
A FLEXIBLE DATABASE MANAGEMENT YTEM

FOR A VIRTUAL MEMORY MACHINE

by

JANE BARCLAY GRINSON

Ph.D. Thesis

University of Edinburgh

1980

AD STE. ACT

A Database Management System, EDANS, is described, which

is designed to run on the Edinburgh Multi-Access System, EMAS.

.EDAMS is based on the 1971 CODASYL DBTG Proposals, but

gives the user greater flexibility. 	It allows the formation

of suhschema logical records, whose fields can he drawn from

any number of records defined in the parent schema. 	New sets

may also be created by the user in the subschema. 	A device

known as a database map, which contains all the set pointers

and pointers to the schema record sources of the subschema

logical records, facilitates this high degree of flexibility.

In addition, hDAN provides an efficient algorithm for

handlinr the problems of concurrent update in a database.

The operation of this algorithm is assessed on a small test

database.

Finally, the effects of designing a database management

system for a virtual memory Operating System, such as ENAS,

are examined.

TyIDEX

PAPT I DATA ADD I'iANAGENENT SYSTEMS

Chapter 1 The development of database management systems 	3

1.1 Introduction 	 3
1.2 Definition of a database 	 4
1.3 Functional development of DBMSs 	 5
1.4 The objective of this thesis 	 io

1.4.1 Layout of the thesis 	 io

Chapter 2 A database management system application 	 11

2.1 Introduction 	 11

2.2 Hospital Information Systems 	 11

2.2.1 Effects of the HIS 	 13
2.3 The medical, record 	 15

2.4 Patient identification 	 18

2.5 Concluding remarks 	 21

Chapter 3 Elements of database management systems 28
3.1 Introduction 28

3.2 Data structures 29
3.2.1 The network or set data structure 29
3.2.2 The hierarchical structure

, 30
3.2.3 The relational data structure 33

3.3 Data independence 34
3.3.1 Binding 56

34 Database integrity 37
3.4.1 Logical consistency checks 38
3.4.2 Validation of data 39
3.4.3 Concurrent update 59
5.4.4 Backup and recovery measures 43
3.4.5 Consistency of multiple copies of data 	 46

3.5 Privacy 	 ' 	 47
3.5.1 Terminal security 	 48
3.5.2 Physical data protection 	 49
3.5.5 LoIcal dataprotection 	 50

page

Chapter Lf 	Concurrent update in databases 51
4.1 Introduction 51
4.2 Guidelines for solution to concurrent update problem 51

4.2.1 	Discussion of the requirements 53
4.3 Existing approaches to concurrent update 55

4.3.1 	CODASYL 55
4.3.2 	INS/2 57
4.3.3 	DMS 1100 	 . 58
4.3.4 	PRINE 59
4.3.5 	Chamberlin et al's solution 60

4.4 Summary of approaches to concurrent update 63
4.4.1 	Ninimum locking 	. 64
4.4.2 	Over-locking 66

Chapter 5 	The CODASYL Proposals 69
5.1 Introduction. 69
5.2 Elements of the CODASYL Proposals 70

5.2.1 	The Data Description Language 70
5.2.2 	The Data Nanipulation Language 71
5.2.3 	Data structures 71
5.2.4 	The set concept 73
5.2.5 	The storage-schema and Data Storage Description

Language 76
5.3 An assessment of the CODASYL Proposals 78

5.3.1 	The AREA concept 78
5.3.2 	The role of schema and subschema 79
5.3.3 	Sets 81
5.3.4 	Index structures 	 . 82

Chapter 6 Virtual memory and database manamement systems 	84
6.1 Introduction 	 84
6,2 Virtual memory systems 	 84
6.3 Dirct mapping of the entire database onto virtual

memory 	 8o
6.3.1 Database size 	 67
6.3.2 Non-locality of access 	 88
6.3.3 Privacy constraints 	 88
6.3.4 Data integrity 	 . 	 69

6.4 The subdivision of database for storage mailing 	 89
6. 	Concluding remarks 	 90

-iii-

PART II THE DESIGN OF EDAMS

Chapter 7 The overall design of EDAMS 	 93

7.1 Introduction. . 	 93

7.2 The role of the EDAI1S schema and subschema 	 93

7.3 The EDAMS subschema logical record 	 95

7.1+ Sets in EDAMS 	 96

7.1+.1 Use of schema sets in subschemas 	 98

7.5 Areas in EDAMS 	 . 	 101

Chapter 8 The formation of subschema logical records 	103

8.1 Introduction 	 103

8.2 The use of the relational model 	 10/+

8.2.1 Record-based formation of subschema logical
records 	 106

8.2.2 Set-based formation of subschema logical
records 	 109.

8.2.3 Selection expressions 	 110

8.3 Derived fields 	 110

8.3.1 Time of calculation of ACTUAL derived fields 	111

6.3.2 Time of calculation of VIRTUAL derived fields 	113

8.1+ Rules for encoding and decoding 	 11+

8.5 Privacy information 	 ii'+

Chapter 9 Operations on subschema logical records 	 117

9.1 Introduction 	 . 	117

9.2 Retrieval 	 118

9.3 Update 	 119

9.3.1 Effects of the update 	 120

9.3.2 The update anomaly 	 121

9.1+ Creation of a new record occurrence 	 123

9.5 Deletion 	 126

9.6 	uaiary of operations on SLRs 	 . 	 126

Chapter 10 Concurrent update in E'DANS 	 128

10.1 Introduction 	 128

10.2 The EDAMS Algorithm 	 128

10.3 Indefinite blocking of a process 	 131

10.3.1 . Favoured. processes 	 133

10.3.2 1iaiting time priority system 	 134

-iv-

10.3.3 	erlocking" for special purposes 	 135

10.4 Repeated evaluation of locking predicates 	 136

PART III THE IMPLEMENTATION OF EDANS

Chapter 11 An overview of El' 	 139

11.1 Introduction 	 139

11.2 Director 	 139

11.3 The standard EMAS subsystem 	 ij+i

11.4 Updating EHAS files 	 11+1

Chapter 12 The EDAMS Master Process 	 143

12.1 Introduction 	 11+3

12.2 Placing -,-,'DAMS in a protected area of ENAS 	 146

12.2.1 Expansion of Director 	 147

12.3 The EDAMS Master Process 	 147

Chapter 13 Storage mapping in EDANS 	 150

13.1 Introduction 	 150 	-

13.2 Database map 	 150
13,3 Interpretation of .!:DAMS DHL 	 156

13.4 EDAI1S realms 	 159
13.4.1 Mapping of EDANS database to physical storage 160

Chapter 14 Database consistency during update 	 162

iki Introduction 	 162

14.2 The effects of the on-line environment 	 162

14.2.1 Simple update 	 164

14.2.2 Complex update 	 161+

Chapter 15 Implementation of concurrent update algorithm 	168

15.1 Introduction 	 168

15.2 Message communication 	 168

15.3 Time clock 	 169
15.1+ Actions required by EFIP 	 170
15.5 Results for test runs of concurrent update algorithm 	174

15.6 Analysis of the results

15.6.1 First-come-first-served 	 185
15.6.2 EDANS Priority Mystern 	 186

Chapter 16 Conclusions 	 187
16.1 Introduction 	 187
16.2 The implementation of EDAMS on EJ•tAS

	 187
16.2.1 Privacy and security 	 188
16.2.2 Database integrity 	 189

16.3 Flexibility of the EDAMS data model
	 190

16.3.1 Sets in schema 	 191
16.3.2 Definition of .SLRs 	 192
16.3.3 Operations on SLRs 	 194
16.3.4 Database maps 	 196

16.4 Concurrent update in EDAMS
	 196

16.4.1 IEvaluation of the algorithm 	 198
16.5 Future work 	 199

'References 	 201

PART I

DATABASE NANAGEMENT SYSTEMS

-3 -

CHAPTER 1

THE DEVELOPMENT OF DATABASE MANAGEMENT SYSTEMS

1.1 Introduction

The volume of information recorded in the world is

increasing daily. 	The efficient running of any enterprise -

government, banking, insurance, etc. - is critically dependent

on having the relevant information at the right place and at

the right time. 	Thus many agencies resorted to the computer

to solve their information handling problems. 	At first the

simple Information Storage and Retrieval Systems were able to

meet the situation. 	But gradually many enterprises came to

realize that in order to make efficient use of the computer,

the computer was forcing them to structure their information

in a certain rigorous way, which was not necessarily natural

to that enterprise. 	Furthermore, each department within an

enterprise maintained its own separate files with consequent

problems of data redundancy and accuracy. 	For example,

employees names and addresses had to be repeated across

several different files, e.g. payroll, personnel; if an

employee notifies one department of his change of address,

that department's file will be updated with the new address,

but all other files will have the old and now incorrect.

address. 	The need therefore arose for a system which would

reflect the real-life situation and act as slave to the manage

ment and flow of information, rather than as master of it.

The integrated corporate database with the database management

-4-.

system to support it, represents the attempt to meet these needs.

1.2 Definition of a database

There are many definitions of the terms database and

database management system. 	An early definition of a

database as a set of logically related files is no longer

considered sufficient; in fact, there is a definite attempt

to get away from thinking of a database in terms of a large

file or set of files.

The CODASYL Report [i] defines a database as follows:

'A database consists of all the record occurrences, set

occurrences and areas which are controlled by a specific

schema.'

This definition is useful only within the context of the

Report itself. 	P.F.Schubert [21 defines a database in the

following terms:

'A database must be viewed as a generalized, common, integrated

collection of company or installation owned data which fulfills

the data requirements of all applications which access it.

In additioh, the data within the database must be structured

to model the natural data relationships which exist in a

company.'

The drawback of this definition is that it hinges upon the

identification of the company or installation which is not

always easy to recognize.

The true nature of the database concept includes the

following:

integrated collection of data

contains data pertaining to several applications without

unnecessary duplication

formal definition of the data

independence of physical storage from logical views of

the data.

A database management system (DBMS) is the name given

to the software to support the database and is assumed to

provide for:

maintenance • of data structures

languages for storage, retrieval and update of data

facilities for ensuring data integrity and security

reporting facilities for the Database Administrator

(DBA)

separation of physical and logical data structures

simultaneous access to the database by many users,

including those who are altering the data (concurrent

update).

1.3 Functional development of database management systems

At the end of the 1960's and the early 1970's there was

a great surge of interest in the field of DBMSs. 	Software

manufacturers and users alike hurredly designed systems
CD

which were not always successful.

The first computer files were simple sequential files on

magnetic tape. 	The records on the file were usually sorted

into a specific order and updating such files was often very

costly. 	Even if only one record was to be altered the whole

file had to be recopied, which led to the use of batch updates.

In a batch update, several updates were grouped together in

-0-

a file sorted in the same order as the records on the master

file and a new version produced. 	Such file systems were

easy to use and worked well in small, relatively static

situations. 	If, however, the files were large with frequent

updates, those systems could become too slow and inflexible.

Then came the direôt access disc with manufacturer-

supplied access methods such as the Index Sequential Access

Method (ISAM). 	ISAM allowed records to be processed both

sequentially and randomly (based on the ISAM key) and updating

a single record was possible without recopying the entire file.

Whitney [3] sees this era as the first generation of data

management systems.

However, as computers became increasingly used for

more complex file applications, more sophisticated storage

and accessing methods were required. 	For example, consider

a file of student records with student number as the ISAM key,

name, address, etc. together with the course(s) the student

is taking. 	To access information about a particular student

given the student number is easy. 	To process the file for

a group of students (sorted by student number) is also easy.

However, to extract the names of all the students enrolled

in a particular course is both time-consuming and awkward.

Hence the development of the inverted file which would contain,

for example, all the courses together with a list of all the

addresses of the records in the master file of students

enrolled in each course. 	A master file can be inverted 	-

on any number of key fields, e.g. course, faculty. 	These

inverted files can therefore be quite large and so it is

necessary to structure them in such a way that they can be

-7-

accessed quickly. 	The general approach is to separate the

keyword (e.g. course name in the above example) from its

list of record nddresses. 	These keywords are placed in

a keyword dictionary, which can be structured as a binary

tree, for example, or accessed by means of a hashing function.

This was the era of the Information Storage and Retrieval

Systems and Report Generators, eg. RPG, MARK IV, EASYTRIEVE

[Lb], designated by Whitney as the second generation of data

management systems.

Although these systems do represent a great improvement

with non-procedural user languages and so on, they do not

solve all the problems. 	The cost in terms of storage and

maintenance of these massive inverted files, which together

often exceed the size of the master file, is considerable.

Thus database management systems were developed, Whitney's

third generation of data management systems. 	The aim of

the database management system (DBMS) is to provide:

more general and efficient management of large amounts

of data

better backup/recovery mechanisms

the elimination of unnecessary, redundant data

perhaps the most important aim, to provide a much higher

degree of data independence.

The old file systems were very sensitive to changes in the

pro,-rams processing the data and vice versa. 	When each user

application maintained its own separate file, this did not

matter since each user could change his file of programs

without affecting other users; this of course led to

inconsistency between files. 	Once all the applications

are grouped into a single database, a means must be found

to maintain this apparent independence from the user's point

of view. 	Thus DBMSs are intended to separate data processing

programs from the actual data. 	Changes made to the overall

logical structure of the data should not affect those data

processing programs, which are not directly involved.

This is known as logical data independence [5]. 	Furthermore

changes made to the physical layout and organization of the data

should not necessitate changes to either the overall logical

structure of the data or to the data processing programs.

This is known as physical data independence.

The importance of data independence in DBMSs cannot

be overstressed. 	If new data items are added, application

programs should be independent of these changes. 	It is also

desirable for the environment in which the application programs

are run to remain constant, so that if the DBMS is to be run

on a different Operating System or even on a different machine,

the application system will be unaffected. 	Clearly, it is

not feasible for the DBMS itself to be independent of such

a change, but the cost of the reimplementation can be amortized

over many applications.

Whitney's third generation of data management systems

represents the first generation of true 'DBMSs such as IDMS,

DMS 1100, INS. 	It is interesting to note that some so-

called DBMSs required report generation and query languages

to provide the interface with the user (e.g. GIS [6] and

TDNS [71). 	Thus while there was no improvement in user

interface between the. second and third generations of data

management systems, the latter provided a better foundation

-9-

for higher level facilities. 	In recent years there have been

major developments in the establishment of a theoretical

foundation for DBMSs based on Child's relational approach

[8,91 and extended by Codd [io].
The relational approach to data systems has been used

in deductive question/answer systems for several years.

It was not until the late 1960's that its applicability

to large, shared data banks was suggested .by Codd. 	The

main aim of this approach is to ensure data independence,

it also provides the user with a powerful algebraic language

to operate on the data.

There has been considerable controversy over whether

the relational approach will in fact gain wide commercial

acceptance, ultimately replacing the CODASYL DBTG approach.

Michaels et al [ii] in their comparison between the two

concluded that neither represents the complete solution to

the database management problems of the entire user community.

Indeed, it seems probable that an amalgam of the two systems

will emerge as being the most acceptable, to form the fourth

generation of data management systems, the second generation

of DBHSs 	.

However, at present most of the implementations of the 1 .

relational approach are being carried out on a purely

experimental scale in universities and research establishments,

whereas there are a number of large, commercially-available

partial implementations of the CODASYL proposals. 	 -

Finally, the mode of use of DBMSs has changed in recent

years from batch to interactive. 	This has had profound

effects on both the design and implementation of these systems.

-10-

i.4 The objective of this thesis

The starting point for this thesis was the April 1971

CODASYL DBTG Report and the Edinburgh Multi-Access Operating

System, ENAS. 	It is intended to show that:

it is feasible to implement a CODASYL-type DBMS on a

virtual memory, multi-access Operating System

it is possible, within the overall CODASYL framework,

to provide the user with much greater flexibility in

his use of the data in the database by allowing him to

form his own logical records, whose fields can be drawn

from all over the database without restriction

an efficient and simple algorithm can be devised for

solving the problems of contention between users during

concurrent update of the database.

1.4.1 Layout of the thesis

This thesis is divided into three parts. 	Part I consists

of an overview of the field of Database Management Systems

together with a detailed discussion of the application of DBMSs

to Hospital Information Systems. 	Part II outlines the design

of a DBMS called EDAIIS, which is based on the CODASYL proposals,

but which provides the user with much greater flexibility, and

which uses a new approach to concurrent update (see above).

Part III contains the details of the implementation of EDANS 	-

on the Edinburgh Nulti-Acceas S.stem, ENAS.

-11-

CHAPTER 2

A DATABASE MANAGEMENT SYSTEM APPLICATION

2.1 Introduction

Database management systems (DBMSs) are used in a very

wide variety of applications ranging from Airline Systems

(including the highly successful passenger seat reservation

systems) [121, Production Control Systems [13], Management

Information Systems [141 to Hospital Information Systems.

The Hospital Information System (HIS) has. been selected

for special study in this thesis to provide a background

against which to design a DBMS for the Edinburgh Multi-Access

System (EMAS). 	The HIS has been chosen because it is comparat-

ively new area of application for DBMSS, especially in the

U.K., and because the benefits to be derived from it are

practical (improvement in the quality of patient care) as

well as financial (better use of resources).

2.2 Hospital Information Systems

The remainder of this chapter is concerned with a

detailed examination of one application for a DBMS - namely,

the Hospital Information System (HIS). 	Much of the material

is based on a survey carried out at the Royal Infirmary,

Edinburgh (PIE).

A HIS is a computer system for on-line processing with

real-time responses of in-patient and out-patient data for

one or more hospitals. 	The use of computers in hospitals

-12-

is still only in its early stages. 	Even in the United

States their use is aimed at increasing the cost-effectiveness,

through more efficient patient billing and accounting systems,

rather than to improving the quality of patient care. 	If

the public and the medical profession can be convinced that

computer systems can ensure the privacy of medical data,

there is undoubtedly a great potential in the field of HIS.

Moreover, as the process of providing medical care becomes

more and more complex, so the need for systems to handle

patient records is becoming increasingly urgent, especially

in large hospitals. 	Greenes et al [15] feel that it is

now a matter of the highest priority to develop computer-

based management systems for handling patient data. -Moreover,

such systems could automatically incorporate both the admin-

istrative and the research functions.

The basic aim of the HIS can therefore be summarized

as follows:

to provide the medical staff with all the information

required in the provision of medical care, i.e. handling

of patient records, laboratory reports, X-ray reports,

etc.

to provide the administrative staff with all the information

required for the efficient management of the hospital,

i.e. handling of admission procedures, bed census, menu

planning, accounts, personnel and payroll (where

appropriate) etc.

scheduling and resource allocation

as an off-shoot, to facilitate research into the diagnosis

and treatment of disease.

-13-

2.2.1 Effects of the HIS

Having decided what the basic aims of the HIS are and

what type of information is to be processed, it is necessary

to consider the effects of the system by posing three questions:

who will the system help and in what way?

who might suffer?

what are the relative economics of the HIS versus the

system which existed prior to the introduction of the

HIS?

The answers to the first two questions are critical. 	If, for

example, the HIS results in a deterioration in the standard

of medical care, then it is totally unacceptable, no matter.

how marvellous it is for the medical and administrative

staff. 	Great care must be taken not to decrease the quality

of patient care and it would not be unreasonable to expect

it to improve as a result of the more timely provision of

medical data. 	It was found at the Texas Institute for

Rehabilitation and Research [16] that their system for on-

line scheduling of patient care activities was, in some ways,

too efficient; the computer was able to fill the patient's

day so completely that he was exhausted by the end of it!

Furthermore, users of the system (doctors, nurses, etc.)

tended to depend entirely on the computer system at the

expense of verbal communication both among themselves and

with the patients, which is a vital part of medical care.

On the other hand, the ward Information Management System

at the John Hopkins Hospital [17] has shown that the

computerization of doctors' orders (for drugs, diet, invest-

igations, etc.) resulted in a substantial reduction in the

number of of errors in carrying out these orders (previously

15% of orders were not carried out correctly). 	This must

surely represent a highly desirable effect of the HIS,

which will result in an improvement in the quality of patient

care.

Another potential pitfall and undesirable effect of

the HIS is that workloads could be increased to uhacceptable

levels. 	For example, doctors might be required to spend

long periods of time at computer terminals typing in their

observations, orders and so on. 	This activity is purely

clerical and doctors' skills would be far better employed

elsewhere. 	However, in order to ensure a low error rate

in the input data, it is always best to capture the data at

source. 	Doctors should supervise the entry of their own

clinical data and verify it immediately so that it may be

corrected on-line. 	A Cathode Pay Tube (CPT), preferably with

light-pen as well as keyboard, is the most widely used terminal

device in hospitals. 	When large volumes of data have to

be entered into the system (e.g. patient registration), this

can be done by data preparation personnel, thereby keeping

the typing by medical staff to a minimum.

As regards the relative economics of the two systems,

manual or computer, it is unlikely that the computer system

would work out any cheaper. 	The capital expenditure on the

equipient required to support a HIS would take several decades

L.0 recoup. 	Moreover, the number of staff - in this case

administrative staff - is hardly likely to decrease. 	Indeed

if the experience of industry is anything to go by, the

introduction of a computer results in an increase in the

-15-

number of staff required, but hopefully also with improved

service.

2.3 The medical record

The most fundamental part of any HIS, whether manual

or on a computer, is the medical record. 	The medical record

contains all the relevant information about a person's health

and consists of three main parts:

personal information

medical history

current treatment

It is the processing of parts(b) and (c) which has

proved to be a major stumbling block in the development

of computerized systems. 	There is no standard format or

terminology for recording this clinical information. 	The

doctor very often uses a personal form of shorthand together

with short pieces of text and aides-de-memoires. 	To transfer,

this information directly onto the computer, even in the form

of English narrative, would be very wasteful and would result

in the computer being used as a very extravagant filing system.

Furthermore, it would probably be considerably more tedious

to use than the manual system it replaced.

The personal information section of the medical record

is quite straightforward, consisting of name, address, sex,

place and date of birth and so on. 	This type of information

is common to all personnel files, whether or not they are

making use of computers; its structure is known in advance

and is constant for all patients.

-16- i6-.

The The recording of the medical history of a patient,

however, is much more difficult. 	The information to be

recorded will vary dramatically from one patient to another

and, as indicated above, there is no standard terminology

for recording items such as doctor's observations, physical

examinations and so on.

It is not difficult to handle the recording of the

major medical events in a patient's life, e.g. date,

diagnosis, treatment, with details of periods spent in

hospital etc. 	In addition, it would probably be helpful

to record the name of the doctor who treated the patient and

where further information about the illness and treatment

can be found.

Some research has been done into the use of computers

which interact with the patient by means of a question/answer

system in order to obtain his medical history. 	The computer

asks the patient a question and, according to the answer

given, follows one of a number of paths of further questioning.

If, for example, the patient is asked to indicate whether or

not he has ever suffered from chest pains and he answers

in the negative, then the computer might go on to ask whether

or not he has ever had liver disease. 	If the answer to

the question regarding chest pain is positive, •then the computer

will ask further questions pertaining to the chest pain

before going on to ask about liver disease.

A summary of the patient's medical history could then

be printed immediately. 	The ctor examining the patient

can then ask the patient for further details and enter them

into the system, if necessary. 	At this point, the doctor

should be be given the alternative of using either the question/

answer system or to enter his remarks in the form of unstructur-

ed narrative.

The major drawbacks of such systems for obtaining

medical histories is their unreasonable reliance on the

patient's memory and knowledge; indeed, some may be so

confused as to be unable to reproduce their names consistently.

However, the alternative of a national databank in which the

major medical events in the. lives of every nieiier of the

population are recorded is some way off. 	In normal

circumstances, when the patient can be identified, the

medical histories of incoming patients at least for the

immediate past, would be available to the hospital from

the patient's G.P.

The current treatment section of the medical record

will contain a mixture of both structured and unstructured

data. 	Among the structured data will be admission details

for in-patients, for example: date, by whom referred, doctor-

in-charge, diagnosis (if any), ward number, together with

results of any number of laboratory tests in varied, but well-

defined formats and X-ray reports. 	The unstructured data

will include symptoms, doctor's observations and orders

and nurses notes.

As with the taking of medical histories, a question/

answer system with CT, light-pen and keyboard could be used

to capture the data. 	It is even more important that the

doctor be permitted to use narrative as an alternative to

the answers supplied. 	Abrams et al [i8] quote as an example

the situation where a doctor wishes to record the condition

-18-

of a patient relative to the last consultation. 	He would

choose one of the following alternatives displayed on the

CRT:

CURED / BETTER / SAME / WORSE / VERY MUCH WORSE / DEAD /

OTHER

It is by selecting the 'OTHER' category that the doctor can

enter narrative as a response, not simply because he feels

that the patient's condition did not fall into any of the

listed categories, but because he wished to elaborate further.

The drawback in using the question/answer systems is that they

could tend to lead the doctor too much, rather than allowing

him to use his own knowledge and experience.

2.4 Patient identification

One of the main problems associated with a medical

record database is that of patient identification. 	The

simple and most straightforward method is to use the patient's

name. 	It is unlikely that a patient will forget his name,

assuming that he is conscious and even if he is unconscious

his name can usually be ascertained without too much difficulty.

It should be noted that a patient's name can change, e.g. On

marriage, and cannot therefore be regarded as absolutely

invariant. 	The survey in the Accident and Emergency (A&E)

Department of PIE has shown that with the exception of .patients

injured in road traffic accidents and who have collapsed in

the street, the names of the vast majority of patients can be

ascertained immediately on arrival, either from the patient

-19-

himself or from a relative or friend. 	However, there are

many obvious problems associated with the use of the name

as an identifier - it is very far from unique (e.g. in the

index for past in-patients at PIE, there are 90 patients

called Alexander Smith), it is prone to mis-spelling and

in manual systems to mis-filing.

An alternative to the use of the name as the basic

key to patient identification is to use the patient's date

of birth. 	This is the system which is currently in use

at the Central Medical Records Department at PIE. 	The

main library of medical records is filed by date of birth,

in chronological order; within any given birthdate, records

are stored alphabetically according to name (surname first).

A separate card index is maintained to access the main library.

This index is in alphabetical order of patient name (surname

first) with date of birth as the secondary key.

The A&E Department at PIE assigns a unique number to each

new patient (pre-printed on the registration form) and uses

a file of names and addresses as an index. 	With many patients

changing address from one visit to the next and with the non-

uniqueness of names, this system is also unsatisfactory for

general patient identification. 	At least the

date of birth system has the merit that a patient's medical

records can be retrieved without reference to any other

documents. 	No-one can be expected to remember a completely

arbitrary string of digits, as used in the A&E Department.

It is possible to enviage some far-fetched system

which could incorporate names with mother's or grandmother's

maiden name or date of birth, which could identify a large

-20-

population almost uniquely. 	However, a friend may well not

know a patient's mother's maiden name, let alone his grand-

mother's! 	Systems based on place, time and date of birth

have also been proposed, which can guarantee almost complete

uniqueness, but which suffer from the same disadvantages.

All the solutions proposed above are unsatisfactory

from one point of view or another. 	Moreover, none of them

solves the problem of the unconscious patient who is brought

into A&E alone without a friend or relative to give any

information. 	A solution which is often put forward half-

seriously is that everyone should wear an identification

bracelet with a unique number on it which was assigned at

birth. 	It is even proposed, though less seriously, that the

number should be tatooed somewhere on the body. 	What happen,

however, if the bracelet is lost or the number partially

obliterated?

There is no simple answer to the problem of patient

identification. 	it is certainly desirable for people who

suffer from chronic diseases or who are allergic to certain

drgs to wear an identification bracelet and/or carry an

identification card at all times. 	Although these people

form only a small percentage of the total population, they

are a very significant percentage because of the high risk

involved if they are not correctly identified. 	The general

population, however, would not be so well motivated to carry

the necessary identification.

Assuming, therefore, that a patient's name, sex and

approximate age are known, it should be possible to devise

an algorithm.which could search rapidly through the patient

-21-

indexes stored in the computer in order to identify him and

ascertain whether any details of his medical history are

known. 	If an exact match is not found given the identification

information available, a list of the closest matches found

could be printed.

In the majority of cases in A&E at RIE, it is not

strictly necessary to match up a patient's notes - in fact,

at present, this is done in less than 1% of new cases.

If a patient comes into A&E in March with a broken arm and

then returns in November with a cut toe, the previous case

notes would not be relevant. 	If, on the other hand, the

patient had broken the same arm in November, the doctor

might want to consult the March case notes and X-rays.

