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Abstract 

This thesis continues research exploring the benefits of using functional 
databases based around the functional data model for advanced database 
applications-particularly those supporting investigative systems. This is a 
growing generic application domain covering areas such as criminal and military 
intelligence, which are characterised by significant data complexity, large data 
sets and the need for high performance, interactive use. An experimental 
functional database language was developed to provide the requisite semantic 
richness. However, heavy use in a practical context has shown that language 
extensions and implementation improvements are required-especially in the 
crucial areas of string matching and graph traversal. In addition, an 
implementation on multiprocessor, parallel architectures is essential to meet the 
performance needs ariSing from existing and projected database sizes in the 
chosen application area. 

The work described deals with the general topic of devolving functionality to a 
lower level in the query evaluation process. It builds on earlier work to show 
that substantial performance gains are possible in many areas. It then pays 
particular attention to string handling and the data structures supporting this to 
provide a richer set of search options for the user-options hitherto unavailable 
in a functional database. By exploiting the inherent parallelism in list 
comprehensions-and the optimisations that are available-it is possible to 
provide language extensions based around a parallel architecture. This 
architecture uses the basic principles of dataflow graphs, loosely coupled MIMD 
machines, together with a novel RAID configuration combining mirroring and 
parity schemes, and obviates the need to maintain complex, low-level indexes. 
Attribute data is stored separately from entity data, combining the benefits of the 
functional data model with those of the relational data model to reflect more 
naturally data usage and provide a further boost to graph traversal operations. 

Initial results are promising and show that combining mature technology with 
novel ideas is achievable without compromising the known advantages of the 
functional paradigm. The results of this, and other, research work should 
provide added impetus in making functional databases a more realistic choice for 
use in advanced, text-intensive database applications. 

Keywords: functional data model; functional database; 
functional programming; function graph model; RAID; 
parallel processing; dataflow; text searching; triple store 
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Chapter 1 

Chapter 1 Introduction to the thesis 

1.1 Introduction 

Functional programming languages have been in use for over twenty-five years 

fulfilling many early promises made by their supporters. Indeed, in the 1980s, 

the functional approach was seen as the answer to numerous problems in 

computing and gave rise to considerable research in many countries throughout 

the world. In particular, their appeal as elegant ways to provide parallel 

processing generated great interest. However, some of the initial hopes had to be 

modified because of discovered drawbacks. Specifically, handling input/output 

and updates have remained difficulties. Furthermore, the task of implementing a 

parallel functional language is much more substantial than it first appears 

[TRI96j. 

Where database systems are concerned, the functional option is just one of a 

number of paradigms available to developers and is not usually the first choice. 

Increasingly, commercial database systems need to handle large volumes of text 

efficiently, and text handling has never been a particular strength of functional 

languages. However, as the shortcomings of relational databases become 

increasingly noticeable, and object-oriented systems fail to make a significant 

impact commercially [WILOOj, there is still room for the functional approach. 

More optimistically, a functional basis can be used to provide a stricter formalism 

to underpin a syntheSiS of the relational and object models-thus combining the 

best of both worlds. This is beginning to happen and is evident in the recent 

standard for SQL:1999 [MEL02j. 

This thesis aims to add impetus to this argument proving that enhancements in 

certain areas are achievable without compromising the earlier benefits. The work 

described in this thesis forms part of a collaboration with the TriStarp project, to 

which an introduction and background is given next. 
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Chapter 1 

1.2 Context of the thesis 

The TriStarp-Triple Store Applications Research Project-started under the 

guidance of Professor King at Birkbeck College, University of London in 1984 

and has used the binary relational approach for its database development since 

then [KIN90). Starting from the basic storage level and moving up to the user 

interface and conceptual views, full functional database systems can be 

developed which include deductive facilities, integrity constraints, temporal 

data, and provision for modelling and storing arbitrarily complex objects. Also 

database systems can have a higher level of data independence than has hitherto 

been achieved. Increases in hardware power and improved software techniques 

have the potential to make such systems practically realisable for the next 

generation of database management systems. 

Frost reviewed the binary relational approach and devised the Binary Relational 

Storage Structure (BRSS) [FR082). A BRSS holds data in three fields with the 

format <subject, relation, object> termed a triple. A triple can hold facts like 

"Fred reads The-Times", or be used for structures like binary trees-where 

format <node, left-subtree, right-subtree> is used to construct a triple set. 

There were several developments of the BRSS concept and the Birkbeck Triple 

Machine (BIM) is one such implementation [DER89). This is described in 

chapter 2. 

The functional database language FDL [POU92) was the culmination of several 

years' research work into functional programming done at various British 

universities. It remedied earlier drawbacks by unifying the functional data 

model with functional programming. This allows it to be used for effective 

modelling as well as computation. From a database viewpoint, FDL has as its 

model the functional view of the binary relation model usually known as the 

functional data model. In a binary relational model, entities may be lexical-they 

2 



Chapter 1 

can be written down, viewed or printed-such as string or integer; or they may 

be non-lexical. Non-lexical entities cannot be viewed or expressed directly, they 

may only be referred to by the (lexical) attributes that define them. 

The advantage of this model is that people without any prior mathematical 

knowledge or special training may easily understand it. As a consequence, it is a 

persuasive data model for capturing real-world semantics of a domain as well as 

being able to represent schema information in a simple diagrammatic form for 

easy comprehension. 

Issues tackled earlier in the project include temporal dependency, the ability to 

handle intensional as well as extensional function definitions and the ability to 

handle incomplete or unknown information. The use of a functional data model 

allows for extensible schemata, while the benefits of functional programming 

include the ability to support constructed types and recursive functions over 

them. The TriStarp architecture is shown in Figure 1.1 below. 

APPLICATION USERS AND DEVELOPERS 

I I 
End User Development 
Interface Tools 

-------
./ 

~./ 
Functional 
Language 

I 
I 

Triple Store 
(enhanced) 

I 

HARDWARE I SOFTWARE PLATFORM 

Level 2 
(User Level) 

Level 1 
(Data Model and Semantics) 

Level 0 
(Semantic-free Storage) 

Figure 1.1. The TriStarp Architecture. 
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Chapter 1 

1.3 Background to the thesis 

Previous investigations by Professors Maller and King evaluated the suitability of 

a functional database language being used to support large applications in the 

field of investigative systems [KIN96a]. This is a growing generic application 

area covering criminal and military intelligence and characterised by significant 

data complexity, large data sets, and the need for high performance, interactive 

use [MAL96]. 

The evaluation confirmed the soundness of this approach but heavy use in a 

practical context showed that language extensions were needed, together with 

implementation improvements, particularly in the areas of string manipulation 

and graph traversal. Also, an implementation on multiprocessor, parallel 

architectures was considered necessary to meet the performance requirements 

arising from existing and prOjected database sizes in this application area. 

Five objectives from the above investigation were achieved but completion of the 

following areas remain outstanding: 

(a) refine, extend and re-specify the abstract machine interfaces 

(b) reassess implementation methods, particularly the use of parallel 

architectures to boost performance at level 0 

(c) further investigate, refine and re-specify level 2 facilities. 

The subject of this thesis is to investigate improvements in areas (a) and (b) 

above. The three main areas of investigation are string handling and improved 

searching facilities, graph traversal and the incorporation of parallel processing 

techniques and enhancing the abstract machine level interface (and general) 

functionality. The initial investigation did, however, lead to other areas of work 

that are detailed below. 

4 
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1.4 Thesis methodology 

This study combines findings from different, but inter-related, disciplines of 

computer science. These are: 

• functionalprogranurrring 

• data models 

• redundancy 

• parallel processing and dataflow 

• text processing and data filtration, and 

• database management systems. 

The literature review is therefore presented in two different forms. The bulk of 

this is contained in the second and third chapters of the thesis. Then later 

chapters extend upon this where necessary to set the scene for each topic that the 

chapter covers. Each of the chapters 4 to 8 autonomously tackles an area of the 

work giving individual results or examples as proof of concept where 

appropriate. The last chapter draws together the various components of the 

thesis into appropriate conclusions. 

1.5 Contribution of the thesis 

More than one area of work is described in this thesis. As set out in the 

methodology above, there are several inter-related disciplines involved and 

contributions are made to the following areas. 

Architecture - The combination of attribute records and entity triples for physical 

storage seems to complement naturally the identical graphical representation that 

the user sees and uses to form queries. This approach also aims to synthesise the 

benefits of the relational data model with those of the functional data model. 
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String manipulation - The removal of strings from the data model and associated 

physical storage constraints would seem a sensible thing to do. This allows for 

the provision of more powerful string handling operations and the inclusion of a 

potentially richer type system, e.g. for type text. This permits further diversity of 

functionality to differentiate between string and text operations. 

Redundancy - Using a combination of mirroring and parity-where the mirror 

complements inverse functions that are part of the data model-a novel RAID 

level more naturally supports the new architecture of attribute records and entity 

triples. This is in addition to a much greater level of data security provided. 

Functionality - Devolving functionality is taken a stage further than has hitherto 

been done in functional languages-specifically in relation to string manipulation 

and inverse function evaluation. 

1.6 Limitations of the thesis 

Although they clearly complement each other, the contributions detailed above 

have been achieved largely in isolation. There is no all-inclusive working system 

that incorporates all of these concepts. This would have proved difficult to 

achieve in this instance as the areas of contribution cover a wide range of 

disciplines. Moreover, the work involved in writing a complete working system 

would not have contributed directly to the areas of work thernselves-each of 

which is considered and evaluated in its own right. 

1.7 Thesis structure 

The first three chapters constitute the introduction and background to the work 

presented in the later chapters of the thesis. A synopsis of each chapter is given 

below. 
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Chapter 1 (this chapter) is the introduction to the thesis. 

Chapter 2 introduces the current triple store architecture including the lexical 

token converter and interface functionality before identifying where 

shortcomings are evident and where improvements could be made. . 

Chapter 3 begins by discussing alternative implementations based on similar 

architectures. User requirements are then considered followed by a review of 

storage and access methods. Parallel processing techniques are an important 

area of the work presented later on, so the basic concepts are introduced here. 

The chapter concludes with an introduction to the topics that form the remaining 

chapters of the thesis. 

Chapter 4 specifically tackles one of the main areas of investigation, namely, 

improvements to string manipulation. This is done in two stages. The first stage 

involves providing improvements within the confines of the current architecture 

giving results and making comparisons where appropriate. The second stage 

suggests an alternative approach using different data structures to provide 

improved searching opportunities. This strategy is then compared to other 

systems. 

Chapter 5 investigates areas for improving functionality with specific emphasis 

on the interface functions between levels 0 and 1 of the software hierarchy shown 

in Figure 1.1. 

Chapter 6 covers another main area of investigation in this work, namely, 

architecture. A brief introduction is given to the NCR/Teradata database 

machine configuration that serves as a model for the proposed architecture. A 

novel RAID level is then described by example and compared to other RAID 
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levels. The concept of combining records and triples is folJowed through again 

with examples before the choices made are put into context of other work. 

Chapter 7 goes into the detail of transformations, optimisations and translations 

that are made to user expressions. The abstract reduction machine is described 

and the translation into dataflow graphs is shown by example. An important 

area of this work is the devolution of functionality to a lower level in the 

evaluation process. This is described in the context of previous research and, in 

particular, to the string and text enhancements (and inverse functions) 

introduced earlier in this thesis. 

Chapter 8 uses figures extrapolated from the North Yorks Crime Database and 

covers creation, population and maintenance issues. An important aspect 

missing from the original TriStarp proposals was temporal indexing, so this is 

described here. Finally, other database issues are summarised. 

Chapter 9 gives a summary and conclusions including related work and further 

work arising from the thesis. 

Throughout this thesis the words entity, non-lexical, abstract entity and object will 

be used synonymously. The terms lexical, lexeme and attribute will be used 

likewise, as will the terms relation and function. 
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Chapter 2 The Current Implementation 

2.1 Introduction 

In this chapter we begin by describing the storage architecture used in the 

TriStarp software-with particular emphasis on the storage of triples and the 

directory structure with its optimisations employed. We then briefly detail the 

mapping used for creating the lexical and non-lexical tokens used in the triple 

store together with the interface functions and file management system used. 

Finally, we discuss the current implementation highlighting areas where 

improvements could be made. 

2.2 The software triple store 

The triple store is essentially an abstract machine that provides two facilities: a 

method of storing triples and a set of interface functions to manipulate the triples. 

The triple store is based on the concept of a Binary Relational Storage Structure 

(BRSS) [FR082j. All data are held as triples with the format 

<subject, relation, object> and the valid operations are: inserCa_triple, 

retrieve_seCof_triples and delete_seCof_triples. For simplifying queries the notation 

'*' for a known value and'?' for an unknown value is used. Thus there are seven 

Simple Associative Forms (SAFs) available to manipulate the triples: 

<*,7,?> <?,*,?> <?,?,*> <*,*,?> <*,?,*> <?,*,*> <*,*,*> 

«7,7,7> is an eighth but serves no purpose as it means dump the whole store.) 

The advantages of a BRSS include simplification of design and use and the 

improvement of data independence [MCK92j: a disadvantage is the need to hold 

more triples to store the same information than would be held in a record-based, 

relational system. One implementation of a BRSS is the Birkbeck Triple Machine 

(BTM). BTM comprises two components: a software Triple Store and a Lexical 
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Token Converter (LTC). The function of the triple store is the storage, retrieval 

and deletion of triples (note that the BTM holds triples in the form 

<relation, subject, object». The LTC handles the mapping of the external 

representation of the components of a triple (strings, integers, etc.) into an 

internal representation of fixed-length identifiers (32 bits for each identifier). 

Internal representation of a triple therefore appears as 96 bits. The LTC also 

handles the reverse conversion when triples are requested by users. A set of 

functions is provided that enables the use of a uniform interface for triple store 

access. Indeed, as the BTM is semantic-free, it has been used effectively in 

functional and logical database projects at Birkbeck. 

2.2.1 The storage of triples 

The data structure behind the BTM is based on the grid file [NIE84]-a dynamic, 

multi-dimensional method of data organisation within a file. The logical data 

space available for the storage of triples is determined by taking the Cartesian 

product of the domain of each of the three key attributes-thus the BTM is a 

three-dimensional grid file. 

When a new triple store repository is opened, the whole of the data space region 

represents (points to) a data page on disk. As the file expands-Le. triples are 

inserted into the file-the data space will require division into new regions as 

data pages fill up and new ones are required. The regions are divided into 

hyper-rectangular sub-spaces by repeated bisection of the domains of attribute 

values in one of the three dimensions. Similarly, when triples are deleted from 

the file, merging of two pages into one may be possible and thus sub-space 

regions can be combined along the same lines. There is a direct mapping 

between data space regions and data pages on disk, which is shown in Figure 2.1. 
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The data space reg ions Storage on disk 

page 1 

page 2 

page 3 

page 4 

Figure 2.1. Mapping from logical data space regions to physical disk storage. 

There is a threshold of page occupancy-optirnally set at around 70%-which, 

when reached, requires that the page be split into two new pages. Similarly, 

when page occupancy falls below a threshold-optimally 30%-a check is made 

to see if any merging of regions (and thus data pages) can take place. So 

maintaining an effective, dynamic triple store depends on efficient splitting and 

merging operations performed on data space regions to reduce data page 

accesses-which are heavily I/O-bound-to a minimum. There is also the 

problem of trying to map triples from multi-dimensional data space, on to a one­

dimensional storage medium so that triples close together logically are also close 

together physically. Maintaining a dynamic triple store also depends on the 

form and granularity of the directory used to access the data pages. 

2.2.2 The parameter driven splitting policy 

The splitting and merging of regions can be done in several ways. The original 

method suggested by Nievergelt uses a halving of domain partitions in alternate 

dimensions. This makes merging easier but takes no account of the highly likely 

situation of triples clustering in the data space, and can lead to under-populated 

or empty regions and a complex directory structure. The BTM overcomes this by 
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testing potential split pOints in a region using a selecCsp-point algorithm. This 

chooses the point of split in a region so that the resulting new regions created are 

much less likely to be empty. This also reduces the size of the directory. 

However, the dimension to be split must first be chosen. BTM uses occurrence 

and reference probabilities known about the data to calculate a cost of split in 

each dimension; it then effects a split in the dimension of lowest cost [Dera90j. 

Occurrence probabilities, as to the expected form a partially specified query will 

take, can be provided by the Database Administrator (DBA). These probabilities 

are given at the time the triple store is opened and correspond to six of the SAFs 

described above and are denoted as Q{l} for <*,7,7> through to Q{2,3} for <7, *, *>. 

Reference probabilities use information on the probability distribution of values 

specified in queries and are a weaker element of the policy as they have to be 

hard coded by the DBA so are less easily changed. 

The cost of a split is independent of the state of the file and only makes use of the 

parameters provided by the DBA, although different occurrence probabilities can 

be given each time the store is opened. Since most partially specified queries 

have the relation field known, the probabilities provided by the DBA reflect this 

and so splits are often biased towards partitioning in the relational dimension. 

2.2.3 Parameter driven merging and reorganisation policies 

The merging of regions also uses the above probabilities provided by the DBA. 

There are two merging schemes: buddy and neighbour. In the buddy system 

only one candidate in each dimension can be considered for merging. This 

candidate is the one that, if merged with, would form a region that could have 

been obtained by repeated bisections of the domain. BTM uses the less restrictive 

neighbour system. In this system a region can merge with either of its 
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neighbours in each dimension. (See Figure 2.2 below in two dimensions for 

clarity.) 

A A B 
A A B 

C C 

Figure 2.2. Merging schemes. 

Buddy system: each region with label n is a candidate for merging with a region 

of the same label (diagonal Ns excepted). Neighbour System: any region could 

merge with another so long as the resulting new region is hyper-rectangular. So 

lower-right A could merge with upper-right A, lower-left A or lower B but not 

with left C because this would give a non-rectangular region. 

The situation can arise when an under-populated region has no legitimate region 

to merge with because of the configuration of the data space. In this case a low 

utilisation of the storage space would result-to the obvious detriment of the 

system performance. This situation is referred to as deadlock [HIN85j and can 

only be resolved by a reorganisation of some or all of the data space regions. 

BTM has a parameter driven reorganisation policy to handle deadlock where 

neighbouring regions in all dimensions are looked at to see if splits in other 

dimensions would allow for more efficient merges to take place. 

2.2.4 The inverted directory array 

The maintenance of a directory is crucial to minimising page accesses to 

secondary storage and has been the subject of much research since the grid file 

was first proposed in 1984 (discussed further in chapter 3). The grid file directory 

uses one linear scale for each of the three dimensions to maintain a record of 

partition points used in the organisation of the file. The Cartesian product of the 
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intervals used forms a three-dimensional array termed the grid array, each 

element of which is termed a grid block. The grid array is usually too large to be 

held in main memory-unlike the linear scales used for its partitioning. 

Each grid block contains a pointer that either points to a data page in memory, or 

is a null pointer if the region to which that grid block refers contains no records. 

The original grid array had many null pointers because of the nature of the cyclic, 

halving policy used for splitting: at its worst, the grid array could grow 

exponentially [FRE87]. This is because, as each new data partition is created, a 

hyper-plane is inserted through the data space creating many new under­

populated or empty grid blocks to be added to the grid array. As the BTM uses a 

splitting algorithm to ensure that empty regions are kept to an absolute 

minimum, some of the problems of null pointers are removed. However, this 

still leaves the problem of having too many grid blocks pointing to the same data 

page. In the two-dimensional Figure 2.3 below, the p# in each grid block points 

to a data page in memory. There are thus nine data space regions and 16 grid 

blocks in this example, but only eight data pages in memory. 

100 
p4 p7 pS pS 

75 -
p3 p7 pS pS 

50 
p2 p5 p6 null 

25 
p1 p5 p6 null 

o 
Linear I I 
Scales 0 25 50 75 100 

Figure 2.3. The grid array. 

As there can be several grid blocks pointing to one data page, BTM uses an 

Inverted Directory Array (IDA) [DER89] to remove the duplicate pointers. This 

is done by maintaining a set of pOinters for each interval plane. The intersection 
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of two or three of these sets provides a set of pointers that determine the relevant 

data pages to search. The IDA consists of data structures that facilitate the above. 

Linear scales are referred to as extended scales (E-scales); the set of pointers for 

each interval of each E-scale is referred to as a set record (S-record). The 

collection of 5-records forms the set module (5-module). (See Figure 2.4 below.) 

E2 
100 

75 

50 

25 

o 

Linear 

Grid array 

p4 p7 pS 

p3 p7 pS 

p2 p5 pS 

pl p5 pS 

El 0,25 

pS 
25,50 

5075 
pS 

75100 

pg 
E2 0,25 

pg 
~",OU 

50,75 

Scales 0 25 50 75 100 El 75100 

E-scales 

Figure 2.4. IDA data structures. 

{pl,p2,p3,p4} 

{p5.p7} \ 

{p6,pS} 

{pg.pS} 

{pl,p5,p6,p9} 

{p2,p5,p6,p9} 

I {p3,p7,pS} 

{p4,p7,pS}~ 

S-module S-records 

Following the example above, there are eight duplicate page pointers removed 

from the directory structure by using IDA. 

The IDA can effectively map linear scales onto data page pointers using the 

above data structures. Merging and splitting of data space regions can be done 

more efficiently without needing a re-write of the whole directory. However, 

there are occasions when a mapping is required in the opposite direction, e.g., 

when a data page becomes over- or under-populated. 

In this situation the directory wants to know which regions will need to have 

their linear scales (E-scales) updated. To cope with this, the IDA has another data 

structure-the region module (R-module)-to hold a list of all the data pages in 
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the file and their interval boundaries. (See Figure 2.5 below for the R-module 

relative to the previous example.) 

<p1,[0,24],[0,24],c> <p4,[0,24],[75,99],c> <p7,[25,49],[50,99],c> 
<p2,[0,24],[25,49],c> <p5,[25,49],[0,49],c> <p8,[50,99],[50,99],c> 
<p3,[0,24],[50, 74],c> <pS,[50, 74],[0,49],c> <p9,[75,99],[0,49],c> 

Figure 2.5. The R-module data structure. 

The 'c' in the above structure refers to the number of triples in each page; it is 

done to obviate explicitly counting triples each time the page is considered for 

merging or re-organisation. The price to be paid for this is that the R-module 

requires updating each time triples are inserted or deleted from the triple store. 

The R-module is organised as a B-tree structure with two layers: the root is held 

in main memory and the nodes are held in R-pages-an R-page being the unit of 

storage in the triple store. 

2.3 The lexical token converter 

The Lexical Token Converter (LTC) builds on the original ideas of Lavington and 

Wang [LAV84], who built a hardware LTC for the Intelligent File Store (IFS) 

[LAV88]. BTM uses a software LTC where each triple consists of three identifiers 

each of which is 32 bits long. As the domain of 32-bit integers is insufficient to 

represent instances of all the data types that are required, a conversion of triples 

from their external representation to internal identifiers is necessary. The LTC 

uses a set of internal interface functions to maintain a one-to-one mapping 

between triples and their internal identifier tokens. 

In addition to the standard data types of string, integer and real that are referred 

to as lexical tokens, the L TC also handles non-lexical tokens and system tokens. 

Non-Iexicals are used for the representation of the abstract entities defined by the 

user and are described by the lexical tokens they form relations with. The 
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abstract entity "person" cannot be accessed directly-only via the functions that 

describe it (name, date-of-birth, etc.). Non-lexical tokens are maintained by 

consecutive identifiers. System types are for individual users to tailor for their 

own particular needs relative to how their software will use the triple store. FDL 

uses system tokens for constants, labels used in query trees, built-in function 

identifiers and semantic error codes. 

The 32-bit token space is partitioned into disjoint subspaces to allow for the 

storage of each of the types required. If the token space is considered in 

10000000hex blocks, the types are allocated space in the following ratios that are 

proportional to the expected number of occurrences of each type. These are 

identified by the most significant of the 32 bits (MSB) which are used as a type 

label. (See Table 2.1 below.) 

type ratio range type label 

Short 2 00000000 to 1 FFFFFFF o 0 0 X 

Long 2 20000000 to 3FFFFFFF o 0 X 1 
Res-short 2 40000000 to 5FFFFFFF o 1 0 X 

Res-long 2 60000000 to 7FFFFFFF o 1 1 X 

Non-lex 1 80000000 to 8FFFFFFF 1 0 0 0 
System 1 90000000 to 9FFFFFFF 1 0 0 1 

Integer 2 AOOOOOOO to BFFFFFFF 1 o 1 X 

Real 4 COOOOOOO to FFFFFFFF 1 1 X X 

(Where X indicates "don't care".) 

Table 2.1. Allocation of type labels to token space. 

String types are handled as follows: the first two types, Short and Long, are used 

to generate unique, consecutive identifiers_ The string can then be broken down 

into sub-strings and stored as special triples within the subspace identified by the 

third and fourth types, Res-short and Res-long. The subspaces 010 ... and 011 ... are 

inaccessible to the user and are referred to here as the reserved subspace for the 

storage of string triples. 
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Given a Short string of length n, the LTC generates a unique identifier from the 

domain of type Short. A slot system is used to achieve a uniform distribution of 

string identifiers resulting in a more efficient use of database resources. The 

identifier space for Short strings is divided into 128 equally spaced slots and 

identifiers are issued according to a cyclic pattern with the current slot counter 

incremented as each new identifier is issued. When the store is closed the values 

of the counters are saved as special triples and re-installed each time the store is 

re-opened. 

Once the LTC has generated a unique identifier, it then proceeds to decompose 

the Short string into sub-strings for storage in the reserved subspace as string 

triples. A string of length n will require the creation of a set of n di v 6 + 1 string 

triples, each of which has as its first element the unique identifier (29 bits long) 

generated by the LTe. In the second and third elements there is room to store, 

per element, three characters (8 x 3 bits) plus five offset bits together with 010 as 

the Short string type label. (See Figure 2.6 below.) 

<J0~ol 
(a) 

29 

(b) 

I 1010 I I I I I 1010 I I I I I 
35888 35888[> 

I (a) (c) (d) (d) (d) I (a) (e) (d) (d) (d) 

(a) Type label 
(b) Unique set ID 
(c) Offset 1 
(d) Single character 
(e) Offset 2 

Figure 2.6. Format for storage of Short strings as string triples. 

The last reserved triple in the chain must have a null byte added to indicate end 

of string. The concatenation of the offset bits gives the position that the sub­

string will take in the complete string. Therefore, the maximum length for a 

Short string is derived by multiplying the size of the offset by the number of 

characters held in each string triple less one byte for the null terminator. Thus 
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the maximum length of a Short string is (2"-1) x 6 - 1 

about two pages of A4 text with font size 10. 

6, 13 7 characters-

Long strings use a similar scheme to the one described above but with some 

important differences. Firstly, the third MSB of each string triple (Figure 2.6) is a 

"1" for all Long strings. Secondly, each triple generated has an additional non­

key triple associated with it. The term non-key is used here to describe a triple 

that is not part of the grid file index system. Hence, these triples are not part of 

the triple store data space and can take any 32-bit values without corrupting the 

indexing system. This provides space for an additional 12 characters to be 

associated with each triple-four characters in each of the three non-key, 32-bit 

data fields. ThusthemaximumlengthofaLongstringis (2"-1) x (6 + 12) - 1 

= 18,413 characters-about six pages of A4 text. 

