existin
field value, is also apparently straightforward. However,
it can have undesirable repercussicns. Suppose, for examnle,

the field is the key to a JCIN operatiocn in the formation of

-195«

that, or any other SLR, then it is clear that inconsistencies
could result., Indeed, it is shown in Section 9.3.2 that the
field to be updated need not even be the key to a JOIN operation
for problems to occur. It was found that the only way to
guarantee the integrity of.the databhase was to reStrict'update
operations to single-source SLRs. It is recognized that this
is an unfortunate restriction as many updates can be carried
out successfully on mylti—soufcéISLRs and it does remove a
<de§ree of flexibility.

EDAMS distinguishes between two types of operations to
create an SLR, The first, called addition, simply involves
the éstablishment of the links between a new SLR and its source
schema records, which already exist in the.database. This is
quite straightforward. Thg second creation operation, callea .
storage, is quite different in that it involves the physical
addition of new dafa to.the database. The source.schema

records for the SLR have to be created and fields in those

s

source records wiich do‘not form pﬁrt of the SLR; assigned
null values. Tﬁis could result in & proliferatioh of schema
records in the database whose fields are largely unéssigned.
Problems analagous to those which arise with update can also
cccur whenia second SLE is stored which contzins some.of the

1o5¢ assigned by the first SLE.

e
o

t

Hy

unassigned values and s.me o

X

[

Once again, the soluticn is to restrict the store operation

to 5L¥s which are strict subsets of a single varent schema record.

Corresponding to addition and storage of SLiks are

“-J

removal and deletion. Temoval only involves the removal of the

SLR from the user's view, with no vnhysical deletion of data

Y

irom the datzabase. Deletion, on the other hand, does involve

-196=
the physical deletion of data from the database. ‘As before,
difficulties cam arise, so the deletion operation is once again

restricted to simgle-source S5LRs.

16.%.4 Database maps -

In order %o facilitate the formation of S5LRs and the
definition of sets in EDAMS, pointers indicating source fields,
set linkages and so on are stored separately from the data in a
database map. “ssentially, a datébase map can be regarded as a
representation of a subschema's view of the database, but where
the actual data is replaced hy pointers to where it is stored.

tiuch of the overhead in database processing involves
following vointers, leooking up indexes and/so on, even before
any physical data is retrieved from the databése. Any arproach
which can enable this table look-up to be spéeded up will
increase the overall effiqiency of.the DRKS. The database map,
“which will of necessity be quite large, is intended to do this.
licreover, it is anticivated that since it will be used so
frequently, it will be permamentl> connected in the &liP's Vi
(either in core or on'drum). There 1is one database map per

subschema plus a root map for the schema.

fob Concurrent update in

1

A completelw new algorithm is given for solving the

rrobler oif contention boitween users of z datahase. The aim

of the alw~orithm is to maximlze concurrcncy without imposing

(S

-197-

too high an overhead.
The aleorithm makes use of locks on records and a user
p}

must hold all the locks for all the records involved in an update

Pt

.

transaction befofe being released to perform the actual update.
The claiming of these locks is done in a special section of the
application program, known as a seize block. Only one user

can be executing a seize block at a time - this is facilitated

by the use of the EMP desscribed abovaz, If a process A, currently
egecutinq a seize bhlock, attempts“to lock a record which is
already locked by another process B, then process A is suspended
and all locks which it has.aiready claimed in th:it seize block
released. Furtﬁermore, nrocess A i1s placed on a gueue of
blocked processes, the ordering of the quehe being determined

by the process' time of arrival at a seize bhlock. Once process
3 has completed its update, it will release all the locks it
holds simultaneously. The system will then go down the queue

g

of bloclk=d processes, attempting to satisfy their locking predi-

N

cates and release them, If “he process al the head o

=

the gueue
is still blocked (i.e. & third process C holds the loclks

required by the head of the gueue), then the system will attempt
to release the next process on the gueue and so on until

the difference betwénn the waitin; time priority of the process
to be considered for release and the waiting time wriority of

the head of the queue cexceeds & given threshold. A process is

assigned a waiting time priority of zero when it is first placed

on the gqueue of blocke ©processes and it increzses with time spent
in the queue. In this way processes cannot be held up