In this case, the computer would have to consult the database

immediately for details of the March episode. 	Ifthe old case -

notes were not required, the computer would still have to

link up the two episods eventually. 	Such linkage could

be carried out hen the computer is not busy. 	However,

with all the problems of patient identification outlined

above, it is possible that the two episodes cannot be linked

reliably by computer without any human intervention.

2.5 Concluding remarks

In this section some broad conclusions will be made

regarding the requirements which a HIS imposes on the DBMS

which supports it. 	Clearly, in order to draw detailed

conclusions an exhaustive study of existing procedures in a

-22-

full hospital activity analysis would have to be carried out,

which is not within the scope of this thesis.

There are two distinct aspects to the automation by

computer of the information processing activities in hospitals.

The rst is the design of the HIS and the second is the design

of the DBMS to support the HIS. Ideally, the HIS should be

designed first and the DBMS should be constructed in such a

way as to meet the requirements imposed by the HIS.

The design and implementation of a DBMS involves several

man-years of effort and the hope is that a particular DBMS

will be applicable in a wide variety of situations. 	Most

of the effort today is being directed towards the design of

these general-purpose DBMSs. 	This approach, therefore, is

based upon the premise that the information handling require-

ments of the various applications are similar. 	Consider,

for example, airline systems; they are designed as special-

purpose DEIlSa and as such they could be of use only to another

airline, but certainly not for a complete HIS. 	However,

a superficial comparison between the passenger seat reservation

system alone and the appointments system in an cut-patient

department reveals certain similarities. 	The two processes

of making an appointment and booking a seat are alike. 	A

patient makes an appointment (sometimes many months ahead)

for a particular clinic, on a particular day, at a particular

time, while a passenger usually books a seat for a specific

flight, on a specific day, at a specific time. 	A significant

difference between the two systems is that whereas the patient

will generally take the first available appointment, the

passenger usually wants to book a seat on a specified flight.

-23-

In a comparison between financial systems and Hospital

Information Tystems, Dr. Reekie [19] showed that while the

privacy requirements of the two systems are the same, the

volume of transactions per service (laboratories, X-rays, etc.).

is quite different. 	On average, each patient makes only one

call on each service per day. 	Thus each service will have

at most somewhere over a thousand transactions per day.

horeover, experience has shown that there are peaks of activity

in a hospital between 9 a.m. and 11 a.m. with a smaller peak

in the afternoon. 	Financial systems also suffer from peaks

in the transaction rate and in both systems it is difficult

to spread the load evenly throughout the day and night.

The distinction is made between special-purpose and

general-purpose DBI'iSs. 	Although, as stated previously,

most of the research is currently focussed on general-purpose

DBI:s, it is undoubtedly true that given a rarticular application

(and sufficient resources), it is always possible to desien

a sore efficient snecial-purpose))3ie 1j:hjct is tailor-made

for ;hab application, than to use even the very host general-

purpose system.

It is difficult to separate the requirements which a HIS

imnoses on the DHI;s from those it imposes on the Operating

hystem and hardware. 	Increasingly, the logical and physical

aspects of DIHiSs are being separated. 	Thus the logical

aspects 0: he DHPS design involve the data structures,

user interface, dn 	t :ta proection 	d, an security and so on. 	The

physical as:pects are concerned with the volume of information

-2k-

to he handled, activity rates and so on.

To conclude, the requirements imposed by the HIS on

the DBMS can be summarized as follows:

system reliability - both the hardware and software of a

computer system supporting a HIS have to achieve almost

100% reliability. 	They have to be available 24 hours

a day, 7 days a week and 52 weeks a year. 	In order to

do this, experience with airline systems has shown that

every item from CPU to data record must at least be

duplicated; indeed most systevs are triplicated. 	Such

a dual system would be essential in a hospital which

relied completely on a large central computer. 	It is

well worth examining the possibility of using a network

of mini-computers located in the various departments

throughout the hospital, each supporting its own small

database. 	A patient attending a number of different

departments in the hospital might have a number of different

specialist clinical records with a central identification,

history and summary section 'passed round" the relevant

departments. 	The mini-computer network would be linked

together in such a way that if one breaks down another can

take over its urgent on-line work, in addition to its

own. 	Such an approach has the added advantages (apart

from enhancing the reliability of the system) that each

department would have control over its own portico of the

database and it would also be cheaper than a system which

required a lot of built-in redundancy.

storage hierarchy - the DEFJS must be able to support a

database which is spread over a number of different

-25-

storage devices, e.g. disc, drum, tape. 	Records would be

moved automatically by the DBMS, according to riles

specified by the application programs, from one level

in the hierarchy to another. 	For example, the records

of in-patients would remain at the top level of the

hierarchy, i.e. on an on-line storage device, until the

patient is discharged, when his record would automatically

move to aice;T level until required for the patient's

check-up later. 	Out-patient records will not move to

the top level until the day (or maybe even the hour) of

their appointment. 	This is exactly analagous to the

present manual system at RIE where case-notes are "pulled"

from Central Records for out-patient clinics a few days

ahead of the clinic.. 	The lowest level of the hierarchy

would represent archival storage. 	Presumably most of the

information contained in these records could be safely

destroyed after the patient had been dead for a number.--of

years, retaining only those details which would be relevant

for research purposes.

(3) Foreground and background operation - the DBMS would have to

support both high-speed on-line operation and background

hatch work. 	On-line operation would get priority.

Moreover, it might be desirable to have a priority attatched

to each request, based on the type of request and its

source. 	For example, a doctor in A&E urgently requesting

a patient's case notes would he serviced before a radio- -

logist updating a patient's record with the result of a

non-urgent X-ray. 	In some situations, the priority

system might not be practical as it could take longer

-26-

to establish the priority than to service the request.

(k) privacy - it is clearly of the utmost importance to ensure

the confidentiality of medical data. 	At the London

Hospital [201, where a small computer system is in use

for admissions, it was felt that the records stored in

the computer were better protected than the traditional

case-note.::folders. 	In spite of the fact that the folders

are not supposed to be handled by any unauthorized person,

including the patient himself, folders are often left

lying around for anyone to read. 	However, the London

Hospital Project does take a more positive attitude to

privacy and security than this might suggest. 	The

video screens are located in rooms to which patients

and members of the public do not have access. 	The

casual snooper would have to know how to log on to the

system to obtain any information. 	The consultants can

specify at the time the patient is placed on the waiting

list, whether or not their medical data is to be displayed at

all. 	Finally, the screens fade very rapidly when not

in use. 	Thus the DBMS would be required to provide

privacy facilities down to the data item level. 	These

facilities could take the form of one word keys or of

privacy routines which could check the identity and

authority of the user. 	It has been suggested that,

in a nationwide medical database, the patient himself

should be given the key to access his own medical record.

hile this would violate the currently held principle

that patients should not be allowed to see their own

medical records, it is in keeping with modern thinking

-27-

on civil rights. 	Thus anyone who records information

about someone else (e.g. government agencies, credit

rating firms, hospitals, etc.) should allow the subject

of the information to access any factual data. 	In this

way, cases of ill-justice due to incorrect information

can be reduced.

CHAPTER 3

ELEMENTS OF DATABASE MANAGEMENT SYSTEMS

.1 Introduction

In this chapter a number of aspects of DBMSs will be

examined. 	In particular, data structures, data independence,

data integrity, privacy and security will be discussed in

detail.

A well-defihed hierarchy of users of a DBMS can be

identified and the significance of,for example, data integrity

will vary according to the user's position in this hierarchy.

Broadly speaking, the users of a DBMS can be divided into

the following categories:

Level 1 (DBMS implementor) --perhaps not strictly 'user'

2 entire database description implementor - CODASYL

schema writer

3 individual application description implementor -

CODASYL subsehema writer

4 application programmers

5 high level users - terminal enquiry etc.

Figure 3.1 Hierarchy of DENS users

It should be noted that where a general framework is

required in which to discuss, for example, data independence,

the GODASYL April 71 DBTG Report [i] will be used.

-29-

3.2 Data structures

The term data structure is used in DBNSs to describe

the user's view of the data and excludes details of storage

techniques [21]. 	It therefore spans the data from the level

of individual data item to the complete database. 	However,

the level at which the greatest divergence in the approach

taken by individual DB1'ISs arises, is the level of the group

data structure; i.e. what structures the system employs to enable

the user to describe relations between groups of data in the

database. 	The term group relation, rather than simply

relation is used in order to exclude the implicit association

between data items and fields in an individual record.

There are three main classes of group relation data

structures in DBMSs:

network or set type

hierarchical

relational

3.2.1 The network or set data structure

A network data structure is one which permits a many-to-

many relationship between records of which the CODASYL set Li]

is an example. 	Although the CODASYL set is strictly speaking

a one-to-many relationship, it can be used to represent a

many-to-many relationship (see below). 	The CODASYL database

consists of many different record types with related records

grouped together. into sets. 	Each set must have one owner

record and one or more member records. 	There will be many

occurrences of the same set type in the database and to avoid

-30-

confusion and ensure database integrity, a record occurrence

cannot apear in more than one occurrence of the same set,

i.e. a member record occurrence can have only one owner

record occurrence in a set and owners are all distinct. 	It

is this restriction which implies that the set is only a one-

to-many relationship, but a many-to-many relationship can be

represented by the simple introduction of a link record.

Thus the set is regarded as a network structure. 	In the

April 71 COI)ASYL Report [ii, a second restriction was imposed

which did not allow a record type to be both owner 'and member

in the same set, but this restriction has been removed in

the 1978 Journal of Development [22].

Membership of sets can be either MANDATONY (i.e. permament),

in which case the record occurrence will only cease to be a

member of the set when it is deleted from the database (or

altered in such a way that it no longer qualifies as a member

of that set), or OPTIONAL (i.e. temporary). 	In addition,

set membership can be defined as AUTOMATIC, when records

are inserted into sets automaticully by the DENS, or MANUAL,

when records are linked into sets by specific user command,

3.2.2 The hierarchical structure

The hierarchical structure, as the name implies is a

father/son tree structure representing a one-to-many relationship

only. 	An example of a DBMS using this class of data structure

is IBM 'S IMS/2, which is used as an illustration here [23,..-

21.

The basic data element in the IllS database is the segment.

A segment is of fixed length and contains one or more logically

related data data fields. 	These segement types are then joined

together into a hierarchical tree structure known as the

logical data base record. 	The INS database thus consists

of a number of logical data base records. 	Each application

forms its own individual view of the database by specifying

the segements to which it is sensitive. 	This is analagous

to including certain record and set types of a parent schema

in a suhschema. 	An application program cannot access those

segments to which it is not sensitive.

A segment of information can participate in more than

one logical data structure, analagous to permitting a record

type to be a member of more than one CODASYL set. 	The

segment data itself exists only once in the database. 	In

one structure, the duplicated segment will be replaced by a

pointer to the actual segment where the data is stored:

NAME 	TA GET 	 (SKILL

ILL

:Th

ADD1ESSJ CPAYt-L
	

\ NAME)POINTER

&P; Du±IoN

Figure 3.2 Targ:t segment in an INS database

There is a total of six retrieval functions:

(a) GET UNIQUE (GU)

-32-

GET HOLD UNIQUE (GHU)

GET NEXT (GN)

GET HOLD NEXT (GHN)

GET NEXT WITHIN PARENT (GNP)

GET HOLD NEXT WITHIN PARENT (GHNP)

A GET UNIQUE call is used to retrieve a unique segment

or path of segments; it is a useful means of establishing

position in the database after which GN and/or GNP calls

are used.

A GET NEXT retrieval request returns the next segment

to which the run-unit is sensitive. 	The ordering of segments,

corresponding to Knuth's pre-order traverse [25] as shown in

Figure 3.3

Figure 3,3 Segment order in an INS database

A GET NEXT WITHIN PAPENT call will obtain the next

segment(s) within the family of a parent segment. 	The

appropriate parent is established from the last GU or GN, which

must have been successful.

The use of the HOLD options for a retrieval request

4s used to indicate that the user intends to delete or update

-33-

the segment; the rules for interpreting the functions remain

unaltered. 	Under INS/2, the feature is redundant since it

is forbidden for two run-units to operate concurrently which

have indicated that they intend to delete or update the same

segment(s) in the database.

3.2.3 The relational data structure

The relational model of data developed by Codd [io]

is based upon the mathematical theory of relations: given

sets Si, S2, Sn, P is a relation on these n sets if

it is a set of n-tuples, each of which has its first element

from SI, its second from S2 and so on, i.e.

P = 	<e1, 	e2, 	en7, e1,e2, 	en,<el, 	e2, 	..,end

el GSl, e2 &S2, en.&Sn.

The set Sj is defined as the jth domain of P.

Each relation has a primary key associated with it.

A primary key is a domain (or group of domains) in the relation

'thic.h uniquely identifies each tuple in the relation.

Consider the following example of a relation, supply,

of degree 4, where the first domain consists of suppliers,

the second of parts, the third of projects and the fourth of

quantities:

supply(supplier part project quantity)

1 2 5 17
1 3 5 23
2 3 7 9
2 7 5 Lf

k 1 1 12

Figure 3.4 The supply relation

-3k-

The relation represents shipments in progress of parts, in

specified quantities, from suppliers to projects. 	The

primary key for the relation supply would be (supplier,

part, project), all three domains being necessary to identify

each tuple.

Although not strictly part of the relational data

structure itself, it should be noted that this model of data

automatically supplies functions and a language to operate

on the data.

3.3 Data independence

One of the major reasons for an organization to adopt

a DBMS is that system's ability to mirror the real-life

situation within the organization. 	Of particular importance

is the ability of the DBMS to handle the ever-changing demands

of the enterprise. 	For example, radical restructuring of

the database, as a result of new company policies, will be

necessary from time to time. 	It is essential that existing

application..: systems should be unaffected by these changes

and this insulation is known as data independence.

There are four levels in a D131•IS which must be insulated

from one another:

physically stored data

database administrator's logical view of the whole database

(schema)

application's view of the subset of the data (subschema)

application propram itself.

--'5-

The distinction is made between logical data independence

and physical data independence [5]. 	A DBMS which provides

physical data independence will allow the physical layout

and organization of the data (level a) to be changed without

affecting either the logical structure of the data (levels

b and c) or the application programs (level d). 	The provision

of logical data independence, on the other hand, permits the

logical structure of the data (b and c) to be altered without

changing the application programs (d). 	Of course, many

alterations to the database will necessitate changes to all

levels of the database management system (e.g. addition

of new data item), but data independence is intended to

ensure that the only elements requiring alteration in the

system are those which are directly andlogically involved

in the alteration.

A change in the method of physical data storage, e.g,

the reorganization of the data on secondary storage to increase

efficiency, should not in any way affect the application

programs. 	Whether or not such a change will affect levels

b and c, the schema and subschema, will depend on how the

srstem is implemented. 	Ideally, however,- it is only the

interface between b and a, presumably in the form of tables,

which would require alteration.

Consider next the elimination of all the records of a

given type. 	Such a change is bound to have repercussions

at every level, but all application programs and subschemas

which do not use the eliminated record type, shóüld'not:be

affected. 	First, the data records must be removed at level

a, their descriptions and any reference to them in sets etc.

removed at both levels b and c, and of course, in the application

programs themselves at level d. 	It is not necessary to

physically remove the deleted records from the database;

it would be more efficient to leave this to the next re-

structuring of the database. 	It is necessary to consider

very carefully what happens to sets in which the deleted

record participates. 	For example, if the deleted record

is the only member of a set, the set could be deleted from

the schema and/or subschema or simply appear as a memberless

set. 	There is clearly no obvious answer to these problems,

but an agreed standard would clearly be an advantage for

those who want portable programs.

The next case to be examined is the addition of a new

field to a record type. 	Again, the physical changes must

be made to the database 'simultaneously' with the corresponding

changes to the schema. 	Data independence should then guarantee

that no more changes will be necessary either to the subschemas

or to the application programs, even though they may use the

record type involved, but are not interested in the new field.

Naturally, those application programs which wish to use the

new field, would have to be amended along with their subschemas.

3.3.1 Binding

The degree of data independence of application programs

will be affected by when the binding between the user reference

to the data and the physical access to it takes.place [26].

Traditionally, data is bound to programs at compilation

time (sometimes even at program design or coding time),

whereas for maximum independence, binding should take place

-37-

as late as possible, i.e. at command execution time. 	Most

DBNSs adopt a mixed approach to binding with some taking

place at compilation time, some when files (realms) are

accessed for the first time and the remainder at command

execution time [21], resulting in a compromise between maximizing

data independence and maximizing efficiency.

Finally, it is worth mentioning that although the

main aim of data independence is to provide flexibility

in the DBMS to enable it to adapt readily to the changing

demands of the users, a by-product is also the provision

of a measure of protection; users will not be aware of

or have access to data outside the data defined in their own

subschernas. 	This approach is also less demanding on the

user, since he only learns those details of the database

which are directly relevant to him

3.4 Database integrity

It is clearly of fundamental importance that the data

in a database is correct and time-consistent and that the

linkages between related data items are correct. 	If the

database were to be frozen at any point in time when no

changes ;ere being made to the database, it should be a valid

picture of the real-life situation it represents.

There are several aspects to ensuring the integrity

of a database:

(a) logical consistency checks

(h) validation of input to the database

2
---1

9-

protection against interference between concurrent run-

units, in particular during update

backup and recovery measures

consistency of multiple copies of data

3.+.1 Logical consistency checks

A database consists not Only of data, but also of

relationships between the data, which together form the

data structure (see Section 3.2). 	Apart from the fact

that a relationship between one or more records may form

the basis of the storage/retrieval of a record, the relation-

ship itself carries information implicitly, e.g. father/

son, owner/member. 	It is therefore of vital importance

to the overall integrity of the database that these relation-

ships are logically consistent. 	Thus, for example, in the

CCDASYL system, it would be essential to ensure that an

ownerless set had not evolved or, alternatively, that a

record had been made inaccessible by virtue of the deletion

of all pointers to it. 	The detection of such logical

inconsistency over the entire database is clearly very costly.

However, much of the checking can be done when updates are

being carried out, especially where the alteration of relational

pointers is involved. 	Since it is not possible for high

level terminal enquiry users, application programmers or

even subschema writers (levels 6,5,4 of Figure 3.1) to

be aware of the indirect effects of their updates on other

users, the responsibility of providing the logical consistency

checks falls on the DBHS implementor and the schema writers

(levels 1 and 2 of Figure 3.1).

-39-

L+2 Validation of data

No matter how elaborate the mechanisms in the DBMS

for ensuring database integrity are, they will be totally

useless if the input to the system is incorrect. 	At first,

the question of the validation of input data would appear to

be more the concern of the organization whose data is being

stored in the database, rather than of the DBMS itself.

However, when there are many different users of the data,

the traditional approach of each user program validating

its own input becomes insufficient. 	Instead, it is necessary

to incorporate validity checking routines within the Data

Definition Languages. 	For on-line system it may be more

efficient to display the information for immediate verification

before transmitting it to the DBMS. 	There would still

need to be a further check within the DBMS before finally

storing the data in the database. 	Thus the validation

of data involves both DBMS and the application program;

some aspects may only be visually checked by the high level

terminal user (level 6 in Figure 3.1).

3.1+.3 Concurrent update

The subject of concurrent update of a database is dis-

cussed in detail in Chapter 5. 	In this section, the problems

which arise when more than one run-unit is updating the

database at the same Lime will be explained, but the solutions

will be left mainly to Chapter 5.

One of the important aims of a DBMS is to allow more

than one user, each iith his own view of the data, to access

-4o-

the database simultaneously. 	Concurrent data retrieval

presents no problem of interference, but severe difficulties

can arise when concurrent update is permitted. 	Apparently

successful updates can be overwritten thus leaving the database

in an invalid state.

There are a number of different forms which the inter-

ference between run-units concurrently updating the database

can take. 	They depend upon the type of update being performed,

The simplest situation is:

Run-unit A reads version 1 of record I

Run-unit B reads version 1 of record I

Run-unit A updates record 1 changing version 1 to version 2

Run-unit B updates record 1 changing version 1 to version 3

The update of run-unit A is lost as run-unit B overwrites

it. 	Run-unit B should have been informed that the record

had been changed after it had read it, or it should have

been prevented from reading a record which had been read

for update, or this conflict should have been resolved in

some other way.

The standard approach to this problem is to use locks.

A run-unit which wishes to update the database can, before

it reads a record, prevent other users from accessing it

until the update is complete. 	This is done by applying

a lock to the record, thereby claiming exclusive right of

access to the record.

Run-unit A locks and reads version 1 of record 1

Run-unit B attempts to lock and read record 1, but is

queued awaiting release of the record by run-unit A

Run-unit A updates record 1 changing version 1 to version 2

Pun-unit A unlocks record 1

Pun-unit B locks and reads version 2 of record 1

Pun-unit B updates record I changing version 2 to version Lf

Run-unit B unlocks record 1

Provided a run-unit is limited to claiming one lock at a

time, i.e. it must release one record before claiming another,

this simple approach works well and is easy to implement.

However, if a run-unit can claim more than one lock at a

time, deadlock can occur (see below).

A more subtle form of interference can occur when

run-units are updating groups of records, i.e. reading a

number of records and on the basis of certain criteria updating

one or more of the records. 	Consider the following example:

Run-unit A reads version 1 of records 1 and 2 and

validates transaction a against version 1 of record 1

Run-unit B reads version 1 of records 'l and 2 and

validates transaction b against version 1 of record 2

Run-unit A uses transaction a to update record 2

changing version 1 to version 2

Pun-unit B uses transaction b to update record 1

changing version 1 to version 2

Both transactions passed the validation checks against version

I of rcords 1 and 2, but due to the updates neither would

pass against version 2 of the records. 	Thus an inconsistent

database has resulted.

Again, the application of locks will avoid this type

of interference:

Run-unit A locks and reads records 1 and 2

Pun-unit A validates transaction a against record I

Run-unit B attempts to lock and read records 2 and I

and is queued awaiting run-unit A

Pun-unit A uses transaction a to update record 2

Run-unit A unlocks records 1 and 2

Run-unit B locks and reads records 2 and 1

_42-

Run-unit •B validates transaction b against the new record

2, but the transaction is rejectéd

Run-unit B unlocks records 2 and 1

The example above is of a consistent series of updates,

i.e. a process requires a time-consistent view of a number

of records before deciding which to update. 	By locking

all the records involved, even if only one is to be updated,

no interference can arise.

Once a process is allowed to claim more than one resource

(record) in a random order, deadlock can occur. 	The typical

case is:

I Run-unit A reads and locks record 1

2 Run-unit B reads and locks record 2

3 Hun-unit A attempts to lock record 2 and is queued

awaiting run-unit B

Lf Hun-unit B attempts to lock record I and is queued

awaiting run-unit A

Neither run-unit A nor B can continue. 	In order to resolve

the deadlock, either A or B must be pre-empted and its

resources released.

The problems which arise when deadlock occurs are by

no means trivial. 	In order to pre-empt run-unit A in the

above example, it is necessary to position it prior to its

issuing the lock and read request for record 1. 	This

repositioning is known as rollback. 	However, run-unit A

may have made changes to other reoord in the database in

the meantime and all these changes would have to be reversed

as well as its own internal variables. 	What happens to other

processes which have been affected by these chaeges (i.e.

which have used the altered records) is often not considered

in existing systems. 	Ideally, they too have to be rolled

_43-

back and so the problem mushrooms.

In general, the designers of DBNSs tend to prefer to

adopt solutions to the concurrent update problem which do not

give rise to deadlock or which enable rollback to take place

to a predetermined place known as a checkpoint, in the program,

without rolling back other run-units.

Deadlock need not occur directly between two run-units,

but alsothrough a chain of intervening run-units. 	For example:

Pa = IR1, P2, P3, R41 and 'Ja = tR53
Pb = [p6, P7, R8 	and Wb =

Pc = (R9, RIO, R11J 	and Wc = fRb

Pd = [P12, R13, P51 	and V.ld = R91

where Ri = set of records currently locked by run-unit i

and 	Wi = set of all records for which run-unit i is

currently queued

The deadlock is between run-units a and d through the intervening

run-units b and c. 	The detection of this type of chain

deadlock is not strairhtforward. 	An algorithm based on a graph

theoretic model of the database involving loop detection

is proposed by King and Gollmeyer [271. 	However, even

having detected the deadlock, there still remains the problem

of which run-unit to pre-empt and how.

3•14•4 Backup and recovery measures

There are two ways in which data can be lost completely:

hardware error, e.g. at input terminal, transmission

line, disc head crash

writing of data to an area outwith the control of the

database, including data lost due to inaccessibility

following corruption of pointers to the data.

44
There is little that the DBMS cap do to guard against

hardware faults, but it must ensure that users are notified

as soon as possible and that adequate recovery measures can

be taken by the system.

As regards the second manner in which data can be lost,

it is assumed that the Di3I10" is incapable of setting up the

links between the data incorrectly or of storing the data

at the wrong address. 	If the data links become corrupted

thus leaving the data inaccessible, then the restoration of

the links following recovery should also automatically restore

the data.

There are three aspects to backup and recovery measures:

backup copies of the database or portions of it

journal file of database transactions

checkpoints

The traditional approach was to maintain father/son/

grandfather copies of data files on tape. 	In the event

of failure, the entire file was then restored from tape.

This would be impractical in the huge databases of today.

This is well illustrated in the Infotech State of the Art

Report on Database. Management [28] where the example is given

of the time it would take to dump the entire warranty files

of the Detroit car manufacturers - namely, 48 hours each day.
The solution therefore is to divide the database into several

physical areas on different storage devices, so that only one

disc or drum, say, has to - be restored following system failure.

Backup copies (dumps) are made of certain highly active

and vital portions of the database at frequent intervals,

supplemented by less frequently taken copies of the entire

-.1+5.-

database. 	Although this is a time-consuming exercise during

which the portion of the database being copied will not

be available to users, it is a convenient time to carry

out at least a partial database reorganization. 	This

reorganization can take the form of simply compacting empty

spaces but it can also consist of radical restructuring of

the database to increase efficiency.

In addition to general backup files, it is also necessary

to keep copies on a Journal File of all the transactions

on the database. 	The entry on the journal file can be

made either before the update or after the update when the

altered page is being written back to the database or,

more probably, a combination of the two. 	Generally, the

journal file is made on tape, which means that it will be

quite slow during recovery and is a major limiting factor

on the speed of recovery. 	DMS 1100 [291 allows the Database

Administrator to specify that copies will be made on a Random

Access file which clearly greatly speeds up the recovery

operation. 	On the other hand, Random Access storage devices

in the past were more liable to suffer hardware failures

then sequentail devices, though this is becoming less true.

The final aspect of backup and recovery systems is the

checkpoint. 	when a checkpoint is made, a copy of central

storage is made and the position on the journal files marked.

Checkpoints can be initiated either by the DBMS, e.g. at the

start of a run-unit or from within the application program,

e.g. at the start of an update. 	The use of checkpoints

enables rollback and recovery to take place automatically

and quickly. 	It is preferable for checkpoints to coincide

-46- L1.5.

with with quiescent points, i.e. points at which there is no

transaction active. 	The consequences of inadequate backup

and recovery measures are potentially so serious that the

provision of full facilities is becoming one of the most

important aspects of DBMS design [30].

3.4.5 Consistency of multiple copies of data

It was stated in Chapter 1 that an important aim of

the DBMS is to control data redundancy, i.e. the unecessary

duplication of data in the database. 	It should be noted,

however, that it is sometimes desirable to incur the overhead

of the extra storage required by repeating a data field

in order to greatly increase efficiency.

McCall in the Infotech Report [8] quotes the example

of where it is much cheaper to duplicate customers' names

and addresses at a cost of 17000 extra for the second record

rather than to incur the cost of the extra processor usage

which would be required to obtain the information from two

different places.

The problem with data redundancy in DBNSs, just as in

the older systems, is the difficulty of ensuring that all

copies of the field in question are the same at any time.

If they are not identical, then there may be no way of telling

which copy is the correct one. 	Thus if one copy of a duplicated

field is updated, all other copies must also be updated

automatically and 'simultaneously'. 	The question of the

consistency of. multiple copies of data therefore becomes a

question of consistency during a group update, which was

discussed in Section 3.4.3. 	Thus all duplicated fields

-47-L f7_

must must be locked together. 	The user (application programmer

and high level user, levels 4&5 of Figure 3.1) should of

course be unaware of the chain reaction of his update which

will be carried out automatically by the system.