A set of internal functions is provided to enable the L TC to perform the storage, 

retrieval and deletion of string triples that correspond to user manipulation of 

external triples. Two immediate problems became apparent: there is often much 

duplication of characters at the beginning of strings and; any string with a length 

that is a multiple of six characters will need an extra triple in the set that will 

store six null bytes to terminate the string. Apart from wasting space, this has 

implications when collecting together a set of strings to search as there will 

always be a large set of string triples having six null bytes in them. Figure 2.7 

shows how the Short strings "simon" and "victor" are stored ("\0" = null byte) . 

... 0011 ,10101 ...... 0011 s I i I m I , 10101 ...... 010 I 0 I n 110 I> 

.. .0101, 10101 ...... 0011 v I i I cl, 10101 ...... 0101 t I 0 I r I> 

... 010 1, 10101·· .... 011110 I 10 110 I, 10101 ...... 1001 10 I 10110 I> 

Figure 2.7. Short string internal storage. 
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The BTM uses two search methods to counteract the above problems: one that 

searches from the front of a string and one that searches from the end. The 

criteria used in deciding which method to use is as follows: use reverse search if 

there is at least two non-null characters in the final reserved triple and the string 

is composed of more than two reserved triples, otherwise use forward search. A 

trivial examination of the search string will reveal which method to use. 

The storage of integers is handled by straightforward bit manipulation. The 

three MSBs are needed for the integer label and the fourth MSB is used as a sign 

bit. Therefore the range of integers available is _228 to 228_1. 

Reals are stored in a similar way to integers. The two MSBs are needed for the 

type label and the third MSB for the sign bit. As reals must conform to the IEEE 

754 standard for a 32-bit word size, a bit shifting function is used to regain the 

required length. This results in a small loss of accuracy as two bits of the 

mantissa are lost during conversion to internal format and padded with zeros 

when converted back again. One of the problems with the original L TC­

maintaining numerical ordering-has been addressed by the BTM 

implementation. 

Non-Iexicals are generated from a counter using the domain of the non-lexical 

type subspace in a similar way to string identifier generation. At the end of each 

session the counters for non-lexical type and string types are saved as special 

triples. Non-lexical tokens are completely semantic free: there is no ordering 

implied regarding the class of entity that they represent. 

2.4 Interface functions 

To enable the BTM to be used effectively by other software modules, a set of 

interface functions provides operators for the creation, opening, closing and 
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manipulation of a store. The operators are classified into three categories: file 

utility, update only, and query only. These categories are now described. 

2.4.1 File utility operators 

A new triple store can be created with the ts_create function that must be 

supplied with the file name as parameter. Each time the store is opened new 

values for occurrence probabilities can be provided in the parameters-together 

with the upper and lower limits for data page occupancy. The form of a call to 

open a store is: 

where each p{x} refers to the occurrence probability for each of the six SAFs that a 

partially specified query Q{x) can take-from section 2.2. The sum of the p{x) 

values must of course be equal to one. Lim_1 and Lim_2 are the lower and upper 

limits for data page occupancy. Finally, ts_c/ose will close the store currently in 

use. 

2.4.2 Update only operators 

This group provides for the insertion and deletion of triples. The interface 

functions available are: ts_insert(triple) that inserts a triple specified in the only 

parameter and, ts_delete(template) that deletes triples specified in the template 

provided as the only parameter. A template must match one of the six SAFs and 

uses the value -231+1 to indicate an unspecified value. An unspecified value can 

be in one or two of the three fields: the case of all three fields being unspecified is 

not allowed. There are similar functions for operation on ranges of triples. 
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2.4.3 Query only operators 

The following operators provide facilities for querying various aspects of the 

triple store that is in operation. In particular, the four operators: ts_open_set, 

tSJange_open_set, ts-fetch_another and ts_close_set, provide the means for the 

retrieval of triples matching a given template. 

ts_open_set(template) takes a triple template and returns a unique set identifier 

that is used in lazy retrieval of the triples. tSJange_open(template) operates in a 

similar way. ts_close_set(seUd) merely disassociates the set identifier from the 

open set. Several retrieval sets can be open at the same time, so the operator 

ts-fetch_another(seUd) will return the next member of the set identified by seUd. 

A further function tS...J'resent(template) can be used to retrieve a fully specified 

triple with format <*, *, *> or, indeed, just to see if a triple matching these fields is 

present in the store. There are similar operators for the manipulation of ranges of 

triples where two ranges are provided for each element of a triple-the upper 

and lower limits of the range to be acted upon. 

2.4.4 Operators provided by the L TC software 

Very briefly, the operators provided by the LTC software and their purpose are 

as follows. ltc_inserCstring(str)-takes a string as parameter and generates a 

string identifier returning true for success. If a token already exists for the given 

string then that is returned instead. ltc_str _to_id(str)-returns an identifier for the 

given string. ltOd_to_str(id)-returns a complete string given an identifier as 

parameter. There are similar 'pairs' of functions for the mapping of integers and 

reals. ltc...generate_nonlex-is guaranteed to return a unique identifier from the 

domain of non-lexical integers available. The operator ltc...get_type(id) will return 

the type of a given identifier. The LTC software does not currently provide 

facilities for deleting strings and unwanted non-lexical identifiers. 
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2.5 File management 

The buffer manager is responsible for operations on the buffer pool that 

comprises a fixed number of slots-each slot having the same size as a page in 

memory. The number of slots is configurable at initialisation and is not 

constrained to remain fixed throughout the lifetime of a database. To alter the 

number of slots the source code must be re-compiled with the new value. 

The result of a fetch_another -page operation causes the following to happen: a 

check is first made to see if there are any free slots available in the pool. If there 

are, then the required page is copied into a free slot. If there are no free slots a 

page must be dumped from the pool to free a slot for the new page. Pages in the 

buffer can be FIXED or UNFIXED depending on whether the page is likely to be 

accessed frequently or not. The buffer manager takes this into account and, 

whenever a page needs to be dumped from the pool, it first looks for unfixed 

pages. If none can be found it uses the least recently used (LRU) [KNU73] 

algorithm to select a page to be dumped to make room for the new page. If the 

page to be dumped from the buffer pool has been modified since in was copied 

into the pool, then it is written back to the file before its slot is overwritten by the 

contents of the new page. 

Once a data page has been copied into the buffer pool it can be searched for 

triples matching a given search template. The triples are ordered within each 

data page: firstly on the relation field, within that on the subject field and within 

that on the object field. Because of this, and the fact that the majority of searches 

specify the relation field or a combination of the relation-subject fields, a binary 

search technique can be used when either: the first; the first and second; or the 

first, second and third fields are given. So, using the previously described 

notation of '.' to indicate a known value and '?' to indicate an unknown value, 
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search templates with the form <*, ?, ?>, <*, *, ?> and <*, *, *> can be matched 

using a binary chop method of searching. 

However, if a search template of < * , ?, *> is specified, a linear search would have 

to be done once the first occurrence of the matching relation field was found. The 

ordering of triples within a page was a deliberate attempt to improve response 

time for queries, albeit at the expense of update performance. When a matching 

triple is found, a pointer to it is returned to the calling function. On the execution 

of a fetch_another instruction, the search continues from the position of the last 

matching triple. A flag is used to indicate when the search is complete. 

Search templates with the form <?,?, *>, <?, *,?> and <?, *, *> cause particular 

problems in that, because of the ordering of the pages, they are much more likely 

to produce a large set of page identifiers whose pages may contain a match. 

When this happens, the page identifiers are themselves held as triples in retrieval 

pages (see below) and await being passed to the calling function under the 

implementation of lazy retrieval. 

All the information that is kept on disk is stored in one file termed the database 

file. The database file consists of a header and a set of pages of the same size, 

with the page size being set on configuration. The header stores the information, 

such as the E-scales, that resides in virtual storage when the triple store is in 

operation. At the start of each session, the contents of the header are copied into 

virtual storage for subsequent use and, at the end of the session, they are written 

back to the database file. A page in the database file is one of the following five 

types: 
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S-page: 

data-page: 
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holds information required for the region module 

holds information required for the set module 

for the storage of individual, unique triples 

retrieval-page: used for storing the identifiers of the data pages that contain 

possible matches to a query. Such a page is then retrieved lazily 

free-page: not one of the above pages and available for use. 

Finally, the TriStarp triple store component is shown in Figure 2.8. 

Triple Store 
Interface 

Operations 

Parameter Driven 
Re-organisation 

(Virtual Storage) 

E-Scales 

Buffer 
Pool 

R-module 
~----------~ S-module 

data tri les 

Figure 2.8. The Triple Store architecture. 

Parameter Driven 
Splitting Policy 
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2.6 Discussion 

There are several areas of the implementation just described where 

improvements could be made. These are now discussed. 

2.6.1 String matching 

String matching poses particular problems for the following reasons: 

1. the recursive nature of functions makes them slow and difficult to 

optimise when executing string matching operations 

2. the creation of unwanted string tokens during searches of text 

3. the difficulty in handling case discrepancies and word contractions 

4. the difficulty of coping with missing characters, quorum functions 

and word ordering. 

Databases used in investigative systems will typically make extensive use of text 

and string variables and be used primarily in browsing mode [MAL96]. String 

matching can only be implemented by functions declared at the model level­

such functions make use of three built-in base functions available as primitives: 

length, substr and concat. With these, other string manipulating functions can be 

constructed. In the current system text searching creates many unwanted 

tokens-this is a corollary of persistence and the way the search is recursively 

executed. A search through large texts frequently causes the available token 

space for strings to become exhausted thus giving unexpected results. 

Displaying strings does not cause any noticeable delays because of clustering. 

However, each time a string is needed for a comparison operation, it has first to 

be re-assembled. This has proved a satisfactory method of string storage up to 

now because the majority of databases thus far have been accommodated in main 

memory. This situation would not be the case if much larger data sets were to be 

26 



Chapter 2 

considered. There is also no garbage collection to remove old, unwanted strings 

from the store thus freeing up obsolete tokens for re-use. 

With hindsight the handling of strings, and the importance attached to text 

searching, was not given enough priority in the original proposals. The reason 

for this is clear: all data were made to fit into the homogeneous triple store sub­

system underpinning the data model. This restricts what can be efficiently done 

in terms of string matching. Furthermore searches that involve stem matching 

and elastic matching using wild-card characters, are harder to program at the 

model level. These areas are now recognised as weaknesses of the software and 

are discussed later in this thesis. 

2.6.2 Tokenisation 

The tokenising of integers and reals is trivial and sensible: it need not be 

discussed further here. However, the situation regarding string tokenising is not 

so clear cut. 

There has always been a strong case for tokenising strings. Compact storage in 

memory (and on disk) together with ease of use by the compiler. Moreover, once 

a string has been tokenised, any repetition of the string (whatever length it may 

be) will only result in the addition of one extra 12-byte triple to represent it. 

These were the overriding reasons why a fully tokenised system was adopted. 

However, tokenising strings implies a precision of data entry that is not always 

possible to achieve. Users can and do misspell words, they abbreviate them, use 

word contractions and varying formats of case. They may also want a search 

option where they only need enter a few characters in order for the search to be 

more general. A less rigid adherence to the concept of string tokens would allow 
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for more scope when searching that takes into account imprecision and 

accommodates a greater flexibility for the user. 

One of the achievements of TriStarp was the provision of persistence for all data. 

However, this gives rise to a conflict of interests between using it as a functional 

programming language in the traditional sense, and using it to support a 

database based on the functional model. Because of persistence a query posed, 

such as length "George", would result in a token being created for George even 

though no data held in the database needs to be consulted. This is because 

comparisons are made between tokens. Moreover, a search for pattern "Fred" in 

text "Christmas" would produce tokens for "Chri", "hris", etc. as the search 

proceeded recursively through the text-even though the result of the expression 

would end up being false. A search through a text of length t for a pattern of 

length p could result in the creation of t - p + 1 string tokens-the majority of 

which would be useless. 

2.6.3 Functionality 

There are two areas for discussion. Storage-level interface functions and model 

level functionality. 

Storage level functionality 

The decision to use a semantic-free triple store was in keeping with other 

research at the time [MAR84j; it was a deliberate attempt to keep the storage 

mechanism simple by providing a small set of interface functions. We suggest 

that the set of functions provided was perhaps too restrictive as it had to tie into 

the concept of a homogeneous triple store for all data. In order to provide 

optimisation techniques for string matching and parallel processing, we believe 

additional interface functions should be made available that would allow more 

searching and comparing tasks to be delegated to the storage sub-system where 
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they can be handled more efficiently. This would allow data storage to reflect 

data usage in a way that helps boost performance in favour of text searching and 

browsing operations. 

Model level functionality 

Model level functionality was not discussed in much detail in the earlier sections 

of this chapter because it is largely a matter for each model level language 

developer to decide what to provide for their language. In the particular case of 

TriStarp, we have already highlighted the weaknesses of string matching and text 

searching options in section 2.6.1, and that more importance needs to be given to 

these areas to enable more efficient implementations to be developed. 

2.6.4 The data model 

From the outset, the TriStarp Group made a conscious decision to plan their 

research into database languages within the constraints of having to store their 

data at an atomic level as tokenised, semantic-free triples. The interface functions 

decided upon to provide access to the store placed further limitations as to how 

the data model could be manipulated, and drew a clear dividing line as to the 

demarcation of core functionality tasks such as join, search, etc. In other words, 

the storage and access mechanism came first and the development of the 

database languages at level 1-FDL, Exegesis [SMA88j, Fudal [KIN92j, Hydra 

[KIN96bj and Relief [MER98j-came second, and had to tailor their development 

taking the above considerations into account. However, the TriStarp work was 

done at an experimental level and not particularly aimed at a group of end users. 

To say the design choices made were inappropriate would be wrong-they 

certainly provided a workable solution to the given problem at the time but, with 

hindsight, perhaps what was lacking was a mapping from the logical view of the 

world as triples to the physical view required for storage. The rationale behind 
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the initial design choices were clearly in line with other research at the time 

[SHASS] but any attempts at optimisation now had to be done at the data model 

level (levell) and were unable to take advantage of using additional, low-level 

processing power. One of the later additions to the TriStarp level 1 languages is 

Hydra [KIN96b] which makes a distinction between meta data and instance data, 

in that the former does not need to conform to the function graph model. 

The way graph traversals are handled is that for each attribute Axn linked by 

relation Txn to entity Ex and used as a filter on instances of Ex, the required triples 

are accessed and collated sequentially in arriving at a final set of entity 

identifiers. Similarly, the final selection of attributes Ayn via relation Tyn from 

entity Ey is handled sequentially. The relevant segment of a list comprehension is 

below, then the figure shows the path taken. 

• • • • • 
~ .. 

•• +. 

• • • • • •• • • •• • 
•• r yl then then r and and r3 +. x A ...... x 'U: rx ~. .. .. . .... .. .+ .4. ry2~ +. 

• • : .. •• 8 y3 
•-. •• a 3 • •• .. .4: x .. 

• .. 8x2 • rx3 x .. 

.., ayl •• .. .. ..~-
.'" • "" Select 

Select. + "'I ay2. ry> y 
r Ml x. '<f • • true 
a true r x2 x • 

= true 
ryl Y • Select.-

ry2 Y .. 

Figure 2.9. Graph traversal for attributes. 

We believe that searching and collating attributes at the 'ends' of traversal paths 

can be handled more efficiently than this by using a different physical model and 

parallel processing techniques. These are discussed in later chapters. 
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As far as entity-entity graph traversal steps are concerned, the concept of a triple 

is a good one. The progression from A to B via relation r (r:A-7B) naturally fits 

the model of a triple <r, A, B>. However, a not insignificant amount of traversals 

are of the inverse variety (r1:B-7 A) and these are not held as triples explicitly, 

they are derived through software. Searching for function inverses means 

constructing a temporary list of triples used to test for the inverse property. For 

example, the equation defining the inverse of function f is 

which searches the extent of t to get a list of y, then checks that function f applied 

to each y evaluates to s. Although there would be additional storage 

requirements if inverse triples were to be held explicitly, we believe this can be 

achieved as part of a new architecture. Moreover, these triples could also be used 

to provide redundancy. 

2.6.5 Directory structure 

Directory organisation in grid files has been the subject of much research since 

1984. There is no doubt that the original grid file directory has been improved 

upon by the data structures used in the BTM. This is as a direct result of using a 

selecCsp-point algorithm to reduce the number of grid blocks, together with the 

lDA data structures to reduce the number of data page pointers. However, the 

efficiency of using the IDA can vary greatly according to the configuration of 

data space regions and the high likelihood of a non-uniform distribution of data. 

Of the nine databases analysed in [DER89J, one configuration resulted in 11 page 

accesses being necessary, although the total directory size (S-module plus R­

module) can be a linear function equal to the size of non-uniform data 

distribution. 

31 



Chapter 2 

The concept of a three-dimensional grid file is a good generic model when 

storing database records that have a fixed format for their three, key attributes. 

Earlier attempts at storing triples in hierarchical structures, such as B+-trees 

[DER85], proved unacceptable as it was difficult to add a re-tuning facility and 

gave poor performance of response time for partial match queries at lower levels 

of the hierarchy-although there was efficient space utilisation. Therefore, a grid 

file variation seems to remain the best method for indexing records of three key 

attributes, if that is to remain as the underlying data model. 

One of the reasons for adoption of the grid file was that it easily lends itself to the 

indexing of triples, which could now be accessed from one or two of the three 

fields. The grid file is also a dynamic indexing structure and the implementation 

used for the triple store can have its parameters set to give a clustering priority to 

a particular dimension. However, frequent updates and re-organisations with 

splitting or merging of pages have to be made to maintain a balanced index. 

Access via the third field of a triple (the object) can cause lengthy delays if the 

parameters are set to favour clustering on the relation or subject fields as is often 

the case. Even if a later session with the same database file re-sets the access 

priorities in favour, say, of the object and object-relation combination, the 

previously-entered data will still be structured around the parameters supplied 

when it was loaded. 

It was found in the BTM implementation that frequent re-organisation of the 

directory-together with the splitting and merging of pages-led to a less 

efficient system than was expected [DER89]. The storage and searching of text 

does not necessarily lend itself to this highly idealised form of indexing and 

would perhaps benefit from a coarser indexing structure and greater processing 

power, provided at a lower level, to facilitate the flexible searching of loosely 

structured text. 
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2.7 Summary 

In this chapter we have reviewed the storage architecture underpinning the 

TriStarp software and identified areas for improvement, paying particular 

attention to string matching and graph traversal operations. Tokenisation is 

limiting what can be done to broaden text-searching capabilities and boost 

overall performance levels. Interface functionality needs to be enhanced so there 

is more choice available to users. Finally, we suggested that a mapping from 

logical triples to physical records was lacking in the original proposals and that 

not all data need conform to the function graph model. A less dynamic approach 

to indexing would be worth investigating too. 

In the next chapter we begin by examining alternative variations to the triple 

store. We then discuss the categories and needs of users before reviewing storage 

and access methods in general. Finally we introduce our alternative to the 

homogeneous triple store architecture outlining the areas for further 

investigation that are discussed in the later chapters. 
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Chapter 3 Background to areas of work covered 

3.1 Introduction 

As set out in chapter 1, there are several areas of work described in this thesis. 

This chapter provides background material to these areas as an introduction to 

the individual topicS of interest covered in later chapters. The main items 

presented in this chapter are therefore: a review of other grid file and binary 

relational storage structures, an introduction to user requirements and text 

searching, a brief review of storage and access methods, using a search engine 

and parallel processing. Following these topics, our proposals are introduced 

which then form the remainder of the thesis. 

3.2 A review of similar alternatives 

We describe the evolution of grid files since their introduction in 1984, then 

highlight more general binary relational storage structures whose concepts have 

been around for much longer. Finally, we consider the latest triple store 

implementation that involves the use of space-filling curves and draw 

conclusions for this section. 

3.2.1 Grid file variants 

Since Nievergelt's keynote paper much research has been done arising from the 

original proposals for the grid file [NIE84] and several hybrid systems have been 

developed [HIN85, WHA85, WHA91, OUK85, OZK85]. (See [DER89] for full 

details of these schemes.) Since then research has continued investigating ways 

of providing optirnisations to the original grid file design. Ouksel et al have 

improved on their Interpolation-based grid file in relation to concurrency control 

[OUK92, OUK94]. Whang and Krishnamurthy et al have continued their research 

into the Multilevel grid file improving the execution of join operations [KIM95] 

and directory growth [KIM97, KIM98]. These schemes have one thing in 
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common: they all use a cyclic, halving of domains in alternate dimensions when 

splitting data space regions which must remain hyper-rectangular at all times. 

The one notable exception is the BANG file [FRE87, FRE89]. The BANG file 

allows nesting of data space regions and so a hyper-rectangular shape is not 

necessarily required. 

B 

A 

C 

Figure 3.1. The BANG file scheme. 

The distinctive feature to note here is that embedding of data space regions is 

allowed, and the way this embedding is handled. In this example, data space 

regions Band C are embedded in A. So, to obtain the records that are in the 

logical data space region A, a subtraction of the data space regions embedded in 

the physical region A must be done-thus, A-B-C-which gives the appropriate 

data pages to search. 

As well as nesting of data space regions, the BANG file uses a splitting algorithm 

that will select an embedded area in the over-populated region such that there is 

an even distribution of records between the two logical regions. The BANG file 

also has a directory size that is a linear function of the number of stored records 

whatever the record distribution. This is because it avoids the creation of empty 

regions when splitting, and has a single entry in its directory for each data page. 

The BANG file also enjoys a higher degree of freedom when merging regions, 

since a region can merge with either: the region in which it is embedded; any 
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region which is embedded in it; or its buddy region. Since then, Hosur et al 

[HOS92] have improved upon the established superiority of the BANG file, by 

providing efficient, dynamic adding and removal of attributes which results in 

changes to the dimensionality of the structure-although there are serious 

shortcomings with the index construction and maintenance. Moreover, a full 

implementation of the BANG file has never been built [LA WOO]. 

There is another partitioning method for grid file directories [CHU89] which is 

worthy of note as it is similar to the selecCsp-point algorithm used in BTM. This 

system improves an earlier algorithm by Cranston [CRA75] that guarantees non­

empty data space regions. Some other recent work on grid files includes a spatial 

grid file for multimedia data that is specific to high dimensional data indexing 

[ALP97], and a novel scheme to handle temporal interval data (as well as other 

attributes) in a way that does not result in a skewed directory structure [LEE98]. 

In this scheme, the data space is represented by a right-angled triangular space so 

that the time start (TS) is always before the time end (TE). 

lE 

lS 

Figure 3.2. The temporal grid file. 

The valid grid space is the lower-left section shown in Figure 3.2. Records are 

always inserted at point Now. As time passes the hypotenuse moves up and out 

from the origin 0 ensuring TS :5 TE. 
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The main design features of the grid file are as follows. For a reasonably large 

relation, retrieval of a tuple requires at most two disk accesses-one to the correct 

portion of the directory and another to the correct data page that holds the tuple. 

The nature of the file structure is order preserving on each attribute domain, so 

that tuples that are close logically are likely to be close physically. These 

properties allow for efficient retrieval of point queries and range queries. In 

theory, the grid file index structure can adapt gracefully to insertions and 

deletions and performs well in static or dynamic operations although this is not 

always the case. 

3.2.2 Other binary relational storage structures 

There have been several implementations of binary relational storage structures 

over many years. They include the following early variants-discussed in detail 

in [DER891-plus some more recent additions. 

Relational Data File (RDF) [LEV671 which is quadruple based and holds four 

separate files for data-each one indexed on one of the four key attributes. 

Leap [FEL691, which uses triples and holds three copies of the data-each one 

indexed by hashing on two of the three attributes. As static hashing is used the 

file size must be estimated beforehand and, after overloading, performance 

degenerates rapidly. 

Titrnan [TIT741 proposed a triple-based system where a separate file was held 

for each relation in the database. In each file the <subj ect, obj ect> pairs would 

be stored. This results in efficient storage but poor performance where the 

relation field was not specified. A very similar method is used by the Well 

system [MUN781. 
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The FACT system [MAG80, MAG82] uses a quadruple approach with a look-up 

table maintained for conversion of external attributes into internal, fixed-length 

tokens. Entries can be arbitrarily nested and generalisation is supported. There 

are three lists maintained for every internal identifier-one each for where the 

identifier appears as relation, subject and object. This concept has been followed 

up more recently in what has been termed the Associative Model of Data 

[WILOO]. This is discussed at greater length later in the thesis. 

NDB [SHA78, WIN79, SHA88] adopts a triple approach and represents every 

entity with a three-component data structure called a v-element which holds 

links to the other elements linked to the current one. There is no distinction 

between entities and attributes, as they are all stored in the same way. 

The Oggetto object-oriented database system [MAR92] uses a BRSS to underpin 

the storage of facts and methods. It includes inheritance and allows for object 

migration and database closure (via an expand function). There are three triple 

stores used for access: 

• a triple 'heap' that is used for temporary storage of triples 

• Trible-a system that uses inverted files to speed access 

• OSR05-a system that uses combinations of the three fields for 

dynamic hashing of triples. 

Two other points of interest are that in-store object information is held in a data 

structure that stores the name and type of every attribute in the database. This 

structure also holds details of instances of a type, which are built up internally 

before being stored as triples. They also agree that names (strings) are better 

stored away from a homogeneous triple store and it is this store that is used to 

supply the identifiers that are then used in the main triple store. This idea was 

used in the Universal Triple Machine [SHA88]. 

38 



Chapter 3 

A more recent adaptation of a binary relational storage structure is the 

3-tuple model as presented in [OZA96]. The idea is that users are allowed to 

store data first and then structure the data via a schema. The relationships 

between schema and data, and schema and schema can be altered without 

changing the whole database and is termed the 'bottom up' approach. Each tuple 

is of the form <object, attribute, value> and can accommodate arbitrary 

nesting. An n-order, finite, directed labelled, graph is used to represent objects. 

A set of tuples with the same first element represents an object; a set of tuples 

with the same second element represents an association. In the model, instance 

data and meta data are unified in the graph by object classification. Basic objects 

are integers, reals, etc. Compound objects are further divided into three types: 

• class object - represents a set of instance objects which share 

the same property-Le. it is a schema 

• instance object - holds the data for each class as above 

• free object - is not constrained by either of the two class 

objects above. 

There are also class relations, instance relations and free relations to match the 

above objects. Free objects are able to migrate from one schema to another but it 

is not clear how this migration is handled at the physical level-nor is it clear 

how data is stored physically in any case. There is no temporal dimensionality 

discussed, nor is an indexing structure mentioned. 

3.2.3 A triple store based on space-filling curves 

A recent addition to TriStarp has been a triple store based on space-filling curves. 