~
indefinitely, while at the sawme time, processes down the queue

‘whose lock racguirements are simple, will not be held up

-198-

unnecessarily by processes wishing to perform complex updates

involving large numbers of records,

16.4.1 Evaluation of the algorithm

The degree of concurrency to be achieﬁédlﬁy EDAMS will
devend upon several interdependent factors includiné:
(a) number. of users concurrently updating the database
(b) extent to which the lock sets of users overlap
(c) timing of lock requesfs.
For example, consider the extreme case of only two users
concurrently updating a database of 1 miilion records. Stat-
istically, the chances of these two processes Qanting to update

the same “ecord at the same time are verjrsmall, but yet, it is
feasible that they could hold each other up continuously /if there
lock sets happen fo overlap in a certain way. Moreover, it is
likely-that in a database of 1 million records, there would be
areas of the database which would be much more active, at any
given time, than others. At the other extreme, it is possible

iy

to imagine several users all wanting to update the same single

dooa

r-cord, bdbut their ulmings, although close, are such that they
never interfere with one another, i.e., one process releases the
record just before.the next one ends the seize hlock in which
it requests to lock the record.

It is therefore very difficult to compare one concurrent

update algorithm with another. The

.

;zrdstick against whicn the

<

L

»UAHS algorithm wds measured was the straishtforward first-

come~first-served (TCFZ) system. The results show that the EDAMS
algorithn wnorforms comnsiderably better overall. An operational

comparison bhetween say the Chamberlin et al algorithm described

v

-199-

in Section 4;3.5 and ©DAMS would be interesting, but the results
vwould be difficult to evaluate. The overhead of the Chamberlin
algorithm with its proliferation of small queues for individual
records, is cléarly higher than the 1DAIS system. Furthermore,
the Chaﬁberlin.algorithm necessitates the totally arbitrary
favouring of a process in order %o ensure its release, whereas
the EDAKS Priority Systemn automaticaily and logically guarantees
that every vrocess will be released within a reasonable.period
of time (threshold), while at the same time allowing more than
éne process to hold rescords simultaneously. On the other

hand, it could be argued that the Chamberlin et al. algorithm
might not involve as many re-evaluations of enfire seilze bleocks.

In this connection, however, it should be pointed out that

LDAMS allows for "over-locking based on realm for certain
rocesses. Requests of the form

LOCK ALL RLCORDS IN RLALM R
require no access to the database in the seize block. A11 that
is required is a quick scan through the list of éurrently
locked records against the records in realm R. If any record
appears on botﬁ lists, then the locking predicate fails.

In conclusion it is felt that the EDAHS Priority 3ystem does

5

rrovide an efficient and simple algorithm for solving the

oroblems of contenticn between users during concurrenti update
cf the database,

has been implemented in

-200~

order to evaluate the oferation of the concurrent‘update algorithm.
Future work on ZEDAMS should therefore involve a full-écale
implementation of the system with live data.

It wonld Ee interesting to evaluate, if possible, how
efficiently the database map concept works in practice. The
extent to wﬁich users benefit from the increased degree of
flexibility offerred by EDAMS through the SLR and subschema sets,
is also worthy of examination.

In osder Lo assess more fully the operation of the concurrent
update algorithm, it would be useful to replace it, in the full
IDANS implementation, by other solutions to the »nroblem (ewfe
Chamberlin et al; CODALYL) usinz the same database and the sane

f user requests,

5]
[0}
t
(@)

7e

o

1GC.

11,

-201-

CODASYL DBTG Report, British Computer Society, April 1971.

Schubert R.F., Basic concepts in Data Base Managment Systens,

Datamation, July 1972, pph2-47,

Whitney K.M., Fourth pgeneration data management svstens,

AFIPS, 1973, pp239-2hih,

pp23-30,

tMartin J., Principles of data-base management, Prentice

Hall, 1976.