3.5 Privacy

The main threat of computers as seen by the layman is

their use in establishing huge databanks in which all inform-

ation on an individual is integrated. 	This information

would be gathered from many different sources, e.g. bank,

income tax, mortgage companies, job applications, police,

educational institutions and so on. 	Thus the provision of

adequate privacy controls becomes of vital importance to the

designer of the DBMS. 	Even the most elementary controls

are going to cost something, both in real terms and in terms

of performance. 	The analogy can be drawn with the physical

protection of valuables - the more valuable the items, the

stronger te safe used and the more elaborate the security

arrangements. 	Similarly, it can be expected that the more

sensitive the information stored in the database, the more

expensive the provision of security controls will be.

Before the teleprocessing era, the provision of security

for a computer system was really simply a question of ensuring

the physical security of the computer room and associated disc

and tape libraries. 	Modern teleprocessing systems are much

more vulnerable. 	Apart from the difficulty of ensuring

the security of hundreds of terminals, sophisticated bugging

-48-

devices enable the communication lines themselves to be tapped.

Assuming therefore that the snooper manages. to log on to the

system, the next, line of defence must come from the DBMS

itself. 	The final line of defence is the Operating System

and hardware. 	If the DBMS provides a high degree of security,

then the skilled, professional spy will attempt to bypass the

DBMS and possibly also the Operating System to gain access

to the database. 	To frustrate such spies an elaborate

code could be used to encode the data when it is stored

and then decoded by the DBMS when the data is retrieved.

In this way, meaningful access would be expensive other

than through the authorized DBMS routines. 	The code used

must change in an unpredictable way because the longer the

code is in use, the greater the chance of someone breaking

it and the greater the gain for him if he succeeds.

No matter how secure the system may be, it is important

to make provision for the detection of anyone who does succeed

in accessing the database illegally. 	In order to do this,

it is essential to maintain an activity log of all events

on the system, which is regularly and fully analyzed.

3..1 Terminal security

Terminals connected to the DBMS could be k-.-,.pt locked

with keys or access cards held only by authorized personnel.

To log on to the system, users would be required to give a

password, which would either not be displayed at all at

the terminal or else,, be overtyped. 	Such an approach has the

merit of being cheap, but it would only be effective against

the curious snooper and not the skilled professinnal.

To frustrate the line-tappers all data using the com-

munication links to the DBMS could theoretically be encoded

by.a hardware device at the terminal and then decoded by a

reciprocal device at the computer. 	It would also be possible

to store all the data in the database in coded form. 	However,

the problem of how to distribute the current encryption key

securely over an entire teleprocessing network is far from

being satisfactorily solved.

3.5.2 Physical data protection

The most straightforward case of data protection 18 to

ensure that no-one accesses those-fields for which they have

no right of access, i.e. physical data protection. 	There

are a number of different approaches to this problem:

DBMS can maintain, as part of the Data Definition Language,

a list of authorized users of each field/record; if a

user's name is not on the list then the DBMS will not

allow him to access the field/record (or the inverse of

this specifying the range of permitted access for each

user)

each sensitive field/record can have a lock associated

with it and those wishing to access it must first give

the correct key; again this would be specified in the

DDL

execution of a database procedure to determine whether or

not the user is permitted to access the field/record.

In the case of databases which are stored on removable

devices, e.g. tapes, discs, header labels can be checked for

access permission. 	This would also ensure privacy in the event

-50-

of an operator accidentally mounting the wrong tape or disc.

3.5.3 Logical data protection

An increasingly important aspect of protection to which

little attention has been paid is that of logical data protect-

ion. 	It is possible to have a situation whereby a user is

permitted to access the name field in the personnel record and

the salary field in the payroll record, but he would not be

permitted to link the two fields together, i.e. he would

not be able to find out how much a particular person earns.

Even if database procedures were available to monitor a

user's activities, it might still be possible for him to

list the two sets of data and associate them outside the

system using his knowledge of the real world. 	The DBMS

could not reasonably be expected to do anything about this.

-51 -

CHAPTER k

CONCUPPENT UPDATE IN DATABASES

1+.1 Introduction

The difficu ties which arise when more than one run-unit

is concurrently updatinr the database were explained in Section

3..3. 	In this chapter, the general aims to be achieved
by a solution to the update problem will be discussed and the

approaches taken by some existing and proposed systems will

be examined.

42 Guidelines for solution to concurrent update problem

The following is a list of the desirable attributes of.

a solution to the concurrent update problem (see also [311);

note that these attributes are ideals and not necessarily

simultaneously realizable as is discussed in Section 1+.2.1.

The basic aim of k solution to the concurrent update

problem is to detect and avoid interference between concur-

rent users of the database. 	This must be totally

transparent to the users and must give each user the

illusion that he alone is accessing the database - or

at least the portibn in which he is interested. 	Thus

solutions of the type which inform a user that a record

has been changed by another user since he first reap it

are unsatisfactory.

Users should have the illusion that they arc permitted free

-52-

and unrestricted access, both for reading and writing,

to those portions of the database in which they are

interested, subject, of course, to any privacy constraints.

Users should ideally not have to specify in advance

what operations they wish to perform. 	For example,

they should be allowed to step unconstrained through

the database reading and updating records.

Solutions which necessitate rollback are unsatisfactory

in an on-line environment due to the unrepeatability of

the work. 	The exception to this is any system in which

processes are not updating the database when they are

pre-empted or rolled back. 	If an actively updating

process is rolled back through a change in data which

might affect the decisions made by other users accessing

that data, it is possible that these users would not

still be logged on to the system. 	Rollback in a batch

environment, however, is quite satisfactory; the user

simply indicates the beginning and end of his group

updates and need not be aware of whether or not rollback

has taken place. 	Using a differential file and resetting

all local and-global variables, the system rolls the process

back to the start of the update. 	Such an approach

can be useful to the programmer in that it could be used

to initiate a voluntary rollback in the event of an

error being detected.

The solution must guarantee that all users will eventually

be able to run. 	If a user's resource demands are

considerable, he may have to wait until there are virtually

no other users of the system. 	Such users effectively

run their programs in br.tch mode, when, in general, the

problem of concurrent update does not arise. 	If, however,

the transaction to be performed is urgent (e.g. flight

cancellation) the demands must be met quickly and therefore

a priority system may be required.

The solution must not involve too high an overhead especially

for simple operations. 	In many applications, updates

are simple in structure and involve only a single record,

i.e. group updates are comparatively rare, although this

may well be because they are difficult to program.

Only those records which are logically involved in the

update should be locked, i.e. a process should claim

and be given no more resources than it actually needs

and should release them at the earliest possible moment

consistent with the logic of the update.

4.2.1 Discussion of the requirements

The requirements listed above are not logically compat-

ible. 	The aim of giving each user apparently his own view

of the database while at the same time maximizing the concur-

rency are in effect contradictory. 	If only one user at a

time is accessing the database, then he can simply read and

update records freely, even for group updates. 	However,

once other users are allowed to access the database at the

same time, interference can easily occur as illustrated in

the examples in Section 3.4.2.

In order to avoid possible interference between concurrent

udaters of a database, it is necessary to ensure that they

are accessing disjoint portions of the database. 	However,

_54-

requirement (b) stipulates that users should not ideally

have to specify 	in advance what their access requirements

are. 	Thus the DBMS would have to examine each users demands

in order to ascertain whether they overlap with another

concurrent user. 	It is not possible for the system to

deduce the individual record occurrences required by a user

(especially when requests are content-based) without actually

executing the user program. 	Thus the DBMS could only deduce

the user's requirements in broad terms, e.g. realm or record

type, from the subschema DDL and/or declaratives in the

application program. 	Even if the user simply wished to update

a single record, the system would only be able to state in

advance that the program would require exclusive access to,

for example, all the record occurrences of that type or

all the records in the realm in which the desired record

is located. 	It would therefore issue locks on that basis.

A concurrent user wishing to update a single different record

in the same realm, or of the same type, would therefore

have to wait until the first user terminated. 	Such an

approach runs contrary to requirement (f) which states that

no process should be given more resources than it logically

needs and that it should not retain those resources for

longer than necessary.

Thus at the very least the DBMS must know before a

process reads a record of its possible intention to subsequently

update the record. 	However, this is not sufficient since

even this information is not enough for the system to guarantee

no interference between users. 	Hence a system of locks is

introduced which must be claimed by a process prior to reading

-55-

a record which it intends subsequently to update. 	This lock

can be claimed by the process explicitly using a special

LOCK command or automatically by the system when the process

issues a special type of READ (e.g. GET HOLD in IMS). 	This

approach works well when users are restricted to claiming

a single record at a time, i.e. they must release a lock

prior to obtaining the next one. 	This is not an unreasonable

restriction for some users, but it is totally impractical

for the remainder who perform group updates. 	To handle

group updates, it is necessary to allow processes to hold

more than one lock at a time and to release them separately

or all together. 	However, if the user is allowed to step

freely through the database claiming locks and updating

records, deadlock can easily occur. 	Requirement (c) prohibits

solutions of this kind.

It is therefore necessary to compromise even further

in order to perform group updates successfully. 	Users

must specify in advance all their requirements which form

part of logically consistent updates.

+.3 Existing approaches to concurrent update

In this section the solutions adopted by CODASYL, IiS/2,

DMS 1100, PRIME and the proposal by Chamberlin et al in [32]

will be discussed.

431 CODASYL

CODASYL allows for two levels of locking - at the area

-56.-

level (using DML OPEN command with qualifiers) and at the

record level (DML KEEP/FREE commands).

A run-unit may open an area for EXCLUSIVE use - either

update or retrieval - which prohibits all other users from

accessing the area for the duration of that run-unit oi until

it issues a CLOSE on that area. 	The KEEP command on a record

is used to notify the DBMS of the intention of the run-unit

to re-access that record. 	While a KEEP on a record is in

force (i.e. until a corresponding FREE is issued), any attempt

by that run-unit to update the record will be successful only

if the record has not been changed by other run-units since

the KEEP was issued. 	Such a system is clearly easy to irnple;.,

rnent but it places the onus entirely on the user to decide

what action to take if the update is unsuccessful. 	This

system has been generalized since the. April 71 Report to

recognize two modes:

monitored mode

extended monitored mode.

Only the current record (i.e. the record most recently accessed)

of a run-unit can he in monitored mode, but any record (incl-

uding the current) can be in extended monitored mode 	The

current record is placed in monitored mode automatically and

remains in this mode until it ceases to be the current record

or is the object of a REMONITOP statement. 	The execution

of a KEEP statement on the current record of the run-unit

alters its mode to extended monitored mode. 	Extended monitor-

ed mode-continues until a- FRJE statement removes the record

from that mode or a RLNCI-.ITOR statement rcferences the record

or the realm in which it is stored is removed from the ready

-57-

mode. 	The purpose of a PEI'IONITOR statement is to alter

the records currently in extended monitored mode and to ensure

that the current record continues to be monitored even after

it ceases to be the current record of the run-unit.

Although this system is more precise than the straight-

forward KEEP/FREE of the April 71 Report, the effect from the

user's point of view is the same; namely, the user is notified

if a monitored or extended monitored record is altered by a

concurrent run-unit since the record entered monitored

or extended monitored mode. 	It should be noted that, as

with many other aspects of CODASYL, the role of the KEEP/FREE

command is under review.

The use of the area locking mechanism can lead to

inefficient sharing. 	Although, in theory, the records

involved in group updates (i.e. inter-dependent updates 	-

of a number of records) should be located in the same area,

in practice, with large databases and many users with conflict-

ing requirements for record placement, this may not be possible.

Hence one run-unit could lock a single portion of the database

even if it was only updating one record, which particular

record depending on several other records in different areas,

all of which would have to be locked together.

4.3.2 I"s/2

IBM's IMS/2 [23,24] in a sense avoids the problem of

concurrent update altorether by simply restricting concurrent

usage of the data to disjoint portions of the database.

This is based on the specification of segment sensitivity

for each run-unit in the Job Control Language (see Section

-58-

3.2.2). 	If a run-unit has indicated that it intends to

delete or update a segment which another run-unit has also

indicated it may wish to delete or update, then IMS will

ensure that the two programs will not be scheduled together'

(cf. CODASYL OPEN command for areas). 	This approach greatly

limits the degree of concurrency in the system since even

if the two run-units only have one segment occurrence to

be updated in common, the second run-unit will have to wait

until the first one has terminated.

Under II'IS/2 the DML HOLD option on retrieval requests

is redundant, but under INS/Vs it will enable locks to be

applied at block level. 	A locked block being updated will

not be released and written back to the database until a

FREE command is issued or the run-unit terminates. 	This

system can give rise to deadlock which will be resolved 	-

by rollback of one of the run-units involved.

+.3.3 DM5 1100

UNIVAC's DNS 1100 [29] implements the area locking

mechanisms as proposed in the CODASYL April 71 Report.

However, the operation of the DML KEEP/FREE commands is slightly

different. 	The KEEP statement places a lock on a page of

the database and the FREE command releases it. 	While one

process holds the lock for a page, other processes cannot

access it.

Deadlock can occur and a rollback mechanism is put

into operation when it is detected. 	The user specifies

in his application program a rollback paragraph which must

_59-

be executed when rollback is required. 	Only a single process

is rolled back and its effects on the behaviour of other

processes is not considered. 	Furthermore, if no entries

on the random access Audit Trail (quick-before-looks,) have

been specified in the schema for the areas involved, then the

database can be left in an inconsistent state following

rollback.

4.3.4 PRIME

Although based on the CODASYL DBTG proposals, the

PRIME DBMS [331 takes an individual approach to the concurrent

update problem. 	PRIME introduces a unit known as an update

Database Transaction (DBT), which is initiated by the applic-

ation program by means of a START TRANSACTION command and

terminated by an END TRANSACTION command or an ABORT TRANSACTION

command. 	All logically related updates are grouped together

into an update DBT. 	The system makes use of before-images

of blocks which are taken before each block is updated.

These before-images can then be used to rollback the transaction

when the user aborts the transaction or when it is aborted

automatically. 	If a user attempts to read or write a block

that has been modified by a concurrent update DBT, the

system will order him to abort his transaction. 	If the user

complies, using an ABORT TRANSACTION command, he may perform

his own recovery before aborting, but if he fails to comply,

the system will abort the transaction automatically. 	It

is felt that concurrent conflicts are transient and usually

clear quickly. 	Hence, after aborting a transaction, a user

can start a new update DBT immediately and try again.

-60-

1+,3,5 Chamberlin et al's solution

At the 1974 IFIP Congress a paper was presented by

Chamberlin, Boyce and Traiger [32], in which a deadlock free

scheme was put forward as a solution to the concurrent update

problem. 	The main complications attributable to resource-

sharing in large databases are seen as:

non-unique resource names

non-static resource categories - a process operating on

a resource may change its nature

interdependent locks - further lock requests may be issued

on the basis of the first set of lock requests

increased complexity - to maximize concurrency the basic

lockable unit must be small, e.g. a record, but this

approach implies millions of lockable resources.

In their solution Chamberlin et al assume the existence-

of SEIZE and RELEASE primitives in the application programming

languare. 	The code between the SEIZE and its END statement

is known as a seize block. 	Uithin the seize block, no

procedure can be carried out except the claiming of records -

in particular, no changes can be made to the database. 	It

is also permissable to issue lock requests which are dependent

on the data values of records.

SEIZE;

X=EMPLOYEES WHERE SALAPY> 1 100001 ;

DEPARTMENTS WHERE DEPTNCX . DEPTNO;

END;

The reason for the restriction on the type of operation

which can be carried out within the seize block is obvious -

namely, that a process can be pre-empted safely within this

block without affecting other processes. 	Once outside its

-61-

seize block, a process cannot be pre-empted and has exclusive

access to the •records it has locked. 	It relinquishes all

locked records simultaneously using the RELEASE statement.

In this way changes it has made to the database will appear

as a single logically-consistent unit. 	Clearly, all records

locked in a seize block must be released before the next

seize block is entered.

The algorithm for locking records envisages a search

engine which can examine records and set locks on the ones

which qualify. 	It can also examine the non-updated version

of locked records. 	If the search engine for one process

wishes to lock a record which is already locked by another

process, the requesting process is said to be blocked and

must wait until the record is released. 	For every record,

there is an ordered queue of processeâ - the process at the -

head of the queue holds the record and the remainder are

blocked waiting for it.

Clearly, it is possible for deadlock to occur. 	Chamberlin

et al say that this can be detected easily using King and

Collmeyer's method [27] and can be prevented by defining a

priority ordering among processes. 	Thus if P1 requests

a record held by P2, the record is pre-empted if and only if

P1 has higher priority than P2 and P2 is still in its seize

block. 	iecord queues are held in priority order. 	However,

such a scheme can lead to unnecessary pre-emption and it would

be better to pre-empt only when deadlock has actually occurred.

To avoid the possibility of one process being blocked indef-

initely, it is possible to favour a process in such a way

as to guarantee it will run. 	It should be pointed out that

-62-

the favouring of a process involves a further overhead for

the algorithm. 	Chamberlin et al propose the following

modification to their algorithm:

(a) when process P1 requests a record which is locked by P2,

the record is pre-empted if and only if:

P1 is favoured and P2 is blocked or

P2 is not favoured and P1's queueing behind P2 would

result in deadlock

Otherwise P1 queues immediately behind the favoured process

P3, if and only if P3 is on the queue, else immediately

behind P2

(b) When a process requests a free record, it is immediately

granted a lock and placed at the top (holder position)

of the queue for that record

(c) When a process P1 becomes blocked, it releases to the

- favoured process P3 all of its records for which P3

is queued and places itself next in line for these records

(d) when a process becomes favoured then wherever it appears

on the queue, it moves to the top of the queue if the

record is held by a blocked process, pre-empting the record,

or to the second position in the queue if the holding

process is not blocked (it could be outside its seize

block)

(e) A record when released is given to the next process in

the queue.

Jhen a process wishes to release its records, it must

wait until all other processes are either blocked or outside

their seize blocks in order to ensure that a consistent view

of the database is always available to all processes.

-63-

Chamberlin insists that if two processes A and B are simultan-

eously updating records of the same type that the 'snapshot'

obtained by procesâ A will reflect either all of the updates

made by process B or none of them. 	All the updated records

are checked against the locking predicates of blocked processes.

Two situations are of interest:

One of the newly released records may be found to meet

the locking predicate of several processes, Pi. 	In

this case to avoid deadlock, a total ordering of processes

is generated which is consistent with all the existing

queues. 	The processes Pi are placed on the queue for

the newly released record in positions consistent with

the total ordering

One or more of the blocked processes may be queued for

a newly released record,, but may now discover that it no -

longer meets their locking predicates. 	These processes

delete themselves from the queue for the record.

In both the above situations, the interdependencies of the

locking, predicates may necessitate re-examination of all the

predicates and pre-emption of all the records held by that

process as it is rolled back to the start of its seize block.

+.k Summary of approaches to concurrent update

An examination of the approaches given above to the

concurrent update problems reveals that they fall into two

categories - minimum locking and over-locking. 	Sometimes

a system uses a combination of these two approaches. 	Minimum

-6k-

locking involves only those records which are logically

involved in the update and over-locking involves (in general)

locking more than is necessary, but which is easier to implement.

4.4.1 Minimum locking

The critical feature of minimum locking is the type of

locking predicates which are allowed. 	If these are restricted

to specific identification of records by means of database key,

then the system is easy to implement and operate. 	The

important aspect of this restriction is that the set of records

requested is invariant, i.e. it does not depend upon the

state of the database.

If, however, time-varying locking predicates which are

dependent on the content of the database are allowed, the

problem is infinitely more complex. 	For example, requests

of the type:

LOCK EMPLOYEE RECORDS WHERE DEPA.RTI1ENT=X

will depend upon which employee records have departmentX

at a given time. 	Requests of this type are quite reasonable

and should be handled by the system.

In order to evaluate such locking predicates, a time-

consistent snapshot of all the records involved is required.

However, it takes a finite length of time to evaluate the

locking predicates. 	This time can be considerable when

requests of the form:

LOCK PATIENT •.RECORDS J•IHERE SYIIPTCM=Y

are made and there is no inverted symptom file. 	It is worth

noting that if, as seems likely, CODASYL provides for non-

-65-
disjoint realms, then with locks applied to complete realms,

requests of this form could be handled quite efficiently.

While the process is evaluating the locking predicates, other

processes can be making changes to the database which might

affect the evaluation. 	If the process is restricted to

examining only those records which are not currently locked

and if the locking predicates have been correctly written

to include all records which are logically involved in the

update, then in theory there should be no problem. 	Practically,

however, this means that in the case of a symptom request of

the type given above, the locking predicate would fail even

if only one patient record in the entire database were locked.

Thus the entire locking predicate would have to be re-evaluated.

Clearly, with this type of request, it would be much more

sensible simply to keep track of all the patient records with

SYMPTON=X and check each newly updated record as it is

released, until all patient records have been examined.

In general, a process whose locking predicates are

content-dependent can be thought of as tracing a time-varying

path through the database from record Ri to Rn. 	Having

reached a record node Ri, the path to be followed from Ri,

i.e. the next node Ri+1 to be selected, depends on the value

of a field in Ri, or, more generally, on

Thus the entire time-varying set of

records 	iRl,R2,, 	Pnl are logically involved in the

update and must all be locked by the process before it can

be released. 	Clearly, with an operation of this type, it

is not possible to continue the evaluation of lecking predicates

once a .:ocked node Rj is reached. 	If records {R1,R2,....Rj-1

-C -

have been locked as each node is reached, then this set is

still valid and can be retained by the process until Rj is

released and the locking predicate evaluation continued.

With a long and complex path through the database, a process

could be locked for a very longtime, while at the same time,

preventing other processes which might require a single record

from the locked set 	B1, R2,....Pj_1 	from being released.

To avoid this, it is preferable not to lock the records

[. R1,R2 9 ,Rj_1} as thepath is being traced through

the database. 	However, in this case once a locked record

Rj is reached, the process is blbcked and 	the

records 	R1,R2 Pj-1j can be released to other waiting

processes, if required. 	In this way, the entire path from

Ri would have to be re-evaluated since any change in record

RfE[R1,JR2 Ri_1j may well affect 	Rf+1,Rf+2,...,Rj-13

such that a different path will be followed.

It is important to realize that in complex path tracing

algorithms, the logic required in the seize block will probably

have to be •repeated again outside the block when the records

are actually being processed and updated.

442 Over-locking

The essential feature of over-locking is that it involves

locking more than is actually required and therefore the INS

scheme based on segment type and the CODASYL scheme based on

areas are examples of this type.

How efficiently the area locking mechanism works is

entirely dependent on how close the areas are to those portions

of the database used by individual application programs.

-67-

The CODASYL areas physically resemble the files of traditional

data management systems and therefore there could be a good

correlation between areas and portions of the database required

by particular application programs. 	However, one of the

fundamental reasons for the introduction of the DBMS was to

eliminate the unnecessary redundancy in the traditional

multiple file systems. 	In general, it was standard practice

to design the files such that the payroll program used one

or two files, the personnel program another file and so on,

even though there might be considerable duplication of inform-

ation (e.g. employee name and address) across files. 	Given

therefore that all these files are merged into a single

database with the elimination of most of the dulicated data

and that the database is divided into non-overlapping segments,

it is unlikely that these segments will correspond neatly to

the orininal files.

An alternative to the area as the basic locking mechanism

is the record type. 	On consideration of traditional filing

systems in which each file was composed of a single record

type, this approach may well be quite logical. 	Thus, for

example, the payroll program will he concerned with the payroll

record, he. personnel program with the personnel record and so

on. 	Clearly, in order to avoid the disadvantage of non-

overlapping areas, it is the logical record type which is

used. 	It is the responsibility of the DBMS to translate

this into one or more physical record types. 	A queuing

mechanism will avoid deadlock - if an application program

required more than one logical record type, it must claim them

all together. 	All processes are guaranteed to run although

-68-

complex path tracing algorithms involving many different record

types may well have to wait a long time before being released.

-69-

CHAPTER 5

THE CODASYL PROPOSALS

5.1 Introduction

It is undoubtedly true that the publication which has

had the greatest impact on the field of Database Management

Systems is the 1969 Report of the CODASYL Data Ease Task

Group 1341 together with its sequel, the April 1971 Report [11.

CODASYL (Conference on Data Systems Languages) is a voluntary

organization composed mainly of users and implementors and

was set up in 199. 	It is this organization which was

responsible for the development of COBOL. 	One of its three

main committees, the Programming Languages Committee (PLC),

is concerned with approving changes to COBOL. 	The Data

Ease Task Group (DBTG) was a sub-committee of the PLC. 	The

April 1971 Report of the :DB1G was intended to discuss

enhancements to COBOL to incorporate more sophisticated data

management facilities. 	The report has since been reworked

with various modifications and incorporated into the COBOL

Journal of Development [] and the CODASYL Data Definition

Language Committee (DDLC) Journal of Development, 1978 [22].

In spite of this, the original 1971 report and, its subsequent

alterations in the JODs is seen, if not as a proposal for a

DIHS, at least as a discussion of the sort of facilities

a D.-'I-'S should be expected to handle. 	Above all, the 1971

Report provided a clear and well-defined framework as well as

a terminology in which to discuss DEM.Ss. 	It is not proposed

-70-

to des-cribe the CODASYL proposals in detail here, but rather

to give a brief description of them and then to discuss

some aspects more fully.

The CODASYL view of DBMSs is a continually evolving

process with many working parties which examine all the

various aspects in detail and make recommendations for

changes to be made in the two Journals of Development. Apart

from its great initial impact, the dynamic nature of CODASYL

has maintained its vital role in the field of DBNSs today.

However, the ultimate aim of CODASYL is to provide a "standard".

The field of DBNSs is still developing rapidly and to impose

a standard which necessarily has to be fairly static, could be

detrimental.

5.2 Elements of the CODASYL Proposals

The two main elements of the CODASYL 1971 Proposals

are:

Data Description Language (DDL)

Data Manipulation Language (DNL)

A third language, the Device/Media Control Language (DMCL)

is also briefly mentioned. 	The DMCL provides the mapping

between the physical database and the physical storage devices,

whereas the DDL and DML are concerned mainly with the logical

database. 	 -

5.2.1 The Data Description Language

The Data Description Language is used to describe the

-'/1-

data and the relationships between the data at two distinct

levels - the schema and the stlbschema. 	The schema is seen

as a logical description of the entire database, i.e. of all

the data items, rccords and relationships between them (sets

in CODASYL terminology). 	The subschema, on the other hand,

is a. description of only a portion of the database as required

and viewed by a particular application. 	Thus each application

has its own subschema. 	The subschema is rcally just a subset

of its parent schema, since it may differ from it in only

relatively minor ways, e.g. the omission or renaming of

certain areas, records and sets (see Section 5.2.3 for defin-

itions of these terms) and the ordering and/or characteristics

of data items within records.

The subschema is host language dependent at least at

the data item level. 	Thus each host language, e.g. FOPThAN ç

PL/I, COBOL requires its own subschema DDL, e.g. FORTRAN

subschma DDL etc.

5.2.2 The Data Manipulation Language

The Data iianipulation Language is the language used to

access the database. 	It consists of a variety of commands

embedded in a host language. 	Initially, COBOL was the only

host language which was discussed in any detail but since then

a FORTRAN DML JOD has been published [36].

5.2.3 Data structures 	-

The smallest unit of named data in the CODASYL proposals

is the data-item; an occurrence of a data item is a represent-

ation of a value. 	A data-ap,gegrate is a named collection of

-72-

data items within a record. 	There are two types - vectors

and repeating groups. 	A vector is a one-dimensional ordered

collection of data-items, all of which have identical character-

istics. 	A repeating-group is a collection of data that

occurs an arbitrary number of times within a record occurrence

and may consist of data-items, vectors or repeating groups.

A record is a collection of zero, one or more data-items or

data-aggregates and is the basic addressable unit in the

DBMS. 	There may be an arbitrary number of occurrences in

the database of each record type specified in the schema

for that database. 	In the April 1971 Report, each record

has a unique identifier called a database key, which is assigned

when the record occurrence is first stored in the database and

remains its permament identifier until that record occurrence

is deleted. 	Database keys are assigned by the system 	-

according to rules specified for that record type in the

schema and arguments, if any, supplied by the process adding

the record occurrence to the database. 	The keys are available

to the program. 	In the latest DDLC JOD 1978[.22], database

keys are for system use only and are no longer accessible

to the application program; they are in use for the duration

of the program and not throughout the life of the record.