The concept of space filling-curves has been around for a long time [HIL1891] 

and only a simple example will be given here-for more details see [SAG94]. The 

basic idea is to map an n-dimensional space on to a one-dimensional linear array 

so that adjacent points in the n-space are as adjacent as possible in the array. 
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Taking the case of the Hilbert curve as an example this is best described 

pictorially (in two dimensions for clarity) in Figure 3.3 below. Several curves 

were investigated but the Hilbert curve proved the most successful. This is 

because it has the adjacency property of being at all times continuous-whereas 

the other curves do not share this property. 
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Figure 3.3. The Hilbert Curve 

The linear scales are formed by concatenating the x and y co-ordinates for the 

whole of the data space. In this example, there are 64 points in the two 

dimensional data space to be mapped onto 64 partitions of the array. The curve 

starts at the bottom left of the figure (datum point 000000) and follows the line 

until it reaches the bottom right which has datum point number 111000. The 

datum points do not map exactly to the numerical partitions of the grid. For 

example, the third datum point will have partition number 3 (000011) but the co­

ordinates of the curve will be 001001 (x concatenated to y). 
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Figure 3.4. First and second order curves. 

Figure 3.5. States the Hilbert curve can take. 

Moreover, the number of steps or iterations of the curve-called orders-(Figure 

3.3 is a third-order curve and Figure 3.4 shows first and second order curves) 

require different orientations (states) for the direction the curve takes as shown in 

Figure 3.5. This is to ensure it is at all times continuous thereby retaining the 

adjacency property. There are therefore four orientations of a curve section. 

These are referred to as states-in the state diagram sense-and by knowing the 

state and the order of the curve an accurate key value can be obtained. An 

important difference from grid files is that the splitting and merging of pages is 

made according to partitions of data rather than partitions of the key space. This 

approach obviates the problems of partitions overlapping within the index. 

The array is used to construct, algorithmically, the appropriate data pages to 

search, which are held in a B-tree structure that can expand and contract as 

necessary. More details and a full evaluation of this scheme are given in the PhD 

thesis of Lawder [LA WOO]. An immediate observation is that the method of page 

searching could be amenable to parallel processing techniques. If a page is in a 

block that contains (say) four smaller blocks, then a search of these four blocks 

could be done in parallel. This is an area for further investigation. 
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Initial results described by Lawder [LA WOOl indicate that a space-filling curve 

triple store performs similarly to the current implementation based on the grid 

file in two or three dimensions. However, as the number of dimensions 

increases, the space-filling curve triple store outperforms the grid file triple store. 

An issue not addressed by this approach is the complexities involved in the 

relational algebra: join, intersection and union of large sets of data. Moreover, 

the experiments were run against data sets held entirely in main memory; in 

large, practical applications it is most unlikely that all data would be held in 

memory. 

3.2.4 Conclusions for grid file and BRSS applicability 

Frost identified the advantages of binary relational storage structures as 

providing a simplification of system design and use and, improvements in data 

independence. He also cites the disadvantage that data may only be retrieved 

singularly-groups of related items may only be retrieved by issuing several 

commands. Added to this is the fact that the majority of triples are ordered on 

the relation field, so are likely to be clustered on that field in preference to any 

common entity they have. 

In his original proposal for the storage of binary relations, Frost suggested 

holding six copies of the triples, with each set indexed on one of the six simple 

associative forms for querying the database. This is the ultimate fast access 

solution but has the most serious implications for update out of all the systems 

described. The trade-off is often one between speed of access and cost of 

updates. However, there is often little to choose between many storage methods 

that use either triples and/or fixed-length tokens to store data. As a modelling 

concept a triple is a good idea. But, from a storage viewpoint the idea has never 

caught on in the same way and is too restrictive to accommodate easily the richer 

data types that are now required. 
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3.3 Text searching and user requirements 

In this section we briefly introduce the fundamentals of text searching and user 

requirements. Readers familiar with the background to these areas may wish to 

proceed directly to section 3.4. 

3.3.1 An introduction to text searching 

Text searching is a vast subject area alone and is only covered briefly here. For a 

more detailed explanation the reader is referred to [MEA92]. 

A text can consist of words, collections of words (clauses and phrases), sentences, 

paragraphs etc, all comprising alphanumeric characters drawn from the domain 

of the grammar. Differentiating between these classes can be difficult and often 

depends on the meaning of the text (its context) and any delimiters used to break 

up the text into smaller, multiple word structures. For instance, is "bogus gas­

man" a text, phrase, two words or three words? The choice can vary depending 

on what the collection of characters will be used for. At the lowest level a word 

might be considered as a collection of alphanumeric characters delimited by 

white space characters (single space, tab, carriage return etc.) The choice of word 

delimiter can be crucial and, although this is usually the space character, it need 

not be. 

The degree of freedom for searching must be greater for text than for words with 

multiple word structures somewhere between the two. The same words in a text 

can be analysed in terms of various patterns of occurrence. A text has 

vocabulary-but this need not be tightly controlled-as well as patterns of 

vocabulary where syntax can indicate word ordering for example. The patterns 

can be used to construct an index of terms for searching. 
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The actual form a query takes is often qUite simple and is likely to have the 

format: attribute condition value-as in: "author = Shakespeare". This fits 

naturally into the triple construct. Variations on this can include provision for 

truncation of the search pattern, inclusion of wild card characters that can 

represent one missing character or zero or more missing characters-whether in 

words only or across word boundaries. Case sensitivity can easily be 

accommodated too. Another feature of text searching is the ability to make 

proximity searches. In this case, word ordering and space between words can be 

passed to the search algorithm via meta characters included as part of the search 

pattern or indicated in some other way. This can be extended in various ways 

Stem matching is important in text searching as it allows different inflections 

from the same base word to be located. Thus, if the search was for "harmony" 

and any derivatives, the pattern entered could be "harmon%" where "%" 

indicates match zero or more characters to the end of the word. This search 

might find harmony, harmonise, harmonious, etc. It would also find harmonica, 

which, in this instance, would not be required. But, it is often better to have 

terms returned that can be accepted or rejected at the discretion of the user than 

allow the system to make such judgements. Stem matching allows the users to 

enter short strings quickly and be used in conjunction with various search terms 

over the same text. 

To search for a person whose name is Fred or Frederick, who lives in Lower 

something or other and whose job is something to do with telecommunications, 

the search could take the format: 

fname = 11 fred% I' 1\ street = It lowe% 11 A job = 11 tele% 11 • 

This is also the way British Railways ticket machines operate and British 

Telecommunications inquiries are handled. 
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There are other text retrieval techniques that construct (quite complex) indexes 

for the majority of words in the text. The excluded words are known as stop 

words and include the most often-used words in the English language­

prepositions, articles, conjunctions and pronouns. Stop words are a list of very 

general words that lend no significance to identifying the subject matter of a text. 

In [MEA92] the stop words are given as: an, and, by, for, from, of, the, to and with. 

These can be viewed as a base to which other words would be added depending 

upon the context of the application domain. (Note that the letter A is not 

included; this can often form a search term as, for example, it represents a 

vitamin.) 

The maintenance overhead and the sheer size of many index files (which can be 

bigger than the original text) often supports the argument for not making heavy 

use of indexes. Other options include: similarity measures that make further 

statistical pre-processing knowledge available about the text for use in searching; 

text or association techniques that use word occurrence statistics to measure the 

strength of association and; clustering techniques that group together records 

that have similar frequency distributions for attribute values. The use of 

signature values that act as (shorter) keys for frequent search terms is another 

optimisation that can be used. All these techniques involve the use of much meta 

data that can be cumbersome to maintain and can negate the benefit of its use. 

3.3.2 What users expect 

In this short section, unless otherwise specified, the term users implies regular 

users, such as data query and data entry operatives as opposed to systems 

personnel. We quote material from Southerden specifically, as he outlined an 

improved interface for ICL's well established investigative systems software­

INDEPOL [SOU97]-which is very relevant to our area of work. 
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Users want a simple view of their data. This means that the view offered by the 

database system must, as realistically as possible, reflect the general conceptual 

view of data they might have in a non-computerised setting. They do not want, 

nor need, to know about data mapping, storage sub-system structures, indexes, 

etc. 

Users want to express their needs simply. Users are likely to be skilled in the use 

of the computer system and have a good working knowledge of the database-its 

content and structure. They want to express their needs with the minimuin of 

typing effort. To satisfy these needs the database management system should 

provide an enquiry update language with such tools as form filling, palette 

provision, drag and drop facilities and a syntax-directed editor-all in a 

graphical user interface environment. To a certain extent the TriStarp Group has 

achieved this as their software includes a graphical query language, Gql [P AP95j. 

However, this area is still the subject of continuing research. 

Users expect a fast response. The time that elapses between a user issuing a 

search command and getting the answer back is crucial. It's difficult for a user to 

switch attention while waiting for the outcome of a task and any delay is seen as 

lost or unproductive time. When using a system in browsing mode, users often 

want to build up a search query by increasingly refining their search parameters 

to hone in on their target. Coupled with this is the reality that users may have to 

make several, related queries to a database before obtaining anything useful. The 

data management program should have the ability to recognise requests that will 

take a long time to service. Such information should be relayed to the user who 

then has the choice of whether to proceed with the request or to abort it. 
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Users expect protection against misuse. The sorts of misuse implied here are 

security of access rights etc, and integrity of data that may be lost or rendered 

unusable during updating. 

3.3.3 Categories of users 

Southerden further identified four core sets of users: 

1. those whose main tasks are data entry and data query 

2. those whose main tasks involve simple investigations, research or analysis 

3. experts who build queries for others and 

4. technical developers and support staff. 

Of these the vast majority of users fall into the first category. INDEPOL is a tried 

and tested investigative system, so it is sensible to adopt the same user priorities 

and concepts. We can classify the above user groups into the following 

categories including a split of the first category: 

1. data entry operatives 

2. data query operatives 

3. experts who build search strategies for category 2 users and 

4. database developers and support staff. 

Data entry can be done in two ways: bulk loading at the time the original 

database is created and on-line by users with pre-defined forms-which is 

another feature used in INDEPOL Client. The experts who build the meta 

functions in category 3 will need to be aware of any schema updates, integrity 

constraints etc., to build sound search macros and functions. Category 4 users 

are the database administrator and development staff responsible for (among 

other things) schema evolution, updating the database, garbage collection, 

security and integrity issues. 
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3.4 A review of storage and access methods 

Following our review of grid files and binary relational storage structures earlier 

in the chapter, we now address the wider aspect of storage and access issues. 

Basic file structure design is briefly covered as well as the argument for main 

memory databases. Finally a summary of design considerations is presented. 

3.4.1 File structure deSign issues 

Here we discuss basic file structure design issues and compare and contrast 

them. Our arguments for our chosen architecture will be given later in this 

chapter and expanded upon in the following chapters. 

The overall aim of the storage sub-system in a large, operational database system 

is to arrange the data in a suitable format-across one or more files if necessary­

in such a way that data can be accessed by the application programs that need to 

use it in an efficient way, while maintaining security and integrity considerations. 

At a fundamental level, data is traditionally held in atomic structures that can be 

built up into data structures like records, sets, lists, etc. of the required 

complexity for the application. The first design issues to consider might prompt 

the following sequence of questions: 

• what do we want to do with the data? Mainly browse it or alter it? 

• who is going to access it and what views do they want of it? 

• what are the types of the data to be stored (text, numbers, etc.)? 

• how should the data be ordered to effect the required accesses? 

The last question usually comes down to a choice between single-key or multi­

key ordering. For single-key processing only one attribute of a record is used to 

order the file and the main access choices are to use indexing methods based on 

B-tree and hashing. Hashing is fast if only one record is required-but not so 
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suitable for range queries. Btrees are more appropriate for retrieving a range of 

records. 

If records are to be retrieved by more than one key then the multi-key file 

organisations are more suitable. Access methods for these structures often 

involve a complex indexing structure using inverted files that can add a 

considerable overhead when updating or adding records. The more recent grid 

file organisations, mentioned earlier, are a more natural way to index multi-key 

record structures as they can guarantee a hit in no more that two disk accesses for 

known information. Also, the directory used in grid files can adapt more 

gracefully to record insertions and deletions; range queries are also well 

supported. 

In general, determining the best file organisation method and the most efficient 

access techniques are difficult. We consider the basic parameters that can be 

used to determine the best method to be as follows: time, file-use ratio, space, and 

volatility (from [SMI87j): 

The time parameter includes time to develop and maintain the software: the 

more complex the file structures required, the greater the time factor for updating 

the storage sub-system. If updates have to be done off-line in batch mode, then 

this must be included in the time parameter. 

The File-use ratio is obtained by dividing the total records held in the file by the 

number of records actually used. If the ratio is high, meaning that most of the 

records are needed regularly, then a sequential organisation method is 

preferable. If the ratio is Iowa hashing scheme might be better. 

The space parameter refers to the total space requirement for the instance data, 

meta data, indexes etc. that are associated with the system. Any space needed for 

49 



Chapter 3 

temporary sorting or other re-organisation of the data must also be included. A 

balance has to be struck between what is to be held on disk and what needs to be 

held in memory (see the next sub-section for further discussion on this). How are 

updates to be handled? What space is needed for recovery procedures in case of 

file loss or corruption of data? What can be held in duplicate to speed up access? 

Volatility concerns how often the data held in the file changes. If there are 

frequent changes to the data the maintenance of complex access structures like 

indexes or having to re-hash some of the data may prove unworkable. On the 

other hand if most of the data will remain unaltered, even though a lot of it may 

need frequent accessing, some form of coarse index-sequential access method 

might suffice. 

An important aspect affecting the design choice concerns maintaining database 

integrity. The well-known problems of update anomalies across files, tables or 

data structures in general are, unfortunately, still with us. Also, an integrated file 

system must handle concurrent access (where applicable) and maintain data 

integrity. Other more fundamental design issues include: 

• selection of page size (affected by logical record size) 

• selection of blocking factor (number of pages per block) 

• allocation of buffers (multiple buffers can significantly 

improve performance) 

• organisation of blocks on secondary storage 

• handling of file growth (static or dynamic) and 

• reorganisation point (a point where a thorough reorganisation 

of the files is required so that performance does not 

deteriorate beyond acceptable levels). 

Finally, a choice has to be made about whether the files should be static or 

dynamic. The above four criteria-time, file-use, space and volatility---clearly play 
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an important part in this choice but there are other difficulties surrounding 

dynamic file organisation. Held and Stonebraker [HEL78j suggest that, although 

a dynamic index is easier to maintain in situ, the cost of doing so is threefold: 

insertions, deletions and movements within a B-tree can result in complex 

pointer maintenance; concurrency problems can occur-locking out a B-tree node 

is non-trivial and; additional pointers are required in non-leaf nodes because they 

can split/merge dynamically. The branching factor is thus smaller and the 

height of a tree likely to be greater than that of a comparable static index. 

Operations such as search, insert and delete will therefore take longer than for a 

static structure with no overflows. 

3.4.2 Main memory data bases or disk-based data bases? 

Up until now TriStarp databases have fitted into main memory. The arguments 

for main memory databases are forceful [GAR92j and frequently include some 

form of encoding (tokenisation) coupled with increased solid-state memory 

[COC98j. However, there are drawbacks to this philosophy, which include the 

volatility of main memory to failure, resulting in the need to make frequent back­

ups to disk anyway. Moreover, there will always be databases that are too large 

to fit into main memory; the requirements of growing data sets matches the 

improvement in main memory capacity, and this trend is likely to continue. 

Important factors to consider are set out below: 

• main memory access costs are orders of magnitude less than disk­

based access costs 

• main memory is often volatile, whereas disks are non-volatile 

• disk accesses have fixed costs for blocks, while main memory is 

not block oriented so costs are variable 

• the layout of data is crucial on disk but not in main memory 
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• sequential access is faster for disk than random access. Sequential 

access is not so important for main memory 

• main memory is directly accessible by the processor, while disks 

are not. 

Whether or not to use a main memory database system or a disk-based system 

ultimately comes down to the specific application domain that is required in each 

case. There is a compromise for some large databases whereby data can be 

designated 'hot' or 'cold'. Hot data are often accessed or modified: Cold data are 

less often accessed or modified. The former can be held in main memory: the 

latter on disk. The idea of splitting data this way seems complicated for a text­

intensive, application domain that would not facilitate searching operations in 

the optimum way. 

3.4.3 Summary of design considerations 

In this section we summarise the salient design issues discussed earlier setting 

out how they best fit our specific requirements. The specification of our database 

system has the following characteristics: 

• it will be used mainly in browsing/searching mode 

• the system will be used to link facts across a function graph model 

• data hypothesis is the responsibility of the user, not the system 

• much of the data will comprise strings, some in large texts 

• it is not imperative that all data be updated dynamically, some updates 

can be performed off-linet 

• information will, at the lowest level, be represented by atomic binary 

relationship between entities and attributes (non-Iexicals and lexemes) 

• there is a close relationship between attributes of a common entity 

t The UK Inland Revenue name and address file holds 48 million records and requires the 
addition or amendment of around 5% of these on a daily basis [WIL851. 
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• there is often a close relationship between attributes shared by different 

entities 

• file-use ratio will be high because of the searching and browsing 

operations 

• space saving is not a crucial factor. However, some removal of 

duplication is desirable where this does not impair performance 

• because a functional paradigm is used, the properties of referential 

transparency guarantee freedom from undesirable side effects. 

• integrity constraints, at the meta data level, are already a successful 

method of enforcing database integrity 

• it is most likely there will be too much data for a main memory database 

system to be used 

• the system is to be multi-user. 

From our specification above we believe the bulk of the instance data should be 

stored on disk in a format well suited to rapid searching techniques while leaving 

main memory free for other uses. It would be difficult to upgrade a main 

memory system to a multi-user, browser-oriented, client-server environment­

qualities that a large, text intensive, operational database system would need to 

have. If instance data is kept primarily on disk in a client-server environment, it 

is easily accessed by all system users for browsing etc, while leaving reliability, 

integrity and security as server system functions [PR098]. 

3.5 Using a search engine 

The incorporation of a search engine as a data filter on each processor forms part 

of our architecture proposals so is introduced here. Readers familiar with the 

concepts behind search engines may wish to skip this section and go to 

section 3.6. 
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Search engines have been in use for twenty years now and are therefore 

considered 'mature' technology. However, they are still a useful tool and have an 

established track record where devolving certain searching and data filtering 

operations are concerned-although there are some architectures that search 

engines are not as capable of exploiting as others. Some design considerations­

such as record structure-are therefore crucial in making a decision to use a 

search engine. There have been several search engines used over the years-a 

good resume is given in [SUSS]. Here we describe the basic concepts behind one 

such search engine that has been in commercial use for over 20 years. 

The ICL Content Addressable Filestore (CAFS) [MIT76] is connected to a disk 

controller and accepts logical requests for data. The disk controller has hardware 

that can perform key matches. The controller can be loaded with constants to 

describe record fields and values and with a microprogram to determine if a 

particular record satisfies a request. See [CAFS5] for various papers describing 

the components of CAFS. A good general description of CAFS can be found in 

[MAL79] and a brief overview of the key components is now given with the aid 

of Figure 3.6 found in [BAB79]. 
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The selector (18) sets up the key registers (3-5) with the key value pairs taken 

from the selector. The tuple (2) arrives from the disk (1) and is placed in each key 

register where a latch is set according to the theta condition. These are compared 

to the required theta condition and the latch comparators (6-8) are set before the 

result is passed to the search evaluation unit (12). Here they form part of a logic 

expression derived from the selector that, if true, informs the retrieval unit (14) to 

pass the relevant items from the tuple to the host computer. The search 

evaluation unit (12) can handle nested Boolean expressions and threshold 

functions and the hardware can support up to twelve disk channels via 

multiplexing. 

3.5.1 Record structure 

To facilitate the use of a search engine the data must be stored in a format that 

permits the various filtration processes. The options CAFS offers include: logic 

operators AND, OR and NOT; weighted threshold functions; theta conditions =, 

~, >, <, 2: and ~; masking of data items to byte level and stem matching. The 

record structure has therefore to include data and field identifiers as well as the 

actual data. This can be done to various levels of granularity and is introduced in 

chapter 4 where it is highly relevant to document structure where this 

mechanism is required. Typical record structure is shown below [MAL79]. 
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For the key registers to carry out their function, the data needs to be stored in 

fixed field format or permit variable length fields with identifiers included (as 

shown above). If an individual item is required for comparison, e.g. stem 

matching, it can be isolated easily by using a mask. Using CAFS as described in 

this section will typically decrease search times by a factor of between 5 and 100. 

Moreover, the workload for the processor is reduced by more than 90% as the 

amount of data transferred to the processor is significantly less than in traditional 

methods when considering un-indexed data. Three different implementations of 

the CAFS product have been achieved in three technologies. The latest 

implementation being for VLSI in the late 1980s [ILL96]. 

3.6 Parallel processing 

In this section we again introduce the basic concepts behind parallel processing, 

so readers familiar with these may wish to proceed to a later section. 

3.6.1 Implementing problems in parallel 

A problem may be solved by exploiting the parallelism inherent in an algorithm 

(algorithmic decomposition) or by applying the algorithm to different parts of the 

problem (domain decomposition). Domain decomposition involves examining 

the problem domain to ascertain the parallelism that may be exploited by 

applying the algorithm to several distinct sets of the data at the same time. The 

solution can be applied as a data driven method-where the sum of the tasks is 

divided into the number of processors used, or demand driven method-where 

each processor 'demands' a new task from a central 'pool' as and when it finishes 

a previous task. 

A processor taxonomy was established by Flynn [FL Y72] based on principal 

interaction patterns of instructions and data streams. The most useful of these 

has proved to be multiple instruction, multiple data (MIMD) where each processing 
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element (PE) can operate asynchronously. By providing the processors with the 

ability to communicate with each other, they may interact and co-operate in the 

solution of a given problem. The level of interaction and access to memory has 

led to two types of system being developed. Where global memory is shared the 

interaction is known as tightly coupled and where each PE is responsible for a 

section of (private) memory the interaction is known as loosely coupled. These are 

shown below. 

[ 
.............................................................................................. J 

Shared memory 
••• H, ................................................. '" ... "",, ...................... . 

PE PE····· PE 

Tightly coupled 

Interconnection method 

~~ ..... ~ 
Loosely coupled 
(with memory) 

Figure 3.8. MIMD configuration. 

A topology is a number of processors connected by a network in some 

configuration-token ring etc. A process is a segment of code that runs 

concurrently with other processes on a single processor. A processing element (PE) 

consists of a set of processes used in harmony on a single processor. Links in the 

interconnected system can be between processes on the same processor (internal 

links) or between processes on different processors (external links). 

57 



Chapter 3 

/',/"""""-------------......... :~::, ...... -.. 
/ ~E1" ........ r---+-\-'t---:=-. 

I \ 
;' ........... "'" '\ )4--7 External 
I ,....... ~ '" \ links ! processing ~:::':............... PE2 '-__ \ 
I elements ........ -'-, 1 
I ...... Y.. 

\, · ...... ··E···: ,/ """ , , , 
"'\" PEn //// "','<-.---->,,-+-f---.J 

..... ;' ....... ..,' 

I nterbonnectloA.fletW'ork 

Internal links 

Processes 

Figure 3.9. Parallel processing terminology. 

To provide a useful parallel processing environment there must be access to 

input/ output facilities. It is customary to achieve this by using one of the PEs as 

a system controller. As well as handling the input/output interface, the system 

controller is responsible for collecting and collating the results from the other 

PEs. 

If PEs could spend 100% of their time doing useful computation, linear speed-up 

would be possible and each PE added would improve performance. In practice 

this is not possible. The choice of an appropriate computational model is of 

paramount importance to ensure that each data item is acted upon and 

determines how tasks are allocated between PEs. The optimum model will see 

that the workload is distributed evenly among all available PEs. The 

computational models are 

Data driven-where data items are allocated to PEs in advance of computation. 

It can thus be considered a 'static' scheme where the computational requirements 

of data items must be known in advance. 
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Demand driven-the opposite of data driven and considered 'dynamic'. In this 

model work is allocated to PEs as they become idle. This model comes with 

greater communication overheads but problems like 'load balancing' are more 

easily handled. 

Hybrid-a combination of the above two and useful where an initial set of 

known problems can be handled statically before other problems of unknown 

complexity are tackled more dynamically, depending on the demands of the 

situation. 

If the size of the problem domain is too large to be accommodated in its entirety 

at one PE then it may be distributed across all PEs as well as secondary storage 

devices if required. The management of the data involves optimising data 

fetching and use of cache at PEs to maximise the solution of a problem. 

3.6.2 The choices for parallel implementation 

Parallel processing of functional languages has been a research activity for 

several years. The original hopes for exploitation of the implicit parallelism in 

functional languages led to several avenues of research in a number of promiSing 

projects. However, the task of implementing a parallel functional language is 

much more substantial than it first appears [TRI96]. Difficulties include the 

management overheads involved and the increased complexity for the operating 

system. Many parameters for parallel tasks are of a dynamic nature, which adds 

further complexity. Wilhelm [WIL96] in fact argues that the difficulties of 

parallel execution are likely to remain. A good resume of early research is given 

in [LIN96] but some notable areas are highlighted here. 
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FAD, implemented on the parallel database machine Bubba [BOR90j, did not 

incorporate list comprehensions instead using operations like map and filter to 

achieve the same results. Moreover, in FAD functions were not first class objects 

and updates were imperative. 

GRIP is a functional database implemented on a parallel machine [PEY87aj. It 

does not have a parallel I/O system so the database has to reside in main 

memory. It is also based on a shared memory system and the consensus about 

how memory is split in parallel applications is a that shared nothing memory 

system-as defined by Stonebraker for instance [ST086j-has often proven the 

better option. The research into GRIP progressed into the work done using 

parallel Haskell. 

Glasgow Parallel Haskell (GpH) [PEY96j is an extension to the pure functional 

language Haskell [ARG87j. It aims to provide more expressive strata upon 

which to build sophisticated I/O performance using such techniques such as 

monads. The goal was to attain implicit semantically transparent parallelism, but 

the version available uses explicit parallelism [TRIOOj by including the par 

instruction in algorithms in a scheme called evaluation strategies. Evaluation 

strategies suggest to the compiler places in an algorithm where parallel 

processing might be possible; the par instruction is used to direct the spawning of 

new processes. 

Evaluation strategies use lazy higher-order functions to separate the specification 

of an algorithm from its dynamic behaviour (parallelism). The definition of a 

function has two parts: the algorithm and the strategy [TRI98j. A practical 

application of evaluation strategies relevant to our subject area is that for accident 

blackspots. This loads map reference details of accident blackspots from police 

traffic reports and is typical of a data-intensive complex-query domain. The four 
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phases of the program were tested for parallelism. The results proved to be 

somewhat disappointing for the authors. The data sets used were small: 1000 

accidents occupying .3 Mbytes of store. However, one area that was more 

promising involved splitting the data on a geographical basis into 'tiles'. This 

meant sub-sets of the data were safely used in parallel leaving intersection points 

as the only area requiring special treatment [LOI97]. 

In our case, there are several areas where the application of parallel processing 

techniques could be used to improve performance. These are now discussed. 