Bryant J.H., Semple P. GI5 and file managemant, Procs. ACHK

Fational lMeeting

-

Eleier R.E.,

SDC time-shared data manasement

[S3]

1966, pp97-107.

. Postley J.A., The MARK IV System, Datamation, Jan. 1968,

Treating hierarchical data structures in the

liational ieeting, 1967, pnki1-49,

Childs D.L., An information algebra, CACHM, Vol.5, No.k,

pp1GC-20k,

Childs D.L., Feasabhility of

2

svstem (TDMS), Procs. ACH

& set-theoretic data structure,

uctu

re hased on a reconstituted definition of

A zeneral str
I

a relation,

Codd =.TF., & rels
fol.

banks,: CACH, V

A

fichaels A.3.,

—
¥rIF,

1968, Vol.1, pph20-k3C,

tional model of data for lzrce shared

a

a

.

~
a .

¥

12, No.6, June 1970, pp377-387.

ifittman B., Carlson C.R. 4 comnarison of

the Relational and CC3DASYL approaches to Data-Base

hanagement,
MLt SO

»p125-151.,

fo P e
Lol

A

ting Surveys, Vol.8, Ho.1, ilarch 1975,

12

13

14,

A15.

16.

17

-3
\D

=202~

Fowling J.R., Controlling BEA Seat Reservations, The computer

Bulletin, Vol.10, No.1, June 1966, pp43-50.

Stross C.C.H., Operation of a disc data base, The Computer

Journal, Vol.15, No.4, pp290-297.

Emery J.C., An overview of HManagement Information Systems,

Data Base, Vol.5, 1973, ppl1-15.

Greenes R.A., Pappalardo A.N., Marble C.W., A system for

clinical data management, AFIPS, FJCC, 1969, pp297-305.

Beggs S., Vallbona C., Spencer %W.A., Jacobs F.M., Baker R.L.,

Evaluation of a system for on-line computer scheduling of

o

patient care activities, Computers & Biomedical Research,

Vol.h, 1971, pp63h-65h.

Simborg D.W., MacDonald L.K., Ward Information lManagement

Svstem - An Evaluation, Computers & Biomedical Research, -

Vol.5, 1975, pp48h-h97.

Abrams lK.h., Bowden K.F., Chamberlin J., A compnuter-based

general practice and health centre information svstem,

Journal of the Royal College of General Practictioners,

Vol,16, 1968, pph15-4L27,

Reekie D., Computers in the health service - fact or fiction?,

Yeeting of the ¥Edinburgh Branch of the British Computer

Society, Feb.6, 1974,

The London Hospital Comvuter System, A case study in the

installation of a major real-time system, Frocs. of

conferences held on Nov. 27, 1973 and April 24, 1974.

Feature analysis of generalized D3IES, CODASYL, say 1971.

CGDASYY, DDLC Journal of Develoopment, 1975, Availadble from

Canadian Government,

23,

ok,

25,

2%.

50.

31

=203

IBM IMS/360 Version 2 General Information Manual, GH20-0765-3,

IR IM5/360 Version 2 Application Programming Reference lManual,

SH20-0912-3,

Knuth D.E., The Art of Computer Programming, Vol, 1,

Fundamental Algorithms, Addison-Wesley, 1968.

-5

'

Palmer I., Database Management, Scicon, 1973.

King P.F., Collmeyer A.J., Database Sharing - an efficient

method for suvprorting concurrent processes, AFIPS5, 1973,

Vol.42, pp271-275.

Infotech State of the Art Report No. 15 on Data Base

FManagement, Infotech Information Ltd., 1973.

DS 1100 &Schema Definition eference Manual, UNIVAC,

Kroenke D., Database Processing Fundamentals, iiodeling,

Applications, Science Research Associates Inc., 1977.

Everest G.C., Concurrent updote control and database integrity

in Data Base lManagement, ed. J.W.Xlimbie & K.L.Koffeman,

L

Horth Holland/American Flsevier, 1974,

Chamberlin D.D., Boyce R.F., Traiger C.L., A deadlock-free

scheme for resource sharings in a data-base environwment,

Froc. IFIP Congress 1974, on340-343,

CCDASYL DBTG Report 18069, British Zomputer Society.