A set is a named collection of record types. 	As such,

it establishes characteristics of an arbitrary number of

occurrences of a named set. 	Each set type specified in

the schema must have one record type declared as its owner

and one or more record types declared as its member records.

Each occurrence of a set must contain an occurrence of its

owner record and may contain an arbitrary number of occurrences

-73-

of each of its member record types. 	An area is a named

subdivision of the addressable storage space in the database

and may contain occurrences of records and sets or parts of

sets of various types. 	Areas may be openedThy a program with

USAGE MODES which permit or do not permit concurrent programs

to open the same area. 	Since the April 1971 Report, the area

has been complemented by the realm and the storage-area. 	A

realm is a logical subdivision of the database and the storage-

area is a subdivision of physical storage.

A database consists of all the record occurrences, set

occurrences and areas which are controlled by a specific

schema.

5.2. The set concept

The CODASYL set concept has already been discussed as an

example of a network data structure in Section 3.2.1. 	It is

interesting to note that although many aspects of the April 1971

Report have been changed or modified, the set has remained in-

tact.

The April 1971 Report describes two different modes in

which sets can be implemented, namely CHAIN and POINTER ARRAY.

The members of a chained set are linked together by a system

of pointers known as NEXT pointers, which starts with the

owner, then passes through each member in turn and ends with

the owner as shown in Figure 5.1.

7L

Figure 5.1 A chained set with NEXT pointers

In addition to NEXT pointers, the LINKED TO PRIOP option can

be used to include PRIOR pointers to link backwards as well as

forwards through the set. 	Finally, each member can be linked

individually to the owner using the LINKED TO OWNER option.

Figure 5.2 shows all the possible pointers.

Figure 5.2 A chained set with NEXT, PRIOR and OWNER pointers

-75-

In the POINTER ARRAY mode, the NEXT pointers are stored

not in member records but in the owner records; the only

pointers allowed in the records themselves are the pointers to

the owner as shown in Figure 5.3.

Figure 5.3 Pointer array set

One of the most difficult features to understand in the

CODASYL April 1971 Report is the SET OCCURRENCE SELECTION

clause of the DDL. 	It is this clause which governs how the

particular occurrence of a set is to be selected from all the

other occurrences of the set. 	A set can be identified by

its owner record, so assuming the owner can be located directly,

then the appropriate set; is selected. 	Alternatively, the

CODASYL currency indicatoi's can be used. 	CODASYL maintains

several currency indicators during database processing which

show which occurrence of each area, set type or record type

was last accessed. 	Thus the current occurrence of the

-76-

particular set is the one to be selected. 	Apart from the

hierarchical relationship within sets between owner and

member records, it is clearly possible for sets themselves

to be organized in a hierarchy. 	Thus a member record of

one set becomes the owner of another set one level down the

hierarchy. 	A third method of set selection depends on

selecting the root set (using either of the methods above),

set 1, and providing sufficient identifiers to trace down

the hierarchy from set 1, set 2, ... in such a way that the

owner of set 2 is a member of set 1 etc., until the required

set is found. 	The decision of which method of set selection

to be adopted must rest with the Database Administrator

and the application programmer's task is to supply the

necessary parameters to the database procedure.

.2.5 The storare-schema and Data Storage Description Language

A significant structural development from the April 1971

Se-port to the present CODAdYL position is the introduction of

the storarr:e_schema in the 1978 DDLC JOD [22] and the Data

Storage Description Language by the Database Administration

horking Group (DBAiG) [37 & appendix to 221. 	The subachema

is the application programmer's view, the schema is the

Database Administrator's logical view and the storage-schema

is the 	physical view. 	The storage-schema would be

written in Data Storage Description Language (D.SDL) and is

used to describe a storage environment for a database and

an associated- schema to storage mapping. 	The schema is defined

first and it describes all the data in the database. 	A

subschema describes a local view and the mapping between that

-77--

view and the schema. 	The storar':e-schema defines a physical

view and defines a mapping between this view and the schema.

Since both subschema and storage-schema map on to the schema,

the subschema to schema mapping is independent of the schema

to storage-schema mapping and application program independence

from storage structure may be improved.

A storage-record is a variable length record wiich is

stored physically contiguously within a page of a storage-area.

A storage-area can be considered to consist of both an integral

number of pages and an integral number of storage-records. 	A

storage-record is of variable length. 	Thus a single schema

record may be mapped directly onto a storage-record or several

schema records may share several storage-records. 	It would

also be possible for a schema-record to span several storage-

records. 	The particular mapping chosen would depend upon

consideration of storage and retrieval efficiency. 	The

flexible nature of the mapping (both one-to-many and many-to-

one) means that schema records may he designed without

considerations of the efficiency constraint that they be stored

as a single unit. 	hence the schema records may be designed

according to the logical application requirements.

In addition to the DSDL, DBAWG have also described

other extensions to the original April 1971 Report concerned

with data administration aids. 	These include facilities for

integrity control, gathering statistics on database use and

restructuring and reorganization of the database [yJ,

-78-

5.3 An assessment of the CODASYL Proposals

The CODASYL April 1971 DBTG Report was intended as a set

of very carefully worked out proposals, which were to open to

discussion and criticism. 	It is certainly true to say that

it generated considerable interest and stimulated much debate

on the subject of DBMSs. 	It is proposed in this section to

present some of the criticisms which have been made of the

report.

5.3.1 The AREA concept

The April 1971 Report outlines possible uses of an area

as:

a means whereby the Data Administrator could conveniently

subdivide a larger, database into smaller and more manage-

able sections - thi can be exploited for selective

duplication, backup and recovery

the placement of complete areas can be controlled in order

to lead to more efficient storage and, retrieval - an

unused area could, for example, be stored off-line in

archival storage.

The strong association with the physical storage structure

(e.g. (b) above) points to the traditional file concept.

For example, in the DMS 1100 implementation of the CODASYL

Proposals [29], areas have a one-to-one relationship with

the standard Operating System file.

Apart from its storage role, the area also acts as

the basic access and locking mechanism. 	The choice of the

area to fulfil this role undoubtedly makes the writing of

application programs more difficult. 	The WITHIN clause,

which dfines in which area a record occurrence is to be placed,

allows for more than one area to be specified for a single

record type, the actual area name being given by the value

of the data-base-area-name when the record occurrence is being

stored in the database. 	For example, it is required to

retrieve record occurrence P, which was defined as being

stored WITHIN AREA-A or AREA-B. 	Prior to executing the

FIND command, the program must initialize the data-base-

area-name to either AREA-A or AREA-B. 	In order to do this,

the programmer must know in which of the two areas the record

R was actually placed when the STORE command for P was originally

issued. 	It should not be necessary for an application

programmer to know such details.

Considering now the use of areas as the basic locking

mechanism of the DBMS; it is clearly wasteful for a run-unit

to have control over more of a resource than it actuallyneeds,

although it can be safer for group updates. 	By requiring

a run-unit to lock at the area level, it can therefore have

control over the -,-.rhole area even though it may only be updating

one record. 	This can lead to very inefficient sharing and

limit concurrency. 	As was indicated in Section 5.2.3, the

area has now been replaced by the realm and the storage-area.

The role of the realm is still evolvin, but it is possible

that the final result together with the storage-area will

remove The anomalies described above.

5.3.2 The role of schema and subachema

CODASYL regards the schema as a description of the

-80-

entire database and the subsc.hemas as descriptions of portions

of it required by various applications. 	The main objective

here is to give the users access only to the data they actually

require, both in order not to confuse them with irrelevant data

and also to provide a certain measure of security. 	The hope

is also that such a structure will provide a degree of data

independence, i.e. that changes made to a database which do

not involve the data used by particular application programs

should not necessitate changes to those programs. 	However,

Dee et al [281 found that as their CODASYL database grew

and the schema was altered, programs had to be changed which

did not use the new data.

Essentially, a CODASYL subschema consists of portions

of DDL copied from its parent schema with a few minor alterations,

e.g. privacy information, attributes of data items, method

of selection of member records of sets (see Section 5.2.1).

This is very restrictive. 	If, the subschema is-intended to

represent truly te view of the database by a particular

application, it is not unreasonable to expect greater flexi-

bility. 	It would be desirable to allow the user to define

new sets in the subschema. 	Also the only major difference

allowed between the subschema record and its parent schema

record is the omission of certain fields in the subschema

record. 	The order of fields may also be changed and the

attributes of data items. 	It would be useful to be able

to form new record typesin the subacherna whose fields may

be drawn from. a number of different 	rent schema records

without restrictions. 	A natural extension to this new subschema

record t'pe would be to allow the definition of new sets

in the subsehema. 	The ramifications if this are discussed

in more detail in a later chapter.

5.3.3 Sets

In [381 Professor King cites the example of a restriction

in the CODASYL Peport on the use of sets. 	Consider a data-

base containing peoples names and their interests. 	There

would be two record types, PERSON and INTEREST and two set

types; PERSON-INTEREST with owner PERSON and member INTEREST,

which links one person to all his interests and the inverse

INTEREST-PERSON with owner INTEREST and member PERSON, which

links one interest to all the people with that particular

interest (see Figure 5.).

EREST -A

PERSON-1

INTEREST-B

INTEREST-A
PERSON-2

INTEREST-B

INTEREST-B

PERSON-3 	INTEREST-C

I NT.E PEE T- D

PERSON-1_

INTEREST- A

PERSON-2

GITEREST-D PERSON-3

Figure 5.4 Occurrences of the PERSON-INTEREST set and the
INTEREST-PERSON set

-82-

Take member record occurrence INTEREST-B (of the

set) and it will be found to be a member of three occurrences

of the PERSON-INTEREST set, owned by different owner record

occurrences, PESON-1, PERSON-2 and PERSON-3. 	The same is

true in reverse in the INTEREST-PERSON set. 	Such a situation

is expressly forbidden by CODASYL. 	The reason for this

restriction is said to be that if member record INTEREST-B

had been selected and the DBMS was then asked to find its

owner, the system would not know which of these owners to

choose. 	It has been shown in [8] that the problem can

be circumvented by the introduction of a redundant relation

record. 	Such a solution is not within the spirit of a

DBMS which aims at the elimination of as much redundancy

in the database as possible. 	A proviso should be added

here that in some situations such a link record may have 	-

valuable significance and be an important part of the logical

structure of the database.

5.3.4 Index structures

A major omission from the .CODASYL proposals which has

received widespread criticism is the lack of any provision

for an index structure or associative mechanism. 	Such a

facility would be based on records themselves using record

keys and would be independent of how the sets themselves

are(chained together (see Section 5.2.4). 	Index structures

such as the Index Sequential file orgnization,r inverted

files and associative mechanisms such as hashing techniques

are well-known and widely used and could be employed to great

advantage in a DBMS.

-83-

CODASYL does provide for a record location mode (CALC), a..

type, of hashing function, which could be implemented as an

Index Sequential organization, but the necessary removal (since

the April 1971 Report) of database keys from the user's view,

means that it would not be possible for an application program

to exploit this knowledge. 	Alternatively, an index mechanism

on a sorted system-owned set could be used to equate to ISAM.

CODASYL also makes no provision for the implementation of

a content-addressing mechanism. 	The provision of such a facility

is becoming increasingly important as users move further away

from viewing data in terms of physical representation on storage

towards seeing it in.terms of its representation of the real

world.

CHAPTER 6

VIRTUAL NMOY AND DATABASE NANAGEMEIIT SYTEMS

6.1 Introduction

During the last ten years there has been a general move

away from conventional operating systems towards virtual memory

systems. 	This trend is not so apparent in the literature on

DBNSs (e.g. CODASYL proposals) and yet the type of operating

s,Tstem underlying the DBMS is of vital importance to the design

and efficient operation of the DBMS. 	'hi' chapter consists of

a brief discussion of some of the aspects of virtual memory

systems which are significant from the point of view of a DBMS.

6.2 Virtual memory systems

In the early days of computing the only memory device

directly available to the executing program was main memory

(core storage). 	The programmer therefore divided his program

into a number of sections which would overlay one another in

main memory. 	With the advent of high level programming lang-

uages and increasingly complex overlay strategies, an automatic

storage management system became essential and a consequence of

multinrogramming. 	The introduction of multi-programming systems

with their associated problems of resource sharing, in particular,

the memory resource, together with the desire to achieve

independence for programs led to the development of a storage

-85-

allocation system which became known as virtual memory [391.
In a virtual memory system, the programmer has the illusion

that he has available to him a very large one-level store,

which appears to him as main memory. 	In fact, this virtual

memory consists of a hierarchy of storage devices composed of

main memory and usually magnetic drums and discs. 	All address

references in the program are virtual addresses and it is

only when the program is actually executing that the system

translates them into physical machine addresses.

Of fundamental importance in a virtual memory system is

the concept of a page, which is the unit of storage which is

transferred between the levels in the storage hierarchy. 	Thus

if an executing program requests a particular piece of data,

the whole page on which the data is to be found will be

brought into main memory. 	Clearly, the choice of page size

is vital. 	A small page size could minimize the amount of

unnecessary information brought into main storage, whereas a

large page size could be more efficient [2+o]

Much of the literature on DBMSs and virtual memory systems

is concerned with the effects of using buffer pools in an

attempt to reduce I/o accesses to the database [L+i, 42, 43,
kkl. 	These pools are commonly used in non-virtual systems by

programs requiring a lot of I/o. 	Sherman and Brice [i] point

out that an increase in the buffer space may cause a decrease

in performance due to increased competition for real memory

between program and buffer. 	They analyze the effects of

different algorithms for buffer management and page replacement

as well as the effects of varying the size of buffer space

and real memory. 	The results are compared on the basis of -

-86-

the cost of running a DBMS, where cost is defined to be the

sum of the number of database faults and page faults. 	A

database fault occurs when a requested database address is not

found in the virtual buffer, while a page fault occurs when a

requested virtual memory addrss is not found in real memory.

The use of buffers in virtual memory systems can therefore

give rise to a phenomenon known as double paging which occurs

when a database requet gives rise to both a database fault

and a page fault. 	Sherman and Brice concluded that the

advantages, in terms of increased efficiency, of virtual

buffers can overcome the disadvantages of double paging

resulting from their use.

A detailed study of the effects of different page

replacement algorithms for relational databases has also

been done by Casey and Osman [1+5].

6.3 Direct mapping of the entire database onto virtual memory

The theory and literature on virtual memory re.g. 1+61

is mostly concerned with the analysis of program behaviour

rather than data usage. 	The principle of locality, which

has been observed experimentally, states that a program

favours a subset, of its pages and that this set of favoured

Pages changes membership slowly. 	The aim of the Database

Administrator is to establish just such a locality in the

physical mappinm of the database to secondary storage.

A goal of a virtual memory system is to minimize the

number of pa -,-e faults (i.e. the number of times an executing

-67-

program requests a page which is not currently in main memory);

each fault requires an access to secondary storage, albeit to a

fairly fast device such as a magnetic drum. 	In the same way,

a goal of the Database Administrator is to minimize the number

of accesses to secondary storage.

In any DBMS, the method of mapping of the data to secondary

stora:e is critical to the efficiency of the system. 	An

intuitive approach to this mapping in a virtual memory system

would be to map the database onto the whole virtual memory and

leave.the virtual memoy system to handle the entire physical

management of the data. 	There are four main reasons why such

an approach would be undesirable:

limitation of the size of the database to the size of virtual

memory

non-locality of access

privacy constraints

data integrity problems.

63.1 Database size

The database would be limited to the size of virtual memory

less the space required by the program and the system. Although

the 32-bit address machines now available would accomodate the

majority of databases in use today, there would still remain

a few which were too big. 	The number of these very large

databases is bound to grow, but at the same time the vast majority

of new databases will be much smaller. 	Also, it is quite

conceivable that 2-dimensional virtual memory systems will be

introduced which have 32 bits to identify the segment and 32-bit

ac34resses within each segment. 	These systems would undoubtedly

-88-

accomodate all the databases to be designed in the foreseeable

future.

However, the virtual memory would have to contain not

only the database, but also the DBMS routines, application

program, tables, indexes etc. plus system routines and data.

6.3.2 Non-locality of access

As was stated earlier, it has been shown that programs

do exhibit locality of access [46], but it seems unlikely

that the same would be true of database usage. 	For example,

by definition, transaction processing on a large database, shows

no locality of access. 	Thus mapping the database directly onto.

virtual memory derives no advantage from the automatic memory

management facilities in the virtual memory Operating System,

which depend, in part, for their efficiency, on locality.

6.3.3 Privacy constraints

Most virtual memory (VN) Operating Systems (e.g. the

Edinburgh Multi-Access System [L?i) have more than one level

of access to a process' virtual memory. 	For example, the

system may access the entire VM, while the user process may

access only part of it. 	The users of the DBMS do not have

uniform rights of access to all the data in the database. 	Thus

the database could not be mapped directly onto a single level

of virtual memory. 	In fact, several levels would be required

and with privacy controls operating at area, record and field

level,'this could be very complex. 	The DBMS would still have

its l.-:n privacy controls (see Section 3.5) in addition to the

automatic security provided by the VM OS through the various

-89-

levels of access. 	However, if a sensitive data field, record

or area is mapped directly onto a process' VM, it is easier to

bypass the DBNS and so gain illegal access.

6.3.4 Data integrity

Of all the reasons given above for not mapping the database

directly onto the VM, perhaps the most important is the fourth,

namely, the difficulty of ensuring data integrity. 	Consider,

for example, a transaction which involved several changes to

the database, which together formed a single logical unit. 	In

order to guarantee the integrity of the database, either all

the updates involved in the transaction are completed or none.

In a VM OS this would be impossible. 	An update operation is

complete and secure only after the page involved has been

written back from VM to secondary storage. 	In a group trans-

action, altered pages will be written back to secondary storage

at irregular time intervals, depending upon many factors,

including page fault patterns, processor allocation etc. 	It

would therefore not be possible to ensure that all the updated

pages involved in the transaction are written back to secondary

storage at the same time.

6.4 The subdivision of database for storage mapping

Since it is not advisable to map the entire database

directly onto VM, it is necessary to subdivide the database

into units for storage. 	In the same way, the Database Admin-

istrator (DBA) running on a non-virtual memory system must

divide the the database into CS files. 	In fact, the difficulties

are the same for both systems - namely, the conflicting require-

ments of the various applications for physical record placement

and the DI3A's desire for overall efficiency.

Having divided the database into several large physical

sections, the VM system itself becomes significant. 	In a non-VII

system, records in files are grouped together into I/o blocks,

each block being the same size in order to reduce secondary

storage accesses. 	This is no different from the VM system

dividing the files into fixed size pages. 	Thus although, from

the programmer's view, the entire file appears to be in main

memory and all records equally rapidly accessible, in reality,

as Stacey in [1+81 points out, the two-level storage environment

still exists with the penalty of secondary 'storage accesses.

It is worth noting the usefulness of the concept of a

Frame, as described by Senko in [1+9]. 	The frame provides a

unit for the physical grouping of space allocation, record control

fields etc., which may map onto one or more pages in VII.

6.5 Concluding remarks

The Vhsvstem• mives the application programmer the illusion

of a one-level storage system with all advantages. 	The

DBiS designer and DPI, however, have to take into account the

fact that the storage system only appears to consist of a single

level, whereas in reality it is composed of at least two levels.

Thus the penalties of data transfer betw: en secondary and primary

storage which exist in non--k,,'1` systems, must still be considered.

The problems problems of devising efficient methods for both the

subdivision of the database into storare units (files) and

for physical record placement, still exist whether or not the

DBN3 is running on a VN system.

In the final analysis, however, although the VN system

may not solve any of these difficult problems for the DBMS

designer and the DBA, it undoubtedly makes the solutions

simpler. 	Thus wh:i.le they must bear the multi-level storage

environment in mind, the DBIJS files can still he handled

through the VM system.

PART II

THE DESIGN OF EDMIS

-93--

CHAPTER 7

THE OVERALL DESIGN OF EDAMS

7.1 Introduction

The second part of this thesis is conce:Lned with a descrip-

tion of a database management system called EDAMS (EIAS Database

Management System) designed to run on the Edinburgh Multi-Access

System, EMAS (see Chapter 10).

EDAMS is based on the CODASYL proposals [i, 19, 321 although

there are several fundamental differences. 	Rather than

describe EDAMS in detail, the main differences between EDAMS

and CODASYL will be explained and discussed in this part of the

thesis.

7.2 The role of the EDAiS schema and subschema

The role of the CODASYL schema and subscherna was discussed

in Section 5.3.2 and also the changes proposed by DBAWG [34] in
Section 5.2.1+ following the introduction of the storage schema.

EDAMS takes a different view of the relationship between the

parent schema and its suhschemas.

The _"DA-VIS schema is a description of all the entire data-

base. 	For simpicity, in the initial version of EDAMS, the

schema is seen as a description of :he complete physical data-

base, i.e. of the records themselves and the fields they contain.

This is not. an essential restriction, however, since a DBAG-

type storage-schema could easily be placed underneath, thereby

providing three levels of data description - storage-schema,

schema and subschema. 	Thus the EDANS schema is a description,

in terms of records containing fields, of the pool of data

available to the user community. 	With this view of the schema

it becomes irrelevant whether or not one schema record is

physically stored as a single storage record.

In order for the user to be able to uniquely identify

each schema record, it is necessary for the DBA to define one

field of each schema record type as a schema record key. 	The

keys must be distinct for all records of the same type. 	It

is most unlikely that, the D]3A will have to add an extra field

to a record for the key, since good database design generally

insists that records be distinguishable from within (i.e. apart

from system-assigned database keys).

The EDAMS suhschemas are descriptions of the logical portions

of the database required by various ar.plications. 	All oper-

ations on the data in the database are carried out via a sub-

schema. 	No direct access through the schema is possible. 	It

is important to realize that the subschema does not simply

Provide the user with a window into the database. 	If this

were not so, then the storage and deletion of data in the data-

base would only involve making the window bigger or smaller,

i.e. adding or removing data from the user's view. 	It would

not involvephysical changes being made to the database itself.

It is more accurate to think of the EDMAS subschema as

providing the user with a door into the database through

which the user can see, but can also gain access, if he has

the right key.

-95-

There are two major consequences of these altered roles for

the EDMS scheirka and subschema:

introductioi of the subschema logical record

alteration of the role of the set in the schema

7.3 The EDANS subschema logical record

It was pointed out in Section 4.3.2 that the rules

governing the derivation of subschema records from parent

schema records are very restrictive under the CODASYL proposals.

The order of fields in the subschema record may be altered,

certain fields may be omitted completely and the attributes

of data items may be changed. 	EDANS removes these restrictions

entirely by introducing the subschema logical record.

A subschema logical record is a record whose fields may

be drawn from a number of different parent schema records as

shown in Figure 7.1.

schema record 1 	schema record 2 	schema record 3

1.1 	1.2 j 1.3 1i.4.1.5 1 	1 2,/ 	 I3I I3.2 13.3 1

v .
11,2 _L1

subschema logical r•cord

Figure 7.1 Derivation of subschema logical record

The netiod of formation of subschema logical records is discussed

in detail in Chapter 8.

All records in the EDAMS subschema are regarded as

-96-

logical, in the sense used above. 	A CODASYL-type subschema

record can be defined by simply selecting the fields of the

logical record from a single schema record as shown in Figure

7.2.

schema record 1 	schema record 2 	schema record 3

IL_ 	 [I1321 3. 3J 3

F3 F3.3k21
subschema logical record

Figure 7.2 Subschenia logical record derived from single
schema record•

7.4 Sets in EDAMS

In the CCDASYL proposals, sets may only be defined in the

schema; a subschema may use the sets of its parent schema, but

may not create ne: ones. 	The introduction of the subschema

logical record in IDA•iS requires that this structure is

altered. 	EDAMS therefore allows the user to create new sets

in the subschema to link together the logical records.

It was stated earlier that all EDAMS subschema records

are regarded as being, logical and are treated in the same way.

The question therefore arises as to whether or not sets should

be removed entirely from the schema. 	It is cleerly not

essential to confine the definition of sets to the subschema.

But in order for the schema set to have meaning in the subschema,

it would be necessary for the owner and member records in the

97-

subschema to be subsets of the owner and member records in the

schema. 	In other words, the subschema logical records would

have their fields drawn from one and only one schema record,

as illustrated in Figure 7.2.

EDAMS treats each subschema separately. 	No sharing of

logical records or sets between suhschemas is possible. 	There

are two main reasons for this. 	Firstly, the first subschema

to define the new logical record or set would in a sense be

dictating its structure to a second subschema which wished

to use that record. 	Such an arrangement would be satisfactory

if the second subschema were a subset of the first, but this

would not generally be the case. 	The second problem assoc-

iated with subschema sharing is the difficuitof deciding

what rules should apply to such sharing. 	Should the logical

records be identical in all respects, including field order

and attribute? 	Or should the rules which operate between the

CODASYL schema records and its derived .subschema records apply?

For example, suppose subschema SSI defined a record composed

of fields Fl, F2 9 F3 and F4, which subsequently subschema SS2

discovered would also be useful, but omitting field F2. 	If

the COI)ASYL-type rules applied then subschema SS2 could use the

record. 	If, on the other hand, it was subschema S32 which had

first defined a logical record composed of fields Fl, F3 and

FLf, then with CODASYL-type rules subschema Si could not use

the record. 	Of course, it would be possible using the EDANS

rules for the formation of logical records for subschema SSI

to form a 'logical logical record, so to speak, by adding

field F2. 	A hierarchy of subschemas could be envisaged but

it is easy to see how confusing the situation could become.

C)

2

Given the structure of EDMiS, if several subschemas wish

to use the same logical record (or even just a group of fields

e.g. Fl, F3 and Fk in the above example) then it would surely

be more efficient to reorganize the schema so that the fields in

the logical record, or part thereof, are grouped together to

form a new schema record. 	The advantages of an underlying

storage-schema, whose records are based on subschema records,

become clear in such situations.

The same problems also arise with the sharing of sets

between subschemas which make it impractical in EDANS. 	Return-

ing therefore to the question of whether or not sets should

be allowed in the EDANS schema, it becomes apparent that unless

they are permitted, no sharing of relationships between data

will be possible in EDAMS - other than the mere juxtaposition

of fields in a record (physical or logical). 	This is clearly

unsatisfactory and could lead to an unacceptable level of

duplication between subschemas. 	Moreover, although the set

is a logical concept and therefore does not perhaps belong

in the schema, the fact remains that certain relationships

between records are inherently part of the structure of the

database. 	For example, all the various records pertaining

to one employee, or one project do belong together, no matter

what the application. 	In other words, the set itself carries

information which has to be stored somewhere. 	Thus EDANS

retains the set at schema level while, at the same time,

allowing the user to define new sets in the subschema.

7L1 Use of schema sets in subschemas

It is necessary now to examine the rules which govern

-99-

the use of a schema set in a subschema. 	CODASYL rules restrict

the subschema records to be subsets of their parent schema

records. 	Thus sets which link together schema records will

be meaningful in the subschema. 	The situation in EDAMS is

complicated by the SLR. 	Consider the diagram below in Figure

7.3 of schema set S.

schema owner

schema set S 	
Joi 102.

schema member I 	schema member 2

Figure 7.3 Schema set S

Suppose three SLRs which contain fields from the owner and member

records of schema set S, as shown in Figure 7.4

°'l°I IJ
subschema record 1

z
IMF 	1

subschema record 2

IM5fi
subschema record 3

where-Y indicates fields from records which are not part of

schema set S

Figure 7•4 SLRs derived from records in schema set S

In Figure 7.4, two fields in subschema record I are taken from

the schema owner, two fields in subschema record 2 are taken

from schema member 1 and one field in subschema record 3 from

schema member 2. 	Thus the schema set S could still be meaning-

ful in the subschea, as. shown in Figure 7.5.

-100-

subschema set

subschema owner

1 01 1 031*l*fr
subschema record I

J-
subschema record 2 subsceham record 3

Figure 7.5 Subschema set S

If, however, the SLRs contained a mixture of fields from the

schema owner and schema member records, the use of the schema

set S in the subschema is confusing, as shown in Figure 7.6.

Lr i I1 	I23 	 I
subschema record 4 	subschema record 5 	subecherna record 6

Figure 7.6 Alternative SLPs derived from records in schema set S

Subschema records 4 and 5 each contain fields from both the

schema owner and member record of set S. 	It is therefore not

obvious which should be the owner and which the member, if the

subschema set S were to be established.