Passing the base expression to all processors 

This would rely on domain decomposition being able to take advantage of data 

placement across all disks participating in the array. The parsing of expressions 

would be handled simultaneously on each PE that would then be responsible for 

constructing a query evaluation tree to solve the expression using the data on its 

own disk. The idea of simply multiplexing an expression across all PEs initially 

seems a good one. However, there are some drawbacks to this approach. 

Queries involving lexical attributes would necessitate inter-process 

communication to obtain (for example) tokens for strings. This would be difficult 

to manage effectively and could overload the inter-process bus with data and 

message passing operations as non-lexical data is transferred between various 

PEs. The same inter-process communications would be required for each step in 

a graph traversal operation to ensure no links are missed. 
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Parallel graph reduction of evaluation tree 

Peyton Jones [PEY89j introduces this in a keynote paper. The basic idea is that 

nodes of a graph are allocated to different processors where there is control 

maintained over the parent-child reduction sequencing. Difficulties occur when 

a PE has to fetch or update a non-local node and issues such as object locking and 

deadlock become relevant. Again, the results are often too fine-grained after 

considering inter-process communication and the additional costs involved. 

Parallel processing at the storage sub-system level 

This would include the searching for matching pages that might contain a triple 

or record. Triple store interface functions such as ts-present, used to return a 

matching triple and discussed in chapter 2 section 2.4.3, could be sent to all PEs 

thus achieving parallelism. However, the improvement could be small and 

would need careful co-ordination. Consider the following simple algorithmic 

analysis of a typical expression (using list comprehensions) to display the last 

names of all people with a first name of John. Each step of the algorithm is 

described in words afterwards. 

[Lname xlix f- All_emp & Fname name x "John" 1 

BEGIN query 
1. ts_string_to_token (John) - returns token TJOhn 

2. ts_string_to_token (Fname) - returns token T
Fn

_ 

3. ts_open_set «TFn_, 7, TJohn» - returns Toet id 

4. ts_string_to_token (Lname) - returns tOKen Ten_ 

5.WHILE there is still a member of the set to retrieve DO 
5.1. ts_fetch_another (T .. Ud ) - returns <TFn_, Temp' TJohn> 
5.2. ts-present «Ten_., T ,7> - returns Teurr 
5.3. ts_token_to_string(Teu,,) - returns last name 
5.4.add last name to print tree 

END WHILE 
END query 

Step 1 involves accessing the triple store to obtain the token for the name "John". 

Trohn is the resulting token. Step 2 searches the meta triples for the token for the 

function name "Fname" and returns the token TFname. Step 3 passes to the triple 
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store the triple template <TFname, ?, TJOhn>-where ? represents the entity 

identifier position. The triple store opens a set of entity identifiers using this 

template. The returned value Tseud 'points to' this set. Step 4 obtains a token for 

the other function, Lname, used in the expression and returns a token TLname. The 

while loop in step S iterates over the entity identifiers in the set accessed through 

Tseud and in each case: uses ts-fetch_anather to get a new entity identifier token­

Temp, uses ts-present to return the token for the Lname-called Tcurr, before 

converting the Lname token to a string in step S.3 and adding it to the print tree 

in step S.4. 

An analysis of this algorithm reveals the following. Lines (1), (2) and (4) are 

obvious candidates for parallel processing as they can be considered as separate 

tasks. However, the allocation of strings across pages is complicated by internal 

string decomposition-each external string requires splitting into smaller 

'chunks' of six characters. Line (3) is dependent on lines (1) and (2) executing 

correctly and could be done at the same time as line (4). The opening of a set can 

involve a great deal of searching through many pages-although the set of triples 

that match the search template are not retrieved as such. Retrieval pages are 

used to store the identifiers of pages that may contain matching triples. The 

actual triples are then retrieved as required (in the while loop) under the lazy 

implementation that is used. 

Line (S.l) is clearly a sequential process where the page returned would be held 

in cache to speed up the next access anyway. Line (S.2) must follow on from (S.l) 

and, again, must be completed before converting the Lname token to its lexeme 

and adding this to the query tree. Any token_ta_string function-as with 

string_ta_token functions-can incorporate much searching and collating of 

internal string triples. Larger expressions such as 
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[Lname xlix +-- All_emp & Fname x "John" & 

Y +-- All_cust & Cus_no y = 12345 & 
Has_ac x = y] 

are more amenable to parallel execution where the x and y entity sets can be 

created on different processors. This is a more promising area to exploit but, at 

the moment, is again hampered by the structure of the underlying tokenisation. 

Moreover, the format these expressions take is not fixed: users can create well­

formed expressions in several ways. 

Domain decomposition 

The data domain is centred on triples that are held in a homogeneous triple store 

repository indexed (primarily) on the first field. For instance data, the first field 

is most often the relation or function name. Hence clustering tends to place 

triples with the same function on to the same or consecutive data pages. This 

makes parallel searching for pages within the current architecture difficult to 

organise. 

Many searches involve strings; and strings are further decomposed into internal 

string triples for storage purposes. String triples suffer from the same problem as 

other triples in that they are clustered around their first field-in this case, the 

first field is used for the string identifier. There are two types of function call that 

involve searching the domain of string triples-ts_string_to_token and 

ts_token_to_string. Both of these involve calls to sub-functions to search for and 

collate the sub-strings needed that constitute the complete string and might 

therefore be candidates for parallel implementation. 

Internal strings are already searched for in two different ways-either from the 

beginning of the string or from the end of it, dependent on the length of the 

string-see chapter 2 and the discussion of the lexical token converter. In order 
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to make the searching of sub-strings amenable to a parallel solution, the sub­

strings could be allocated differently (declustered) across pages or disks. 

The options for de-clustering of sub-strings are many. They could be spread 

across processors on a sequential, round robin or hashed basis; they could be 

clustered on the six characters they hold in their second and third elements. It is 

possible to allocate blocks of six characters of the search string to different 

processors. They could even be de-clustered according to their length with 

different modulo string lengths being allocated to different pages or disks. Each 

of these schemes would require additional co-ordination and incur the 

communication overheads that are an inhibitor to parallel processing. Moreover, 

balanced data placement might be difficult to achieve. In general, it is possible to 

distribute all data from the homogeneous triple store in-for example-a random 

distribution method across n processors. Because of the difficulties in employing 

parallel processing techniques within the constraints of the current storage 

architecture, we suggest a new architecture that tackles the problem at the model 

level rather than at the physical level. 

3.6.3 The vigorous parallelism of AGNA 

AGNA [HEY91] is a parallel persistent object system that makes heavy use of list 

comprehensions and indexes, and pursues parallelism very vigorously at the 

model level. In the body of a block, all expressions are potentially evaluated in 

parallel, and the value of the body may be returned as soon as it is available. 

Also, in primitive applications (including CONS-the list constructor operator) 

and in function applications where each argument is evaluated in parallel even if 

not ultimately required. The only exception is for conditional expressions and 

where data dependency is involved. Optimisations occur in three ways: 

transformation of comprehensions; translation into dataflow graphs; and 

translation into code for the multi-threaded abstract machine P-RISC. 
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The language is also implicitly parallel (the programmer does not specify what 

must be done in parallel). It uses MIMD architecture where the data (objects) are 

randomly distributed across the array sequentially. Because AGNA is non-strict, 

once the first CONS cell has been constructed a reference to it can be returned 

while the rest of the list is constructed in parallel. Non-strictness also permits the 

construction of 'open' lists (not NULL terminated), so that the APPEND function 

can be used to join the lists from each processing element. The results using a 

uni-processor system showed they were 'within shooting distance' of INGRES. 

While for multi-processor systems, the optimal processor array size was around 

eight. Results from AGNA showed it was a fair distance behind relational 

systems, such as the GAMMA project [DEW90a], but most of it was written in 

software: there was very little hardware assistance. Moreover, AGNA, as a 

functional language, enjoys the benefits that the functional paradigm has to offer. 

3.7 Introducing redundancy 

The use of redundancy is worthy of consideration for any new system nowadays 

as it reduces the risk of data loss to extremely low levels. Once again, the basic 

concepts are introduced here therefore readers familiar with these may wish to 

skip this section. Redundant Arrays of Inexpensive Disks (RAID) [PAT88] link 

together arrays of smaller, cheaper disks to do the work of larger, more expensive 

ones. In recent years drive technology has progressed to such an extent that 

many consider the "I" in RAID now stands for "Independent". 

There are six, official RAID levels (0 to 5) proposed by the RAID Advisory Board. 

But there are other, unofficial RAID levels devised by users for their own 

particular needs. Recently, the RAID Advisory Board has suggested three new 

levels to replace some of the confusion that exists. However, for most practical 

systems the choice is between RAID levels 1,3 or 5. 
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RAID controller hardware provides data redundancy to improve reliability. This 

is done either with a second, mirrored copy of the data disk (as in RAID 1), or by 

incorporating parity information held on one extra disk that can be used to 

reconstruct information in the event of data disk failure (as in RAID 3 and 

RAID 5). This allows RAID systems to continue to operate even if one drive fails. 

Failure rates are measured in the number of years a disk is expected to work 

between failures. The Mean Time Between Failure (MTBF) rates are practically 

insignificant nowadays; using a RAID 5 system with four data disks and one 

parity disk will give a MTBF of 71,000 years. 

Two ways that RAID improves performance are by reducing disk bottlenecks 

and by increasing disk transfer rates. In the parity schemes, data is allocated to 

disks on a round-robin basis. It is said to be "striped" across disks in "chunks" of 

fixed block size. The extra disk needed for parity can either be used entirely for 

parity information (as in RAID 3) or interleaved with the other disks (as in 

RAIDS). 

The biggest single impediment to RAID is the "write penalty" [FRI96j. The Small 

Computer Systems Interface (SCSI) method, currently used to interconnect RAID, 

is likely to give way in the near future to new technology in the form of Serial 

Storage Architecture (SSA) and Fibre Channel Arbitrated Loop (FCAL). Fibre 

channels offer 100 megabyte per second data transfer rates and eliminate SCSI 

bottlenecks. Our ideas for a novel RAID configuration are discussed in chapter 6. 

3.8 The physical model for data storage 

Shipman-in a keynote paper [SHI81j-crystallised earlier work following the 

introduction of the functional data model (FDM). Since then, considerable 

research has been done that embodies some elements of the FDM and applied 

these to database systems. These include: DAPLEX at CCA, FQL at the 
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University of Pennsylvania, P /FDM at the University of Aberdeen and, of course, 

the TriStarp work at Birkbeck College, University of London. Some of these 

projects were aimed at specific domains-for instance, the P /FDM system was 

primarily set up for scientific and design databases [GRA92]. 

Most of the early work on the FDM was done before the relational data model 

became a sound commercial product. The FDM has stood the test of time 

because it is well defined being based on very good principles. Because of this, it 

is evolving into a formalism for the less weIJ defined object-oriented model. Our 

proposed architecture is, however, motivated by earlier work that contributed to 

the FDM and very much complements the fundamental principles involved. This 

is the Associative Data Management System, which is now introduced. 

The Associative Data Management System (ADMS) data model [CR082] uses 

concepts from set, relation and graph theory and provides the model that we 

wish to use for our physical storage structure. In ADMS the database is modelled 

as a directed graph where all the sets of data elements appear as nodes and the 

directed connections show the relationships between them. The data can be 

shown pictorially or in tabular form by listing the end nodes on each of the arcs. 

Additional labelling information is attached to the nodes, which divide the graph 

into cliques of stored record sets. Labels are also used to hold details of access 

rights for the record sets. 

1:1 correspondences and N:1 functions are easily handled by ADMS, but M:N 

mappings are transformed by introduction of a compound entity set. This 

replaces the relationship name and means that the arcs are not labelled in any 

way and thus do not convey meaning between nodes. Nodes are held as "twins" 

within the database and there is some duplication of sets due to the clustering of 

cliques into record sets. Two other transforms are done: the introduction of a 

68 



Chapter 3 

"dummy" set if a set is related to itself; and a "link" set is created when a group 

of sets needs connecting at the highest level. This is called the "upper bound". 

Querying the database is done by macro substitution using a stack so that plain 

English words can be used to formulate the user queries. ADMS is used with the 

CAFS, purpose-built hardware described in section 3.5. Ambiguities can arise 

when there is more than one path between two sets. In this case the user is asked 

to select a path. Database update is at the record-set level with a unique data 

element identifying which records are updateable by which groups of users. 

Figure 3.10 below shows the ADMS file structure. 
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Figure 3.10. The ADMS data model. 

69 



Chapter 3 

3.9 Introduction to our proposals 

Our solution to the problems discussed thus far in the thesis is that a new 

architecture is required that incorporates: parallel processing, improved string 

manipulation and other areas of general functionality, and redundancy. 

3.9.1 The data model 

Some data (for instance meta data) does not form part of the function graph 

model and could be stored differently. Attribute data does not form such an 

important part in graph traversal, often being used only at the start and end of a 

series of traversal operations. This leaves just the entity data-the links between 

entities-as 'real' triples that are used in the graph traversal process. 

So, the underlying structure for our architecture involves storing entity-to-entity 

triples separately from entity-to-attribute records. Included in this is the storing 

of attribute-to-token mappings (string tables being the most common example) 

separately from the entity triples and attribute records. Our architecture is 

discussed in chapter 6. 

3.9.2 Improving string handling 

Once strings are more loosely structured, faster searching techniques, such as 

those found in [BOY77, HOR80j can be implemented. Moreover, it would be 

desirable to add functions to perform stem matching (truncation)-left-hand end 

searching, right-hand end searching (or both), and enable the use of wild card 

characters for elastic matching. A split of the generic type string into two sub­

types representing short attributes and text, would allow for more control over 

searching operations generally. Our proposals for string handling and extending 

search options are discussed in chapter 4. 
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3.9.3 Extending interface functionality 

One of the key elements in the original proposals was the adoption of a simple 

set of interface functions; the benefits of this approach were identified in 

chapter 2. However, we believe interface functionality can be extended for the 

storage level interface without compromising the model level. These extensions 

are outlined in chapter 5. Additionally, functionality can be enhanced at the 

model level for strings (in particular) and in other more general areas 

incorporated in optirnisations. These are discussed in chapter 7. 

3.9.4 Making the architecture parallel 

These proposals include ensuring that the chosen architecture is amenable to 

parallel processing techniques. There are several ways this can be done and 

some of them have been covered earlier in this chapter. Our choice is to adopt a 

MIMD taxonomy with dataflow. The design of this and the decisions taken are 

set out in chapters 6 and 7. The creation, population and maintenance of a 

database using our architecture are discussed in chapter 8. Here we use a North 

Yorkshire Police crime database used with test data based on real-life crimes. 

3.10 Summary 

Following chapter 2, where we described the strengths and weaknesses of the 

current implementation base on a triple store architecture, this chapter has 

introduced the background to other areas of work that form part of our 

proposals. These include alternative grid file implementations and other storage 

and access methods, the fundamentals of binary relational storage structures and 

related data models. Additionally, parallel processing and redundancy are 

described, as is the basics of text searching and the importance of user 

requirements. Finally the proposals for the areas of work discussed in later 

chapters are set out. 
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Chapter 4 Enhancing string manipulation 

4.1 Introduction 

We highlighted in our introduction that string handling was one of the weak 

areas identified in the trials of the TriStarp system [KIN96a]. In this section we 

discuss string handling, dividing our attention between two strategies where 

improvements can be made. These approaches are: 

• enhancements to the current implementation and 

• identifying possible improvements using the new architecture. 

We begin by showing how changes to the current system can easily achieve large 

performance gains. This is done within the framework of the triple store 

architecture for all data. We then describe how de-tokenising strings can lead to 

improved searching techniques. Moreover, by using a new data type for large, 

document-type strings, additional functionality for string manipulation becomes 

possible. Results are given for improvements achieved within the current 

architecture and those for a new architecture. We summarise these in the context 

of other functional data languages and object systems and show how object­

oriented concepts-underpinned by the functional model-are being 

incorporated into the relational model [MEL02]. 

4.2 Enhancements to the current software 

The current built-in, object-level, string-manipulating functions, their 

descriptions and examples of their use, are shown below. (Note the terms 'object­

level' and 'built-in' are used synonymously through this chapter.) 
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function description example 
concat takes two strings, joins them and concat Ilabc" IIdef" 

returns the resultinQ new strinQ returns strinQ "abedef" 
length takes a string and returns its length length "abedef" 

returns integer 6 
substr takes a string and two integer substr "abcdef" 2 5 

parameters and returns a sUb-string returns string "bede" 
from the position of the first integer 
to the position of the second intsQsr 

Table 4.1. Current built-in string functions. 

Any string manipulation is accomplished by the creation of user-defined 

functions that can include the above object-level functions as part of their 

definition. 

Queries are parsed in the following way-see [POU89] for a detailed description. 

A query tree is constructed which breaks down an expression into a collection of 

nodes to be evaluated by the compiler. The pattern-matching algorithm 

evaluates the query by recursively reducing the nodes of the query tree by a 

process known as eager graph reduction. This involves evaluating the children 

of node n, then evaluate node n itself, finally replacing n by the result. The 

evaluation continues until the root is reached and a result can be returned to the 

user. 

There are standard arithmetic object-level functions +, - , < , > , = , * , / 

(integer division) and % (the modulo function) for use in queries, plus the three 

string manipulating functions-concat, length and substr mentioned above. Other 

functions for use in queries are termed user-defined and have to be coded 

directly at the model level or loaded as part of the environment at database 

creation. 

As a query is evaluated, object-level functions may be encountered. In this case, 

the compiler breaks off the graph reduction process and evaluates the called 
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function with the given parameters. The current node of the query tree is then 

replaced with the returned value of the called function and the evaluation 

continues from there. 

For simplicity, strings are held in the query tree in tokenised form, along with 

names of functions etc. This enables a query tree to hold nodes of fixed length 

and aids compilation as all comparisons are made between tokens. However, 

when an object-level, string-manipulating function is called, any strings have to 

be re-constructed into their full forms before the object-level function can be 

invoked. 

As an example, consider the user-defined function contains which searches for a 

pattern in a text and returns a Boolean result. The function contains is itself 

defined in terms of another user-defined function search as follows 

contains (text,pat) <= search(text,pat, 1). The function declaration and 

definition for contains and search are given below where prefix notation is used. 

search: string string integer -> bool /* function declaration */ 

search text pat n <= 

let a == length pat in 

let b -- length text in 
if > a (+ - b n 1) false 

/* else */ 

/* function definition */ 

if = pat substr text n (- + n a 1) true 

/* else */ 

search text pat (+ n 1) 

contains string string -> bool /* function declaration */ 

contains text pat <= search text pat 1 

A use of this function might be contains "abcdef" "def" which would be 

evaluated as follows. 
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1. The whole expression is parsed to form a query tree that involves 

crossing the level 0 interface to generate and return tokens for 

"abcdef" and "def". The evaluation process begins by calling 

contains and replacing it with search and its parameters. Now 

included is the integer 1 for the string starting position. 

2. search" abcdef" "def" 1 is called. The lengths of the two strings 

are calculated using object-level function length and stored as local 

variables adding branches to the query tree. 

3. A test is made to see if the search pattern is longer than the 

remaining portion of the text. If it is, the function exits returning 

false. Otherwise, a comparison has to be made between the search 

pattern and a part of the text of a similar length. The object-level 

function substr is then called. 

4. substr "abcdef" 1 3 returns "abc" (the 1st to 3rd characters of the 

string). This involves building more branches of the query tree and 

crossing the level 0 interface to generate and return a token for the 

sub-string • abc". If the string tokens are the same the function exi ts 

returning true. If not, a recursive call is made to search. 

5. search "abcdef" "def" 2 is called and the process continues from 2 

above until the token for text string "def" matches the token for the 

pattern 'def" at which point true is returned to the user. 

The initial call to contains results in one call to function search, which then calls 

itself three times before the answer true is returned. During the process five 

string tokens are created-two for the initial parameters "abcdef" and "def"­

plus three others for the intermediate patterns "abc", "bed" and "cde". Only the 

first two tokens are meaningful in this case. 

The recursive nature of these expressions, together with tokenisation and the 

continual crossing of the level 0 interface, is what leads to the unsatisfactory run 
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time for such evaluations. Moreover, in large searches, the erroneous tokens 

created quickly deplete the token space available for strings-sometimes to the 

point of exhaustion, thus rendering the software unreliable and compromising 

data integrity. Object-level functions only add tokens to the database for 

complete strings and only then if they do not already exist. 

We have extended the concept of string handling, object-level functions from the 

above three primitives to include a much wider selection of functions that work 

in the same way. These can access the storage sub-system more quickly in the 

graph reduction process so execution is faster. Although the text and search 

strings have to be re-constructed before the function is called, this strategy 

obviates the laborious tokenisation and comparison of sub-strings in the text to 

be searched. The compiler can now handle these searches in just one non­

recursive function call. 

We first provided 15 experimental, object-level, string matching functions from 

which other, more complex, string matching operations can be constructed by the 

user. The set includes features found in standard text retrieval systems and is 

sufficient for the majority of user needs. The meta characters used in our 

functions are as follows 

" , match anyone character 
11%" match zero or more characters 
11111 OR operator 
11&11 AND operator 
"<" must-come-before operator 

The choice of meta characters is arbitrary, although the elastic matching character 

"%" and match anyone character "_" are taken from the syntax of SQL, any other 

symbol could be used. We have tried to keep the meta characters intuitive 

though. The functions provided, their deSCription, and examples of their use are 

given in Table 4.2 below. 
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name description example 
em1 Looks for exact match words using a em1 IIhere it is!! lIitl' - true 

move one-at-a-time strategy. em1 "here it is' "and' - false. 
em11 Like em1 but uses a shift table. As for em1. 
em2 Like em1 but allows for "_" character em2 I'here for" IIh_rell 

- true. 
in pattern. em2 "here for" "r e'-false. 

em21 Like em2 but uses a shift table. As for em2. 
em3 Allows for right-hand truncation in the em3 "aping" "ap%" - true. 

search pattern via "%". em3 "aping" "app%" - false. 
em4 Allows for left-hand truncation in the em4 "ended' "%ded' - true. 

search pattern via "%". em4 "ended' "%ds" - false. 
em41 Like em4 but uses a shift table. As for em4. 
emS Allows elastic matching character '%" em5 "right" "r%ht' - true. 

embedded in search pattern. em5 "right' "r%gh' - false. 
em6 Allows "%" character at either end of em6 "right" "%igh%" - true. 

one-at-a-time search pattern. em6 "right" "%uo%" - false. 
em61 Like em6 but uses a shift table. As for em6. 
mm1 Pattern contains multiple search terms mm1 "jo vie" "vilvic" - true. 

separated by "I" characters. mm1 "jo vie" "vijval" - false. 
mm2 Pattern contains multiple search terms mm2 "jo vie" 'vic&jo' - true. 

separated by "&" characters. mm2 "jo vi" "vi&al ll 
- false. 

mm3 Pattern contains multiple search terms mm3 "jo vi al" "Jo<al" - true. 
separated by '<' characters. mm3 "jo vi" "vi<io" - false. 

ss1 Uses on-at-a-time search strategy to ss1 "one to one" "one" - 2. 
return occurrences of pattern in text. ss1 "one two" "too" - o. 

ss2 Like ssl but used shift table. As for ssl. 

Table 4.2. Experimental string functions. 

All of the above functions have the type signature: string string ~ bool except ssl 

and ss2 which have type signature: string string ~ integer. A smaller set of 

functions was then written that (generally) return the word that forced the match. 

This is more significant for searches that involve elastic matching or conjunctive 

search patterns. These functions are shown in Table 4.3. 
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name description example 
matches Returns first word that matches matches "here and now" "%nd" 

pat or the empty string returns "and" 
rest Finds first word matching pat rest "this and that or" "and" 

and then returns remaining text returns "that or". 
or the empty string. rest "this and that" "that" 

returns '''' (the empty string). 
or_str Allows the 'I' character as 0 R or_str "one and two" IIsix!two" 

function. Returns first word returns "two". 
matching pat and returns it. or_str "one and two" "ninelten" 

returns "" (empty strinClI. 
and_str Allows the '&' character as AND As for mm2 above. 

function. Returns boo lean. 

Table 4.3. Object-level string functions. 

If used in list comprehension as part of a filter, functions that return strings have 

to be embedded in an expression that returns a Boolean result. For example, to 

list the ref_num of all persons where attribute name is like "Fre%", the following 

expression is needed. 

[ref_no xlix f- Al1-person & not = TIll matches name x "Fre%lI] i 

The filter might look confusing because of the prefix notation, but it is saying 

'only display the ref_no for persons where the search for name beginning "Fre ... " 

does not result in an empty string being returned'. It is perhaps more natural to 

use these functions in user-level functions such as in the following example 

where we are trying to find all words like "WINDOW" in a crime database 

described next. Functionfbelow again uses prefix notation. 

f string (list string) -> (list string); 

f a [] <= []; 

f a [hit] <= 

let x -- matches h a in 
if = 1111 x fat 

/* else */ 

[x I fat]; 

f "%IND%" map (scp) All_crm; 

/* declaration */ 

/* definitions */ 

/* usage */ 
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The function AlCcrm is a zero-argument generator function of which there are 

equivalent functions for all non-lexical types. AlCt returns the current extent of 

type t as a set. The map function is a second-order function that (in this case) 

maps the function scp over AlCcrm to produce a list of crime reports that is itself 

passed to functionfas described above. 

The function scp represents the "scene of crime report" attribute from the entity 

crm in the crime database. The crime database is used in an operational 

environment by the North Yorkshire Police Force and holds test data based on 

2,500 reported crimes. There are 948,000 triples held in the triple store-where 

approximately 314,000 hold strings for scene of crime reports. Appendix A2 

gives a fuller description of the triple breakdown. A small part of the schema is 

reproduced below-the schema is shown in full in appendix AI. 

Figure 4.1. Crime database schema (part of). 

For the remainder of this section, we will use examples from Table 4.2 as these 

return Boolean results and are thus easier to read in list comprehensions. A 

comparison was made between our exact-match, object-level function eml and 

the user-defined function contains against the scene of crime data held in the 

crime database. 
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4.2.1 Comparisons between object-level and user-defined functions 

The results of comparisons are first shown graphically in Figure 4.2 and then in 

tabular form. Table 4.4 below gives the execution times in seconds of four runs of 

an expression that uses the two types of functions in list comprehensions. Each 

expression uses a global variable ($c) to hold a sub-set of the entity identifiers for 

crimes. This sub-set is allocated with the user-defined function take-thus $c -­

take 1 n All_crm. All runs were made on a Sun SP ARC station 2 

count [scp x 11 x ~ $c & contains scp x "DOOR" 1; (1) 

count [scp x 11 x ~ $c & eml scp x "DOOR" 1; (2) 

Seconds User-defined 
function 

"contains" 

$c 
1 

10 
100 
500 

1000 
2500 

10000 

1000 

100 

10 

1 

0.1 
1 

function 
"em1" 

10 100 1000 10000 

Records - avg 3 kbytes/record 

Figure 4.2. Improvements in string functions. 

times for (1) times for (2) 
9 9 9 9 <1 <1 <1 

139 142 137 139 <1 <1 <1 
1486 1457 1443 1459 1 <1 1 

10244 9997 10053 10330 3 2 3 
estimated at > 19 hours 6 6 6 
estimated at > 49 hours 18 19 18 

Table 4.4. Comparisons between contains and eml. 