CCLASYL COBCL Journal of Development 1975, British Computer

=

\5

-20k4-

CODASYL FORTRAN DML Journal of Development 1978, available

from the Canadian Government,

BCS/CCODASYL DDLC DBAWG Report, Jan, 1975, British Computer

- Society.

BCS Cctober 1971 Conference on April 1971>Report, British

Computer Society.

©ilvurn T., Edwards D.D.G., Lanigan H.J., Sunner F.H.,
Cne-level storage system, IRE Transactions LC-11, No.Z2,

Apri1 1962.

Joseph M., An analysis of paging and program behaviour,

Computer Journal, Vol. 13, No. 1, Feb. 1970, pph8-5i,

Zherman S.W., Drice R.5., Performance of a Database Manaser

in a Virtual Femorv 3vstem, ACH Trans. on Database Systenms,

Vol. 1, Fo. 4, Dec. 76, pp317-343, -

Erice R.5., Sherman S.¥W., in extension of the verformance

of a database manager in a virtual memory system using

rartially locked virtual d»uffers, ACHM Trans. on Database

Svstems, Vol,2, No. 2, June 77, pp196-207.

C., Ternandez I.8., Datahase buffer naging

d
in virtuval storage systems, ACM Trans. on Database Systems,

vol. 2, No, L, Dec. 77, pp339-351.

Tuel %.G., An 2nalvsis of buffer vegins in virtual storage

0
svstems, Kesearch report RJ 1421, IBM Rescarch Lab., San Jose,

e
California, July 197+,

Casey R.G., Csman I.ll., Generalized page replacement algorithms

Prihatlls]

N

in a rclational data bvase, Proc., ACH-SIGFIDET Workshop on

-

ata Description, fccess & Control, iay 1974, ACHM, ppl10k-12k,

&

nning P.d., V

rtual memory, Computing Surveys, Vol, 2,
ol

ir
N o t 0 = 4 Q0
o, 3%, Sept. 1570, pp153-10%.

b7,

48,

k9.

50.

55.

=205«

Whitfield H., VWight A.S., EHAS - The Edinburgh Multi-Access

System, The Computer Journal, Vol, 1€, No. &4, Nov. 1973,

op331-346,

Stacey G.l., The role of virtual memory in the handling of

application files, Information Processing Letters, Vol. 1,

1971, pp1-3.

Senko M.F.. Altman E.B., DIAM ECTE 1, A TFramework mode for
9 , 3

implementing a record storing facility, Research Heport

RJ 1365, IBM Research Lab., San Jose, California, Harch 1974,

1illard G.%., Rees D.J., Whitfield H. The standard EMAS

subsystem, The Computer Journal; Vol., 18, No. 3, Aug. 1975,
pp213-219,

Rees D.J., The BFAS Director, The Computer Journal, Vol. 18,

No., 2, May 1975, ppl22-130.

Fensen P.RB., A program methodology for operating system

desizn, IFIP, 1974, pp394-397.

llensen P.B., The programming language concurrent Pascal, IEEE

g

‘irans, on Hoftware Lngineering, Vol, $5E-1, No. 2, June 1975,

pp199-207,

Casey L.M., Computer Structures for distributed systems, Ph.D.

Thesis, Dept. of Computer Science, University of Ldinburgh.

;

nr

.%., A tutorizl on data-base orsanization, IBH

e

Enzles K

Technical Report, TE-0C.2004, Harch 20, 1970.

P

Grimsocn J.B., Stacey G.M., A performance study of some

directory structures for large files, Information Storage

& Retrieval, Vol, 10, pp357-36L,

Tsichritzis D.C., Lochovsky F.H., Database ilanagement Svstens,

o

Academic Press (Computer Science & Apnlied Maths Series),

1977

-206-
58, Afkinson_ﬁ., Private communication, 1978.

59, Yarwood Y., Private communication, 1979.