The purpose of retaining the schema set in EDANS was to

enable sharing of sets as well as data across subschemas. 	Thus,

it would not he illogical to restrict the subschema records

defined as forming iart of the schema set, to be subsets of their

parent schema records, i.e. sincle-source SLIs. 	As Figure

7.5 shows, this restriction is more severe than is absolutely

necessary. 	It would be possible, for example, to insist that

the subschema owner record contained at least one field from

the parent schema owner'•record and that each subschema member

-101-

record contained at least one field from its parent schema

member record. 	Other fields in the suhschema records can be

drawn from anywhere in the database. 	However, the more

severe restriction , of single-source SLRs, is more straightforward..

Above all, however, this restriction also applies to other

uses of SLRs, as is shown in Chapter 9. 	It is clearly much

simpler to have one restriction applied in all necessary

situations, rather than one restriction in one group of

situations, another restriction elsewhere and so on. 	The

restriction is, in fact, the same as that which applies between

CODASYL schema and subschema records..

7.5 Areas in bDANS

In Section 5.3.1 the difficulties associated with CODASYL

areas were discussed. 	The area performs directly or indirectly

all the following functions:

(a) provides the basic access and locking mechanism

(h) divides the database into both logical and Physical

sections

(c) provides the mapping between the database and the Operating

System files.

The area is basically a physical concept, yet CODASYL requires

that :he user is aware, in certain circumstances, in which

of a number of areas, the record h 	o

	

e rcuires is located. 	The

user should not be required to possess such information.

"'he replacement of the area by the realm and storage-area

in thecur:•:ent CODA3YL position, has helped to rsmove some of

-102-

the anomalies. 	The realm is moving further away from physical

storage and is being seen more as a logical subdivision of

the database. 	In this way, the idea of overlapping realms,

as mentioned in Section 4.4.1, becomes feasible.

In EDAS the role of the area/realm is more complex

because of the introduction of SL2s. 	However, the distinction

between realm and storage-area becomes sharper. 	The storage-

area is a physical entity and is defined as a subdivision of

physical storage. 	Thus the storage-area belongs in the EDAMS

schema, at least initially, when there is no separate "DAMS

storage-schema. 	The realm, on the other hand, as a logical

concept, belongs in the EDANS subechema. 	EDANS SLPs may be

assigned to one or more realms. 	This assignment

is defined when the logical record is defined in the subschema

DDL. 	The rule for the assignment can be based upon a number

of criteria:

logical record type - all logical records of that type

are assigned to one realm

set membership - all members (and owners) of a set are

placed in a given realm

field values - realm assignement is based upon the value

of a particular field in the logical record.

Hence realms may overlap. 	The EDAhS realm can therefore

be thought of as a shorthand for referring to a group of

(logical) records, other than by content. 	It can be used as

a logical device, in addition to the algorithm which is

discussed in detail in Chapter 10 and as a unit for privacy

cont.- 01.

-103-

CHAPTER 8

THE RMATION OF SIJBSCHENA LOGICAL RECORDS

8.1 Introduction

The EDAMS subschema logical record is composed of fields

drawn from one or more parent schema records. 	Such a tool

is potentially very powerful but if the database were badly

designed, severe inefficiencies could result. 	One logical

access to the database could require several physical accesses

to collect the fields together comprising the logical record.

In a two-level architecture, i.e. schema and subschema in the

initial version of EDANS, the aim would be to ensure that the

fields of frequently used logical records are drawn from a

single parent schema record. 	The advantage of a three-level

architecture comes from relating subschema and storage-schema

records, i.e. not schema and storage-schema or schema and sub-

schema. 	The reason for this is that the database is always

accessed through the subschema.

One of the main objectives of this thesis is to provide

the user with much greater flexibility at subschema level.

The EDAMS subschema logical record (SLR)plays a major role

in the provision of this increased flexibility. 	Before

discussing the use (retrieval ard update) of SLRs by the

application programmers and high level users, it is essential

I o examine the method of formation of SL?s as defined in the

subschema DEL.

8.2 The use of the relational approach

Consider the portion of a sample database given in Figure

8.1 below.

SCHEMA

NAMJ ADDRESS EMPNOJ 	IJ.2EL1ST_SAL L2D SAL
PERSONAL-INFO 	 PAY-HISTORY

SUBSCHEMA FOR PAYROLL APPLICATION

NANE__A)DRESS ICUPSALI

PAY REC

Figure 8.1 Portion of a sample database

A structural definition of the SLR PAYREC would be given in

the PAYROLL subschema DDL as follows:

DEFINE RECORD TYPE PAYPEC;

FIELD I IS NAME; SOURCE IS NAME FIELD OF RECORD TYPE

PERSONAL-INFO

FIELD 2 IS ADDRESS; SOURCE IS ADDRESS FIELD OF RECORD

TYPE PERSONAL-INFO

FIELD 3 Is CURSAL; SOURCE IS CURSAL FIELD OF RECORD

TYPE PAY-HISTORY

Figue 8.2 Definition of SLR structure

This definition defines the source record types, namely

-105-

PERSONAL-INFO and PAY-HISTORY, for the formation of the PAYREC

SLR. 	It does not, however, specify the rules for associating

a particular occurrence of a PEPONAL-INFO record with a

particular occurrence of a PAY-HISTORY record to generate

the corresponding occurrence of the PAYREC SLR.

EDAMS uses two methods, which can be used separately or

together, to solve the problem of source record identification.

Both methods incorporate some useful features of the relational

model [id. 	The first method is based on record.-, and the

second on sets.

The relational data model has already been discussed

in Section 3.2.3, but the operations which can be performed on

relations were not discussed in that section. 	Two operations,

JOIN and PROJECTION, are of interest. 	The JOIN operation

is simply a means of combining two relations on a common

domain (field) and PROJECTION is a means of selecting desired

domains from a relation. 	Consider the example given in

Figure 8.3

supp(supplier part) 	part(part project)

1 	1 	 1 	1

2 	2 	 2 	if

2 	3 	 3 	2

Figure 8.3 Two joinable relations

The join of supp and part would be the relation P in Figure- ..-.-

0
U.

-106-

R(supplier part project)

1 	1 	1

2 	2

2 	3 	2

Figure 8.Lf The join of relations supp and part

Consider the relation supply(supplier, part., project, quantity)

as shown in Figure 8.5.

supplr(supplier part project quantity)

1 2 5 17
1 3 5 23

2 3 7 9
2 7 5 L.

1 1 12

Figure 8.5 The supply relation

The projection of the supply relation over the domains (supplier,

project) would be the relation S shown in Figure 8.6.

"(supplier project)

1 5.
2 7

2 5

4, 'l

Figure 8.6 The projection of supply over (supplier, project)

8.2.1 Record-based formation of subschema logical records

The record-based formation of SLRs regards the schema

record types as relations and forms a series of joins (and

-107-

projections, if necessary) on them in order to form a new

relation, the required set of SLR occurrences.

Consider the sample database given in Figure 8.1 above.
To form the PAYREC SLR, the following statement is all that is

required:

JOIN PERSONAL-INFO; PAY-HISTORY ON EMPNO TO FOi•M PAYREC;

This would result in a set of records containing the NAME and

ADDRESS fields from the PERSONAL-INFO record, EMPNO from both

(common field) and CURSAL, 1ST SAL and 21-ID SAL from PAY-HISTORY.

It is therefore necessary to select the required fields. 	This

can be done either by means of individual field listings as in

Figure 8.2 placed before the JOIN command or, alternatively,
by making use of the relational operation of PROJECTION:

JOIN PEiSONALINFO, PAY-HISTORY ON EMPNO TO FORM TEMPIREC;

PROJECT TENPRI C OVER NAME, ADDRESS, CUPSAL TO FORM PAYREC;

Although projection is undoubtedly a much shorter way to describe

the selection operation, the more verbose DDL of Figure 8.2 might
be useful when information other than the field's inclusion in

the SLR is required, e.g. privacy information, field character-

istics where they are different from the schema and so on.

In the above example, the EMPNO field will be a unique

identifier for both sets of records. 	Thus two different

employees could not have the same EMPNO. 	For every value of

EMPNO, there will be only one matching pair of PERSONAL-INFO

and PAY-HISTORY records. 	Such a join is known as an eguijoin.

- 	If, however, the "joining" field is non-unique, then the EDAFIS

rule is to generate all possibl: pairs.

Consider the following example given in Figure 8.7 below.

-108-

Record Type A 	 Record Type B

Occurrences 	 Fields

Fl F2 F3 	 F4 F5

1 	7 	3 	2 	 7 	9
2 	 8 	4 	9 	 7 	6

3 	 8 	1 	0 	 7 	3

9 	2 	1 	 .9 	5
5 	9 	7 	6 	 9

Figure 8,7 Two "joinable" relations A & B where cardinality

increases

The result of a join operation on the above relations, Record

type A and Record type B:

JOIN RECORD TYP1; A, RECORD TYPE B ON Fl TO FO-RM RESULT;

is given in Figure 8.8 below.

Result

Occurrences 	 Fields

Fl 	F2 	F3 	F5

1 	 7 	3 	2 	9

2 	 7 	3 	2 	6

3 	 7 	3 	2 	3

'-f 	 9 	2 	1 	5

5 	 9 	2 	1 	1

6 	 9 	7 	6

7 	. 	9 	7 	6

Figure 89 Join of relations A & B

Thus every possible combination of records is produced based

on the common field over which the join takes place.

-109-

8.2.2 Set based formation of subschema logical records

The second approach to the formation of SLRs is based

upon the set membership structure of the parent schema records

from which the SLRs are derived. 	Once again, the relational

model is used except that in this case the "handle" for the

join operation is a set type rather than a field type.

Consider the employee database given in Figure 8.1

and suppose there is a schema set called EMPLOYEE of which

PERSONAL-INFO is the owner record and PY-HISTORY a member,

as shown in Figure 8.10.

EpALTh'FO

E1-11PLOYEE SET

PAY-H I STORYJ

Figure 8.10 Employee schema set structure

The subscherna DDL for defining the PAYPEC SLR could then be:

DEFINE RECORD TYPE PAYREC

FIELD 1 IS NAN.; SOURCE IS NAME FIELD OF RECORD TYPE
PERSONAL-INFO OWNER OF EMPLOYEE SET;

FIELD 2 IS ADDRESS; SOURCE IS ADDRESS FIELD OF RECORD.
TYPE PERSONAL-INFO

FIELD 3 IS CU RSAL; SOURCE IS CURSAL FIELD OF RECORD TYPE
PAY-HISTORY MEMBER OF EMPLOYEE S;T;

JOIN PERSONAL-INFO, PAY-HISTORY HRU SET EMPLOYEE TO FORM
TEMP EEC

PROJECT TENPREC OVER NAIIE,ADDRJ:SS, CUPSAL TO FORMPAYREC;

Figure 8.11 DDL for set-based formation of PAYBEC SLR

The fact that PERSONAL-INFO and PAY-HISTORY have a common field

-110-

is irrelevant. 	The join operation will cause the two schema

records PERSONAL-INFO and PAY-HISTORY, to be merged to form the

SLR PAYREC, according to the schema records occurrences in the

EMPLOYEE set.

8.2.3 Selection expressions

Not only is it possible to use a combination of the two

approaches described above, but also to introduce selection

expressions to produce subsets of the join. 	For example,

JOIN PERSONAL-INFO, PAY-HISTORY ON ENPNO WHERE CIJPSAL <

10000 TO FORM TEMPPEC;

Only those PAY-HISTORY records for which the CUBSAL is less

than 10000 will be included in the join.

The implementation of the EDAMS SLR is therefore making

extensive use of the relational approach to DBMSs. 	This has

the advantage of retaining the flexibility and data independence

of the relational model without detracting from the CODASYL

user model. 	It is worth noting that the relational sublanguage

described above is highly relevant to data retrieval and query

languages.

8.3 Derived fields

It is debatable whether derived fields (SOURCE and RESULT)

should be permitted in the EDAMS schema at all. 	To allow the

existence of VI-:TUAL field would be confusing considering that

all EDANS subschema fields are VIRTUAL in one sense. 	The

CODsYL ACTUAL SOURCE and RESULT fields are physically storeO.

-111-

in the database and hence their inclusion in the EDAMS schema

is reasonable. 	CODASYL insists that a SOURCE field must be

derived from a field in its owner record but such a restriction

would be insufficient in EDAMS, since not all schema records

belong to sets. 	Record type alone is not enough to uniquely

identify the source record. 	An .F.DAMS ACTUAL SOURCE field can

be derived from a field in any schema record type. 	To uniquely

identify the source record, EDANS uses the schema record key

(see Section 7.2). 	The paramters for an EDAMS ACTUAL RESULT

field can be taken from anywhere in the physical database,

as in the CODASYL proposals.

8.3.1 Time of calculation of ACTUAL derived fields

The time of calculation of derived data items is important

since it affects not only the efficiency of retrieval and update,

but also the integrity of the database. 	It is not necessary,

nor is it possible, to insist that the values of two duplicated

fields be identical at all times, but rather only when they are

expected to be identical, i.e. whenever an application program

needs them. 	However, in order to ensure the integrity of the

database, it is necessary to insist that if the two fields differ

at any moment, e.g. after system failure, there must be some

rigorous means of telling which of the two versions is correct.

CODASYL allows the derived data item to be updated, hence

altering the source as well. 	This therefore implies that

the two fields have equal status. 	Thus the only way to

ascertain which version is correct in the event of a disagree-

ment is to use the journal tapes, which is in keeping with the

resolution of other update anomalies which might occur following

-112-

a system failure.

There are two possible approaches to when the value of

a derived field (source or result) should be calculated, namely:

only when the derived field is actually accessed

every time the source is altered for a source field

and every time any parameter is altered for a result field.

The first of these two alternatives (a) has the advantage

that re-calculation of the derived data item takes place only

when absolutely necessary. 	However, which of the two approaches

operates more efficiently overall depends on whether the

derived item is read more often or written more often. 	If

the item is written more often, then the first approach would

be better. 	However, this raises the question as to why the

duplicated field was necessary, if it is not used very often.

The main reason for the repetition of fields is when it is

worthwhile because of high access frequency (see Section 3.4.4)

in order to improve the efficiency of retrieval. 	If the

derived field is recalculated only when the field is accessed,

then this will add an overhead to the retrieval operation.

At the very least, a check will have to be made as to whether

or not the source field has changed since the derived field

was last updated. 	If the source field has altered, then it is

necessary to change the derived field. 	There is also the

overhead of storing flags of some sort to indicate changes

to the source. 	On the other hand, no such operations are

required if the second approach (b) is adopted, namely the

recalculation of the derived field takes place at the same time

as the source field or result parameters are updated; this

, o -L 	be treated as a group update. 	Thus the derived field

-113-

always contains the up-to-date version of the item.

These considerations therefore favour the second approach,

which is adopted by EDAMS (and also by CODASYL), i.e. derived

fields are calculated every time the source is altered for a

SOURCE field and every time any parameter is altered for a

RESULT field. 	Furthermore, EDAMS also allows the derived

field to be updated with the automatic updating of the sorce

field taking place at the same time.

8.3.2 Time of calculation of VIRTUAL derived fields

In EDAK all subschema fields in the logical records

correspond to the CODASYL VIRTUAL SOURCE or to the CODASYL

VIRTUAL RESULT. 	Since the values of VIRTUAL fields are not

physically stored within the record, calculation of their values

can only take place when a GET command involving those fields

is executed. 	Given the relationship between the EDAMS sub-

schema and its schema, it is not meaningful to restrict the

derivation of VIRTUAL SOURCE fields to fields from the owner

record of the set as in the CODASYL proposals. 	Note that the

majority of subschema fields (in logical records) will be VIRTUAL

SOURCE. 	The EDAMS VIRTUAL RESULT field will operate in the

same way as its CODASYL counterpart - namely, parameters may

be drawn from any record(s) in the database (i.e. defined in

the EDANS schema) and calculation takes place only when the

field is actually retrieved. 	An EDAI1S VIRTUAL RESULT field

cannot be the subject of a STORE or MODIFY command.

-ii4-

8.+ Rules for encoding and decoding

For every field in a CODASYL database, encoding/decoding

procedures can be specified in the schema. 	The procedures

can be invoked every time the field is stored (encoding) or

retrieved (decoding) or only when the attributes of the data

item differ from schema to sibschema (USAGE clause). 	The

encode/decode facility can be used for:

encryption/decryption

data compression/expansion

unit changes, attribute variation etc.

In terms of the three-level data description structure, both

encryption/decryption and data compression/expansion could

operate between schema and storage-schema as well as between

subschema and schema. 	EDAMS allows their specification in

both the schema and subschema DDL. 	However, there would seem

little point in using the facility at both levels for the same

field.

Where the third use of the encode/decode facility is

concerned, namely for unit changes and attribute variation,

it would not be logical to allow this to be specified in the

EDAMS schema. 	EDAMS therefore restricts the use of this

facility to the subschema DDL.

8.5 Privacy information

Another ramification of the introduction of the concept

of logical recors in EDANS is the specification of r:rivacy

information. 	In In the original April 1971 DBTG Report [ii, privacy

locks at subschema level overrode those at schema level. 	A

rule such as this is necessary to avoid confusion. 	This

approach, though not entirely logical, has the merit of being

quite straightforward. 	The EDANS schema represents the DBA's

view of the database and it is his responsibility to apply

locks to sensitive data items and records and to supply

approved users with the appropriate keys. 	The question

therefore arises as to whether those locks are applied at

subschema or schema level (see Section 3. 1, Figure 3.1 for

a definition of the hierarchy of DBMS users). 	Consider the

portion of a sample database given in Figure 8.1. 	Suppose

that the current salary, CURSAL, field is sensitive and access

restrictions are placed on it. 	If Jocks were set on CURSAL

in both the schema and subschema, the payroll application

would then have to give two keys each time the CUPSAL field was

accessed. 	This is confusing since the user sees the database

through the subschema only and is not really concerned with

the schema at all. 	The situation in EDAMS is further complic-

ated by the fact that subschema records can be composed of parts

of sevral different schema records. 	Thus multiple keys might

be required to satisfy the schema locks as well as a subschema

lock on the logical record and its fields.

In EDAMS privacy controls exist at two levels:

(a) between subschema and schema

This is to permit the inclusion of sensitive fields and

records in the subschema logical record and could take the

form of restriction iof access to the Data Directory.

Alternatively, locks could be set in the schema DDL for

-116-

which keys, to be checked by the subschema DDL compiler,

would be given in the subschema.DDL.

(b) between application program (and high level users) and

subschema

These locks or privacy procedures are set in the subschema

and are satisfied at execution time - they therefore operate

in the same way as the CODASYL subschema locks. 	Apart

from locks bn individual fields and records in the subschema,

it would also he necessary (as in CODASYL) to have a lock

on the subschema itself. 	Thus only authorized users

could gain access to the subschema.

-117-

CHAPTER 9

OPERATIONS ON SUBSCHEMA LOGICAL PhCORDS

9.1 Introduction

There are four basic operations which can be performed

on data in a database:

retrieval

update - in the sense of the alteration of the value of

an existing field

creation of a new record occurrence

deletion of an existing record occurrence.

All access to the EDAMS database is via a subschema. 	Thus

all the above operations must be carried out•through subschema

logical records. 	Before discussing the operations on SLRs,

it is necessary to describe briefly how SLRs are implemented;

the detailed description of their impementabion is left to

Part III of the thesis. 	The S!1 as it is physically stored

in an •EDAMS database, consists of a series of pointers to

(logical addresses of) the source schema record fields from

which the SLR fields are derived. 	Figure 9.1 illustrates,

diagrammatically, how the sample database given in Figure 8.1

would be physically implemented in EDANS.

-i18-

PERSONAL-INFO 	 PAY-HISTORY

PAYREC

Figure 9.1 Implementation of PAYREC SLR

These pointers are established when the SLR is defined in the

subschema DDL and become part of the permament database as an

entity in the database map (see Section 13.2), until the SLR is

deleted. 	As far as the high-level user of EDMIS is concerned,

however, the PAYREC SLR looks like Figure 8..1 not Figure 9.1.

In other words, the pointers are transparent to the users; they

do not concern him and he does not have access to them.

9.2 Retrieval

The retrieval of an SL-..:' 	straightforward. 	As an example,

consider the retrieval of an occurrence of the PAYREC SLR given

in Figure 9.1, as shown in Figure 9.2.
PERSONAL-INFO 	 PAY-HISTORY

name 	 address 	 ernpno empno salaries
tIN 	ImIc1 I 	PVN ±D ,:DIr BURGH 119264l J1926719815214I369

name address cursal pointers

PAYRLC

Figure 9.2 Diagrammatic representation of an occurrence of PAYREC SLR

For simplicity simplicity, assume that the user has fixed position in the

database. 	A request to

GET NEXT PAYPEC

will retrieve the one belonging to JOHN SMITH in Figure 9.2.

To satisfy this request, EDANS locates the particular PAYPEC,

extracts the pointers (logical addresses) and uses them to

access the physical database in order to extract the required

fields. 	The user is then presented with the record shown in

Figure 9.3 below.

name 	 address 	 cursal
I EU PGH]T7

PAY FEC

Figure 9.3 The retrieved occurrence of PAYREC 3LR

9.3 Update

Update of an SLR, in the sense of the alteration of an

existing field value, is also straightforward. 	For example,.

suppose JOHN SMITH in Figure 9.2 changed his address. 	The

user would specify

NODIFY PAYREC; ADDRESS=4,8 NARCHNGNT RD. EDINBURGH

To obey this command, EDANS follows the address pointer in

the PAYPEC LR and alters the corresponding address field in

the PP3CJ1,AL-INFC schema record. 	The resulting position of

the database is given in Figure 9.4

-120-

PERSONAL-INFO 	 PAY-HISTORY

name 	 address 	 empno 	mono 	salaries

name address cursa]. pointers

PAYREC

Figure 9•4 Updated PAYREC SLR

Note that the PAYRE.; SLR itself has remained unaltered.

9.3.1 Effects of the update

Even a simple update operation such as the one described

above can have repercussions, which may require data in the

database to be altered in addition to the single field which

was the subject of the update operation. 	Consider the following

portion of a company database.

SCHEMA

EMPLOYEE
DEPARTMENT

i-IEA EMPNO EDEP1. rI5j' DEPT IThEPf[NO.ENPS
LODE 	NAME LjGPLIN DEPT

S UBSC HENA

NAiEiFNEPJ'P

L2_L_NNGP

ENFDEP SLR

Figure 9.5 Portion of COMPANY database 1

-121-

Suppose that the SLR had been formed by use of the following

DDL:

JOIN EMPLOYE, DEPARTMENT ON DEPTCODE

The ENPDEP 	SLs are set up when this subschema DEL is

executed. 	Supose, however, that employee TOM BROWN is

transferred from the ACCOUNTS department (code 01) to the

PAYROLL department (code 02). 	Clearly, the simple alteration

in the DEPTCODE field via the SLR and hence in the DEPARTMENT

schema record would result in an invalid database.

Thus before executing an updote, EDAMS must first examine

the field to be updated to ascertain whether it is a key in the

formation of that (or indeed of any other) SLR. 	In the above

example, therefore, REAMS must consult the DDL definition tables

for the formation of EEPDEP SLR. 	Using this information,

EDAMS scans the DEPARTMENT records for the one with DEPTCODE02.

It will then join this with the original EMPLOYEE record for TOM

BROWN to form a totally new occurrence of the EMPDEP SLR. 	In

this case, the formation rules for the EJiPDEP SLR are relatively

simple, but if they involved a nest of join operations, the

whole process could become quite involved.

9.3.2 The update anomaly

Where the subject of the update is the key to the join

operation, it is always possible for EDAMS to interpret the

formation rules for the new OLE correctly. 	It is, however,

possible to envisage a situation where the update of a field,

which is not itself a key to the join operation, results never-

theless in an incorrect: database.

-.122-

Consider, for example, an amended EMPDEP SLH, called

EMPDEP2 as shown in Figure 9.6.

EMPLOYEE 	 DEPARTMENT

!JOHN S~'ITHIJ 41 NEHAVEN 	DINBiTRGII1926Lf [j 	ACCOUNTS LOY

rr: E1E
name empno. deptname

EMPDEP2 SLR

Figure 9.6 Portion of COMPANY Database 2

Note that as before the EMPDEP2 SLR is formed using the following

DDL

JOIN EMPLOYEE, D;PAPTNE;IrT ON DEPTCODE

If JOHN SMITH is moved from the Accounts to the Payroll Dep

artment, EDAMS treats the deptname field in EMPDEP2 as a normal,

non-key field and updates it accordingly. 	The resulting

da.abase is shown in Figure 9.7

EMPLOYEE 	 DEPARTMENT

Ii 926L O1, rol rPTYPOLL !ROYf 31

name ernpno deptname

Figure 9.7 Incorrect COMPANY Database 2 arising from the update

of EMPDEP2

On further examination, it becomes clear that, in

general, the alteration of any ±'i•.ld in an SLP which is formed

as a result of a join operation on two or more schema records,

-123-

can result in an invalid database. 	The one exception to this

is in fact the join key field itself, since EDANS has sufficient

information to select the new schema record to form the new SLR.

There are two possibic solutions to this problem, namely:

to rely on the DRA and users not to specify updates in a form:

which could result in an invalid database

to disallow all update operations on SLRs other than those

which are strict subsets of a single parent schema record.

The first solution of relying on the user and the DBA to

police the system, is clearly totally impractical and can be

dismissed. 	Therefore the second solution of restricting

update to simple SLRs must be adopted. 	This is in some ways

an unfortunate restriction, since it does remove a degree of

flexibility at the subschema level. 	Moreover, many update

oserations can be carried out on SLs without problems, such

as the change of address in the example above. 	However, the

restriction is clearly essential to safeguard the integrity of

the database. 	Furthermore, it will also prove useful in the

third database operation, that of the creation of a new record

occurrence, which is discussed below.

9.4 Creation of a new record occurrence

In DAN a differentiation is ma.e between the addition of

a new logical record occurrence and the storage of one. 	The

addition of a new lo.ica1 record simply consists of establishing

the pointers for the logical records to link in to the existing

fields in the schema records, i.e. no new physical data is

-124-

added to the database; the user is simply adding more data to

his own logical view. 	The storae of a new logical record,

on the other hand, results in new physical data being added to

the database.

To illustrate the distinction between these two operations,

consider the following portion of a physical EDAMS database:

SCHEMA A

EFl:Ti+
record I 	 record 2 	record 3

Figure 9.8 Portion of an EDA'S database

The addition operation is represented by the user who wishes to

add a new logical record to his subschema which consists of

fields 1.1, 1.3, 2.2, 3.2 and 3.5 as shown in Figure 9.9.

i 211.3 ii 	 IILaLsL

L:r J
subschema logical record

Figure 9.9 Addition of new subschema logical record

The second type of operation, storage, is quite different.

Suppose that the new subschema logical record represents data

on an entirely new entity. 	Hence schema records 1, 2 and 3 in

Figure 9.8 would not exist. 	The result of the storage of the

new SLR which consisted of five fields, formed by definition in

t• subschema DUL by a join operation on schema record 1, schema

record 2 and schema record , followed ')y a projection to

select the required fields, is shown in Figure 9.10.

-12.5-

SCHEMA

r.
	 *13,2 	3.5j

\ 	 I 	/
/

[iiNJiI[1 1'
subschema logical record

where * indicates an unassigned field

Figure .9.1O Storage of new subschema logical record

The EDANS storage operation corresponds to the CODASYL STORE.

Fields in the schema record are unassigned if they do not appear

in the corresponding CODASYL subschema record definition for

which the STORE command was issued. 	Of course, the CODASYL

STORE operation can only result in unassigned values being

recorded in one schema record, whereas EDAMS can generate as

many new schema records as there are source records for the

SLR. 	It is as a result of this that a problem analagous to

the update anomaly discussed in the previous section arises.

The difficulty occurs when another SLR is stored which cc.ntains

not only some of the unassigned fields in Figure 9.10, for

example, but also some of those which have already been assigned

as a result of the STORE on the first SLR. 	If these already

assigned fields are updated with the new values, an incorrect

database could result; however, not to update them but at

the same time assign values to the previously unassigned fields

could also result in an invalid database.

The simple solution to this problem is the same as to

the update anomaly, namely to restrict the storage of new records

to those which are a strict subset of a single parent schema

record.

-126-

9.5 Deletion

Corresponding to, the addition and storage operations,

there are the removal and deletion operations, although the

distinction is not so clear-cut.