< 1 
< 1 

1 
3 
6 

18 
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Not surprisingly, there are substantial time savings using eml instead of contains. 

This is clear from the above table and can be accounted for by the fact that 

contains has to cross the level 0 interface so frequently, whereas eml does not. 

The expression that uses eml removes the majority of the Itc_str _to_id 

operations-some of which also generate new triples. In fact, using eml creates 

only one extra triple-the one for "DOOR". In contrast, using contains means the 

creation of 47,163 extra triples-all of which are needed only for the comparison 

and are otherwise useless. 

The timings of the four runs were close which suggests there is little to choose 

between asking the LTC to generate a new token and then pass it back, or asking 

the LTC simply to pass back an existing token. Another advantage is that using 

object-level functions like eml does not deplete the token space available for 

string tokens. The built-in search functions described in this section are shown in 

appendices A7 and A8. They were incorporated into a new system we called 

FDLS (FDL Strings). The searching techniques are described in section 4.2.3. 

4.2.2 Comparisons between conjunctive and disjunctive search types 

Leaving aside the clear superiority of object-level functions we now wish to 

compare two ways of handling conjunctive and disjunctive searches. We have 

provided these options as multi-match, object-level functions mml and mm2. The 

same results can be obtained with user-defined functions and and or used 

together with our exact match function eml. Consider the following expressions. 

count [scp x 11 x f- All_crm & (3) 
(em1 scp x "DOOR') or (em1 scp x 'ROOF')] 

coun t [scp x 11 x f- All_crm & mm1 scp x 'DOOR I ROOF" ] (4) 

count [scp x 11 x f- A1l3rm & (5) 
(eml scp x 'DOOR') and (eml scp x 'ROOF")] 

count [scp x 11 x f- All_crm & mm2 scp x 'DOOR&ROOF'] (6) 
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We note that tokens would be created for the patterns "DOOR I ROOF" and 

"DOOR&ROOF" but these are the only ones that have to be added. We used the 

above four expressions against all the 2,SOO crime reports (average length 7S0 

characters). The number of search terms used was 2,10 and SO. These numbers 

were chosen to show a trend in increased search times and can be thought of as x, 

5x and 25x accordingly. There were several runs of each test which was done on 

a Sun SPARC station 2. The results are shown in Table 4.5 below with times in 

seconds. 

search expression expression expression expression 
terms (3) (4) (5) (6) 

2 16 14 14 14 
10 17 15 17 14 
50 25 15 22 15 

Table 4.S. Timings for different types of or and and functions. 

From this table we can show, in Figure 4.3, that our multi-match functions scale 

to provide an increasing advantage over using the standard or and and functions. 

28 ,--------------------------------------, 

26 -----------------------------------------------------

24 

22 

Seconds ~~ t~:;;::~~:::-:-;--~-~-~-~-~--~-c-c-c--c-~-o-~--~-~-~-~--~_c_~_~ __ ~_~_l 
16 -----------------------------------------------

14 ~~~.~.===--=--=-=--=-=--~--=-~--=-~--=-~--=-~--~-~--~--~-~--~-~--~-~--~-~-
12 ~----_r------~----~------,_----_,------~ 

2 10 18 26 34 42 

Number of search lerms 

__ or function (exp. 3 form) -_'- mml function (exp. 4 form) 

__ and function (exp. 5 form) ~ mm2 function (exp. 6 form) 

Figure 4.3. Comparisons between different or and and functions. 

50 
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A closer inspection of these figures reveals the expected result of and operations 

executing faster than or operations. There is little to choose between either class 

of function when used against a small number of search terms. However, as the 

number of search terms increases, the advantages of the multi-match functions 

become clear. This is because the standard or and and functions increase the size 

of the query tree. We also experimented using a local variable to hold scp x in (3) 

and (5) via a let ... in construct, but this made no difference to the timings. A 

feature not investigated was filter optimisation; both the multi-match functions 

search for "DOOR" before searching for "ROOF". Further runs showed that the 

relationship between numbers of records searched and execution time is roughly 

linear. 

4.2.3 String searching techniques used 

The object-level functions use two forms of searching techniques. Functions such 

as eml match the pattern against the text from the right-hand end of the pattern 

working left until the pattern is found or a mismatch occurs. Following a 

mismatch, the pattern is moved along the text by one character and the search 

process starts from the right-hand end again. 

The other form of search, which is used in functions like eml1, uses a shift table 

to calculate the amount the pattern can be moved along the text when a 

mismatch occurs. This is based on the Boyer-Moore-Horspool (BMH) algorithm 

[HORBO] that demonstrates a practical application of the generic Boyer-Moore 

(BM) algorithm [BOY77]. The superiority of the BMH algorithm over the BM 

algorithm is achieved by simplifying the pre-processing of the text and search 

pattern. Only one of the shift tables suggested in [BOY77] is used-deltal-so 

pre-processing is kept to a minimum. 
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Our shift table is based on the BM delta1 table and is sufficient to allow the 

pattern to be moved along the text more rapidly so that, on average, two thirds 

less comparisons are necessary. The delta1 table sets up a shift array for each 

letter in the alphabet, where an integer indicates by how much the pattern can be 

shifted to the right. If a letter is not in the search pattern, its integer is equal to 

the length of the search pattern because we can safely move the search pattern 

past the mis-matched letter without fear of missing any potential matches. 

Because we use a delta1 table only, time is saved setting up the relatively under­

used delta2 table proposed in [BOY77l and demonstrated in [HORBO]. The delta2 

table searches for discovered sub-patterns in the search pattern and uses this 

knowledge to check if a greater move for the search pattern can be made than the 

delta1 table alone would suggest. 

For patterns of length five or greater, the BMH algorithm is the better option 

[HORBOl. However, we used our functions em1 and emll on identical queries 

involving multiple search terms over the scp function in the crime database 

(average crime report length 750 characters). There was no difference. When we 

consider the functions that allow for missing characters and elastic matching, 

there is even less to be gained by pre-processing the text because the "_" character 

in the pattern can be matched against any character in the text. This means the 

pattern will move more slowly through the text anyway. The conclusion being 

that, in this case, pre-processing the strings is not worthwhile. 

4.3 A different approach to string handling 

The previous section showed that substantial improvements are possible by 

changes in functionality to the triple store architecture underpinning the current 

software. If the architecture for string storage were changed it may be possible to 
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remove the weaknesses of tokenising strings while retaining the advantages that 

tokenisation offers. 

In this section we endeavour to show that a new architecture for strings can 

accommodate the benefits of tokenisation with a more flexible method of string 

storage. Moreover, this can be done in such a way that powerful searching 

facilities can now be made available to the user that have hitherto proved 

difficult to provide. 

4.3.1 A new type for large text documents 

Part of our proposals include the introduction of a new type we have called text 

to be used for large, document-type attributes, where text can be considered a list 

of strings. A synonym for string could be word, so text could conveniently be 

considered as a list of words. This would permit more powerful text searching 

facilities to be provided-ones that would not necessarily be applicable to shorter 

attributes. 

Shorter attributes typically contain between one and a small number of words 

that form a single semantic unit. Words included in a text, on the other hand, 

have a looser connection within the context of the whole document. Each word 

in a text document is delirnited-often with the space character, although this 

need not be the case. A decision would have to be made upon database creation 

and then used as a semantic rule to guide users. when entering queries. More 

details of the structure of words in texts will be given later in this chapter. 

For the rest of this section we shall refer to the short string types as type string 

and the longer string types used in documents as type text. The dividing line 

between whether an attribute should be a string type or a text type is application 

dependent and would be set up at the model level as part of the database 
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schema. By making a design decision like this, it is possible to devise string­

searching functions that discriminate between the two types. Any improper use 

of these functions would be flagged as type errors in the usual way by the type 

checker. 

We note that there is plenty of scope for further sub-typing of the generic type 

string and our new type text. The concept could be extended to cover htrnl 

documents for example. This is discussed later in this chapter. 

4.3.2 Combining strings and tokens 

The reasons that strings were tokenised before being stored in the triple store are 

as follows: 

1. duplication of strings is removed 

2. compact representation of strings 

3. compact storage into pages on disk and main memory 

4. uniformity of fixed-length tokens for the compiler 

5. adherence to the philosophy of homogeneous triples 

6. to maintain simple interface functionality. 

To allow for searches to contain missing characters, cover case and word 

contraction inconsistencies, allow for left- and right-hand truncation' and 

embedded elastic matching characters in a search pattern, it is desirable to hold 

strings in their full text format somewhere in the storage sub-system. There are 

several options available. Leaving aside text attributes for the moment, string 

attributes have different possible representations: 
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1. the complete multi-string attribute could be tokenised as is the case now 

2. each word could be tokenised with these tokens held in sets 

3. the actual words themselves could be held in full wherever they appear in 

the database 

4. a combination of the above. 

An example mapping of 1 might be "white European" ~ 3278242123. An 

example mapping of 2 might be "white European" ~ {1536691292, 3231125932}. 

In each of these cases, the string "white European" would itself be broken down 

into sub-strings for storage in the triple store. We believe strings should be 

stored in full format in a string table used to provide the mapping string ~ token. 

This is discussed in the next section. However, the alternatives to be considered 

are as follows. 

The first idea for the triples was that one token would represent each unique 

string (as in 1 above) and we proposed to store the attributes in sets with the 

following structure: 

Where $e refers to an entity surrogate; $r refers to a relation surrogate and; $a 

refers to an attribute token. Each field is of fixed length. This situation would 

synthesise the benefits of data compression on disk and in memory, and provide 

the more direct access to strings that is required via the string table. 

However, we believe it is desirable to be able to identify individual words within 

string attributes. Therefore, we propose breaking the attribute down into 

delimited words before storage in the string table. Each delimited word is held 

in alphanumeric order (case folded) and maps to a unique token. This means 

that more powerful searching operations are available to the user. Firstly, 
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searches for words can be ordered-e.g. "find attributes where the word 

"Venetian" comes before the word 'blind"'. Secondly, quorum operations can be 

used-e.g. "find an attribute with at least two of these words ''burglary, arson, 

violence, firearms, aggressive, mugging" somewhere in it. Moreover, left- and 

right-hand truncation are more easily catered for. 

String searching functions would then proceed by searching for a string in the 

string table and then return a set of tokens and an indication of the number of 

times a string occurs in the database. The results of these functions would be 

passed to the parser and used lazily in any remaining sub-expressions still to be 

evaluated in the list comprehension. The choice of what should be stored in the 

attributes is then between holding the full text representation, or holding sets of 

word tokens. These options are now considered. 

Holding sets of word tokens 

This would require that each word (stop words excepted) be mapped to a unique 

token and that each entity attribute would then have the following kind of 

format: 

<$e, ($f1, $a11, $a12, $a13), ... ,($rn, ... » 

Where $a11, $a12 and $a13 each refer to a separate word in the string attribute. As 

before, each field is of fixed length. 

This option would combine the compactness of tokenisation with the improved 

level of granularity for string storage. However if a set of tokens is stored for 

each string attribute there is unlikely to be much saving of space and, any savings 

there were to be made would be negated by the necessary reverse mapping 

token ~ string that would be needed for printing and display purposes. 
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The tokenisation of individual words could be done in a compressed format 

dependent on the 10g2 of the number of words held in the string table. This 

method has been used in the Hibase project [COC98) and requires variable length 

tokens. It seems intuitive to maintain word token allocation from the sub­

domain of 32 bits that are set aside for strings so there is uniformity with the 

tokens of other types. It is also easier for data filters to scan fixed-length fields; 

variable length tokens would require an identifier byte to indicate the token 

length and would negate the benefits of using tokens in the first place. 

Holding actual strings in the attributes 

An alternative would be to hold the actual strings in the attributes and remove 

the token -7 string mapping completely-although the tokens would still be used 

for the inverse function mapping. The mapping of very long strings to tokens of 

only 32 bits had the advantages mentioned earlier. However, as we now want to 

hold strings at word level so we can do more with them, the option of holding 

full format strings in the attributes does not carry such an overhead. If full 

format strings were held the following would hold: 

1. there would be duplication of data-as indeed there is with 

tokens in the current system 

2. self-identifying formats would need to be added, e.g. word 

lengths. These would take the place of the "space" character 

now no longer required 

3. the average English word is six or seven characters long - equal 

to 48 or 56 bits required. This is an increase of 50 to 75 percent 

on the 32 bits currently needed for storage 

4. there would be no need for a token -7 string mapping for display 

purposes. 
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In support of the argument for holding full strings in attributes, a comparison 

between the new proposals and the criteria for tokenisation, should be made. So, 

to rationalise these proposals with points 1 to 6 at the start of this section the 

following are noted: 

(i) there would be duplication of strings in the attributes; this is a 

situation that has existed for many years with, for instance, 

Oracle databases. With the continuing reduction of disk costs, it 

is not as much of an overhead today as it once was. Moreover, 

space is not one of the main design issues (refer to our summary 

of design considerations in chapter 3) 

(ii) tokens can represent large strings compactly but the strings still 

require decomposing into internal sub-strings for storage in the 

triple store. Furthermore, our plans for text attributes will 

involve a text identifier being generated and held in the record 

with the full text document held elsewhere. The text identifier 

would therefore act in the same way as a token identifier does in 

the current system. This is discussed further in a later section 

(iii) compact storage on data pages would not be so easy to achieve 

with variable length fields. However, as the types of database 

for which this architecture is being developed are likely to be 

very large, to be of a textual nature, and have fairly static data, 

then data volatility and its inherent problems are less applicable. 

The records would be placed compactly at database load/re­

organise time, with subsequent records added to a temporary 

area pending database re-organisation. 
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Compact storage in memory would no longer be a prerequisite 

as the use of a data filter would obviate holding large numbers 

of pages in memory many of which are not accessed anyway. 

(iv) the benefits for a compiler using only fixed-length tokens is 

perhaps a little tenuous. Compilers tokenise their own 

expressions anyway, so this problem should be easy to solve. 

As was shown earlier in this chapter, removing unnecessary 

tokenising of data and devolving functionality to a lower level 

in the execution process allows for a substantial improvement in 

performance 

(v) some data is clearly more suited to the triple concept-entity-to­

entity triples and meta data for example-and these we intend 

to keep tokenised and held as before 

(vi) interface functionality needs enhancing so that data storage 

reflects data usage in a way that boosts performance. This can 

be done in such a way that does not compromise the robustness 

of the interface protocols that are currently in place. This is 

discussed further in chapter 5. 

In summary, there is no need to maintain a token -t string mapping for displaying 

the records if full text strings are held in the attributes. A string table provides 

the string -t string_token mapping that will enable token sets to be collated for 

further retrieval. They also provide the function mapping string_token -t 

entity_id that is frequently used in query expressions. Lastly, there are now very 

precise things that can be done in text searching and the type text allows for 

specific functionality to be targeted to larger documents. In the next section we 
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show how the data structures will synthesise the storage of strings and tokens to 

allow for the mappings that we wish to provide. 

4.4 The data structures 

In this section examples of the data structures and mappings are given. The data 

structures required are as follows: 

• the string tables that provide the string -t string_token 

mapping 

• the string triples that provide the strin~token -t entity 

mapping 

• the other lexemes-integer, real, etc 

• the attribute records, and 

• the text type attributes-now referred to as documents. 

4.4.1 The string tables 

Each word used in the database is held in a string table. A word is defined to be 

a delimited sequence of alphanumeric characters that has a meaning on its own. 

The delimiter would be application specific but would often be the space 

character. The string table is held in alphabetical order (case folded) on disk and 

accessed by a coarse indexing structure (B-tree). This will enable string searches 

to move rapidly to the relevant sub-section of the table that is then scanned by 

the filtration hardware. The index could be ordered on (say) the 26 letters of the 

alphabet, although this again would be application specific. The structure of each 

entry in the string table is shown in Table 4.6 below. 
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string strlng_ token length occurrences 
full ASCII rep- fixed-length from sub- integer for the integer shows how 
resentation of domain for strings length of a string many times word 
a string occurs in relations 

Table 4.6. String table record structure. 

The string token identifier is used for the collation of string token sets and also in 

the inverse function mapping string_token -7 entity_id. A count of the number of 

occurrences provides a "fast track" into the system. It is used to enable users to 

decide whether they wish to abort a query if, for instance, there are too many 

'hits'. This lets them refine their search. An example of this structure is given in 

Table 4.7 below where #n indicates the use of an arbitrarily generated string 

token from the sub-domain of 32 bits used for string tokens. 

string string_ token length occurrences 
analyst #49 7 2,195 
programmer #3741 10 74,545 

Table 4.7. Example of string table. 

The string table is then duplicated where the second copy holds the strings in 

reverse order-e.g. "Fred" changes to "derF"-the other three fields being the 

same. This enables searches from either end of the string to be made. Although 

the mapping string_token -7 string is not required under our scheme, there is a 

simple way this reverse mapping can be handled if it is necessary. This involves 

holding a B-tree index on both the string and the string token. 

4.4.2 The string triples 

The unique token allocated for each string is used in the string triples data 

structure to provide the mapping between strings and the entities to which they 

are related. From the example data in Table 4.7, the string triples might be as 

shown in Table 4.8 below, where $ indicates an entity surrogate taken from the 
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sub-domain of 32 bits reserved for entity identifiers. The relations are shown in 

full but would in reality also be tokens. 

Table 4.8. String triples. 

Each of the three fields is fixed length so these triples are held compactly on disk 

indexed on the first field, within that on the second field and within that, on the 

third field. Although this structure is similar to the triple store concept, it need 

not be indexed as such. It is sufficient to use a B-tree structure indexed on 

ascending relation order. As new entries are added to the string tables, string 

triples are inserted to give the mapping to entity identifier. There is no 

correspondence between the alphabetical ordering of strings and the ascending 

order of string surrogates used. Therefore, the relation name is the primary 

index key for string triples. 

4.4.3 Other lexical types 

Other lexical or base types include integer, Boolean and real. The mappings for 

these types are trivial in comparison to string types. Integers merely drop the top 

three bits that are required for the type signature leaving 29 bits for the value. A 

similar arrangement for real type adheres to the IEEE 754 binary standard for 

double precision floating point numbers. Boolean types have three values: true, 

false and maybe, where reserved integers are used as tokens for each. The lexical 

triples for these types simply hold three fixed length fields comprising the 

relation, the lexical value and the entity identifier. These triples are ordered on 
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the first field (relation). Text and BLOB types have an identifier in the second field 

that is again allocated from a discrete domain. 

4.4.4 The attribute records 

Storing the actual string in the record would give a structure like: 

<$e, {$n, ... , $r",}, {Al, ... , An}, timestamp> 

Where $e refers to an entity identifier, $r refers to a relation surrogate (and its 

offset) and An refers to an attribute. The words within each attribute would be 

based upon an agreed delimiter-often the space character. A record structure 

makes it easier to display all the direct attributes for a particular entity without 

the need to perform a token ~ lexeme mapping. Because of the string triples, the 

string attributes of a record are not called upon to provide the inverse mapping 

that is often needed in expressions like: 

[{age x, fname xlii x f- Inv_lname "Srni th" 1 ; 

In this expression the string tables and triples would be used to obtain the people 

with the last name "Smith". Then the attribute records for these people provide, 

directly, the age and first name without a token -7lexeme mapping being 

required. 

4.4.5 The structure of text documents 

In section 4.3.1, we introduced a new data type text that is used to hold a set of 

strings that has a looser connection than the shorter string attributes. The strings 

that make up a document of type text will also need delimiting to word level, so 

the structure of a document needs to be able to cope with this. All the delimited 

words in a document are included in the string table and are mapped to a unique 

string token for that word. The token is then used in the string triples to identify 

which entities contain that word and what relations join the two. The records 
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themselves will not hold any text. The value for an attribute of type text is a 

document identifier that indicates where the text document is held. Figure 4.4 

shows part of a record that has two text attributes in its structure. 

<$e, ... , ($r , 23421238), ... ,( r2, 30298721) , ... > 

A text 
document 

Another text 
document 

Figure 4.4. Document mapping. 

The documents are held as 'link' files and contain the full text with various 

identifiers included. These are now discussed. 

Documents usually have structure with headings, abstracts, titles, sentences, 

numbered paragraphs etc. The more the software knows about a document the 

more helpful it can be in enabling users to refine searches. There has been an 

historical progression in the formatting standards for documents, culminating in 

the XML/XHTML standards-discussed later. However, for our purposes we 

refer to the Textrnaster document system [KA Y8S] which uses a normalised 

document format (NDF), based on the Office Document Architecture (ODA) 

[KOC94, FAN92]. This allows documents to be structured in three ways: 

1. the structure of the document is internally defined using the built-in 

features of NDF 

2. the structure of the document is not defined using NDF but instead 

uses markers edited into the text content. This allows documents to be 

prepared on equipment that offers no support for NDF 

96 



Chapter 4 

3. the document is regarded as being unstructured text. However, for 

filing and retrieval purposes a number of document attributes can be 

defined-author, title, etc.-that are then held in a separate document 

card file (called a document profile in ODA). 

The first two cases are more suitable for highly structured documents; the third 

case is more appropriate to more loosely structured documents such as memos, 

informal minutes and possibly crime reports. In this case the structure will tend 

to vary from one document to another and the organisation imposes very little 

control over the way they are written or typed. Often the person filing the 

document has responsibility to create some order out of the text but has no 

authority to alter it in any way. The document card file would carry the structure 

of each document class-where document classes could be: memo, minutes, 

crime report, etc. The entry of a document would then adhere to the constraints 

that apply for the document class. 

The setting up of the allowable attributes and fields for each document class 

would be a centralised task so that, once done, a uniformity of document entry 

can be maintained for all users. It's impossible to decide generally what fields 

would apply but there may be a heading field, some key words and perhaps even 

the word delimiter could be document specific. Document layout can also be 

defined so that displaying a document will always be done consistently. 

The Textmaster system keeps two copies of each document-one for display or 

printing purposes that holds formatting information etc., and another that holds 

the normalised text in self-identifying format for rapid searching. (Here, 

normalised text is text which has had the stop words removed from it.) We 

consider that the formatting information could be kept in the document file card 

as part of the meta data, while leaving the actual document with just the field 

identifiers and word lengths in it. At this stage it is not proposed to remove the 
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stop words from the text document, although they would not be recorded in the 

string tables. 

Scoping identifiers, field codes and trailer records are used to delimit sequences 

of words, sections etc., and are added at appropriate points in the document. 

These identifiers enable quorum searches-and, indeed, searches in general-to 

be restricted to sections, paragraphs, etc. depending upon the structure of the 

document class. Proximity searches can also be made between terms that appear 

in: (1) the same sentence, (2) the same paragraph, (3) the same field, etc. 

Although the field types are very application specific, Figure 4.5 gives an idea of 

how this is done. 

document: 
docu- field 
men! header 
class number 

t ~ 

• 

. 

field word, word, 
length length 

document file card: 
document class number 
field name 

word2 word2 

length 

field number I , 

-

field 
end 
marker 

Figure 4.5. Mapping between document and document file card. 

The individual fields can be nested according to the format held in the document 

file card. The use of binary numbers for field identifiers allows for hierarchical 

typing of text within a document. This structure supports queries that will vary 

from the generic to the specific. A search accelerator can mask the scope 

identifiers just as easily as masking data: it can ignore irrelevant or over-specific 

aspects of the categorisation. By a suitable choice of binary identifiers, specific 

searches can be converted into generic searches. The data is independent of any 

strong typing etc. as it carries its own identifiers with it. 
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4.4.6 Recent developments in text structuring 

There has been extensive work done in text structuring in recent years and there 

are several standards. ODA has been mentioned earlier and there is· also 

Structured Generalized Markup Language (SGML) [GOL90j. However, these are 

extensions beyond the simplified NDF format used in Textrnaster and are capable 

of handling much more complex document structures such as text positioning, 

graphics, hyperlinks etc. They could easily be incorporated into our architecture 

if another primitive type, call it html, were deemed desirable. 

Self-describing data formats have been in use for a long time for exchanging data 

between applications. Their use for exchange between heterogeneous systems is 

more recent. The Object Exchange Model (OEM)-part of the Object Database 

Management Group (ODMG)-was developed for that purpose [CAT94j. It has 

now become the de facto standard for semi-structured data. The converging 

standards of the world wide web (WWW) centre around the W3C-the WWW 

Consortium. The original mark-up language HTML (used to describe data 

presentation) is being merged with XML (used to describe data structure) into a 

new standard XHTML. There are various standards surrounding XML and the 

tools/parsers associated with it. A detailed description of these is beyond the 

scope of this thesis. However, the basic idea behind the mark-up of XML 

documents could equally be applied to our architecture where our documents 

could be structured along the same lines. 

The whole area of semi-structured data is one of on-going research and is still 

very much in its infancy [ABIOOj. The concepts behind applying database 

schema to semi-structured data, that we call partially structured data, is an area 

of continuing research. The intention is to show that meaning can be extracted 

from partially structured data and used to create schema extensions without 

changing the actual data upon which those extensions are based. 
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4.4.7 Pre-processing of documents 

Each document in the database belongs to a document class so that a uniform 

format for its insertion and pre-processing will be available. It is of course 

possible that a document is not required to have any format or structure at all. 

However, this would still constitute a document class-albeit one with the 

minimum of structure. It would consist merely of a list of delimited words and 

their lengths prefixing them. 

When a document is added to the database it must be done within the 

specifications set out for its document class. Fields such as 'heading' etc, need 

filling out on screen to enable the software to add appropriate identifiers. After 

the document has been pre-processed, the delimited words included in it need 

adding to the string tables-stop words excepted-together with incrementing 

the count of occurrences. The string triples are then extended to include the new 

word tokens and their corresponding relation surrogate and entity identifier. 

4.5 Description and results 

In order that this string architecture and enhanced searching opportunities can be 

assessed, we coded some search algorithms (described in section 4.5.2) and 

included them in two different programs using text files of people's names. We 

first give an overview of the basic structure, then describe the algorithms 

provided and the initial results. 

4.5.1 Basic structure 

The ability to include missing characters was built into the search algorithms as 

shown in the table below. Search patterns of four or more characters are 

required. However, a pattern like "%_%" would find all two-letter names and 

greater. For brevity there were some restrictions on the use of the "%" character: 
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the following alternatives were used as the eight search cases allowable in the 

programs: 

case pattern legend 
N " " ............... N none 
L " ••••••••••••• 0/0 .. F first 
M " ....... 0/0 .••.••. 

, M middle 
ML " ...... % ..... 0/0" L last 
F 11% ••••••••••••• 11 , " any character 
FL 11% ••••••••••• 0/0

11 % = match zero or more 
FM .1

% 
••••• 0/0 •••••• 

11 characters 
MM " •••• % •••• % .... 11 • "can be used anywhere 

Table 4.9. Search types. 

The set of names (case folded) is held in two files calledforward.txt and reverse.txt 

with the forward file structured thus: 

string token length occurrences 
Abidi 1103527590 5 0 
Abraham 377401575 7 0 
Abrahams 662824084 8 0 
Acres 1147902781 5 0 

Table 4.10. Forward names file. .. 

The reverse file holds the strings in reverse order i.e. "Abidi" -7 "idibA". The 

other three fields remain the same. The tokens were randomly generated. 

Which string table to open is decided by examining the search pattern entered by 

the user. For search cases N, L, M, ML and MM the forward file is used: for 

search cases F, FL and FM the reverse file is used. A coarse index on each letter 

of the alphabet is held in memory. 
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4.5.2 Description of search algorithms 

A brief description of the various algorithms used, which are shown in full in 

appendices AS and A6, is now given. For our purposes, a display or count of the 

matching strings is the output: it would be equally easy to return the 

corresponding token for use by other functions. 

Function: fixed 

This is used for the simple case when no "%" wildcards are in the search 

pattern---case N in Table 4.9. The variables start and stop limit the search to the 

relevant part of the string table. The search is normally done from the index 

pOSition of the first character in the search pattern to the start of the next 

character in the index. However, if the first character in the search pattern is the 

"_" the search is done over the entire string table. However, we note that this 

type of search is not likely to be requested very often. The sub function exact is 

used to match the search pattern character-by-character against each string 

within the index parameters start and stop. 

Function: front 

This copes with left-hand or right-hand truncation---cases Land F. The start and 

stop variables are set up as before and the search is done using forward.txt with 

search patterns like "mall%" or reverse.txt with search patterns like "%ington". 

After that the search_type variable is used to see if the pattern needs reversing 

before displaying. 
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Function: mid 

Search patterns with one "%" wildcard embedded in them use this function-case 

M. After search parameters have been set up, the search looks for an exact match 

against each name in turn on the first part of the search pattern (up to the 

wildcard). If this returns true, the last part of the search pattern is matched 

against the last part of the same name. 

Function: midlast 

Used for cases ML and FM. Both cases are dealt with by searching for the known 

part of the search pattern first-Le. " ... % ... %"-by dropping off the last wildcard 

and searching for the first part and, when successful, the second part of each 

string as in function mid above. Again, the name has to be reversed before 

printing in FM cases. 

Function: bothends 

Used where the search pattern has truncation at both ends-case FL-and the 

most expensive in terms of completion time. This algorithm discards the final 

wildcard and uses function elastic on the remaining search pattern now with 

format "% ...... ." looking for a match anywhere against each name. The search 

through the names has to be exhaustive, as the search pattern could appear 

embedded in any name or in itself be a complete name (the search for "%king%" 

must find "King"). The function elastic is based on the Boyer Moore Horspool 

algorithm [HOR80j. 

Function: midmid 

Finally, this algorithm handles search patterns like " ... % ... % .. ."-case MM. 

Although it was not particularly necessary to add this case of search, it was done 

to demonstrate how multiple cases of embedded wildcards would be handled. It 

is thus the most complex of the search algorithms in this section. The positions of 
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the two wildcards are passed to the function midmid so that the search can 

proceed as follows: 

exact match (front of search pattern, front of current name) 

if (front of search pattern found) 

fi 

exact match (back of search pattern, back of current name) 

if found 

elastic match (mid search pattern, mid current name) 

fi 

The complexities of copying sub-patterns of the search pattern, and the 

replacement of wild card characters, has not been discussed-see the full program 

in appendices AS and A6 for complete details. The string matching algorithms 

used are based on the algorithms described in section 4.2.3. The same reasons 

apply to the choice of search strategy used as in that section. 

4.5.3 Results 

The number of records held in the file is 5,504,000. Each string has a unique 

token randomly generated for it to simulate the allocation of actual tokens that 

would be generated under sequential allocation. These tokens could be returned 

to the user but we merely return a count of the number of occurrences of each 

matching pattern. The times and how they scale up when using a data filter are 

shown in Figure 4.6 below. 
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Seconds 

10000 

1000 
With ta filter 

100 (scan te 10 Mb/sec) 

10 

1 
~1--~10--~1~0~0--1~0~0-0~1-00~0~0--~ 

Records (millions)· avg 13 bytes/record 

Figure 4.6. Overall string matching results. 

Using some of the eight search cases described earlier, we ran searches using a 

Sun SP ARCstation 4 on the search patterns listed in Table 4.11. These findings 

are also shown graphically in Figure 4.7, together with the estimated timings 

possible when using a data filter such as CAFS. The data filter in the example 

uses a scan rate of 10 Mbytes/Second. The elapsed time of the scan (where a = 

average record length, n = number of records and 5 = scan rate) is: 

aXn 

s 

Further assume that the complexity of the search pattern does not exceed the 

parallel processing capability of the CAFS search engine, i.e., only one search of 

the data is required. This boosts scanning performance and reduces search times 

by 90%. The timings for the first five cases include the use of a cluster index on 

each letter of the alphabet. The timings for the last five cases reflect a linear 

search. 
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search average time matches 
Datiern In seconds found 

malleI' 34 3,927 
mall% 34 7,861 
%bert 33 19,566 

m% er 40 23,434 
br%e%on 53 3,910 

%zz% 348 3,909 
%zzz% 342 none 
%aa% 323 none 
% % 340 5,504,000 

0/0 % 344 5,504,000 

Table 4.11. Search patterns and timings. 
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Figure 4.7. Search times with and without a data filter. 
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4.6 Discussion 

Text handling has always been a weakness in database systems generally and 

relational systems in particular. The uncertainty about how to search· text 

represents a principal difference between database management systems and 

information retrieval systems-such as DIALOG. DIALOG is an example of a 

system that makes use of inverted lists and set collation to handle user queries. 

In this section we consider string handling in other functional languages and 

object-oriented languages. Comparisons between functional and relational 

languages are difficult to make and not necessarily fair. This is because relational 

languages (for example SQL) frequently employ complex and comprehensive 

indexing structures to provide rapid access, and typically use whole words as 

index terms. 

SQL has provided string manipulating functions (like =, > and <» for some time. 

However, the concept of large text attributes has only recently gained acceptance. 

In the SQL:1999 standard there is a new built-in type CLOB (Character Large 

OBject). The string predicate like can be used on instances of type CLOB. 

Moreover, the predicate substring can also be used in conjunction with 

concatenate, position and charlength to enable users to search lengthy texts 

[GRUOO). Also new to SQL:1999 is the predicate similar that can be used in 

CLOBs. This lets users construct UNIX-like regular expressions in searches, 

including an 'escape' character if needed e.g . 

... SIMILAR TO 'The 7\% Solution' ESCAPE '\' 

which would search for the film title "The 7% Solution". Although there are 

limitations on the use of this feature and, for historical reasons, the syntax of the 

regular expressions is not the same as the syntax of UNIX [MEL02). 
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4.6.1 Functional data languages 

String manipulation is an area where functional data languages have always been 

weak. Functional data languages is a term used to include research into three 

uses of the functional approach: 

• functional implementation languages 

• functional query languages 

• functional database programming languages. 

Functional implementation languages (FlLs) are usually parallel languages used 

to implement databases on a parallel machine. The main problem with them is to 

implement efficiently non-destructive updates. Notwithstanding that, the main 

projects-Hope+ on Flagship [ROB89] and Haskell on GRIP (Graph Reduction in 

Parallel) [AKE93]-make no specific provision for text-intensive search 

operations preferring to leave these as user-definable functions only. 

Functional query languages (FQLs) are used to extract information from a 

database but not to modify it. Most of them are included as part of a FDBPL, but 

not all. Some are free-standing-such as the specific language called FQL 

[BUN82]i some are based around a procedural language such as 02SQL used in 

02 [BAN88]. Apart from the AGNA system (discussed in more detail in chapter 

7) we cannot find examples of user functionality being passed down to the 

storage level. For the specific task of string matching, we are not aware of any 

other functional query language that supports the range of operations that we 

propose. 

Functional database programming languages (FDBPLs) are complete languages 

for declaring and manipulating data. As stated above, they often incorporate a 

functional query language. Whereas a functional query language is only 

concerned with querying a database, a functional database programming 

108 



Chapter 4 

language extends this by providing facilities for declaring objects (instances of 

classes etc.) as well as inserting and updating values. Because update is so 

difficult in a purely referentially transparent database, some language designers 

compromise the functional rules by allowing assignment to be used under certain 

circumstances. These are classed as impure functional database programming 

languages; examples of such are FAD [BOR90j and Galileo [ALB91j. Our system 

is based on a pure functional database programming language and thus 

maintains the spirit of the functional approach. However, none of these systems 

incorporate extensive string manipulating routines. 

The omission of powerful string manipulation reflects a fundamental difference 

in the two paradigms: functional languages are often perceived as an academic 

tool devised by mathematicians with a narrow following for use as in-house 

teaching aids involving recursion, formal methods and compiler writing. 

Relational systems, on the other hand, have moved in a more commercial 

direction since their initial, sound mathematical specification by Codd [COD70j. 

4.6.2 Object-oriented database systems 

The convergence and use of object-oriented (00) concepts and database systems 

has not been straightforward. There has never been an agreed 00 model 

underpinning the paradigm-as there is in the relational approach-and the 

many and diverse uses of 00 technology has led to just as many 00 database 

systems (OODBs). The claim-by Bancilhon [BAN88] among others-that 

"OODBs would become the major database technology of the 1990s" did not 

happen. In 1999 world-wide sales of OODB technology were less than $200 

million representing a tiny percentage of the $8 billion of DBMS software sold in 

the same year. Moreover, while the number of relational systems has doubled 

since 1995, OODB systems have remained static over the same period and are in 

fact now in decline [WILOO]. 
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However, although the focus of this thesis is not about the merits of OODBs, we 

have to consider how OODBs fare with regard to relational and functional 

systems. Because of the need to use methods and data encapsulation, retrieval of 

data can be a complex task in OODBs. In some systems-02 for example-the 

rules of encapsulation are violated to improve data retrieval. However we did 

not find any string matching or manipulation functions of note although of 

course, along with relational systems, OODBs often make extensive use of 

complex index structures. 

4.6.3 Convergence of the functional, object-oriented and relational 

approaches to database systems 

During this chapter we have made reference to the convergence of the functional 

and relational paradigms. The functional model was developed after the 

relational model and has not enjoyed the same commercial success. However, 

following the arrival of OODBs-each with its own interpretation of what the 00 

approach meant-the soundness of the functional model is seen by many as a 

better way forward and can be used to underpin the 00 paradigm giving it a 

stricter formalism. The evolution of SQL towards object SQL has shown this to 

be the case with the latest standard, SQL:1999, incorporating many features from 

the functional model in its attempt to synthesise the object and relational 

paradigms. 

In their paper on SQL:1999, Eisenberg and Melton [EIS99] are careful not to use 

the word 'object' too early in the paper due to the many connotations that the 

word conveys. However, many new features in the standard coincide with those 

from the functional paradigm, some of which have been discussed in this thesis 

as follows: 
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• Character Large OBject (CLOB) that directly relates to our text type. 

The SQL standard advocates using a surrogate in the record and 

holding the text separately, as indeed we do 

• Boolean type is extended to include unknown. This is already covered 

by values for unknown and undefined in the TriStarp system and is 

being extended to include maybe. Other types of unknown could easily 

be included 

• the row type of SQL which allows the storage of structured values in 

single columns-effectively violating first normal form-is easily 

accommodated by the functional data model where atomic values can 

be clustered into records for a particular entity 

• recursion is included in SQL to allow for things like bill-of-materials 

processing. This is taken directly from the functional paradigm where 

is has long been used to provide expressive power 

• the richness and structure of additional user-defined types are now 

possible in SQL. Again, these were a feature of many functional 

languages from the outset 

• methods in SQL have a loose analogy with our integrity constraints 

• both functional and dot notation is provided in SQL. For example, the 

expression: WHERE emp. salary> 10,000 has the functional equivalent 

of WHERE salary (emp) > 10,000 

• object identifiers (OID) are now part of the standard and bear a direct 

relation to the entity identifiers used in our model. 
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4.7 Summary 

The main thrust of this chapter has been twofold: 

• devolving string manipulating functionality in the current triple 

store architecture, and 

• taking strings out of the homogeneous triple store into new data 

structures. 

We now discuss the reasons for our choices in these areas. 

4.7.1 Devolving string matching functionality 

Because of the way functional languages are implemented, performance can be 

unacceptable for their use in practical applications-especially those that require 

high volumes of string manipulation with large data sets. We have shown that, 

by tackling string matching at a lower level in the query evaluation process, 

substantial performance gains are possible. Moreover, these gains come with 

greatly enhanced options for string matching-options that are similar to those 

found in traditional text retrieval systems. 

As these functions are non-updating, they adhere to the basic principles of the 

functional paradigm-referential transparency, freedom from side effect etc. 

Furthermore, they can be arbitrarily nested in expressions like any other object­

level function. (From an algebraic viewpoint they can be regarded as no different 

from the '+' or '-' operators etc.) Therefore our approach can be applied to any 

other comparable functional language. 

A particular problem with the triple store architecture is the decomposition of 

strings into sets of triples, each triple holding up to six characters only. This has 

implications at the interface level, as the continual opening and closing of sets 

and crossing the interface to retrieve string triples, delays string manipulating 
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operations. We have argued the merits of doing this before leading to the 

proposal to handle strings differently. 

4.7.2 Handling strings differently 

The rationale behind the choice of string duplication and the data structures 

suggested in this chapter is as follows. 

First, searches can now proceed from either end of the string, as the program 

chooses the appropriate tables to scan depending on where any '%' wild card 

characters are. The majority of search terms have either a known beginning or a 

known ending-this fact has been exploited. 

Second, the duplication of strings complements our proposal to use RAID 

technology to improve data security and accessibility. The trade off is the 

additional space required and the overhead for updates. The additional space 

needed is a corollary of using RAID technology anyway and, from our design 

specification in section 3.4.3, is not considered an inhibiting factor. This can be 

achieved in the following way. 

The two string tables are held in alphabetical order as described earlier. Any 

additions to the tables are made to the end of the file and held in a pool area for 

later update with the main tables. This is easily achieved using the standard 

UNIX sort command off line when, say, the entries in the pool reach a critical 

threshold. This means, of course, that real-time searches must also check the pool 

area. 

The aim of using the data structures and update strategy is that they are more 

amenable to parallel processing and the use of a data filter. This is usually 
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complemented by a coarse indexing structure. Data filters are best employed on 

sub-applications that have the following characteristics [TAG85j: 

1. any input mode can apply 

2. output mode is user driven rather than data driven 

3. volatility is low to medium 

4. data sharing is in terms of multiple queries of the same data rather 

than different views of the data, and 

5. data structures are relatively simple. 

We believe these criteria apply in our situation and justify our argument as 

follows. 

Data filters accelerate output rather than input so it is irrelevant whether input is 

batch or TP (1). High volatility can detract from the benefits of using a data filter 

and progressively upset the match between the logical and physical sequence of a 

file. Once a large database has been loaded, data in the system has low volatility, 

so the optimum solution is to maintain a master file-set supplemented by a 

temporary file-set for inclusion into the main files off-line. A comparable system 

would be that which was developed for the UK Inland Revenue ten years ago for 

tracing addresses. This has 48 million records each 150 bytes in length ('" 7.2 GB 

of space required.) The updates are around 5 percent per day of all records and 

are easily accomplished overnight (3). 

Individual users should be allowed to construct their own query expressions, 

saving these in their own workspace where necessary in the form of macros. This 

is not the same as creating different logical views, where sub-sets of the same 

data are accessed by different indexing methods (4). 

114 



Chapter 4 

Our string data structures are of simple complexity (5). We have shown that the 

addition of the field identifiers to texts needed to aid scanning, is already used in 

commercial implementations of computer systems that use data filters. The data 

structures for documents are also based on well-known standards for document 

structuring. 

The additional type text has been proposed so that some distinction can be made 

between 'short' strings used in attributes and 'long' strings used in documents. 

Functions can be declared, and integrity constraints designed, that take 

advantage of this difference-thus building extra robustness into the system. 
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Chapter 5 Extending interface functionality 

5.1 Introduction 

In chapter 3 we identified that improvements to interface functionality are 

needed that will permit more options for data storage and, at the same time, 

provide the user with more control over what can be done. In chapter 4 we 

introduced our object-level functions for string matching and showed how these 

are an improvement on the existing user-defined functions required in the 

current system. In this chapter we begin with an introduction to the three levels 

of functionality that are part of the current TriStarp system and then go into more 

detail on the enhancements provided [MAL98j. The three levels of functionality 

available are as follows. 

Language level-functions declared and defined by a user written in the code of 

the model level language-e.g. functional. We refer to functions and 

functionality at this level as user-defined. 

Operator level-built-in to the system, such as '+' and substr, for use in query 

expressions and user-defined functions and coded directly in 'C'. We refer to 

functions at this level as object-level or built-in functions. 

Storage level-offers direct access to the storage sub-system, such as 

string_ta_token and fetch_another. We refer to functions at this level as storage 

functions. 

The first area is covered only briefly, as it does not form part of the main focus of 

this thesis. The second area is introduced in this chapter but is covered in more 

depth in chapter 7. The third area is then discussed in greater detail during the 

rest of this chapter, which concludes with a discussion and summary. 
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5.2 Extending the language level functionality 

At the language level user-defined functions are declared and defined during a 

database session, plus the base-load functions that are loaded as part of the 

database environment when a new database is created. Examples of user-defined 

functions were given in chapter 4 and include functions like contains for 

searching for one string in another. The functions included in base-load are 

loaded via macro invocation. Base-load can include any user-defined function 

but is usually reserved for meta level functions-which include tuple and list 

constructors-as well as common logic and data manipulation functions. This 

last category includes functions for and, or, not, head, tail, count, map and flatmap. 

Printing and formatting functions are declared at this level as are schema 

functions for populating a database that can be loaded using macros at database 

creation. 

Adding to this level of functionality is primarily a matter for the DBA responsible 

for creating and maintaining each database and is not discussed to any great 

depth in this thesis. However, there is a grey area of functionality that lies 

between the language level and operator level. Display functions-although not 

part of our area of work-could be enhanced if, for example, functions were 

available to the user to display all attributes of an entity. Consider the following 

expression used to return a list of all attributes of certain employees: 

[{name x, ... , grade xlii x t- All_emp & height x > 2] (1) 

With these attributes clustered on entity identifiers, an alternative expression that 

takes advantage of this is 

[All_attribs x 11 x t- All_emp & height x > 2] (2) 

where AICattribs is a utility function which provides the same output in (2) as in 

(1). This is similar to the SQL select * operator and could be coded as a user-
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defined function at the language level (perhaps the best option) or included as an 

object-level function at the operator level (harder to do). If needed, screen 

formatting could also be included in the function definition. However, these are 

areas for further work. 

5.3 Extending the operator level functionality 

As well as string handling, there are other areas where functionality can be 

devolved from user-level to object-level that might include: 

• functions used for manipulating elements of tuples and lists such as max, 

min, and member, plus functions to extract elements of tuples or lists such 

as head and tail 

• logic functions such as and, or, not, and if 
• miscellaneous functions such as sum, count, average and id (the identity 

function) 

• print and formatting functions-discussed in the last section-such as 

AICattribs 

• inverse functions-discussed in chapter 7 

• meta functions used for querying the meta data such as Types and 

Functions, each of which begins with a capital letter (to distinguish them 

from other functions) and returns the names of the current types and 

functions in the database respectively. 

We have in fact added to this last category by including an object-level function 

Seconds that we used to time runs of other functions. This is easily achieved by 

including multiple queries on one command line separated by the ';' character for 

example 

Seconds; count [scp x 11 x f-- All_crm & em3 scp x "KNI%"]; Seconds; 
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would return the time in seconds before and after the result of the count 

expression had been evaluated so that the time it took can be deduced, thus 

937297794 
1120 
937297820 (= 26 seconds) 

Further functions have not been coded, as the concept is one that clearly works 

and can be applied at whatever level the individual DBA decides is needed for 

each application. There is obviously more scope for inclusion of additional 

functionality along these lines although this is not investigated further here. The 

passing down of predicates, inverse functions and text functions is discussed in 

more detail in chapter 7, where optimisations are considered as well. 

5.4 Extending the storage level functionality 

The remainder of the chapter concentrates on the third level-the storage level­

and what needs to be done to harmonise this with any new architecture 

proposals. During the remainder of this chapter the terms 'interface function', 

'interface' and 'storage function' are used synonymously. In the following 

discussion the words 'function' and 'relation' are also synonymous: function 

tends to be used when describing declarations and definitions, and relation is 

used when discussing the function graph model and how entities and attributes 

are connected. The words entity and non-lexical are also synonymous. 

5.4.1 Introduction 

The storage level functions available to the language developers need to be 

enhanced to take account of the diversity of information to be stored. This will 

allow data storage to reflect data usage in a way that is not possible with the 

homogeneous triple store for all data. The original interface functions were 

grouped into three categories: update operators; retrieval operators and file 

utility operators. 
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The enhancements to these operators are now discussed. They aim to synthesise 

the original ideas from FDL [POU92) with the concepts of Hydra [KIN96b), 

improving upon the current interface functions provided by the BTM [DER89). 

In this chapter 'storage' refers to on-line storage for the additions, etc, made 

during a database session. This should not be confused with the storage of data 

in ordered, records etc, that is done as part of the database consolidation. 

5.4.2 Update operators 

The current implementation provides only for insertion or deletion of a single 

triple, or deletion of a range of triples. However, a distinction can be drawn 

between operations on schema data (or meta data), and operations on instance 

data. The proposal for the handling of these two data types follows. 

5.4.3 Schema data 

Schema declarations will all fit into main memory for the duration of a session. 

When a new declaration is made and parsed as syntactically correct, it is copied 

into main memory and made persistent at the same time. It should be noted that 

in all the following examples the type name or function name is shown in full. 

The following describes how type synonyms, non-lexical types and function 

declarations are passed to the storage sub-system. 

TYPE DECLARATIONS 

The declaration of a type or type synonym by the language level user will result 

in the interface function inserCtypcdec(dec) being used to record the declaration. 

Where dec is a pointer to the declaration; its storage is handled according to what 

kind of type synonym it is. For lexical-type synonyms such as: salary == real, the 

insertion of a single record such as 

<'typeJlame" , 0001, 0100, timestamp> 
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is done. Where "type_name" is the name of the new type to be used (in this case 

salary); 0001 is a four-bit identifier for the record shown in Table 5.1 below: 

label name description 
0001 type type identifier 
1001 prifunl primary function identifier 
1010 prifun2 multi-valued primary function identifier 
1011 secfun secondary function identifier 
1100 confun constructor function identifier 
1101 icfun inteority constraint identifier 
1110 deprec dependency record identifier 

Table 5.1. Record identifiers. 

and 0100 is the identifier for type real shown in Table 5.2 below 

label identifier label identifier label Identifier 
0001 string 0101 list 1001 function 
0010 integer 0110 non-lex 1010 tex1 
0011 boolean 0111 product 1011 expression 
0100 real 1000 sum 1100 BLOB' 

Table 5.2. Type identifiers. 

Timestamp refers to the time the type was created. This can be held as a 32-bit 

number representing the seconds that have elapsed from a given start year (e.g., 

1900) and is used for temporal integrity. A 32-bit number could easily hold the 

range of seconds that could be required, e.g., 60 (in a minute) X 60 (minutes in 

hour) X 24 (hours in day) X 365 (days in year) X 100 (years) = 3,153,600,000 

seconds in a lOO-year period. A 32-bit word size would allow for 4,294,967,296 

seconds-sufficient for the above system. 

For list-type synonyms like: cars == (list car), the following is inserted 

<"cars" I 0001, 0101, "car", timestamp> 

t BLOB = Binary Large Object-discussed in chapter 7. 
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where the third field is the identifier for list and the type of the list-in this case 

car which has already been identified as an entity in its own right-is held in the 

fourth field. 

Product-type synonyms such as: date == (integer •• integer •• integer) are held in 

one record as 

Function-type synonyms such as: age == (integer integer integer -> integer)­

which could be used to calculate a person's age when given the year, month and 

day of birth-are held as 

Extensible sum type declarations such as: married_status::sum are held as 

<"married_status", 0001, 1000, timestamp> 

where-for example-type married_status is the sum of three constructors 

(MARRIED_TO, SINGLE and OTHER) and the components of the sum type are 

tagged by constructors-functions without reduction rules. These return objects 

of type married_status when applied to arguments of the declared type. The 

constructor functions that make up the sum type would have to be stored as they 

are created or deleted. It would not be easy simply to append them to the 

declaration above. So a declaration such as 

MARRIED_TO: person -7 married_status, 
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to add a person to sum type married_status, would result in the following 

addition 

via interface function: insert_confun_dec(dec). Where MARRIED_TO is a 

constructor function with one argument which returns an object of type 

married_status. Constructor functions are always declared in upper case by 

convention. 

If a facility were added to the language level so that sum types could be declared 

in full as one instruction, then the following kind of instruction could be held in 

one record as follows (where ++ means OR). 

SINGLE:-7 married_status ++ MARRIED_TO: person -7 married_status 

++ OTHER: string -7 married_status 

However, as sum types are extensible, there must be provision for addition and 

deletion of sum types during the current session. For this reason, it is probably 

better to declare the constructor functions that make up a sum type as separate 

instructions and store them as separate records. 

DECLARATION OF NON-LEXICAL ENTITIES 

A new non-lexical declaration, such as: employee::nonlex, results in the following 

record being entered 

< "employee n 
, 0001, 0110, $e, timestamp> 

by using the interface function: insert_nonlex_dec(dec). $e is the reserved integer 

used as surrogate for non-lexical type employee in the 'is-a' triples that record 

instances of employees. 
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FUNCTION DECLARATIONS 

From the experience gained with Hydra, it is desirable that functions be sub­

divided into primary functions and secondary functions to reflect their many 

differences. The main differences between these are set out in Table 5.3 below 

prlmarv functions secondary functions 
many definitions few definitions 
stores data only used for manipulatina data 
only atomic yalues held embedded structured allowed 
only one parameter allowed any number of parameters allowed 
do not use recursion can use recursion 
able to be modified only add new functions 
dynamic static 
held in store held in memory 
must conform to function not part of function graph model 
araph model 
could be loaded from loaded from batch file 
several files via clustering 
uses best-fit pattern- uses top to bottom pattern 
matchina matchina 

Table 5.3. Contrast between primary and secondary functions. 

PRIMARY FUNCTION DECLARATIONS 

As far as function declarations are concerned, there is no difference between the 

two kinds of functions as they are both persistent. Function definitions can, 

however, be handled differently and are discussed in the next sub-section. 

Storage of primary function declarations is quite straightforward. A function 

such as: age: person -7 integer, is stored as the record 

< "age ll
, 1001, II person", 0110, "integer ll

, 0010, timestamp> 

via interface function: insert-Pfun_dec(dec), where the second, fourth and sixth 

fields are type identifiers for the first, third and fifth fields respectively. This aids 

type checking in evaluation. Multi-valued declarations must also be catered for. 

A function declaration like: drives: person -7 list (car)-where person and car 

are entity types-is stored with the record 
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< "drives", 1010, "person", 0110, "car ll
, 0110, timestamp> 

where the second field denotes a primary function whose result is multi-valued. 