The removal of a subschema logical record occurrence

implies only its removal from the user's view. 	It cannot

involve the deletion of any physical data from the database

even if the fields involved are not referenced by any other

subscherna.

The deletion of a logical record, on the other hand, does

involve the physical removal of the data from the database. 	The

source fields for all the fields in the SLR are deleted from the

source schema records, i.e. they are flagged as deleted. 	As

with the update and storage of multi-source SLRs, difficulties

can also arise with their deletion, when fields which are keys to

join operations for other SLRs. 	As before, therefore, it is

necessary to restrict the deletion of gLRs to those which are

strict subsets of a single schema record.

9,6 Summary of operations on SLRs

The only operations which can be performed on multi-source

SLRs are:

retrieval

creation

removal

-127--

However, single-ource $LRs can in addition to the above, be the

subject of:

update

storage

deletion.

-128-

CHAPTER 10

CONCURRENT UPDATE IN EDAMS

10.1 Introduction

In the light of all the difficulties associated with

existing solutions to the concurrent update problem in DBMSs,

a ne; algorithm is proposed for EDAMS.

The system is not dissimilar to the Chamberlin et al

scheme [321 described in Section +.3.5. 	There are three

undesirable features of the Chamberlin et al scheme:

by allowing blocked processes to hold locks for records,

single record updaters could be discriminated against and

caused to wait an unnecessarily long time

the algorithm is tedious to implement with a proliferation

of small queues, one for each locked record which has been

requested by another process

arbitrary method of favouring processes,

10.2 The EDAMS algorithm

Under this new method ins;ead of a queue of processes

for each record, there is a single queue of blocke:r processes

awaiting the release of 1ockec rcords by other processes.

As soon as a process has all the records it has requested, it

will be released, regardless of its position in the queue.

All records involved in a group update must he claimed in a

-129-

single seize block, operations within the block being restricted

in the same way as in the Chamberlin et al scheme. 	The position

of processes in the queue is solely determined by their time

of arrival (at a seize block). 	It is necessary to insist

that once the search engine has been allocated to a process, that

process will run until completion of the seize block or until it

is blocked. 	Consider two concurrent processes P1 and. P2:

Search engine allocated to P1

P1 reads and locks records RI and P2

P1 reads P3, but decides not to lock it

Search engine allocated to P2

P2 reads and locks P3

End of search engine for P2

P2 updates record P2

P1 reads and locks R+ and. P5

End of search engine for P1

hile executing the update,P1 finds that F3 has been altered

in such a way that it now satisfies its locking predicates.

Thus in order to ensure that P1 does obtain a time-consistent

snapshot of the database the search engine must be allocated to

P1 until it satisfies all its locking predicates in a single

attempt or until it is blocked because it wants to examine or

claim a locked record.

Consider the following example:

PPCCES:s ON 'UE1JE 	 SET CF LOCK REQUESTS

Pa 	 Wa = 	1,1`2,R3,F4,R5

Pb 	 Wb = [P2,P5,P6,P7,i.8

Pc 	 Wc = R1 ,P5,R6, R9 R 1

where Wi = set of lock requests made by process. P1

-130-

Process Pa is at the head of the queue and assume that all

records are initially unlocked. 	Hence process Pa can be

released. 	The search engine will then examine all the locking

predicates for processes Pb and Pc for the first time and will

ascertain that both are blocked and place them on the queue.

PROCESSES SET OF RECORDS LOCKED SET OF RECORDS REQUESTED

BY PROCESS P1 BY POCESS P1

* 	Pa Ra = 	R1,R21 R3,R4,R5 Wa =

Pb Rb = Wb = 	2,.R5,R6,R7,R8

Pc Pc = Wc 	= {R1,P5,R6,P9,R10
* indicates executing process
Note that the set Ri of records currently locked by process Pi

is null for all processes within their seize blocks. 	Thus a

process is not granted the lock for any record unless it can

obtain all the records it requires in one go and be released.

Assume for simplicity that Pa releases all its records simul-

taneously, although this is not an essential restriction as in

Chamberlin's algorithm. 	Under Chamberlin's algorithm, processes

are permitted to examine the non-updated versions of locked

records and hence if records were released singly instead of

in one go, a concurrent updater could obtain a snapshot of

records some of which are undated versions (released records)

and some of which are not (locked records) (see Section

After the simultaneous release of Pa's record. , the search

engine re-execut eg the locking predicates of Pb and discovers

that all its requests can be met and it is released. 	The

locking predicates of Pc are then examined, but this process

is still blocked.

It

-131-

EXECUTING Pb Rb = jR2,R5 9 P\6 9 R71 R8 	b

Pc Pc = 	 WC = R1,R5 9 R6,1-1,9,Ri0

Pb will then release all its records, allowing Pc to run.

For clarity in the above example, static WI sets have

been used. 	However, in the general case, the locking predicates

will depend upon database content and hence wil. vary with time.

The algorithm is still valid in this situation.

10.3 Indefinite blocking of a process

It is possible under this new algorithm for a process

to be indefinitely blocked, even though it is at the head of

the queue. 	Consider the case where two processes, Pa and Pb, 	-

are concurrently updating the database (their lock sets must of

course be distinct). 	A third process, Pc, is the first process

on the queue. 	Pa releases its records so PC's locking predicates

are re-examined in the light of the newly-released records. 	Pc

finds that It is still blocked as it requires some records

currently held by Pb. 	The requirements of a fourth process, Pd,

in position two in the queue, are then examined and the search

engine finds that all its requests can be met, so it is released.

Process Pb terminates, so once again the lecking prwdicates of Pc

are examined, but it is still blocked since it requires some of the

records now held by Pd. 	The search engine will then move down

the queue and release the next rwocess, if possible. 	In theory,

therefore, It is possible for a process such as Pc to be blocked

indefinitely. 	Although this is unlikely to occur in practice,

-132-

the fact that the system cannot guarantee that all processes will

be released eventually (short of being the only process in the

system) is unacceptable. 	In order to avoid this, it is necessary

to maintain the queue discipline throughout and not release

a process until it is at the head of the queue. 	As in the

case of Chamberlin et al scheme, this could lead to unaccept-

able and totally unneccesary delays for processes which only

want a single known record.

A variation of this situation would result if processes

are allowed to release records one by one instead of all

together. 	Such an approach attempts to meet the requirement

that no process should retain a resource for 'longer than is

absolutely necessary. 	Consider a process Pa which is updating

the database having locked records 	R1,R2,,Pnl. 	Pa

releases Ri, but for consistency must retain

until the update is complete. 	Process Pb at the head of the

queue requires Ar Rl,R2 	so it cannot he released, while process

Pc further down the queue rquires only Ri and can therefore

be r.leasod. 	It is possible for Pb to remain blocked indefin-

itely. 	Consider, for example, the case where Pb's lock set

is identical to Pa's, namely A R1,R2,...,Rn) 	and Pa releases

each record separately.

It would be impractical to take the attitude that the user

who carries out the type of operation which demands a lot of

resources is anti-social and will just have to wait until those

resources are available, i.e. effectively, giving him a very

low priority. 	In the ultimate extreme, this could mean

waiting until all other updating processes had logged off the

syrtern, which might never happen!

LI

10.3.1 Favoured processes

The first approach to the problem of the indefinite blocking

of a process, is the one taken by Chamberlin et al, namely of

arbitrarily and externally favouring a process to guarantee

that it will run. 	Apart from solving the problem of the

indefinite blocking of a process, this approach has the advantage

of giving the DBA some direct control over potentially extra-

vagant users.of the database. 	Noreover, the method of

favouring can be used in certain urgent operations which

require a time-consistent view of the database, e.g. calcul-

ation of the bedstate in a hospital, daily totalling of credits

and debits in a financial system. 	Both these operations can

be carried out very rapidly once the resources (records) are

available. 	To introduce a system of favouring a particular

process to the algorithm effectively means that until that process

has built up its cmplete lock set, no other users can be allowed

to ick records, i.e. enter seize blocks. 	This is necessary

in order to guarantee that the process will be released given

the potentially time-varying nature of locking predicates.

Say, for example, that process Pa is favoured and Pb enters its

seize block and requests a lock for record fllO. 	Furthermore,

assume that re-cord RIO has been examined by process Pa but

rejected as it did not meet any of its locking predicates. 	Now

if the system were to grnt process Pb the lock for record RiO,

it is quite possible that process Pa (stillin its seize block)could

decide as a result of some other newly released record, that

it wishes to re-exrnine PlO only to find it locked by Pb. 	Thus

in order to ensure that Pa, the favoured process, will run, it

i.:; essential to prevent any other process from entering a seize

-13k-

block. 	Gradually, those processes which currently hold locks

on records, will release them and the favoured process will be

able to build up its entire lock set and be released. 	Since

the permission to favour a process would only be given by the

DBA, it is natural to assume that it would only be used in

extreme cases where it is important. 	A favoured process is

therefore a special process. 	In addition to the command to

favour a process, the DBMS must also be supplied with a list of

all the logical recorl types involved in the update. 	Thus

other processes using logically disjoint portions of the database

could be allowed to continue unaffected.

10.3.2 Waiting time priority system

An alternative to the external favouring of a process to

solve the problem of the indefinite, blocking of a process, is an

internal priority system which requires no outside trigger to

E, 	 the release of a process. 	Under the waiting time

priority system, each process is allocated a priority based on

the time spent waiting. 	Thus the longer the process has been

waiting (blocked) the higher will be its priority. 	A threshold

value limits the difference between the process at the head of

the queue (i.e. the one which arrived at the seize block first)

and the process to be considered next for release. 	No

special priority queue is required to implement this system as

the EDAM algorithm can simply use its standard process queue,

since it is ordered purely by time of arrival at - a seize block.

Tbus when a process joins the queue it is allocated a priority

of zero, which is incremented the longer it has to wait. 	hven-

tunily, then the priority difference of the process at he head

-135-

of the queue which has been blocked for a long time,wil3.

become so high that no other processes can execute their seize.

blocks and the process will then be released. 	The effect of

this system is the same as the external favouring of a process

(see above), except that it has the advantage of being auto-

matic and less arbitrary. 	EDAMS therefore adopts this approach.

10.3.3 "Overlocicing" for special purposes

It is the realization that favoured processes are special

processes which leads to a third approach to the problem of the

indefinite blocking of a process. 	It is not intended as an

alternative to the priority system described above and adopted

by .EDAMS, but rather as a supplement to it. 	This approach

consists of locking potentially more records than are actually

required by the logic of the. update, in one go, rather than

evaluating a locking predicate one record at a time to build up

the lock set. 	The obvious choice for the specification of this

"overlocking" is the logical record type. 	Thus the locking

predicate will simply be:

LOCK ALL RECORDS OF TYPE-X

Note that the evaluation of this locking predicate does not

involve any examination of the database itself. 	The search

engine merely has to ascertain whether any other process

currently holds locks for any records of TYPE-X. 	If not, then

the process can be released immediately. 	If so, then it is

placed on the queue of blocked processes in the normal way.

Clearly, however, 1. n order to guarantee that processes

using this "overlocking" facility will be released quickly, there

-136-

would still have to be a waiting-time priority system as outlined

above. 	The use of the "overlocking't facility would have to

be regulated and only available to secial processes.

For example, consider the calculation of the bedstate of

a hospital. 	This involves the very brief examination of all

the current in-patient records, which would presumably form a

single logical record type. 	Thus no etoverlockingit would be

involved and the process would be released as quickly as possible

with minimum overhead (no delay to evaluate locking predicates).

The fact that all the records of a given logical type are

required simultaneously for the bedstate calculation is typical

of those processes which require a snapshot of a large portion of

the database, e.g. daily totalling of credits and debits in a

financial system. 	Thus the specificationof the locking

predicate by means of the logical record type will greatly

increase the efficiency of these processes.

To summarize, therefore, the over-locking facility is not

an alternative to the priority system, but rather an extension

of it in order to increase the efficiency of certain special

urocesses, where for example,

te number of records to be considered for locking is large

or

the number of unsuccessful attempts before the locking

predicates are satisfied is large.

10. ?ereated evaluation of locking predicates

Associated with the problem of the indefinite blocking of

-137-

a 1 ,rocess is the problem of the repeated evaluation of locking

predicates of such processes each time they are considered for

release. 	This subject has already been discussed in detail in

a general context in Section 4,2,2• 	In the context of the

EDAMS algorithm, the problem will be alleviated either by the

use of the waiting-time priority system or the "overlocking"

facility.

PART III

THE IMPLEMENTATION OF EDAMS

-139-

CHAPTER 11

AN OVEPVIE; OF ENAS

11.1 Introduction

In this chapter a brief description of the Edinburgh

uiti-Access ystem (EIIA) will be given with particular

emphasis on those aspects which affect a DBMS implemented

on ENAS. 	ENAS is a general-purpose virtual memory time-

sharing system for the ICL System 1+_75 computer [1+7,50,51].

The paging unit provides 256 segments of 16 pages each, each

page being 1+096 bytes. 	Each user has his own virtual memory

of up to 256 segments of 2416 bytes each. 	Segments 0-31 of

each virtual memory are used by the Director processes (see

Section 11.2) and are not available to the user. 	In ENAS, the

distinction is made between the heart of the system provided

by the system software and the part which is more visible to

the user, the subsystem software. 	The aspect of the system

software which is of direct interest to a DElIS is the Director.

11.2 Director

Each user process has a director process which can access

the user's entire virtual memory. 	The main purpose of the

director process is to perform file system and console commun-

ication services for the user. 	It, is stored on a replaceable

disc unit and is paged in and out to drum and core as required.

-140-

All director processes share the same code and .access the same

physical copy. 	Thus the director is almost always either in

core or on drum all the time.

The File System provided by director contains all user

files. 	Each file consists of an arbitrary, but integral,

number of pagesof totally unstructured information. 	All

files are stored on-line on disc and are accessed by connecting

them into the user's virtual memory, i.e. mapping the complete

file onto a segment (or several contiguous segments) of the

user's virtual memory. 	While a file is connected, the system

pages it between disc and drum and core as required. 	Thus

once the file has been connected the virtual address is used

to reference it. 	Files can be shared between users and in this

case all users access the same physical copy.

Files can be connected in one of four modes - read

unshared, read shared, read and write shared, and read and write

unshared.

The facility exists in E1•1AS for messaces to be sent from

one process to another which, as will be shown later, is of

particular significance for a DElIS. 	The user service PON is

used to place the message (limited to 32 bytes) onto the queue

and the receiver removes the message by issuing a POFF request.

If no message is on the queue, the receiver is suspended

until the message is available. 	The receiver can then send

a reply, if appropriate, using PON and the sender receives the

reply using POFF.

11.3 The standard ENAS subsystem

The standard EiAS subsystem provids users with a variety

of facilities including virtual memory management (except for

the first 32 segments containing director), file organization

conventions by means of file headers, command interpretation

and so on.

Although all these functions are vital to the DBMS, many,

e.g. command interpretation, can be taken for granted. 	The

File Directory Package (FDP) which is responsible for virtual

memory management is however significant. 	All file requests

to director are via the FDP which maintains a map of virtual

mamory and information concerning the size and mode of access

of all files currently connected in the user's virtual memory.

11.4 Updating E1--!AS files

An important feature of El1AS from thc point of view of

a DBMS is how ElIAS updates files; in particular, at what point

are the altered pages in core transferred to disc? 	It is only 1.

when this transfer is complete that the update can be regarded

as successfully executed. 	It is important to ensure, for

example, that all the altered pages associated with a group

update are written back to disc "simultaneously".

There are three situations when pages in core which have

been updated by a process are written onto disc:

(a) when the file is disconnected (this would also include the

user logging off, when all files currently connected are

-142-

automatically disconnected

when the system wishes to reduce or change the processes'

working set

when the user service Make Disc Consistent (NDC) is requested

In all three situations, FJMAS guarantees to ensure consistency

by writing all pages altered by a process back to disc at the

same time.

- 	 -143-

CHAPTE} 12

THE EDAMS MASTEE PROCESS

12.1 Introduction

The obvious starting point for the dc-sign of a CODASYL-type

DBMS for El-lAS was the conceptual DBMS given in the April 71

Report [ii which is reproduced in Figure 12.1.

PRiA(.Y sro'E
r — 	-----.---..-..-----••..----

4 	OPEAT;NG SySYEI
5ECoNp'/ 	/------ ,........-.....-...................i..-.----........-------.—. SCHEMA 	I susc—i

. 	 J(ocr v&Sior'-l) ko&.rcT VE(SioJ)

rAm-&qs

MNT
S371V)

17

44._................

LCétT,DM 	,

Figure 12.1 CODASYL's conceptual DBMS

he operations designated by tho numbers I to 9 in Figure 12.1

are explained below.

_iL+k.

1 a call for data by a user program to the DBMS. 	All calls

for the services of the DBMS are made in the DML

2 the DBMS analyzes the call and supplements the arguments

provided in the call itself with information contained in

the object version of the schema for the database, and in

the object version of the subschema invoked by the user

program orip;inating the call. 	The schema describes the

database in terms of the characteristics of the data and

the implicit and explicit relationships between data items.

The subschema is a subset of the schema. 	It describes the

data known to the program invoking it in the form in which

the DBMS makes it available, and expects to find it, in that

program's USER JORKING AREA (IJWA). 	In this conceptual

system it is assumed that the object version of the subschema

contains only the differences from the schema and is not

complete in itself. 	The source form of the schema is

written in the schema DDL and the source form of the subschema

is written in the subschema DDL.

3 on the basis of the call for its services and information

obtained from the object version of the schema and subschema,

the DBMS requests physical I/o operation, as required to

execute the call, from the Operating System

The Operating System interacts with secondary storage

5 The Operating System transfers data between secondary

storage and system buffers -

6 The DBMS transfers data, as required to fulfill the call,

between the system buffers and the UA of the programs

11+5

originating the call. 	Any required data transformations

between the representation of the data as it appears in

secondary storage and the representation of the data as it

appears in the progiam's U'A, are handled by the DBMS.

7 the DBtS provides status information to the calling program

on the outcome of its call. 	The information provided is

currency status information, error status condition codes,

area name, record name,

8 data in a program's UWA may be manipulated as required,

using the facilities of the host language

9 th6 DBMS administers the System Buffers. 	The System Buffers

are shared by all programs serviced by the DBMS. 	User

programs interact with the System Buffers entirely through

the DBMS.

It is clear from Figure 12.1 that the CODASYL DBTG has assumed

that the DBMS would be implemented on a non-virtual Operating

System. 	Under hMAS the user has access to his entire virtual

memory (except the first 32 segments which are used by Director).

It should be noted that other VM systems may have more than one

protected area. 	In particular, in ENAS the user would have

access to the System Buffers of Figure 12.1, in which EMAS

would place the data retrieved from the database. 	CODASYL

envisages that these buffers would be available only to the

DBMS which would translate the data in them, according to

the informatin contained in the schema and sibschema, into

the form required by the use and place it in the UWA. 	Further-

more, since the schema, subachemas, database indcxes, etc. are

required by the DBMS to service user requests, the files in

which they are contained would have to be connected, at least

in read-only mode, in the user's virtual memory as would the

database itself. 	This negates the fundamental concept of

CODASYL, or indeed of any DBflS, that the user should only be

permitted to access the data to which he is entitled. 	There

are two possible solutions to this problem. 	The first is to

place all, or at least part of EDANS, in a priviledged

(protected) section of the Operating System. 	The second is

to introduce a separate EDANS process which could communicate

with the user process.

12.2 Placing EDAMS in a protected area of ENAS

The obvious choice for a protected area of ENAS is the

director. 	The files containing all the privileged information

could then be connedted only in Director and the user process

would not be able to access them directly. 	However, there

would he at most L segments of Director available to EDAI45.

The EDANS routines themselves could be connected in read-only

mode to the user's portion of VM, but the database itself (or

those portions of it required at any moment), schema, subsôhemas,

indexes, tables, backup files would all have to be connected

into this comparatively small area. 	Obviously, they could not

all be connected simultaneously and therefore the overhead of

frequent file connection and disconnection would have to be

considered. 	File connection is not an expensive procedure as

it only involves checking access permission and noting the mapping

information in the Director for that process. 	No access to

_147-

secondary storage is required until the file is actually used

and no supervisor calls are made. 	However, there is potentially

quite a high overhead involved for file disconnection. 	The

mapping information in the Director is removed and a call made

to the Supervisor to remove any pages written to in the file

back from core or drum to disc. 	In fact, all pages belonging

to that process which have been written to are removed back

to disc for consistency.

12.2.1 Expansion of Director

Lven if the EDAMS schema was not required on-line during

execution (cf. IDNS) the savinc of Director space would not

be sufficient. 	It is therefore worth considering the possibility

of expanding the Director to accomodate all the necessary info-

rmation. 	Such an approach would be feasible given the structure

of ENAS, but was rejected in favour of the simpler and neater

system described in Section 12.3.

12.3 The EDANS Plaster Process

A neater and more efficient way to implement EDANS is

to introduce a separate process, the EDAIIS ?Taster Process (EMP).

This process would contain the entire D--'MS, schemas, sub-

schemas, tables, indexes and would also be the unshared owner

of the database itself.

In order to implement the EMP, it would be necessary to

make use of the EMAS inter-process communication facilities

-i48-

(see Section 11.2). 	The 32 bytes allowed by EMAS for the

message is clearly not enough to give even the simplest DML

cmmand. 	A Communication Area (CA), equivalent to the User

Working Area of Figure 12.1, is required which would simply be

a standard EAS file connected in read and write shared mode

by both the E1-11P and the user process. 	There would be a

separate CA for each user process. 	The PON and POFF commands

indicate the service and destination of the messages, i.e.

from a user to EMP or vice versa. 	The ENAS message area

itself gives the name of the CA. 	Details of users access

rights, subschema in use, etc. would be contained in his CA.

Also, the details of the DML request would be placed in the

CA. 	A message indicating that a request had been made would

be PONned on the message queue. 	The liMP would then POFF the

information, execute the request using EDAMS, place the result

in the CA and PON a message to the user indicating that the

reply is available to be POFFed by the user.

Although the overhead of communicating with liDAMS via a

messare queue is greater than, say, simply calling an external

routine, it is still considerably less than the connection/

disconnection overhead of the Director solution. 	Moreover,

the EiP provides a neater solution which fits in-with the

architecture of ditAS (only very minor alterations to Director

are required ;o enable a process to use the inter-process

communication facilities) and with the architecture of CODASYL-

type DPNSs. 	It was therefore decided to implement HDANS using

an uDAi.'IS raster Prncess.

The]dDAHS "aster Process operates in the same way as

Erinch Hansen's monitors [52,53, ,4]. 	Monitor data is only

accessible to the monitor procedure and only one process can be

progressing in a monitor at a time, during which time it has

exclusive access to the monitoring daa. 	In the same way, EMP

data is accessible only to the EMP, and the EMP handler requests

messages from the user processes one at a time.

It should also be noted that the use of a separate EDAMS

Master Process has two further advantages:

it is easy to ensure that seize blocks cannot be inter-

rupted (see Section 10.2)

it would be easier to move an :iip out to a stand-alone

filestore which could be useful in highly-shared situations.

-150-

CHAPTER 13

GTO.RAGE NAPPING IN EDANS

13.1 Introduction

The mapping between subschema through schema to the

physical database is of vital importance to the efficiency

of EDAMS. 	In this chapter, the various levels of mapping will

be discussed and the concept of the database map will be

introduced.

13.2 Database map

The April 71 CODASYL Report implied that the owner/member,

member/member set pointers should be embedded within the data

records (except for pointer arrays), although the current DDLC

JOD[221 makes no reference to implementation. 	However, most

implementations of the CODASYL proposals (e.g. DM5 1100 [291) do

embed the set pointers in the records themselves. 	One notable

exception is the PRIME DENS []. 	Engles [5] has pointed

out that such chained structures suffer from two main disadvan-

tages:

they are only as strong as the weakest link

they can be time-consureingtosearch on direct access devices.

However, such structures do have many advantages. 	For example,

records can be added and deleted relatively easily without

moving other records about. 	It would therefore seem desirable

-151-

to incorporate the flexibility of chained structures, but to

separate the data, records themselves from the links which

connect them. 	The PRIME DBMS [33] is an example of such a

system; it uses B-trees to describe the set structures and

these are stored in entirely separate files from the data.

As regards Engles' first criticism of chained structures,

the normal DBMS backup facilities for the data would of course

also apply to the pointers regardless of where they are stored.

It is therefore proposed in EDAMS to store all pointers

separately from the records themselves in a database map. 	A

database map is a representation of a database (or portion of

it) giving its structure and the relationships which exist

between records, but where the actual data records themselves

are replaced by their database keys.. The EDAMS database key

is similar to the 1971 CODASYL database key in that each EDAMS

record is assigned a unique key for all time. 	It is envisaged

that these keys would be generated by, say, a hashing function

on record type, etc. 	In order to obtain the physical address

of the record with a specified database key, a high-speed

table look-up technique is required. 	For example, the hybrid

technique described in [561, which is a combination of a hash

and a binary tree, could be used.

There will be one database map per subschema. 	However,

certain parts of the map may be common to several subschemas -

namely information relating to schema sets and their owner and

member records.

Consider, for example, the situation where user a, via

subschema 81, adds a new member record occurrence to schema-

defined set s. 	This addition must be visible to all users

-152-

of the set s, both those who access the database via subschema Si

and those who uae other subschemas. 	It would be both dif-

ficult and costly to ensure that all the necessary changes

were made to all the appropriate database maps. 	There are

two possible sobtions to this problem of database sharing and

integrity:

a common root section for all subschema database maps

which describes the records and sets defined in the schema

a separate database map for the schema.

The difficulty of the first approach is that it provides

the subschema and hence, indirectly, the user with information

which may not be relevant to the particular application. 	This

is contrary to one of the main aims of the schema/subschema

structure - namely, both for security and for achieving data

independence, to give the user access only to the data which he

actually requires for his own database application.

The second approach does not suffer from this particular

difficulty as the schema database map is owned and used only by

the DEA. 	Individual database maps will access the schema

database map by means of cross references to it. 	Thus only

those parts of the schema database map which are relevant to

the particular subschema will be cross referenced.

The main objective of the database map (db map) is to

make access to the database more efficient and also to simplify

consistency (integrity) checking of the database. 	It also

provides a convenient method of introducing sets at the subschema

level. 	 -

It is envisa;ed, for exarnmle, that access koys.could be

contained in the nodes of the database map as well as database

-153-

keys. 	Thus access paths through the database could be traced

until the desired record is found, thereby geatly reducing the

number of accesses to secondary storage. 	The PRIME DBMS also

permits the inclusion of search keys in its B-trees.

It is difficult to illustrate the concept of a db map

diagramatically because of the multiplicity of pointers in all

directions. 	The map can be thought of as being obtained by

removing all the data from the record occurrences in a chained

database and replacing it by a pointer (the database key) to

the data. 	In EDAMS, the map would be based on subschema records.

Figure 13.1 shows the general set linkage structure in

EDAMS

SET ''AE'
Foil SETS

	

OC LJRIE1VCE L J 	 ? curcii .Q

	

OF SirS / 	 \ cF SETS

(OLJ 	ç - - - - -
hAT CL1II
\,.

or- SET s

'AN&Cf, L oF
UJC. t) 	 oCC.Z,EAJcE 2

2 Op 'M13j? 2 	p

I?EiV Ocuetc. .!

Figure 13.1 Set linkage structure in EDANS

In addition, each member record could he linked to its owner

and predecessor, as well as to its successor; also each owner

could be connected back to the set header. 	This could also

be implemented either by placing the nodes contiguously or by

storing them in a tree structure.

-154-

In Figure 13.1 each node is shown separately, whereas in

the database map, there would only be one node per subschema

record occurrence. 	Figure 13.2 is an attempt to illustrate

the database map for the example given in Figure 5.+.

Header for 	 Header for
PERSON- 	 lITTEREST-

INTEREST set
	

PENsOI'r set
-Y--,j

P1 	 -• (IA

'.- 	'.

/

__.7_ 	_-----.v
IS

P3 T -

ID

denotes owner of set occurrence

— 	denotes linkages within the PERSON-INTEREST set

-_ 	denotes linkages within the INTiREST- PEPSON set

Pn 	node in database map for nth person record

IX 	node in database map for Xth interest r€:cord

Figure 13.2 Diagrammatic representation of a sample database map

Thus each node in the map will have a number of pointers each

one linking a records into a particular set occurrence. 	The

S

key to to the representation of these pointers is the unique

identification of every set and of every occurrence of

every set across the database and the distinction

made between owner and member records. 	Further

classification of pointers would be necessary to indicate

whether the pointer is a forward pointer or a backward pointer

(for doubly linked sets) or a pointer to the owner. 	For the

purposes of this example, only forward pointers will be consider-

ed. 	Note that in Figure 13.3 the pointer values following the

identification information refer to table addresses. 	In

reality, the database key woul:d be used.