SECONDARY FUNCTION DECLARATIONS 

Storage of secondary function declarations can be more complex because there 

can be more than one argument to the function and it can return a tuple as its 

result. Some must also be heteromorphic in that they can be used to coerce 

variables to conform to parameters-in or out-that can be used with several 

types of argument. As an example the declaration of function map is as follows 

map: (alpha1 7 alpha2) list(alpha1) -7 list(alpha2) 

Function map is the application of a function fun to each element of a list 

producing a new list in which each element has been transformed e.g., 

map fun [a, b, c] 7 [fn a, fn b, fn cl. 

The alphal and alpha2 above are type variables, e.g., map add2 [1,2,3, 4] would 

use the (already declared) function add2 to add the integer 2 to each of the 

numbers in the list giving [3,4,5,6] as the result. We believe the best way to 

store this is as it is actually set out, thus 

< "map" , 1011, "(alpha1 -> alpha2)", 1001, "list (alpha1) " ,0101, 

"list (alpha2) " , 0101 > 

with interface function: inserCsfun_dec(dec). 1011 in the second field identifies a 

secondary function. 1001 in the fourth field is the function identifier for the third 

field and 0101 in fields six and eight indicates list type for fields five and seven. 

Below are examples of how schema-level queries are handled where '?' means 

'match all' and 'X' means 'don't care'. 
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Types; /* searches for <"? n · , 0001, ... > */ 

Typdec "t_name'l; /* searches for < 11 t_name n , 0001, ... > */ 

Functions; /* searches for <"?II · , 10XX, .•• > */ 

Fundec "f_name" ; /* searches for <nf_name" , •.• > */ 

Confuns; /* searches for <"?" · , 1100, ••• > */ 

Confundec "e_name ll /* searches for < I' c~name 11 I 0100, ••• > */ 

les; /* searches for <"?" , 1000, .•• > */ 

To help with associational queries, a schema table is maintained which is 

inspected when using primitives such as like. The schema table holds the 

following information: Function name, Domain type, Range type, Multivalued? 

Number of Intensional definitions. This is shown below. 

function name domain range multivalued? Intenslonal 
definitions 

age person integer no 1 
has child person person yes 0 
wife name person person no 0 
drives person car yes 0 

Table 5.4. Schema table. 

The count of intensional definitions provides a potentially fast way of handling 

inverse graph traversal. This can be used when a function such as Alet is 

executed over type t returning its extent. Included in the domain there may be 

some instances of intensional definitions as well as the (many) extensional 

definitions. This is discussed further in section 5.4.6. Examples of intensional 

definitions include: 

age Fred f- age Mary; and 

age x f- 0; 

Schema declarations are clustered around their first field and, within that, on 

their second field. delete and modifY are handled via similar interface functions. 

However, the need to maintain referential transparency means amendments 

must be handled by a process of deletion and re-insertion. If a function requires 
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modification, the current version must be retrieved and deleted as above, before 

the amended information is inserted as new triples. 

5.4.4 Instance data 

Before describing how the storage of on-line instance data is accomplished, it is 

important to emphasise the strategy regarding data storage. Under the current 

system persistence for both instance data and meta data is provided by an 

indexed storage structure based on the grid file. Meta data can be stored 

separately from instance data as it does not have to conform to the function 

graph model, nor is it needed for exhaustive searches for operations like graph 

traversal. However, this still leaves the bulk of the data to be stored as instance 

data, and this has to be stored so that the delay in responding to queries is 

minimised at the expense of providing dynamic, on-line update facilities. 

The storage of function definitions depends on whether the function is primary 

or secondary. Primary functions can be further sub-divided into extensional and 

intensional varieties. Extensional primary functions are the more easily handled 

of the two because each definition has three components: <domain_name, 

function_name, range_name> or, to use an analogy from English, <subject, verb, 

object> as in: "Fred, reads, The Times". (Verb in this context is also used to 

include other 'joining' words like prepositions.) The update operators for: 

extensional primary functions, intensional primary functions, and secondary 

functions are now discussed. 

5.4.5 Extensional primary functions 

The creation of an instance of a non-lexical entity with the language level create 

command is handled as follows. Consider where a new instance of entity 

employee is needed. The command is: create employee $x, for example-where $x 

stands for a global variable that is allocated the next unique identifier available 
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from the reserved area for non-lexical entities. This would result in the following 

'is-a' triple being created via the interface function: inserCnon-lex_dej(employee). 

«"is-an, "employee", $384, timestamp» 

where 'is-a' is a reserved integer to identify 'is-a' triples, 'employee' represents the 

unique identifier for non-lexical type employee and $384 is the 32-bit integer used 

the represent the instance of this particular employee. 

The storage of the attributes is effected by using the interface function: 

insert-pfun_extdej(defJ (primary function extensional definition) where the triple 

might contain information such as 

«age, $384, 0110, 30, 0010, timestamp» 

where the third and fifth fields represent the types of the second and fourth fields 

respectively. 

Deletion of a triple-whether for subsequent replacement by a modified triple, or 

simply to remove it altogether-will result in the original triple being re-inserted 

into the store and marked as deleted with a time stamp. The storage of multi­

valued attributes, as in the expression: drives $x <= ["mini", "metro", "fiesta", 

"ka"l, is effected using a record 

< drives, $x, LIST, 0110,0101,4, "mini 11 I "metro" , "fiesta H 
, "ka 11 I timestamp > 

where the third and sixth fields are used to ascertain the type and length of the 

subject component of the triple. If they did not already exist, tokens for the 

various cars are added to the string data structures as outlined in chapter 4. 
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The include command-for expressions like: drives $x <= include "cortina"­

means the addition of a new element at the end of the record and the sixth field 

being incremented. The interface function for this is: include-pfun_listdej( <subject, 

f_name,object(s»). 

This results in the current record being retrieved and marked as deleted and a 

new record being added. The exclude command is handled in much the same 

way with the consequences for retrieval being considered in the section on 

retrieval operators. 

5.4.6 Intensional primary functions 

These are equations that involve an expression or variable (as opposed to an 

atomic value) on either side of their definitions. For example cases (2) and (3) 

below which show lexical intensional primary functions 

age Bill <= 47; /* extensional function */ (1) 

age Fred <= age Mary; /* intensional function */ (2) 

age (x:person) <= 30; /* intensional function */ (3) 

There are unlikely to be many intensional primary function definitions but these 

forms of expressions must be catered for as they are part of the function graph 

model. However, there can also be intensional primary functions between 

entities that have the characteristics of the above three examples. For instance, 

assume the existence of entities car and person and a multi-valued function drives 

from person -7 car. Further assume the existence of person entities $pl.. .$p3 and 

car entities $cl.. .$c4. Then the following function permutations are also possible 
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drives $p1 <= $c3; f* extensional function *f (4) 

drives $p2 <= drives $p1; f* same form as (2 ) above *f (5) 

drives x <= $c4; f* same form as (3 ) above *f (6) 

drives $p3 <= set [$c1, $c21; f* multi-valued (5) *f (7) 

drives x <= set [$c1, $c3, $c41 ; f * multi-valued (6) * f (8) 

Bearing this in mind, the interface function to store an intensional primary 

function definition would take the form: insert-pfun_intdefldefJ where de! would 

constitute a record with such a format as 

<age, "Fred", 0110, EXP, 1011, 2, "age" I "Mary", timestamp> (2) 

where the fourth field indicates that an expression is the result of the function. 

The third and fifth fields are type identifiers for "Fred" and EXP, and the sixth 

field represents the number of space-delimited tokens that make up the function 

definition. All fields are fixed length. Where the function definition has an 

expression in the subject field the record format is 

«age, EXP, 0110, 30, 0010, 1, " (x:person)", timestamp» (3) 

with a reserved value now stored as the second-last field that represents the 

default for this non-lexical entity class. Fields three and five are the type 

identifiers for non-lex and integer respectively and the 1 in the sixth field is the 

number of space-delimited tokens that make up the expression. 

5.4.7 Secondary functions 

These are not part of the function graph model so do not need to be traversed in 

the same way that instance data does. The current method of storing these is to 

use as many triples as required held as a set in memory. This means that a 

function definition like map-discussed in section 5.4.3 on schema data 

(secondary function dec1arations)-with format map f [xly) <= [(f x) I map 
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(f) y] is broken down into a match tree and held in memory. A detailed 

breakdown of how this is accomplished is beyond the scope of this thesis: good 

examples can be found in [POU89]. 

5.4.8 Retrieval operators 

Recall from chapter 2 that the current system includes the following retrieval 

operators-where" indicates a pointer (call by reference) parameter: 

open_set(triple,"seCid)-used to identify a set of triples which match 
the template triple 

!etch_another(seCid,"triple)-used to return a member of the set 
identified by seUd 

close_set(seCid)-used to close a particular set, and 

present(triplel,"triple2)-used to determine whether there is at least 
one triple matching the template triplel. If there is, it is returned 
via "triple2. 

The enhancement of these functions is also important so that language 

developers understand what is available for them to use in their algorithms. 

There will still be several sets of records or triples open at anyone time, so the 

interface functions open_set and closcset are still required. However, with a new 

storage architecture there must be a wider choice of retrieval functions to choose 

from when satisfying a query. The concept of a triple still applies, but now they 

are grouped together rather than stored separately. 

As far as the language developers are concerned, they will now have a choice of 

what to retrieve and the granularity of record retrieval will depend on how the 

query expression is to be evaluated. Our hierarchy of retrieval functions is set 

out below where 1\ before a parameter indicates call-by-reference: 

: l! 
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geCtriple(triplel,lItriple2)-at the lowest level the user can request a 
single triple with this function. Triplel represents a template for 
one of the seven simple associative forms (discussed in chapter 2) 
allowable for triple look-up. If found, a triple is returned via triple2 

geCattributes(entity,1I1ex_atts)-where, entity is a surrogate for a non­
lexical entity and 1I1ex_atts is a pointer to a record that contains all 
of the lexical attributes of entity as a list of relation-object pairs 

geCEtriples(entity,lInon_lex_atts)-where, entity is a surrogate for a 
non-lexical entity and IInon_lex_atts is a pointer to all the non­
lexical attributes of entity as a list of relation-object pairs 

geCall-from(entity,lIaICatts)-can be used to retrieve all facts about 
an entity as a list of relation-object pairs. This combines the 
previous two functions get_Etriples v get_attributes. 

Entity-to-entity triples are used in associational features, whereas the entity-to­

attribute connections are considered as 'dead ends' when performing 

associational queries. A connection between a person aged 30 and another living 

in house number 30 is usually meaningless. 

ASSOCIA TIONAL FEATURES 

Quite complex associational retrieval functions can be expressed in Hydra-see 

[A YR95j for a full explanation. However the basic primitives provided for the 

user are as follows: 

from x-returns a list of all the primary functions whose domain is the 
same as the type of the atomic value x 

to x-returns a list of inverse primary functions with the same domain 
as the type of the atomic value x 

link n x y-returns a list of primary functions which connect the two 
atomic values x and y in the database, with path lengths no longer 
thann 

trail n x y-the same as link but now returns a list of lists which set out 
the entities in the chain as well as the functions 
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like x-retrieves all stored entities or values with the same type as the 
atomic value x. 

The meta primitives from and to use the schema table to ascertain which entities 

to check-using x as the range or domain name-and retrieval of functions can 

then proceed. The interface functions to accomplish this are 

geCall-funsJrom( entity, "funs) 

get_all-funs_to(entity,"funs) 

where "funs is a list of all functions with the given entity entity as their range. 

Link is subsumed by trail and so an interface function for trail is required only. A 

suitable function is 

get.paths( n, el, e2, "path) 

where the first three parameters correspond to n x y above, and "path is a list of 

lists of relation-object pairs in the path. The use of like seems to have limited 

value as it merely returns a list of objects that share the same type signature as 

the parameter it receives. 

5.4.9 File utility operators 

The standard file utility operators are reqUired: ts_create-to create a new store 

for a new database; ts_open-to open a store for use by the database and; 

ts_close-to close a database. These three functions need augmenting to reflect 

the new storage sub-system. So a set of functions is needed to permit the DBA to 

re-organise the database. These could include sorting, merging and updating 

indexes etc. 

5.5 Discussion 

Triple stores have been used in one form or another for several years now. The 

most recent invocation being the 'quadruple' triple store underpinning the 
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Sentences system [WILOOj. However, less work has been done in the area of 

interfaces to triple stores. The concept of a semantic-free triple store with limited 

interface functionality has obvious advantages but the argument for their use is 

not always clear cut. 

The analysis of Martin [MAR84j and earlier authors, who compared semantic­

free and semantic-embedding interfaces, concluded that if semantics were to be 

added then the triple store would, by necessity, have to be linked to the data 

model used. This would violate the main advantage that allows different models 

to use the same triple store architecture. 

Our argument in this chapter (and the next) is that using a triple store for some 

data and a record structure for other data is perfectly pOSSible and would not 

impose restricting conditions upon the model level language developers. At the 

model level all data is still seen as triples in the logical sense. However, at the 

storage level, data is physically regarded as records, triples or link files etc. The 

way data is retrieved is merely a matter for the storage manager to organise and 

is hidden from the language developer (cf. internal string triple functions 

described in chapter 2). It is not necessary to know if data is stored as a triple, 

record or in any other structure. 

Furthermore, the decomposition of strings to internal triples is not one that has 

been followed by any other research projects that we know of. The Sentences 

system, mentioned above for example, uses a dual architecture comprising 

lookup tables for lexemes together with fixed-length tokens for triples. 

Moreover, the functionality of the triple store software already uses internal 

functions for data placement, string breakdown, etc. that do not compromise its 

semantic freedom. This is because they are not part of the set of visible interface 

functions available for the model level language developer. What we propose is 
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an extension of these that can provide for additional functionality and 

optimisations at the higher level. With judicious use of semantics, a robust 

interface can be maintained between the language level and the storage level. 

5.6 Summary 

The three areas of functionality discussed can be extended in different ways. 

Extending the language level functionality is mainly a matter for the individual 

model level language developer and, for this reason, was not commented upon in 

any great depth. We did suggest, however, that there is room for enhancement at 

this level in certain areas-for instance utility functions such as display could be 

included. 

We then discussed different ways (other than string manipulation) that the 

operator level functionality could be extended. Such ways included logic and 

numerical manipulators and meta functions. Finally, the main focus of this 

chapter concerned extending the storage level functionality to complement a new 

storage architecture which is discussed in the next chapter. These extensions do 

not compromise the semantic freedom of the interface but enhance it. Omitted 

from this chapter is the discussion on optimisations that are possible in passing 

down predicates to the storage level. This is discussed in chapter 7. 
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Chapter 6 An architecture to support parallel processing 

6.1 Introduction 

In this chapter we aim to show that, by combining mature technology with new 

concepts, a robust architecture can be developed that is more suited to advanced 

applications in our chosen domain. Achieving an architecture that permits 

parallel processing, is one of our overall aims in this thesis, so we discuss the 

NCR/Teradata DBC/1012 and the NCR/Teradata 3700 which have proven track 

records in management information systems, to see how their architecture would 

suit our purposes. 

In section 6.3 we then detail our novel RAID technology that is a combination of 

mirroring and parity and show how data placement complements this approach. 

In section 6.4 we show that combining attribute records and entity triples is 

possible in a way that synthesises the best of the relational model with the best of 

the functional data model. Section 6.5 sets out our architecture giving an 

example of a graph traversal operation. After search strategies are discussed, we 

give the motivation for our choices and finish with a summary. 

6.2 Using a proven parallel processing architecture design 

The discussion in chapter 3 on parallel processing identified that, while there is 

room for algorithmic decomposition, the current architecture is not well suited to 

parallel implementation. In this section we consider how data can be better 

organised so that partitioning across independent processors can be employed. 

We want to spread (decluster) data across a number of disks so that a request for 

triples or records can be multiplexed simultaneously to the disks without concern 

for where the data might lie. The reasons we would want to do this are that the 

simplicity of the interface can be maintained and data transfer between 

processors and inter-process communication can be kept to a minimum. 
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If each processor has its own allocation of triples and records on its own disk, 

problems over data integrity and data sharing are minimised. This scheme is 

usually referred to as a loosely coupled parallel architecture and a good example 

of such an architecture is the NCR/Teradata DBC/1012 [PAG92]. Commonly 

referred to as the 'Teradata database machine' or simply 'DBC/l012', this has a 

proven track record in operational systems and led to the development of the 

NCR 3700 database machine (discussed in section 6.2.2.). A brief summary of the 

DBC/1012 and 3700 now follows before we show how it can be applied to our 

situation. Readers familiar with this may wish to proceed to a later section of the 

thesis. 

6.2.1 The NCRlTeradata DBC/1012 database machine 

The DBC/1012 is a dedicated relational database machine using a multiprocessor 

MIMD (Multiple Instruction Multiple Data-stream) parallel architecture. It uses 

standard microprocessor technology in a system that is not constrained by any 

particular architecture or hardware limitations. The DBC/1012 requires at least 

one 'host' system to connect to, and the job of the DBC/1012 is to 'off-load' from 

the host all work associated with relational database management and access. 

Figure 6.1 shows the basic components of the DBC/1012 architecture and these 

are now explained. 

Access Module Processor lAMP) 

The AMP is the database engine and manages the rows of data held in its 

associated disk storage units (DSU). The AMP handles all aspects of access, 

searching and updates of the database. 

Interface Processor IIFP) 

The IFP manages the flow of requests and results between the DBC/1012 and its 

host. The IFP accepts SQL requests from the host, chooses the appropriate 
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sequence of actions, passes the actions to the AMPs to process, and finally returns 

the results to the host. 

Communications Processor (COP) 

The COP has a similar function to an IFP but, instead, interfaces with a LAN 

(local area network) to PCs, etc. 

MAINFRAMES 

YMS UNIX PC-DOS 

MVS TPF VM 

r----- -----, 

I PSC/l012 
I i.F.P. C.O.P. I 
I I 
I I 
I Y~Net I 
I I 
I I 
I I 
I A.M.P. I 
I I 
I I 
I I I D.S.U. I 
I . I . I L ___________________________ ~ 

Figure 6.1. The Teradata DBC/1012 architecture. 

In order that each query can be directed to each AMP, the DBC/1012 distributes 

tables across AMPs via a hashing algorithm. This means each AMP receives an 

equal number of the rows. The power of the DBC/1012 is thus directly 

proportional to the number of AMPs it incorporates. The hashing algorithm 

works on the primary index value for each row in each table and guarantees that, 

for example, if there are 10 AMPs, each will hold 10% of each and every table. If 

movement of data is reqUired for joins, etc, this is handled by the Y-Net. For 
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simple record retrieval the IFP passes the SQL request through the distribution 

algorithm that, in turn, directs the search to a single AMP. 

In terms of locking, the DBC/1012 uses standard rules to permit locking at 

database, table and row level. As each AMP is considered as an independent 

computer system, multiprogramming of tasks can be easily accommodated. For 

data security the DBC/1012 saved records twice using two hashing algorithms to 

allocate rows to AMPS but recently incorporated a RAID system as standard. 

(We discuss our RAID architecture in section 6.3.) The DBC/1012 includes 

interface software for a variety of host systems-see [P AG92] for details. SQL 

statements may be embedded in COBOL programs where they are picked up by 

a pre-processor supplied by Teradata. 

Software comes in two forms-DBC/1012 software and host resident software. 

The first is supplied by Teradata and resides in the DBC/1012: either Teradata or 

other vendors supply the second. (See [MAL88] for further details of this.) In 

addition to the standard database software, the AMPs hold software for disk and 

Y-Net interfaces and facilities for rollback and recovery, reorganisation and 

logging. Each AMP has either one or two DSUs attached to it. Principal 

operational use of the DBC/1012 has been for interactive management 

information systems covering financial services and insurance, manufacturing, 

federal government, telephony and retail consumer goods. 

At a lower level, each AMP has a database manager (DBM) that holds two 

indexes for the respective DSU(s) attached to it. The master index contains a used 

cylinder descriptor list that specifies the cylinder number, table identifier and 

row identifier for the first row stored in that cylinder. The index is stored in table 

identifier order and, within that, row identifier order so that a binary search can 

locate the cylinder where a specific row is stored. Each cylinder has a cylinder 
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index containing data block descriptor lists. Each of these stores table identifiers 

of the rows stored in a block, the row identifier of the first row in the block and 

the disk address of the block. They are stored in table and then row identifier so 

that a binary search can be used. Once the desired block is found, a sequential 

search through it will identify the row required (for single row entries). 

6.2.2 The NCR 3700 database machine 

Following the success of the DBC/1012 range of database computers, Teradata 

developed the NCR 3700 database machine [WIT93j. The NCR 3700 is scaled up 

in many ways. Processor Module Assemblies (PMA) replace AMPs and logically 

comprise six boards. The disk arrays use a modified RAID system and are 

attached to the PMAs by SCSI-2 interface. The disk array matrix is six by five 

disks at 1.6 GB/disk = 48 GByte of storage. Clustering of PMAs and DSU means 

terabyte databases are easily achievable. Protocols are extended to include 

Ethernet, FDDI, token ring, XNS and X2S. The BYnet interconnection bus 

replaces the Y-net to accommodate the increases in needs. The indexing methods 

are a little more complex in the NCR 3700 but are essentially the same as used in 

the DBC/1012. There are improved joining techniques employed following the 

experience gained with the DBC/1012. 

6.2.3 Adopting this architecture to suit our needs 

Despite the many benefits of the DBC/I012 and NCR 3700, there are some issues 

that need to be discussed in our situation: 

1. these systems only provide an interface for the relational language 

SQL 

2. because of 1, there are limited text-handling facilities 

3. for complex expressions with a low hit rate, performance would be 

poor 
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4. neither the DBC/1012 nor the NCR 3700 has to our knowledge been 

used in the domain of investigative systems 

5. there would be difficulties in hashing records that do not have an 

identifiable primary key-this situation is possible with the functional 

data model that permits undefined or unknown information 

6. entity triples do not, as such, have a 'record' identifier nor do they have 

a meaningful surrogate. Meaningful surrogates were evaluated in the 

experimental language Hydra [A YR95] but have since been deemed 

unsatisfactory when considering object migration 

7. inverse functions are an intrinsic aspect of functional languages that 

may necessitate the storage of inverse triples in a functional database. 

Although not a feature of the relational model, this is a highly 

significant area of the functional data model. 

For us to use the concepts from the DBC/1012 architecture, we need to consider 

each of these points in turn. 

The interface required 

Our language has its own interface for creating well-formed expressions to query 

the database based around the use of global variables, list comprehensions, let ... 

in expressions etc. There are two alternatives in overcoming the differences 

between relational and functional systems: 

• provide a mapping from functional syntax to SQL syntax. For certain 

list comprehension, this can be done easily using Object SQL for 

example. However, functional syntax is· more general (and more 

expressive) than SQL as it is based on functional programming. This 

means mappings are not necessarily so easy to achieve 

• create a task manager to allocate tasks to disks directly by a series of 

transformations that map a user query to low-level parallel code. 
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Although the first option sounds easier, one of the difficulties with mapping SQL 

is that, because functional languages are computationally complete-they can 

handle recursion for example-the specification of queries is less rigid than in 

SQL and does not always map easily. In SQL query expressions use a small set of 

constructs: 

SELECT attributes 
FROM relations 
WHERE conditions 
AND ... etc. 

Variations on this include using the aggregate functions such as count, average, 

group by, but these are merely 'wrapping' around the basic constructs above. In 

SQL allocating tasks to processors is more easily achieved. Although the second 

option involves a lengthier transformation process, it is possible to do this 

without losing any expressive power. These transformations are discussed in the 

next chapter. 

Text handling 

The nature of our domain application area means there is likely to be a great deal 

of text searching to be done. Significant delays in this area cannot be tolerated as 

a side effect of inter-process communication. Relational languages have 

traditionally been weak in providing powerful text handling facilities.· To 

counter this, we include a software facility for searching text at the processor 

level together with enhanced functionality. 

Complex expressions and low hit rates 

These are other areas where a search engine can be used to assist result 

compilation. 
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Hashing where there is no unique primary key to use 

The functional data model used by TriStarp allows for the creation of entities that 

share the same attribute. This is permitted in situations where there is little 

information available for a new record. Consider the situation where the 

following details were entered-assume entity person and function name have 

already been created. 

Create person $pl; 
Name $pl <= ,. fred" ; 
Create person $p2; 
Name $p2 <= nfred"; 

$p1 and $p2 are global variables and are for user convenience only: in reality they 

refer to 32-bit sequentially allocated, unique object identifiers for instances of 

entity person. A request for information about people with name "fred" in a list 

comprehension might be handled as 

[name x 11 x +- All-J;lerson & = name x "fred"j 

This would produce a list like [$0, $1]. This is because temporary global variables 

(starting at zero) are allocated for displaying entities. Other than the entity 

identifier used for person there is no primary key in this example. This is in 

contrast to SQL where the primary key attribute would most likely be a 'not null' 

field-it would always require an entry. 

The standard solution to this problem is to use the object identifier for hashing 

the record-although with object migration this identifier might be changed at 

some later point. However, because of referential transparency, the complete 

record would require marking as deleted and a new record inserted. Therefore, 

allowing object migration and identifier changing should not cause difficulties. 

Deleting an object from one disk, and placing an amended and hashed version of 

it on another disk, is acceptable. 
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What to do with inverse functions 

Inverse functions are an integral part of the functional data model marking it 

apart from the simpler binary relational model. They form an important part of 

query expressions and are frequently used for complex graph traversal 

operations. At the moment, they are constructed from the triple store as inverse 

functions but we believe that, with duplication, they can have a dual role adding 

redundancy to the architecture to improve security. This is discussed next. 

6.3 A new RAID level 

The new storage architecture is designed to exploit parallel processing techniques 

to boost performance, as well as incorporating RAID technology. RAID 

controller hardware provides data redundancy to improve reliability, either with 

a second, mirrored copy of the disk array-as in RAID 1 and RAID lO-or by 

incorporating parity information and one extra disk-as in RAID 3 and RAID 5. 

In addition, RAID improves performance by reducing disk bottlenecks and by 

increasing disk transfer rates. However, in ICUs RAID 100 mirrored system 

[HIL95], the redundant data is striped differently across the mirrored array. The 

data disk is written from the outermost track working inwards: on the mirror it is 

written from the innermost track working outwards. This reduces latency as 

data can now be read from either disk. We take this concept further by saving 

the entity triples in inverse function order on the mirror copy. 

data disk mirror disk 

Figure 6.2. RAID 100 disk layout. 
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6.3.1 Our RAID approach 

Our architecture will synthesise the two RAID formats to provide for even 

greater data security by combining the data availability of RAID 1 with the 

insurance of the extra disk and parity of RAID 5 as shown in Figure 6.3. RAID 5 

is chosen over RAID 3 because the stripe sizes used in RAID 3 are too small. To 

distinguish our inverse RAID system we shall refer to it as RAID 15 (RAID 1 + 

RAIDS). 

data disks 

ggg 
disk 1 disk 2 disk 3 disk 4 disk 5 

gggg 
mirror disks 

Figure 6.3. RAID 15 configuration. 