I 	TABLE T\T

!ADDRESS KEYS POINTERS

1 P1 P11-0-F-4 IPI-N-F-2 1P2-N-F-2

2 P2 P12-0-F-4 IP1-N-F-4 1P2-N-F-3

3 P3 P13-C-F-5 1P2-N-F-5 1P3-N-F-6 	IP4-M-F-7

4 IA .PI1-I1-F-5 P12-N-F-5 IPI-C-F-1

5 lB P11-N-F-I P12-N-F-2 P13-M-F-6 	1P2-0-F-1

6 IC P13-N-F-7 1P3-0-F-3

7 ID P13-J'i-F-3 IP4-O-F-3

where

PIi denotes the ith occurrence of PESCN-INTEREST set

IPj denotes the th occurrence of INTEREST-PERSON set

C 	denotes owner record; N denotes member record

F 	denotes forward pointer

Figure 13.3 Tabular representation of sample database map

The number of entries in the entire database map shown in

Firure 13.3 is equal to the number of records in the suhschema

database, which participate in sets. 	The possibility of

records in in an EDAMS database which do not belong to any set is

not precluded ad they could readily be incorporated into the

database map. 	Thus the map will be very large and some type

of structure to facilitate speedy lookup based on database key

will be essential [e.g. 561.
The CODASTL restriction that a record occurrence cannot

appear in more than one occurrence of the same set does not apply

to EDAMS. 	All EDAMS set occurrences are treated separately

in the database map and thus there can be no ambiguity in

interpreting the data structure.

However, this does alter the use and interpretation of

DML commands such as FIND NEXT and FIND OWNER.

13.3 Interpretation of EDAIIS DIlL

In the CODASYL proposals, D1--1L commands such as FIND OWNER

and FIND. NEXT for a given set type, identify unique occurrences

of records. 	This is not true in EDAMS since record occurrences

may appear in more than one occurrence of the same set.

Consider the diagram shown in Figure 13.1-f overleaf.

-157-

occurrence I

occurrence 2

occurrence 3

where SiC is the owner record of the ith occurrence of set S

and 	S±Nj is the jth member record of the ith occurrence of set S

Figure 13.4 Set occurrence structure

Now replace the symbolic record names, SIMj, by actual records

as shown in Figure 13.5 below.

set
S

Figure 13.5 Example of actual set occurrences

-158--

Note that the record P2 appears in both the first and second

occurrences of the set. 	A FIND OWNER for R2 (in the context

of set S) under the CODASYL proposals would not know which of

P1 or P4 to select.

If the application program is processing the database in

the context of the first occurrence of the set S (EDANS naturally

maintains currency/context indicators in the same way as CODASYL)

and issues a command to FIND OWNER of P2 (in set s) then the

system will return El. 	If, on the other hand, the program

context is the second occurrence of the set, then R14 will be

returned. 	However, if P2 has been reached either directly or

in the context of its participation in. another set, a request

to

FIND OWNER OF SET S

will return Ri. 	To locate P4, a new EDAMS command

FIND NEXT OWNER OF SET S

can be used. 	Whenever a FIND (NEXT) OWNER command is encounter-

ed, in addition to the owner record itself, a flag will-also

he returned. 	This flag will be set if another owner record

occurrence is found for the particular member record occurrence.

The cost of setting the flag is minimal and avoids an extra

access to the database map when a FIND NEXT OWNER command is

issued and there is, only one owner. 	FIND NAX-T OWNER can

be used repeatedly to locate all the owners until the flag

is returned unset. 	 .

An analogous situation eists in EDAI1S for the FIND NEXT

command. 	If the context of the set occurrence is clear, then

there is no confusion. 	Thus, in the context of the first

occurrence of the set S in Figure 13.5 (owner Ri), with P2

-159-

the current record,

FIND NEXT CORD OF SET S

will return P3. 	But if the context is the second occurrence of

set S (owner P4) then R6 would be returned. 	As in the case

of FIND OWNER, when P2 is not reached through set S,

FIND NEXT RECORD OF SET S

is ambiguous. 	EDPd•'IS' solution is to return the next record in

the first set occurrence in which P2 participates, i.e. P3.

A flag is set to indicate that P2 participates in more than

one occurrence of the set. 	To locate the next record in this

second occurrence, P6, the use' must issue a

FIND ALTERNATIVE NEXT R;CORD OF SET S

As with the FIND (NEXT) OWNER command, EDANS sets a flag to

indicate that an alternative 'next record' exists.

13.4 EDANS realms

In Section 5.3.1, the difficulties associated with CODASYL

areas were discussed. 	The area performs directly or indirectly

both the following •functions:

basic access and locking mechanism (concurrent update in

addition to KEEP/FREE DNL statements)

provides the, mapping between the database and Operating

System files.

In Section 7.5, it was stated that in EDANS a rigid

distinction between the realm and the storage-area would be

mad'. 	The realm is a logical subdivision of the databa;e and

exists only at the subschema level. 	Subschema records may

be assigned to one or more realms and thus realms may overlap.

The EDAMS realm can therefore be thought of as a shorthand for

referring to a grbup of logical records and will therefore be

useful for privacy controls,'concurrency controls and so on.

In fact, the EDAMS realm can be treated and implemented as an

ownerless set, forming part of the database map. 	Normal set

operations can therefore be used to manipulate records within

a realm, e.g.

FIND NEXT IN REALM R

FIND LAST IN REALM R

FIND FIRST IN REALM R

13.1+.1 Mapping of EDAMS database to physical storage

The second role of the original CODASYL area has been

replaced in EDAMS by the modern CODASYL storage-area. 	The

mapping of the database to physical storage is part of the

physical description of the database and is placed initially

in the EDAMS schema. 	The aim of this mapping is to divide the

database into segments which can be mapped conveniently onto

EItAS files. 	The specification of the mapping must be based

on physical rather than on logical entities and must be

transparent to the user. 	The allocation of subscherna records

to realms corresponds to the allocation of schema records

(or storage-schema records) to the storace-area.

CODASYL gives the DEA three alternative ways of specifying

the record riacement strategy:

(a) DIRECT

The database key specified determines the placement of the

record,

-161-

CALC

A database ikey is formed from the parameters of the command

using ei•tber a user or system defined procedure

VIA

The placeimet of the record is determined by its m&nbership

of a set. 	To evaluate this option, the DENS must use the

SET OCCURRENCE SELECTION clause for the set.

In addition, for every record type defined in the schema, the

user must specify a WITHIN clause indicating in which of one or

more aeas the record should be stored. 	In situations where

an option is given, the application program must initialize

tae appropriate parameter with the correct area-name. 	In

other words, the programmer is required to know in which area

a particular record was stored.

Such an anroach would not be possible in EDANS since

storage-areas are completely transparent to the user. 	Thus

the system must be able to decide from its own information into

which of a number of possible storage-areas a given record should

be placed.

There is no natural way to map the logical database onto

physical EMAS files. 	The simplest approach would be to allow

the DBA total flexibility in the placement in storage of physical

records. 	Thus in 4:he schema DDL, PEA procedures could be

specified which would d:cide in what storage-area to place an

occurrence of a record. 	in these procedures, the DJ3A can

make usc of record type, the schema record key (see hection 7.2)

or 	set membership details, for example. 	The full CCDASYL VIA

opton could not be available under SPANS because of the

potential difficulty of uniquely identifying an owner record.

-162-

C11APTLR 14

DATABASE CONSISTENCY DUPING UPDATE

14.1 Introduction

An important feature of a DBMS is how it ensures the

consistency of the database in the event of a system failure

and, in particular, of failure during an update operation.

To alter an item in a database may involve not only the

changing of the data itself, but also the updating of tables

and indexes. 	It is of vital importance that, if failure

occurs, the database can be restored to the state which existed

prior to the start of the uncompleted update.

EIIAS alone cannot ensure this degree of consistency

and hence EDAI1S must crovide the necessary facilities.

14.2 The effects of the on-line environment

An update in NDA1S is not secure until the Nake Disc

Consistent (0) routine (see Section 11.4) has been executed,

i.e. updated page copied back to disc. 	Other concurrent users

of an altered page see the new version in core and not the old

version on disc.

In a batch environment, such a situation does not present

a problem since if.. failure occurs before the update has been

secured, other processes, which have used the "ne•q" version

of the record can he rolled back automatically. 	The majority

-i63-

of users of EDPJ4S will be on-line and hence automatic rollback

would be very difficult. 	For example, the system might find

that a user who should be rolled back, or at least notified of

failure, has logged off. 	The overhead involved in the execution

of an MDC is not insignificant. 	However, in order to ensure

consistency in an on-line environment, an MDC should be issued

when the lock on a record, or group of records, is released.

In this way, each update (individual or group) will be

complete in itself. 	However, what should happen in the sit-

uation where a program, which has been updating the database and

whose updates are already secured, aborts? 	Clearly, in an

on-line environment, there is no definitive answer to this

question. 	As was indicated above, users who have logged off

the system cannot be rolled back and indeed rollback of any

interactive process, even if it is still active, is difficult.

The solution to be adopted will depend more upon the application

system than the DBMS. 	The best 'the DBA can hope to

achieve is to insist on high and rigorous prograrn;ing standards

for users of the database, especially those permitted to alter

its contents. 	A common approach, even in batch systems, is

to debug application programs on a specially designed test

database which incorporates as many of the "deviations" as

possible in the main database. 	This was the system adopted

in the University of Toronto Information System [67], for

example. 	A deferred update system, such as is used in

PINE [331, whereby updates are written to a temporary file

and the database i only updated when the group transaction

is complete, can alleviate some of the difficulties of working

in an on-line environment.

-164-

The only ERAS facility available to EDAMS is the MDC,

which is inadequate. 	EDAMS really requires an MDC operation

which is not page oriented, but operates only on specified

extents in virtual memory, rather than on altered pages.

However, EDAMS was designed to run on EMAS as it stands,

without alteration. 	The problems with 	EMAS, as far as

EDAMS is concerned, are discussed in detail in the last

chapter of the thesis.

14.2.1 Simple update

Consider the problem of altering one data field within a

record, assuming that this requires no movement of data or that

such movement is confined to a single page.

Run-unit (RU) obtains update lock on record

RU processes record and calls on EDAMS to make change

EDAMS through EMAS makes change - note that page is still

in core

RU releases lock on record.

The immediate execution of an :1DC will make the update secure.

Unfortunately, when the MDC is executed, the entire page is

written to disc. 	Thus, changes made to that page by other

partially completed transactions will be written back also.

Although this does •not necessarily present an integrity

problem, it makes rollback in the event of failure considerably

more complex, as will be explained in the next section.

14.2.2 Comupdateplex update

A complex update is one which involves consistent changes

-165-

to more than one page in the database, whether they are data

pages and/or pointer/index pages. 	The problem arises if

failure occurs during the NDC operation (whether automatically or

manually triggered), e.g. pointer page updated, but not data

page. 	The user can be made aware of what has happened but

since he is not concerned with pointer files, indexes, maps,

etc., he will not be in a position to do anything about it.

Hence EDANS will have to handle the situation and ensure the

consistency of the database with the aid of a Journal File,

Traditionally, the Journal File was stored on magnetic

tape, since this medium was much less vulnerable to failure

than, say, magnetic disc and was also considerably cheaper.

However, this has become less true and it is an increasingly

common practice to use a small, dedicated disc for

journalling. 	Each group update is assigned a unique transaction

sequence number (TSN). 	The following sequence of events

takes place:

user successfully executes seize block and holds locks on

required records

start transaction block marker for TSN set on Journal File

Record entry made on Journal File as follows:

TRANSACTIONRECORD ID 	OPERATION 	BEFORR/AFTER INAGES

SETUENCE NO. 	 TYPE 	OF RECORD

where

there is an arbitrary number of these entries per

transaction 	 -

RECORD ID includes page number in VN

OPERATION TYPE indicates update, deletion, etc.

BEFORE/AFTER !!,,AGES contain the minimum portion of

the record for update only.

update performed

When user requests release of locks on records

MDC executed

End transaction block marker for TSN set on Journal File

to indicate the successful completion of the update

Locks on all records released.

During recovery the end transaction block markers can be

checked. 	If the marker is not set, then EDAMS must examine the

database using the information given in the before and after

images of the record o the Journal to ascertain whether or not

the update has in fact been carried out successfully. 	If not,

then EDAJIS must either complete the update or reset the record(s)

(and tables/indexes) to their original state.

As in the case of the simple update, the execution of 	-

the 1-.-;DC will also cause the changes made to the particular pages

by other incomplete transactions to be written back to disc,

Since the update is not officially compete (i.e. records are

still locked) until the user releases the locks after execution

of the MDC, the logical integrity of the database is ensured.

However, in the event of failure, rollback can become quite

complex. 	Any given page may contain the results of completed

and partially completed transactions. In order to facilitate roll-

back, it would be helpful to include a list of all pages

involved in an MDC when the end of transaction block marker

is set.

In addition to the Journal File (which must be 100%

reliable) a Log of all other database activities - retrieval

requests, console activity etc. - is maintained to provide a

-167-

complete record of DBMS usage for statistical purposes. 	Although

of importance, the Log is not so vital to ensuring database

integrity.as the Journal.

As part of the recovery facilities of EDANS, it is

envisaged that dumping of the entire database or of selected

portions of it will be carried out at regular intervals. 	In

the event of catastrophic failure, the database can be restored

by rolling forward from the dump using the Journal File.

-168-

CHAPTER 15

IMPLEMENTATION OF CONCURRENT UPDATE ALGORITHM

15.1 Introduction

In order to fully evaluate the EDAMS algorithm for handling

concurrent update, it was necessary to implement the algorithm

using a test database. 	To do this, a basic core of EDAMS

consisting of a Master Process and message communication

facilities was required. 	A small test database containing

26 records of 5 different types was set up. 	In many database

applications, 90% of the accesses are made on 10% of the data

and the purpose of this implementation is to extract this 10%

and scale down. 	The Master Process maintained the search

engine,process queues and lock lists for the concurrent update

algorithm.

15.2 Message communication

In order to implement the concurrent update algorithm, it

was necessary for the EDAMS Master Process (EMP) to handle four

types of service requests from user processes:

service indicating that the user had entered a seize block

service indicating a lock request (locking predicate)

service indicating the end of a seize block

service indicating the release by a process of all its

currently lockec records.

--169-

Thus the sequence of request by any one user process would be

abb...cd. 	The sequence a to d constitutes one transaction.

Note that any number of lock requests (b), can be enclosed between

the beginning and end of a seize block. 	There could also be

an abort transaction, service, but this was not implemented. As

was explained in SectiOn 10.2, it is not necessary to insist

that a process release all its records simultaneously, as the

EDAMS search engine does not examine locked records. 	Thus

the snapshot obtained by an updating process will automatically

reflect none of the updates (if it arrives first at the seize

block) or all of the updates of a second concurrently updating

process. 	However, for simplicity, in this implementation it

was decided to release all records simultaneously (service (d)).

To implement the four service requests, four routine calls

are required at the DML level:

SEIZE

LOCK

ENDS-,-=E

(a) PLLEASE

15.3 Time clock

In a complete EDAMS system, a number of users would be

using the system simultaneously. 	Hence service requests would

be arrivina at the rNP in a pseudo-random farhion from all

users. 	Clearly, the time interval between service requests for

a given user will varr greatly and will depend, among other

things, upon the tyre of request. 	Thus, for example, one

-170-

would expect a certain time interval, ti, bettee,n the user logging

on and entering his first seize block. 	This would be followed

by a probably shorter time interval, t2, prior to the issue of

the first lock request. 	There would be an average interval, t3,

between lock requests with a shorter interval, similar to t2,

before the ENDSEIZE. 	One would expect a much longer time

interval, tLf, before the user releases all his locked records.

It is during this time that the actual update is carried out.

Broad assumptions could be made as to the relative lengths

of the various time intervals ti, t2, t3 and t1+, but other

factors such asthinking time's, typing speed etc. if the user

is working truly interactively will play an important part.

Rather, therefore, than attempting to devise an elaborate time

clock mechanism, it was decided simply to use a random number

generator to decide from which user the next message to the ENP -

would come. 	Naturally, the messages from each individual user

must follow the sequence described above.

,15.4 Actions requi'ed by EMP

When a process enters a seize block, the only action taken

by the IMP is to place the process on the queue and set its- ts

status status to active., i.e. not blocked.

	

When a process issues a lock request, the request is 	 -

placed in a buffer by the EMP and. control is passed back to the

user. 	This continues until the user process issues an EMDSEI2E

request, at which time th- EMP will service all the lock

requests (in that seize block) for that user. 	Essentially, this

-171-

consists of ascertaining whether or not the lock request(s) can

be granted. 	If so, the database keys of the requested records

are placed together with the user name of the requesting process

on the list of currently locked records, namely the lock list.

If the request(s) cannot be granted because one or more of the

records is already locked by another process (i.e. it appears

on the lock list with another user name), then the status of

the requesting process is set to blocked on the queue. 	Further-

more, the process is rolled back to the first lock request in the

seize block and all records currently held by that user in the

lock list (as a result of previous successful requests within

the same seize block) are taken away.

Three types of update were considered:

basic type consisting of a list of therecords the user

wishes to lock

content-based lock request, e.g.

LOCK ALL EMPLOYEE RECORDS FOR WHICH DPARTMENT FIELD = ko

path-tracing - lock all records on a content-dependent path;

this type of request would also cover, for example, locking

an entire set occurrence.

A basic lock request of type (a) consists of a list of the

records to be locked. 	Each record in the list is immediately

and uniquely identifiable without involving access to the database

itself, e.g. using a key which can be translated directly into

a database key. 	The action required by the EMP is simply to

check this (generated) list of-database keys against the lock

list.

	

	If any one record appeal's under a differentuser name,

the failure of the request is signified, otherwise success.

Lock request :type (b) consists of a record type name

-172-

followed by the name of a field within that record, followed

by an upper and lower bound for the value into which the field

must fall to satisfy the lock request e.g.

F;NPLOYEE :ECORD DEPARTM!NT FIELD BETWEEN 0 AND 10

This will attempt to lock all employee records whose department

code is in the range

0 	DEPARTMENT CODE < 	10

The action taken by the EMP is to examine all the department

fields of all employee records and make a list of the database

keys of all those which fall within the given bounds. 	This

list is then checked against the lock list to ascertain whether

or not the request is successful.

The lock request type (c) consists of the unique identif-

ication of the record at which the path tracing algorithm is

to start followe.d by the length of the path. 	This is a somewhat

artificial representation of the real situation, where the user

would fix position in the database, move along the path and

finish when a particular record is reached. 	However, as regards

the concurrent update algorithm, a path length represents an

analogous method of terminating the lock request. 	Moreover, for

testing purposes, a random number generator was used to determine

each node in the path. 	The database key of each node is noted

and then checked against the lock list as in type(b) above.

When the ENP can successfully grant all the lock requests

for a user in a seize block, the user is granted the locks and

allowed to proceed outside the-seize block. 	The process

is removed from the queue.

For ease of implementation, the processes release all their

currently locked records simultaneously before entering another

-173-

seize block. 	This is easily accomplished with the structure

of EDAMS. 	Firstly, all the process' entries on the lock list

are removed. 	A message is sent to the user to proceed.

Secondly, the location of the first blocked process, if any,

on the queue is found. 	Its status is then set to active

and the process restarted, i.e. instead of using the random

number generator to calculate where the message is coming from,

the implementation forces it to be the first blocked process

on the queue. 	The reason for this is that it is only when

a process releases locked records that there is any point in

restarting blocked processes.

If the process remains blocked then the search engine

finds the next blocked process on the queue. 	If its priority

difference with the head of the queue is less than a certain

threshold value, the search engine will attempt to release it

and so on down the queue until there are no more blocked

processes or the threshold is reached. 	On completion of its

set of lock requests, a process is assigned a time priority of

zero. 	Thus if the priority of the process at the head of the

queue is less than the threshold, the search engine will attempt

to release the incoming process, otherwise it is placed at the

end of the queue.

To restart the seize block for a process is a simple

matter, which is completely transparent to the user, EDAMS

must store all the loch requests for each user in a buffer

until the ENDSEIZE command is reached. 	Thus to restart a

seize block all that is required is simply to reposition the

message pointer to the beginning of the buffer for that user.

-17k-

15.5 Results for test runs of concurrent update algorithm

The algorithm was run with a random mix of concurrent

update request in the test database with

S users

10 users

15 users

The occasional request to lock almost the entire database was

inserted.

The problems associated with a realistic time clock and

hence of the priority threshold system have already been

discussed in Section 15.3. 	On completion of a set of lock

requests in a seize block, a user is assigned a priority of

zero. 	This is incremented by one for every incoming command to

the iP (issued by other active users) until the user is

released. 	Two threshold values - 5 and 10 units - were

selected and were compared with a threshold of zero, which

corresponds to a first-come-first served, operation (FCFs).

Iote that a very high threshold value corresponds to the sit-

uation where the search engine attempts to release all users

on the queue in order, irrespective of their priority relative

to the head of the queue.

-175--

seize block
number

user no.
..

records requested no. 	of
failures

Priority
on release

13 27 0 0

2 4 891011224 0 0

3 571518 0 0

4 1 1 15 13 20 0 0

5 2 1 8 12 23 9 14 22 26 25 1 2
24 3 	10 20 	18. 	 1

6 1 u121219 0 0

4 91152512213 0 0

8 3 13k61215.24 0 0

9 4 1212426115232017 1 0 0

Figure 15.1 Results for 5 users for all threshold values. -

0, 5 and 10

1 5 71518

2 'I 1 19 13 20

3 9 entire database

4 1 	8 54823

5 2 181223914222625
24 3 10 20 18

6 4 8 9 	10 11 22 	+

7 3 27
8 7 721324

9 10 i8

10 6 1911

11 1 1 2 12 9

12 9 345

13 2 9 11 	5 25 12 	2 	13
14 8 26

15 6 123Lf

16 3 i1.34612152+

17 4 21 2 4 26 1 	15 23 20 17

18 8 242526

0

0

I

0

I

I

0
-I

I

14

12

11

11

9

-176-

seize block; user no. 	records requested
	

no. of 	priority
number
	

failures on release

Figure 15.2 Results for 10 users for threshold = 0 (first-

come-first-served

-177-

seize block user no 	records requested 	no. of 	priority
number 	 failures on release

I -

2 1

3 8
4 9

5 2

6 3

7 4

8 7

9 10

10 6

11 1

12 - 	9

13 8
14 4

15

16 8 ,

17 3

18 4

7 15 	18 0 0

1 	19 	13 20 0 0

54823 0 0'

entire database 2 13

1 	18 12 23 9 1+ 22 26 25 3 9
24 3 10 20 18 	 I

27 1 1 	1 7

,8 	9 	10 	11 	22 	4 3 1.2

7 2 13 24 1 26 2 8
'I 	8 2 11

1 	19 	11 1 10

121219 1 1'

345 	 10 0'

26 	 1 0 0

9 	11 	5 25 12 2 	13 	 1 2 7

1234 1 	j 2

24 25 26 1 1

1346121524 2.

21 	2 4 26 1 	15 23 20 17 6 1 1

Figure 15.3 Results for 10 users for threshold=5

s eize block user no, 	records requested 	no. of . 	priority
number 	 failures on release

I5 	7 15 18 	 0 	0

2 	1 	1 	19 13 20 	 0 	0

3 	8 	54823 	 0 	1,.0

27 	 0 	0

5 	4 	1 8 	9 	10 	11 	22 k 	 1

6 	2 	1 	8 12 23 9 1+ 22 26 25 	3 	9
21+ 3 10 20 18

7 	9 	entire database 	 5 	19
8 	7 	7 2 	13 21+ 	1 	26 	 1 	11

9 	10 	18 	 2 	12

10 	6 	1911 	 2 	10

11 	1 	ii 	2 	12 	19 	 1 	1

12 	4 	9 	11 	5 25 12 2 	13 	 1 	1

13 	8 	126 	 1 	c1+
14 	3 	1 	s 1+ 6 	12 	15 	24 	- 	0 	1 	0

15 	9 	31+5 	 • 1 	5

16 	8 	i242526 	 1 	1+

17 	6 	123k 	 3 	5

LLL±±1± 	LL_
Figure 15.1+ Results for 10 users for threshold=10

-179-

seize block user
number

no 	records requested no. of
failures

priority
on release

1 8 9 10 11 22 4 0 0

2.3 27 	 •.' 0 0

3 .11 ;l9262+8 1 	2 8

4 19 entire database 1 22

'5 12 H3571 1 34

6 13 :9876 	. 1 40

7 TO 18 38

8 j 	5, 7 	15 	18 0 37

9 15 1357911 2 34

10 8 . 	54823 1 27

11 2 1 	8 12 23 9 14 22 26 25 1 27
24 3 10 20 18

12 1 1 	19 	13 20 1 25

13 4 26 19 24 1 	9 1 23

14 7 7 2 13 24 1 	26 1 22

15 11 8 . 	 0 19

16 6 '1 	19 	11 2 26

17 4 '9 	11 	5 25 	12 	2 	13 1 27

18 3 1 	3 4 6 12 15 24 1 25

19 9 345 1 24

20 11 27 0 4

21 il k822 2 6

22 1 121219 0 4

23 .6 1231 2; 5

24 8 .26 6

25 11 123 4 1 4

26 20 2 4 26 1 	15 23 20 17 6: 	1. 3

27 242526 0: 0
...............

Figure 15.5 Res-- 	for 15 users for threshold=0 (first-come-
first-served 	.

-180-

seize blockuser no
number

records requested 	no. of I priority
failures !on release

i 1 8 9 10 11 	22 4 0

2 3 27 0

3 12 3571 1

4 1 1 	9 26 2 4 3 3

5 9 Htire database

610 118 	 . i

7 5 71518 1

8 j13 10987.6 3

15 1 	3 5 7 9 11 2

10 8 i54823 	. 1

11 1 1 	19 13 20 1 	1

12 2 1 	8 12 23 9.22 26 25 2
24 3 10 20 18

13 14 26 19 24 1 9 1

jil 8 0

15 7 7 2 13 24 1 26 2

16 4 8 9 10 11 	22 4 0

17 1 	6 1911 4

18 9 345 0

19 3 1 3 4 6 12 15 24 2

20 Hi .27 0

21 14 4 .8 22 1

22 1 1 	2 	12 	19 . 	I

23 4 i2l2 4 261152320176 1

24 6 1234 1

25 11 z1 	2 	3 	4 i

26 8 .26 i

27 8 242526 0

1'icure 15.6 Results for 15 users for threshold=-5

0

0

4

9

25

26

25

40

35

27

22

2

22

16

23

16

29

21

24
p
0

1

1

3

3

3

2

0

-181-

seize block user nol. 	records requested
number

1 4 8 9 10 11 	22 4

2 3 i27

3 12 3571

4 11 11 	9 26 2 4 8

5 9 i entire database

6 10 i 	8

7 5 17 	15 	18

8 13 1109876

9 15 111 	3 	5 	7 	9 	11

10 8 154823

11 1 il 	19 	13 	20

12 2 il 	8 1223 9 14 22 2625
3 10 20 18

13 14 26 19 24 1 	9

14 11 8

15 7 7 2 13 24 1 	26

16 4 8 9 10 11 	22 4

17 9 3k5

18 6 i 	9 	ii

19 3 1 	3 4 	6 	12 	15 24-

20 11

4
20 27

21 14 14822

22 1 11 	2 	12 	19

23 4 121 	2 4 26 1 	15 23 20 17 6

24 6 1123 4

25 11 11 	2 	3 4

26 8 1 26

27 8 242526

no. of 	priority
failureson release

0 	0

0 	0

1 	4

3 	9

4 	•25

1 	26

1 	25

3

3 	35

3 	27

1 	22

4 	28

4 	22

1 	16

5 	23

3 	16

1 15

5 29

3 24
p 0 0

1 1

I

1

2 3

1 3

1 2

0 0

Figure 15.7 Results for 15 users for thresho1d10

-182-

Threshold
No. Of failures

all values 	 8

Figure 15.7 Breakdown of number of unsuccessful attempts
to execute seize blocks for 5 users - 9
seize blocks

of
Threshold

iITT___
0 6 ii I

5 5 6 5 2

10 5 7 2 2 	1 	: 	I

Figure 15.8 Breakdown of number of unsuccessful attempts
to execute seize blocks for 10 users - 18
seize blocks

Threshold
0 1 	

No. of failures

0 7 15 :

5 7 11 5 2 	2

10 11 1 6 	3 	2

Figure 15.9 Breakdown of number of unsuccessful attempts
to execute seize blocks for 15 users - 27
seize blocks:

-183-

Threshold 	Average no. of failures 	Average priority
per seize block 	 on release

all values 	 0.1 	 0.2

Figure 15.10 Average number of failures and average priority
on release per seize block for 5 users

Threshold 	Average no. of failures 	Average priority
per seize block 	 on release

	

0 	 0.6 	 6

	

5 	 1.2 	 4,7

	

10 	 1.4 	 I 	4.9

Figure 15.11 Average number of failures and average priority
on release per seize block for 10 users

Threshold I Average no. of failures 	Average priority
per seize block 	 on release

	

0 	 0.9 	 18.1

	

5 	 1.3 	 15.2

	

10 	 2.0 	 15.0

Figure 1512 Average number of failures and average priority
on release per seize block for 15 users

-i8k-

15.6 Analysis of the results

In order to fully evaluate the efficiency of an algorithm

for handling concurrent update, it would be preferable to do it

in a "live" situation. 	As this was not possible, it was

decided to use asmall test database with several users whose

record requests overlapped considerably. 	Even in a large

database withceveral users running concurrently, one algorithm

will perform much the same as another if their requests do not

overlap. 	However, there is evidence to show that in many

applications there is considerable clustering of update requests,

both in time and locality. 	For example, when a horse closes

its entry for a race [58], the horse's racing history and the

owner's and trainer's accounts must be updated and the details

for the race altered. 	Such transactions arrive at the rate

of one per second throughout Thursday and Friday mornings and

at a higher rate before a Bank Holiday weekend. 	This is in

addition to the other normal activity in the Horse Racing

Administration System at Yetherbys, such as foalings, registrations,

etc. 	Moreover, two or more horses may close for the same race

at the same time and often for the s:me owner or trainer for

different races. 	Thus the test situation used in EDAMS is

not totally unrealistc with several users updating a small

number of records.

The reason for the double peaks of activity in each of

the runs (e.g. Figures 15.3 and 15.4) is that the experiment

was conducted in such a way that all users start from scratch

by entering seize bThcks and finish by releasing locked records.

Although the individual commands from users arrive at random,

the command sequence is the same for each user. 	Thus, at the

beginning of each run all users will be entering seize blocks,

then locking records and then releasing them, mainly before the

second set of seize blocks for each user is started. 	In a

"live" situation at any point in time, one would expect that

user's would be at various different stages in execution, i.e.

not all entering seize blocks. 	It would have been preferable

to use a randomly staggered start and collect statistics in the

middle of the test run.

15.6.1 First-come-first-served

The first-come-first-served (FCFS) operation corresponds

to an EDANS Priority System with threshold=O; i.e. only the

head of the queue can be released even if the lock requests of

processes further down 'the queue are distinct. 	Thus no attempt

is made to evaluate a user's lock requests unless it is at the,

head of the queue. 	In this way, the number of unsuccessful

evaluations of seize blocks; is minimized, but so also is the

degree of concurrency with only one user active most of the

time. 	The results show (Figures 15.1, 15.2 9 15.5, 15.7-15.12)

that even in a moderately concurrent situation, represented. by

10 users, the average priority on release is considerably higher

for FOPS than for the set threshold in the EDAMS Priority System.

1 	DATS Priority System

In spite of the rather artificial priority mechanism used,

the trend of the results for the EDAIIS Priority System with

increasinPP threshold value is clear. 	A very high (infinite)

-186-

value of the threshold corresponds to the situation where the

lock requests for all processes on the queue are checked each

time a user releases locked records. 	The effect of this is

very clear in the 15 user run (Figures 15.9 and 15.12). 	A

small i'eduction in the average priority on release is accompanied

by a very large increase in the number of unsuccessful executions

of thc seize blocks.

-187-

CHAPTER 16

CONCLUSIONS

16.1 Introduction

The objectives of this thesis as outlined in Section 1.4

are threefold, namely, to show that

it is feasible to implement a CCDASYL-type DBMS on a Virtual

Memory (Vh), multi-access Operating System, such as the

Edinburgh Multi-Access System (EMAS),

it is possible, within the overall CODAI3YL framework, to

provide the user with much greater flexibility in the

creation of logical records whose fields can be drawn from

all over Ihe database without restriction, 	 -

an efficient and simple algorithm can be devised for solving

the problem of contention between users during concurrent

update of the database.

In this final. chapter, the degree to which these objectives

have been met in the thesis through the design of EDIAIMS (ENAS

Database Management System), will be discussed, together with

the difficulties encountered in meeting them.

16.2 The implementation of EDANS on 13NAS

in Chapters 11,12 and 13, it was shown how a CCDASYL-type

EEMS could be imp1ementd on a VM system such as EMA3. 	The

VM system offers the DBMS designer many advantages, especially

with regard to the automatic nanapement of memory and ease of

implementation propramrning. 	However, a number of difficulties

were encountered, which will be sumearized below.

16.2.1 Privacy and security

ENAS has two levels of access to a process' VM. 	The

first 32 sepoents (0-31) of a user's VP contain the Director

to which only the system has access. 	The remaining

segments (32-255) can be accessed by both the user and the

system. 	Such a two-tiered structure presents privacy problems

for the DBMS designer. 	For example, consider a user process

requesting a record which for simplicity is identical to a

physical record in the database. 	If the ENAS file mapping

facilities were used, then the entire file containg the requested

record, iould be mapped onto (connected into) the user's VP.

In this way, the user could have unrestricted access to the

whole file.

In order to ensure privacy, it is therefore necessary to

mar the database, or portions of it, onto parts of the VP to

which the user does not have direct access. 	In SIlAS, the,

are two possible solutions to this problem, namely to p ace

the data in either

Director or

another process' \Tit.

These two approaches are discussed in detail in Chapter 12.

Essentially,the problem with the first solution, that of

maupiny the database onto Director, is .he limited space available.

Some of the ;2 segments are already used for system and file

information and there would not; be sufficient left for database

-189-

connection as well as the indexes, subschema and schema tables

and so on, which would also have to be protected. 	It would be

possible to expand Director, but it was decided to adopt the

second solution, namely the use of a second process. 	This

process is called the JtDANC Master Process, BIT. 	The EN]?

can be regarded as the DBMS. 	All requests for service by the

DENS are passed to the ENP via the inter-process message

communication facilities in Ei1A5. 	All data, tables, indexes,

etc. are connected into the EMP's V?I, before being passed back

to the user. 	A Communication Area is set up between the El1P and

each user process (simply an BI'IAS read-write shared file) to

contain database requests, replies and so on.

16.2.2 Database intepritj

One of the main problems encountered when impThmenting the

DENS on E.'-,-'AS concerned the difficulty of ensuring database

integrity during update of the database. 	An update in a VN

system cannot be considered comp'.ete and secure, until all the

pages involved have been written hack to secondary storage. 	The

EMAS service of significance is known as the Make Disc Consistent

(MDC). 	bhen requested, this service writes back to disc all

pages altered by a particular process. 	DlAS automatically

uses the MDC when either the process' working set of pages in

core changes or when a user file is disconnected (including

hen a user logs off).

The MDC, as it stands, is too blunt an instrument for

direct use by the DBMS fo ensure DB integrity during update.

The pages written back to disc as a result of the MDC could

contain uarti&11y complêted as well as totally completed

-190-

transactions.

The solution adopted by EDANS is to make use of the Journal

File. 	Every update transaction is assigned a Transaction

Sequence Number, TSN. 	Once a user process holds the locks on

all the records involved in the transaction, an entry is made

on the Journal File containing the TSN, before and 'after imges

of the record(s), page. number in VII, and so on. 	Once the

entire update is complete and secure (MDC fo: the process

executed), an End of Transaction for that TSN is set on the

Journal File. 	Thus in the event of failure, rollback can be

initiated.

As a result of the fact that the MDC is page-oriented,

such rollback will be quite complex as those pages written back

to disc following an MDC, may contain partially completed

transactions belonging to other processes as well as completed

transactions. 	The situation would he greatly simplified if

the ;DC could be much more selective, based on extents in VII.

In this way, only the actual records involved in the transaction

will be written hack to disc. 	It is understood [] that such

an extent-based. MDC routine could be incorporated into E1-:JAS

and this would greatly facilitate '!..he maintenance of DE integrity

during update, especially when rollback following failure is

required.

15.3 Flexibility of: the EI)ANM data model

A major contribution of LJAMh to the design of a CDA3YL-

based DBMS is to provide the user with much greater flexibility.

-191-

This flexibility is brought by allowing the user to form sub-

schema lorical records (SLRs) which can be composed of fields

taken from any record(s) in the parent schema. 	An obvious

extension of this is to allow the user to define new sets in

the subschema to link the SLfls together.

The introduction of the SLR poses a number of problems

for the design of EDMAS such as:

inclusion/exclusion of sets in the schema

identification of source schema records for definition

of SLIRs

operations on SLRs.

16.3.1 Sets in schema

Jith the introduction of the SLP and subschema sets, the

question arose as to whether or not sets in the EDMAS schema

were necessary. 	It was felt that the relationships between the

data (either implicit or explicit) are as much part of the

database as the data itself. 	If schema sets were excluded, then

the informati- n concerning these relationships would have to be

repeated in each subschema which required them. 	oreover, a

fundamental concept in the use of databases is that of sharing

and the elimination of unnecessary redundancy. 	It was there-

fore decided to retain the schema set inEDMAS' and to augment

it by allowing new sets to be defined in the subschema.

However, the retention of the schema set poses probles

in relation to its use in the SLT environment of the subschema.

For example, if a mroup of 3'LPs contained a nixture of fields

from both the owner and the member records of a schema set, the

-192-

use of that set to link together the SLRs could be confusing.

It would be difficult to identify which SLR should be the

owner and which a member. 	Thus the subschema records

defined as forming part of a schema set must be subsets of

their parent schema records, i.e. single-source SLRs. 	In

this way, there will be no ambiguity as to -,-he use of the set

in the subschema.

16.3.2 Definition of SLRs

In order to define a new SLR type in the subschema DDL,

it is necessary to identify the source schema records and when

the new set of SLRs is generated to uniquely identify the

particular group of schema record occurrences which provide the

sources of a given SLF occurrence (cf. CODASYL set occurrence

selection).

The solution to this problem of source record identification

adopted by SDAMS incorrorates some useful features of the

relational approach to DBMS. 	There are two methods, the

first is bas(-.-': on records and the second on sets.

The record-based ap.xoach consists of expressing the

rules for the formation of a set of .oLTs in terms of the

relational JOIN and POJECT operations. 	For examnle, consider

the sassle database given in Figure 15.1.

-193-

C
" 1. I ._ L

T
)L L.t

HANE ADDRSC J l;I•iPNO 	[En PNO CUPSAL fl stSAJ2ndOAL I

PERSO1JAL-INFO 	 PAY-HISTORY

SUFECHENA FOP PAYROLL APPLICATICN

mANE ADDPISE I
PAYNEC CLE

Figure 16.1 Portion of a sample database

Having defined the source fields for PAY-.R!,-,C, e.g.

DEFINE PLC OPD rflrpL

FIELD I IS NAME; soupcl:. Is NAI:E iD OF RECORD TYPE

lCddONAL-INFC; etc.

the relational orerators are used:

P NsoI.1L-I;JFc•, PAY-RIPTOHY 	Jr PNO TO

iLOJECT TLiPHHC OVP NAME 	ADUJESE

	

TOE., 	F;N , 	, CUREAL P:YLLC

The result of th JOIN operation is a set of r.-.-.cords, merged on

the ai•iliTC field, each containinr

flAME, ADDPES, EMPI.IC, OUIISAL, IstSAL, 2ndCAL.

The PHOJECT operator is then used to select only those fields

required, namely NAME, AUDRESE and CUPSAL. 	Note that in this

example, th JOIN is an EUIJCIN, i.e. only one pair of schema

records for each v:lue of EMPHO. 	If, however, the joining l

field is non-unique, then the MIiAMEI rule is to generate all

possible pairs.

.he second uproaeh to the I OrfLlation of SLn is based

upon ;he set membership structure of the parent schema records

.rom which the SLEs are derived. 	Suppose the following set

-19k-

structure existed for the sample database given in Figure 16.1

above:

PETS ONAL- INFO

EI'•iPLOYEE SET

PAY-HISTORY

Figure 16.2 ENFLOYSE set structure in schema

The source field definition of the PAYPEC SLR in the DDL would

be slightly different, e.g.

DEFINE RECORD TYPE PAYREC;

FIELD 1 IS NAIlS; SOURCE IS HANS FILD OF RECORD TYPE

PEESGNAL-INFO O'S TER OF EMPLOYEE SET; etc.

The set based JOIN and PROJECT commands for forming PAY.REC are then:

JOIN poEscrJAL-INFc,PAY-HISTCEY THISJ SET EMPLOYEE TO FORM

TEE PESO

PROJECT TEiIPRE;C OVEE NAME, ADDRESS, CI] R;AL TO FOOM PAYREC;

16.3.3 Coerations on ;ULRs

All access to the EDA1•'IS database must he via a subscherna.

Thus all storage, retrieval and update operations are carried

out on SLRs.

.etrieval of an OLE is straightforward and consists merely

of retrieving the fields from the source records and putting

them toether to form the OLE before pasing it to 'lhe user.

Update, in the sense of the alteration of an existing OLE

field value, is also aparentJ..y straightforward. 	However,

it cc n have undesirable repercussions. 	Suppose, for example,

the field is the key to a JOIN operation in the formation of

-195-

that, or any other SLR, then it is clear that inconsistencies

could result. 	Indeed, it is shown in Section 9.3.2 that the

field to be updated need not even be the key to a JOIN operation

for problems to occur. 	It was found that the only way to

guarantee the integrity of the database was to restrict update

operations to single-source SLRs. 	It is recognized that this

is an unfortunate restriction as many updates can be carried

out successfully on rnilti-source SLRs and it does remove a

derree of flexibility.

DAMS distinguishes between two types of operations to

create an SLR. 	The first, called addition, simply involves

the establishnent of the links between a new SLP and its source

schema records, which already exist in the.- database. 	This is

quite straightforward. 	The second creation operatio, called

storage, is quite different in that it involves the physical

addition of new data to.the database. 	The source schema

records for the SLR have to be created and fields in those

source records which do not form part of the SLP, assigned

null values. 	This could result in zj. proliferation of schema

records in the database whose fields are largely unassigned.

Problems analagous to those which arise with update can also

occur i1hen a second ,-LP is stored which contains some of the

unassigned values and si.me of those assigned by the first SL[.

Once again, the solution is to restrict the store operation

to 3bis which are strict subsets of a sinle rarent schema record.

Corresponding to addition and storage of SLRs are

removal and deletion. 	Removal only involves the removal of the

CLP from 	no 	 delet the user's View, with 	 ion of data

from the database. 	Deletion, on the other hand, does involve

LI

the physical deletion of data from the database. 	As before,

difficulties can arise, so the deletion operation is once again

restricted to single-source SLRs.

16.3. Database saps

In order to facilitate the formation of SLRs and the

definition of sets in EDA1•'IS, pointers indicating source fields,

set linkages and so on are stored separately from the data in a

database map. 	Essentially, a database map can be regarded as a

representation of a subschema's view of the database, but where

the actual data is replaced by pointers to where it is stored.

kuch of the overhead in database processing involves

following pointers, looking up indexes and so on, even before

any physical data is retrieved from the database. 	Any aproach

which can enable this table look-up to be speeded up will

increase the overall efficiency of the DBIS. 	The database map,

which will of necessity he o,u:i.te large, is intended to do this.

kcreover, it is anticipated that since it will be used so

frequently, it will he permanently, connected in the hIP's Vi

(either in core or on drum). 	There is one database map per

subschema plus a root map for the schema.

I 	Concurrent update in DAiC

A completel new algorithm is given for solving the

problem of contention between users of a database. 	The aim

of the alorithm is to maximise concurrency withOUt imposing

-197-

too high an overhead.

The algorithm makes use of locks on records and a user

must hold all the locks for all the records involved in an update

transaction before being released to perform the actual update.

The claiming of these locks is done in a special section of the

application program, known as a seize bock. 	Only one user

can be executinm a seize block at a time - this is facilitated

by the use of the 131W described above • 	If a process A, currently

executing a seize block, attempts. to lock a record which is

already, locked by another process 13, then process A is suspended

and all locks which it has already claimed in th:.t seize block

released. 	Furthermore, rrocess A is placed on a queue of

hlocke processes, the ordering of the queue being determined

by the process' time of arrival at a seize block. 	Once process

13 has completed its update, it will release all the locks it

holds simultaneously. 	The system will then go down the queue

of blockd processes, attempting to satisfy their locking predi-

cates and release them. 	If the process at the head of the queue

is still blocked (i.e. a third process C holds the locks

required by the head of the queue), then the system will attempt

to release the next process on the queue and so on until

the difference between the waitiny time priority of the process

to he considered for release and the waiting time riority of

the head of the queue e:':ceeds a given threshold. 	A process is

assigned a waiting time priority of zero when it is first placed

on the queue of blocke processes and it increases with time spent

in the queue. 	In this way processes cannot be held up

indefinitely, while at the same time, processes down the queue

whose lock requirements are simple, will not he held up

0

unnecessarily by processes wishing to perform complex updates

involving large numbers of records.

16.4.1 Evaluation of the algorithm

The degree of concurrency to he achieved by EDAIIS will

depend upon several interdependent factors including:

number, of users concurrently updating the database

extent to which the lock sets of users overlap

timing of lock requests.

For oxanrie, consider the extreme case of only two users

concurrently updating a database of I million records. 	Stat-

istically, the chances of these two processes wanting to update

the same :ecord at the same time are very small, but yet, it is

feasible that they could hold each other up continuouslyif there

lock sets happen to overlap in a certain way. 	1oreover, it is

likely that in a database of 1 million records, there would be

areas of the database which would he much more active, at any

given time, than others. 	At the other extreme, it is possible

to imagine several users all wanting to update the same single

rcord but their timings, although close, are such that they

never interfere with one another, i.e. one process releases the

record just before the next one ends the seize block in which

it requests to lock the record.

It is therefore very difficult to compare one concurrent

update algorithm with another; The yardstick against which the

EbAlIS almorithm was measured was he strai!-:htforward first-

come-first-served (I'CP;.) system. 	.he results snow that the .Er DAiS

algorithm poi-forms considerably better overall. 	An operational

comparison between say the Chamberlin et al algorithm described

-199-

in Section 4.3.5 and SDAMS would be interesting, but the results
would be difficult to evaluate. 	The overhead of the Chamberlin

algorithm with its proliferation of small queues for individual

records, is clearly higher than the EDAIIS system. 	Furthermore,

the Chamberlin algorithm necessitates the totally arbitrary

favouring of a process in order to ensure its release, whereas

the EDAIS Priority hystem automatically and logically guarantees

that every process will be released within a reasonable period

of time (threshold), while at the same time allowing more than

one process to hold records simultaneously. 	On the other

hand, it could be argued that the Chamberlin et al. algorithm

might not involve as many re-evaluations of entire seize blocks.

In this connection, however, it should he pointed out that

EDAI:C allows for overlocking based on realm for certain

processes. 	Requests of the form

LOC 	LL PCOPi), I 	ALii £

require no access to the database in the seize block. 	All that

is required is a quick scan through the list of currently

locked .cecords against the records in realm R. 	If any record

appears on both lists, then the locking predicate fails.

In conclusion it is felt that the SDAi'T Priority System does

provide an efficient and simple algorithm for solving the

uroblems of contention between users during concurrent update

of he database.

1 .5 Future work

Only the basic core, of •c:DAi.iS has been implemented in

-200-

order to evaluate the operation of the concurrent update algorithm.

Future work on DAMS should therefore involve 	full-scale

implementation of the spa erel with live data.

It would be interesting to evaluate, if possible, how

efficiently the database map concept works in practice. 	The

extent to which users benefit from the increased degree of

flexibility offerred by EDANS through the SLR and subachema sets,

is also worthy of examination.

In o.der to assess more fully the operation of the concurrent

update algorithm, it would be useful to replace it, in the full

-D'',"NIS implementation, by other solutions to the uroblem (e.g.

Chamber in et al, CODAtYL) using the same database and the same

set of user requests.

-201-

REFERENCES

COD;SYL DBTc- Report, British Computer Society, April 1971.

Schubert 'R.F., Basic concepts in Data Base Managment Systems,

Datamation, July 1972, pp42-47.

'hitney K.M., Fourth generation data management systems,

AFIPS, 1973, pp239-24-4.

1• Postley J.A., The 1iAPK IV System, Datamation, Jan. 1968,
pp28-30.

Martin J., Principles of data-base management, Prentice

Hall, 1976.

Bryant J.H., Semple P. G1 and file management, Procs. ACM

National Meeting, 1966, pp97-107.

Ele±er R.E., Treating hierarchical data structures in the

SDC time-shared data management system (TDMS), Procs. ACM

National Meeting, 1967, pp41-49,

0hild D.L., An information algebra, CACII, Vol.5,
ppl 9U-201.

Childs D.L., Feasahility of a set-theoretic data structure,

A general structure based on a reconstituted definition of

a relation, .IFIP, 1968 9 Vol.1, pp20..430.

Codd 	A relational model of data for large shared data

banks CACIl, Vol.13, No.6, June 1970, pp377-387.

Nichaels A.S. hittman B., Carlson C.B. A comparison of

the Pelational and C0B:SYL aoproaches to Data-Base

;anagerent, C6mputing Surveys, Vol.8, No. 1, March 1976,
pp125-151.

-202-

12. Fowling J.R., Controlling flEA Seat Reservations, The computer

Bulletin, Vol.10 	No.1, 	June 1966, pp1+8-50.

Stross C.C.N., Operation of a disc data base, The Computer

Journal, Vol.15, No.1+, pp290-297.

Emery J.C., An overview of Management Information Systems,

Data Base, Vol.5, 1973, ppl-15.

Greenes R.A., Pappalardo A.M., Marble C.W., A system for

clinical data management, AFIPS, FJCC, 1969 1 pp297-305.

Beggs S., Vailbona C., Spencer W.A., Jacobs F.M., Baker R.L.,

Evaluation of a system for on-line computer scheduling of

patient care activities, Computers 	Biomedical Research,

Vol.k, 1971, pp634_65 L1..

Simborg D.W., 1iacDonald L.K., Ward Information Management

System - An Evaluation, Computers & Biomedical Research,

Vol.5, 19759 pp48L+497.

Abrams 11.5., Bowden K.F., Chamberlin J., A computer-based

general practice and health centre information system,

Journal of the Royal College of General Practictioners,

Vol.16, 1968, ppLFl5_LF27.

Reekie D., Computers in the health service - fact or fiction?,

Meeting of the Edinburgh Branch of the British Computer

Society, Feb.6, 1974.

The London Hospital Comnuter System, A case study in the

installation of a major real-time system, Procs. of

conferences held on Nov. 27, 1973 and April 24, 1974-

Feature analysis of generalized DBJ:s, CODASYL, ;.'ay 1971.

SC:)A3YL D--.-)LC, Journal of Development, 1978, Available from

Canaciaa Government.

-203-

23. IBM IMS/360 Version 2 General Information Nanual, GH20-0765-3.

21+. IBM INS/360 Version 2 Application Programming Reference Manual,
SH20-091 2-3.

Knuth D.E., The Art of Computer Programming, Vol. 1,

Fundamental Algorithms, Addison-Besley, 1968.

Palmer I., Database Management, Scicon, 1973.

King P.F., Collmeyer A.J., Database Sharing - an efficient

method for supporting concurrent processes, AFIPS, 1973 9
Vol 42, pp271-275.

Infotech State of the Art Deport No. 15 on Data Base
Management, Infotech Information Ltd., 1973.

DMS 1100 Schema Definition Reference Manual, UNIVAC.

Eroenke D., Database Processing Fundamentals, Modeling,

Applications, Science Research Associates Inc., 1977.

31 • Everest S.C., Concurrent update control and database integrity
in Data Base Management, ed. J.J.Klimhie & H.L.Koffeman,

North Holland/American Nisevier, 1974.

Chamberlin D.D., Boyce P.F., Traiger C.L., A deadlock-free

scheme for resource sharing in a data-base environaent,

Broc. IFIP Congress 1974 , pp3kO-32+3.

IDR 301+2, ?.IMB CCIIUIJTHR User's Guide for the Database

Administrator, July 1977.

31+. CCDASYL DBG Report 1969, British Computer Society.

35. COCACYL COBOL Journal of Development 1975, British Computer

Eocietv.

CODASYL FORTRAN DML Journal of Development 1978, available
froth the Canadian Government.

BCS/CCDASYL DDLC DBAWG Report, Jan. 1975s British Computer

Society.

DOS October 1971 Conference on April 1971 Report, British

Computer Society.

39, Nilburn T., Edward's D.F.G., Lanigan N.J., Sumner F.111.,

One-level storage system, IRE Transactions BC-11, No.2,

April 1962.

Joseph N., An analysis of paging and program behaviour,

Computer Journal, Vol. 13, No, 1, Feb. 1970, pp48-51+.

Sherman G.W., Price E.G., Performance of a Database Manager

maVirtual Nemory System, ACM Trans. on Dutabase Systems,

Vol. 1, No. 4, Dec. 76, pp317-343.

2, Price P.S., Sherman S.W., An extension of the performance

of a database manager in a virtual memory system using

partially locked virtual buffers, ACM Trans. on Database

Systems, Vol.2, No. 2, June 77, pp19E-207.

43, Lang 0., Wood C . , Fernandez 1.3., Database buffer paging

in virtual storage systems, ACM Trans. on Database Systems,

Vol. 2, No. 4, Dec. 77, pp339-351.

44. Tuel W.G., An analysis of buffer paging in virtual storage
systems, Research Report PJ 1421, IBM Research Lab., San Jose,

California, July 1974.

4. Casey P.O., Osman I.IJ., Generalized page replacement algorithms

in a rclational data base, Proc. ACR-SIGFIDED Workshop on

Data Description, Access S Control, Nay 1974, ACM, p1)104-124.

-. Meaning P.J., Virtual memory, Computing Surveys, Vol. 2,

No. 3, Sept. 1970, pp153-189.

-205-

2+ 7 Whitfield H., Wight A.S., ETIAS - The Edinburgh Multi-Access

System, The Computer Journal, Vol.. 16, No. 1+, Nov. 1973,
pp33 i-346.

1+8. Stacey G.i., The role of virtual memory in the handling of
application files, Information Processing Letters, Vol. 1 9

1971, ppi-3.

1+9. Senko M.E., Altman E.B., DIAN NOTE 1, A Framework mode for
implementing a record storing facility, Research Report

RJ 1365, IBM Research Lab., San Jose, California, March 1974-

Millard G.E., Rees D.J., Whitfield H. The standard ENAS

subsystem, The Computer Journal, Vol. 18, No. 3, Aug. 1975,

pp2l3-2l9.

Rees D.J., The EMAS Director, The Computer Journal, Vol. 18,

No. 2, May 1975, pp122-130.

Mensen P.R., A program methodology for operating system

design, IFIP, 1974, pp394_397.

Ilensen P.B. The programming language concurrent Pascal, IEEE

Rrans. on Software Engineering, Vol. SE-i, No. 2, June 1975,
ppi 99-207.

51+. Casey L.M., Computer Structures for distributed systems, Ph.D.
Thesis, Dept. of Computer Science, University of Edinburgh.

Lnles R.S., Atutorial on data-base organization, 131";-

Technical

BM

Technical Report, TS-00.2001+, March 20, 1970.

Crimson J.B., Stacey G.M., A performance study of some

directory structures for large files, Information Storage

& Retrieval, Vol. 10, pp357-5E4.

T:sichritzis D.C. Rochoveky F.M., Database iJanagenlent Systems,

Academic Press (Computer Science C Applied Maths Series),

1977.

-206-

Atkinson N., Private communication, 1978.

Yarwood I., Private communication, 1979.