The concept of combining parity and mirrored RAID systems is not new. Several 

authors have devised schemes that exploit the benefits of both forms of 

redundancy and applied these, for example, to video servers-separating the 

videos into 'hot' and 'cold' categories reflecting their usage [BIE97]. (We note 

that, although all video data uses the parity scheme, only 'hot' data is mirrored.) 

However, in our scheme the redundant array really is a mirror of the data array. 

The performance vs. cost argument is frequently raised when considering RAID 

architectures. Both RAID schemes have been the subject of previous analysis, but 

it has often proved difficult to compare and contrast costs etc. between the two 

schemes. This has in fact recently been done [QUA99] and the conclusion is that 

neither of the two schemes can be considered as optimal in so far as performance 
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and cost is concerned; the choice is very much application dependent. Our 

reason for using a 'real' mirror of the disk array is that it will complement the 

functional data model where the inverses of functions are frequently required for 

graph traversal purposes. Function inverses can either be stored explicitly or 

implicitly (deduced by software): we believe the former is the better option. 

To illustrate this, we show an example below where the following notation holds. 

Function names are shown by lower-case letters, entity classes are shown by 

upper-case letters, and entity instances are shown by integers-the idea being 

that these are arbitrarily allocated from the domain of 232 as actual surrogates 

would be. A schema table (part of) and instance graph are shown below in Table 

6.1 and Figure 6.4 respectively. Then a set of triples that match the schema is 

used to illustrate our proposals. 

relation domain range MV 
p A B no 
s A C no 
t A C no 
q B C no 
r B A ves 
u B D no 

(Where MV denotes whether function is multi-valued or not.) 

Table 6.1. Schema table for RAID example. 

r 

D 
3916 

Figure 6.4. Schema for RAID example. 
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Initial triples sorted triples Inverse triples 

<p,374,891> <p,374,891> <r, 374, 891 > 
<r, 891, 1475> <8,374,52> <r, 1475,891> 
<r, 891,374> <8, 1475, 52> <p,891,374> 
<q, 891, 52> <1,374,52> <q,52,891> 
<8,374,52> <I, 1475,52> <5,52,374> 
<I, 1475, 52> <q,891,52> <5,52,1475> 
<u,891,3916> <r, 891, 374> <1,52,374> 
<1,374,52> <r, 891, 1475> <I, 52, 1475> 
<5,1475,52> <u,891, 3916> <u,3916,891> 

Table 6.2. RAID triples. 

The first column in Table 6.2 represents triples as they might be stored in a 

random or heap fashion. The second column sorts them using the following 

simple algorithm: 

1. sort triples into entity class order - e.g. (A and B from Figure 6.4) 

(thicker horizontal line in Table 6.2) 

2. within that sort into relation order - e.g. «p, s, t), (q, r, u» 

3. within that sort on subject surrogate order - e.g. (374, 1475) 

4. within that sort into object order - e.g. «r, 891, 374>, <r, 891, 1475». 

Triples are stored on the first disk array in the above order. On the RAID array 

they are stored after being sorted into inverse function order. This will result in 

the ordering found in the third column. Therefore, the above algorithm will 

exchange the sorts on subject and object (underlined above). This strategy 

enhances graph traversal operations as any expression involving entity-to-entity 

inverse functions, can now be targeted to the mirrored array. 

Data availability is often measured in Mean Time Between Failure (MTBF) of an 

individual disk. The manufacturers' quoted figure for MTBF for a typical disk is 

500,000 hours-about 57 years. If a mirrored system is used that has, say, an 
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array of four data disks and four mirror disks, the MTBF can be calculated as 

below where 6 is the time in hours to replace a disk if the failure mechanisms are 

random and the probability of failure is uniform over time. 

57/8 x 500,000/6 = 593,750 years. 

For RAID 15 the MTBF is 

(57/5 x 500,000/(6 x 4» x (57/l0 x 500,000/6) = 34 billion years 

6.3.2 Improved search times 

The advantage of using a RAID 15 system is as follows. Let r be the relation that 

both disks use to cluster triples (of order n) and let Sand 0 be subject and object 

entity identifiers used in triples and search patterns. Searching for the S of one 

triple when given rand 0 using the data disks, means that on average n/2 would 

be inspected by linear search. Searching the <r, 0, S> triples for the S of one 

triple held on the mirror disks given the same 0 and r, takes an average of /og2n 

by using binary chop search. 

Retrieving a range of objects, On .. .om, using the data disks triples again requires 

that the whole of r be searched thus equal to n. The same range using the mirror 

disk would mean inspecting an average of /og2n + IOn... Om I. The increase in 

read efficiency is therefore the well known logarithmic improvement. However 

the increase in reading triples must be set against the write penalty now that the 

triples have to be written to two disks instead of one-although the twin disk 

controllers of RAID systems can handle write instructions in even time. In Table 

6.3, which shows comparative search times, we have used the "70/30" rule. This 

estimates average throughput using the heuristic: "70% of all transfers are read 

transfers and 30% are write transfers". The following example compares a RAID 

15 configuration with a standard RAID 5 configuration when handling 1,000 
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transactions (700 read: 300 write). 66 transactions per second. The searches 

involve locating S components given a suitable rand O. 

read ops @ 66 t.p.s. write ops @ 66 t.p.s. total 

one array: 700 10.6 300 4.5 15.1 
<r,S,O> seconds seconds seconds 

two arrays: 1092700 .15 600/2 4.5 4.65 
<r,S,O> and seconds seconds seconds 
<r,O,S> 

Table 6.3. Improved search times using RAID 15. 

This shows that, using RAID 15, the same number of transactions can be handled 

in around 31% of the time that it takes using RAID 3. However, there is a cost to 

pay for the double redundancy of RAID 15. This is shown in the next table that 

compares various RAID levels using the following assumptions: disk price £1,000 

each; disk speed 7,200 r.p.m.; 10 milliseconds average seek time; 1 

megabyte/second transfer rate; 66 transfers/second sustained throughput with 1 

millisecond overhead for each transfer. Cost of RAID controller is negligible. 

RAID No of MTBFln transfer read write average cost 
level disks years rate t'put t'put t'put average 

rea'd t'put 
1 8 600,000 1 528 264 449 18 
3 5 71,000 4' 66 66 66 76 
5 5 71,000 1 330t 83j: 256 20 

100 8 600,000 1 7871 264 630 13 
15 10 34 billion 1 528 264 449 22 

Table 6.4. Comparison of popuIar RAID levels. 

Additional explanation: 

• - throughput of a RAID 3 system (number of transfers per second) is 

roughly equal to the throughput of a single disk because of the small 

stripe size 
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t - read throughput roughly equal to that for a single disk times the total 

number of disks 

:j: - write throughput roughly equal to that for a single disk times the total 

number of disks divided by number of data disks 

1 - 528 times 1.49 because the outermost tracks only are read from thus 

reducing seek time from an average of 10 ms to around 5 ms. If 

rotational latency is 4.2 ms and disk transfer time is 1 ms, the saving is 

from 15.2 ms to 10.2 ms. The average throughput is arrived at by 

taking 70% of read throughput plus 30% of write throughput-as 

explained earlier. 

RAID 15 compares reasonably well with RAID levels 1 and 5, which are the most 

frequently used levels, but does not come close to RAID 100. However, with the 

architecture used and the way triples are reversed, the concepts behind RAID 100 

are inappropriate in our case. The advantages of RAID 15 are the big increase in 

mean time between failure, the savings shown previously in Table 6.3 and how 

the structure of RAID 15 complements the inverse functions that are an intrinsic 

part of the data model. 

6.4 Combining records and triples 

The Associative Data Management System (ADMS) [CR082j, introduced in 

chapter 3, is an example of an architecture that combines the benefits of records 

and triples and shows how related attributes can be collected together in sets. 

We want to adopt the principles from ADMS---without losing the benefits of the 

functional data model used by TriStarp-into a more coherent, less homogeneous 

architecture that will allow better use to be made of the data. 

With the functional data model in mind, the following file structure is proposed. 

Functions between an entity and its attributes are clustered on that entity 
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instance for storage and display purposes and referred to as attribute records. 

Functions from one entity to another entity are held as triples clustered on the 

subject (domain) entity class and relation name and referred to as entity triples. 

Meta data can be held as triples or records-as suggested in chapter 5-but is still 

referred to here as meta triples. These include membership or 'is-a' triples. 

<r, E" E2> entity triples 

<E, r, A> attribute records 

Figure 6.5. Outline of storage model. 

6.4.1 Entity triples 

Entity triples <r, El, E2> are held in duplicate for the forward and reverse 

functions to which they relate. Entity triple composition was discussed in 

chapter 5, although omitted from that discussion was the id-field used for triple 

identification. For this field, eight bits keeps the field size as a multiple of eight 

bits-the same as other fields-to assist the data filter scanning software, 

although only four bits are required for the id-field: 

Bit 1 dead=l;live=O 
Bit2 bulk = 1; non-bulk = 0 
Bit 3 default variable for LHS = 1; otherwise 0 
Bit4 complex RHS = 1; otherwise 0 

6.4.2 Attribute records 

Attribute records <E, r, A> do not form such an important part of graph traversal 

operations as entity triples. They are more likely to be needed at the beginning of 

a search path-where a lexical value is specified-{)r at the end of a search path 
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where a display is required. The records are grouped into domain sets for 

storage on disk in entity order with a coarse index held in memory. The 

structure for attribute records is as follows. 

id_field: fixed length (8 bits) comprising: length of record, number of attributes 

in record, and one bit to indicate if record 'live' or 'dead' 

entity: fixed length, multiple of 8 bits for the surrogate for this entity 

relations: fixed length, multiple of 8 bits comprising a set of relation-offset pairs 

where relation is the surrogate for the relation name and offset is the start 

position of the related attribute e.g. 

attribute-length: fixed length, multiple of 8 bits to give the length of the whole of 

an attribute plus a bit to indicate if this is an intensional definition 

length-word: set of length-word pairs for each individual, space-delimited word 

in the attribute. Length = fixed length; word = variable length. Intensional 

definitions are held in full text format e.g. 

{<4,Fred>,<3,Ann>} 

timestamp: same format as for entity triples. 

Attributes of type text are held as separate link files where the attribute value 

held in the record is a token identifier from a sub-domain for type text and will 

'point to' the appropriate text file. Examples of multi-valued attributes, 

intensional definitions and default definitions are as follows. 
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multi-valued: e.g. drives $d <= ["rolls", "alfa romeo"], would give the following 

record 

$d,<drives,offset>, ... ,<A,O,{{<5,rol1s>},{<4,alfa>,<5,rorneo>}}> 

intensional definitions: e.g. age $p <= age Mary, would give the following 

record$p,<age,offset>, ... ,<A,1,{<3,age>,<4,mary>}> 

default definitions: e.g. age x <= 21, would give the following record 

X, <age, offset>, ... ,<A,O,{<1,21>}>. 

Where the default record is regarded as being the same as any other record. 

6.5 Our architecture 

Figure 6.6 shows our outline architecture. In the next sections we describe the 

handling of data and computation, the search and index techniques used and 

retrieval of data with an example. 

Control 
Processing 

Element 

InterconneC!i!1n:n:e:tw:o:rk:::=-====;l 

Data 
Processing 

...... J::.I.~m!1.!J.!t. ... " .. 
(inc. filter) 

Storage Inverse 
Disk Copy 

••• 
Data 

ProceSSing 

._ .. " .. !';!.!1.m.~"m" ........ . 
(inc. filter) 

Storage Inverse 
Disk Copy 

Figure 6.6. Outline of our architecture. 
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6.5.1 Distribution of data 

When a new entity class is created instances of it could either be clustered on the 

same data processing element (DPE), or be spread across the disk array in several 

ways-round-robin, hash, random for example. Because no semantics are 

conveyed in the entity identifiers, we favour a scheme that uses the last two 

digits of the randomly generated entity identifier to give a DPE on which to store 

the record or triple. This is a simple mechanism that, when used with a large 

enough database, will ensure a fairly uniform distribution of records and triples 

across the disk array. 

When a search over an entity extent is needed, it can be directed to all DPEs in 

the disk array; when a particular record (or entity) is required the last two digits 

give the DPE on which it will be found. Membership triples are distributed 

likewise. Other meta data can be spread across the array but, as there will be 

relatively little of this and it is always loaded straight into memory, its placement 

on one disk would perhaps be better. 

Lexical strings could also be randomly distributed across the disk array, where a 

request for a named value lookup would be dispatched to all OPEs in the array. 

However, if named values were mapped to OPEs via a hash value computed 

from the name, then the lookup operation need search only one OPE-the one to 

which a hash value of a name maps. Thus the lookup operation is better 

supported by hash distribution than by the more random nature of the record 

and triple placement. Hashing schemes are well documented and are not the 

subject of this thesis. However a hash on the last two letters of a word would 

generate a fairly even distribution across the array. Searches for strings with 

missing start or end characters need to be directed to all disks in the array. 
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One of the problems often put forward when discussing hashing schemes is 

record-or more generally object-relocation. Under our scheme, if an object 

changes its class this would not necessarily mean the object identifier would be 

changed. Therefore the OPE on which the record is situated could remain the 

same. The record or triple would, however, need moving from one entity class to 

another-Le. person to driver class and these are stored separately on the disk. 

6.5.2 Computation 

Unlike some other parallel systems, we use a control processing element (CPE) 

on which to control the passage of a transaction through its various phases. 

Using a dedicated processor in this way, we can achieve locality of computation 

and also transaction co-ordination. All of the parallel code functions, procedures 

and manager macros, together with frame allocation and de-allocation (described 

in the next chapter), are synchronised from the CPE. This simplifies the control 

mechanisms needed and frees the data processing elements to handle the long­

latency lookups and graph traversal operations that are the time consuming 

components in evaluating an expression. 

An important function of the CPE is the collation of lists from the OPEs in the 

disk array. Using the non-strictness of the open list structures used in AGNA 

[HEY91], the results of each sub-list created on the OPEs can be appended 

together efficiently. The way this is done is by leaving the tail cell of each CONS 

list empty allowing the tail of listl to be appended to the head of list2 using no 

extra storage (no intermediate lists). Finally, a nil value is added to the last cell of 

the last list. Note also that a reference must be maintained to both the first CONS 

cell and the last CONS cell of each list. The open list structure is similar to that 

for difference lists in logic programming and an example is shown below-where 

v is the value 
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List 1 qrp List 2 qrp 
~ ..... ~ '-----::! ..... ~ 
v V V V V V 

Figure 6.7. Structure of an open list. 

The construction of such a list is done by using a let ... in block where any 

number of lists can be triggered in parallel with the result of the let block being 

the complete list. For example, if there were two DPEs, the following block that 

uses global variables and the define instruction captures the setting up of 

temporary lists to hold the result. 

let Ll == mkvarlist 1 1 @; 

L2 == mkvarlist 1 1 @; 

x, == define t1 (Ll) L2; 
x, == define tl (L2) nil 

in Ll 

L1 and L2 are dummy identifiers set up as lists of length 1 with the element 

undefined. Xl and X2 are needed to construct extended sub-lists on the two DPEs 

in parallel before the result is returned. Each of these has to be passed the link 

values-L2 for the tail of L1 in the case of Xl and nil for the tail of L2 in the case 

of X2-as shown in Figure 6.7 above. The function mkvarlist is passed three 

parameters: the starting integer (always 1); the length of the list (in this case 1); 

and the type of the element (@ = undefined). This function is part of base_load 

and loaded with the schema and meta data. Its declaration and definition are as 

follows. 

mkvarlist : integer integer alpha -> (list alpha); 

mkvarlist x y z <= if (> x y) [) [zlmkvarlist (+ x 1) y z); 

where [zlrnkvarlist (+ x 1) y z) means construct a one-element list (type z) 

and concatenate the result of applying rnkvarlist to the next integer in the series. 
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So mkvarlist 1 4 @ would produce [@,@,@,@j. What actually happens in 

practice is captured in the following code that uses the faZdr manipulation 

function to construct the lists. The variable rest is used to indicate the tail of each 

list. 

let 
pred = filter_cond (extent theta-condition) 

in 
let 

L = foldr 
(lambda (i rest) (APPLY DPE i extent pred) rest) (1) 
nil (2) 
dpes (3) 

in 
L 

Recall that faZdr takes a binary combining function (I), an initial value (2) and a 

list of values as arguments (3) and returns an accumulated value as its result. In 

the above, (1) is applied to each OPE as shown in Figure 6.S. The local variable 

pred is used to hold a predicate that is passed down in the faZdr function to each 

OPE. The list dpes (3) is a list of all the OPEs in the array and nil (2) is the starting 

condition. More will be said on these optirnisations in the next chapter. 
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Figure 6.S. Construction of filtered lists. 
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By using the foldr function, each DPE can construct a list of results satisfying the 

predicate pred in parallel. This can be done on each DPE even though they may 

not have the result of the rest parameter. Furthermore, each DPE i can return the 

reference to the head of its particular list as soon as it is allocated. This reference 

is passed on in the foldr function as the rest parameter in DPE i-I where it is 

stored in the tail of the last CONS cell. Every DPE uses a local filter function (not 

shown here for the sake of brevity) to achieve this. However, the list construction 

is handled by expanding each local list in a similar way as was described 

following Figure 6.7 above. The folding and appending of the individual lists in 

this way means potential bottlenecks in the system, such as long latency look­

ups, can be handled efficiently and safely in parallel. 

6.5.3 The data processing elements (OPE) 

The DPEs are used to store: the lexemes (strings) in lookup tables; the entity-to­

entity triples in sets; attribute records in sets; membership triples in sets; 

Character Large Objects (CLOBS or documents) and Binary Large Objects 

(BLOBS) which are the larger attributes held in contiguous space evenly across 

the array. The DPEs perform the following tasks by providing mappings 

between: 

1. lexemes (strings) and string tokens 

2. string tokens and entity identifiers 

3. is-a triples and entity identifiers 

4. entity identifiers and attributes for display purposes. 

They also handle the entity to entity graph traversal operations. The first case 

involves passing a string pattern-which mayor may not include embedded 

meta characters-to the DPEs, each of which constructs its set of string tokens. 

After the confirmation to continue has been received from the user, the string 

tokens are mapped to entity identifiers (the second case) .. In the fourth case a set 
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of entity identifiers is passed to the DPEs together with the functions to be 

displayed. For entity to entity graph traversal operations the set of triples is 

passed down with, either a function application! or inverse function application 

inv-f 

The expected speed up in execution time in loosely-coupled, MIMD, shared­

nothing parallel systems is often a function of the number of data processors 

used to do the job. In such cases two elements are crucial in trying to achieve 

this: a balanced data placement policy and the search strategies employed. Data 

placement is discussed in chapter 8; search strategies are discussed in the rest of 

this chapter. 

For our example, consider the mini-schema below (broken arrows show the path 

to be traversed) and the following (typical) query. Uppercase A, B, C and D 

represent the entity classes. Lowercase a, b, c and d represent local variables used 

to hold the sets of instances of the classes A, B, C and D respectively in the list 

comprehension. Lowercase pto z are used for function names and the '&' at the 

end of each line of code following Figure 6.9 means logical AND. 

"",,~-..L!2!.!!~-'3> string 

string 

string 

Figure 6.9. Graph traversal across DPEs 

[(x c, ye, z cl 11 d ~ inv_name = 'Fred" & 
b ~ inv_u d & 
a ~ r b & 
c ~ sal 
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p 374 891 r 49 758 
p 530 4372 r 265 758 
p 769 891 r 374 891 
p 769 906 r 476 414 
p 1590 109 r 1475 891 
s 374 52 r 5002 87 
s 476 79 w 374 966 
s 530 17 w 769 22 
s 1475 52 w 1475 3100 
I 374 52 p 109 1590 
I 476 104 p 891 374 
I 530 291 p 891 769 
I 1475 52 p 906 769 
q 240 98 p 4372 530 
q 758 977 q 52 891 
q 891 52 q 98 240 
r 87 5002 Cl 977 758 
r 414 476 s 17 530 
r 758 49 s 52 374 
r 758 265 s 52 1475 
r 891 374 s 79 476 
r 891 1475 I 52 374 
u 240 3100 I 52 1475 
U 414 334 t 104 476 
u 758 8 I 291 530 
u 891 3916 u 8 758 
u 1272 848 u 334 414 
v 57 1547 u 848 1272 
v 321 42 u 3100 240 
v 1827 3916 u 3916 891 
v 8777 441 v 42 321 
w 22 769 v 441 8777 
w 966 374 v 1547 57 
w 3100 1475 v 3916 1827 

Table 6.5. Triples used in single processor example. 

Using the triples shown in Table 6.5, the following sequence of events would 

occur in a uni-processor architecture: 
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1. suppose the inv_name function returned the following set of D 

entities from the string tables - [8, 42, 334, 848, 1547, 3916] 

2. the inv_u function returns the set of B entities - [414, 758, 891] 

3. the r function returns the set of A entities - [49, 265, 374, 476, 1475] 

4. The 5 function returns the set of C entities - [52, 79]. 

Finally, the selection of attributes for functions x, y and z is made from the 

attribute records for entities 52 and 79. The results are passed back to the CPE. 

6.5.4 The control processing element (CPE) 

This element of the architecture handles the input from users-in the form of 

query expressions-and the parsing, type checking, optirnisation and compiling 

of the expression into parallel code. After that, the CPE handles any requests that 

need sending to the user to confirm the continuation of a query if that query is 

likely to take a long time to execute. The outline structure of the CPE is shown in 

Figure 6.10 below. 

USERS 
Expressions Responses 

CPE 
Parsed optimized and compiled 

t User requests 
Parallel executable code 

Figure 6.10. The Control Processing Element. 
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During the compilation of a query, the various threads of parallel instructions are 

concatenated to form a continuous executable code block. In the next chapter we 

discuss this in more detail. However, the interpretation of the executable code in 

which they are embedded is co-ordinated by an interpret manager and this is 

discussed next. 

The selection, execution and control of instructions is managed by the CPE via 

the interpret manager which continually loops looking for an instruction to 

execute selecting them from the pool of active instruction threads. Interpret then 

examines the currently selected instruction and either executes it in situ or calls a 

manager function to handle this. Tasks that can be performed in situ include 

those that do not involve long latency access such as add, sub and fork. Long 

latency functions include Lookup and StringLook. The parameters from the 

program block are passed to a 'C' function corresponding to the manager name 

after ascertaining on which DPE the string will be found (using the hashing 

algorithm). Each DPE has a copy of these manager functions so searches can 

proceed in parallel. 

If execution of a manager function involves disk access, it is not desirable for the 

whole process to block while waiting for this task to complete. The program can 

then select another thread of code to execute while the disk transfer is in 

progress. In such systems load, for example, is completed in two phases. The 

first phase involves starting the load thread and then moving on to execute other 

instructions; in the second phase the program is notified-by interrupt-that the 

I/O is complete and the result can be extracted. Interpret is responsible for 

scheduling the threads of code; those that are immediately executable from those 

that use a manager function. Interpret initiates execution of instructions that 

involve long latency by spawning and then enqueuing a manager request that 

contains the operation to be performed and its arguments, etc. 
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6.6 Search strategies 

The point has already been made elsewhere in this thesis that our architecture 

does not make extensive use of indexes. Instead, our approach uses a 

combination of a coarse indexing structure and a search engine. A copy of the 

index is held on each disk in the array. For the various kinds of data that are held 

on the DPEs a different strategy is employed. These are now discussed. 

6.6.1 Membership triples 

These are spread evenly across the array so each disk will participate in the 

matching of class to entity identifier. More will be said about data placement in 

chapter 8. However, these triples are stored in their section of the disk-a section 

reserved for 'is-a' triples-in class order and, within that, in entity identifier 

order. So a triple will have the basic format as below (not all fields are shown) 

6.6.2 Other meta data 

There is very little other meta data. Meta data includes: schema information; 

type declarations, definitions and synonyms; secondary function declarations 

and definitions; etc. As stated in an earlier section, these will be loaded into main 

memory at the start of a database session so searching for them will be relatively 

fast. However, persistence must be provided by writing them to the disk array, 

although it is unimportant exactly how this is done. 

6.6,3 String tables 

A simple hash function will target the search for a complete string to a particular 

DPE. Because of the large volume of strings to store and the randomness of the 

hash function a fairly even distribution can be expected. This means all DPEs 

will participate when a search for a string contains the meta characters that can 

163 



Chapter 6 

be part of the pattern. On each DPE the strings are held in alphabetical order 

with a coarse index on the first letter of a string to provide the starting point for a 

sequential search. The DPEs can therefore be considered as 'bottomless' buckets 

that each takes only the strings that hash to their disk. Once a set of string tokens 

has been collated by the CPE and the query is to continue, the next mapping is 

from string tokens to entity identifiers using the string triples. 

6.6.4 String triples 

The string triples could also be spread across the disk array with the last two 

digits of a string token used to decide on which disk the string triple is located. 

However, once the set of string tokens has been assembled on each DPE, it would 

save communication time if the next mapping were performed on the same disk. 

Therefore, the string triples generated for each string token will reside on the disk 

to which the original string was mapped. Again, the CPE collates the set of entity 

identifiers that are then used in the graph traversal steps described earlier. 

Examples of this are shown in the following two figures. 

hash("fred") = 1 

.----1--- -- -- -,--- -----

"fred" => #37945 
#37945 => {entity ids} 

, 
... 

Figure 6.11. Mapping whole string. 

Where there is a whole string the hash function will identify a single DPE to 

handle the lookup and mappings-shown in Figure 6.11 above. Where there are 

meta characters in the string each DPE will search its string tables. In Figure 6.12 

below the string "fred%" includes the "%" character as its last element. Recall 
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from chapter 4 that "%" means "match zero or more characters to the end of the 

string". So passing the search to all disks in the array means a search for strings 

beginning "fred ... ". Step (1) in the figure shows that 'hits' are achieved on DPE-1 

and DPE-4 where the #n represents the mapping from string to string identifier. 

Step (2) involves assembling entity identifier sets (a, b and c) from the string 

tokens. Finally, on DPE-l the union of the sets a and b is the result returned­

step (3)-together with entity set c from DPE-4. 

"fred%" 

hits: 2 zero zero 1 zero • • (1) "fred" => #37945 (1) "frederick" => #599 
(1) "freda" => #7933 (2) #599 => {entity set c) 
(2) #7933 => {entity set a} 
(2) #37945 => {entity set b) 
(3) {a} u {b) 

Figure 6.12. Mapping truncated string. 

6.6.5 Triples and records 

The last two digits of the randomly generated entity identifier will determine on 

which disk the triples or records will be found. Within each DPE a coarse index 

will identify the domain and relation name to use for a sequential search. Both 

entity triples and attribute records are searched in this way. 

6.7 Discussion 

This chapter has discussed several technologies. Multiple instruction multiple 

data stream machines (MIMD), redundant arrays of inexpensive disks (RAID), 
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the associative data management system (ADMS) and the dataflow model. The 

first three of these are now considered. Dataflow is discussed in the next chapter. 

6.7.1 The choice of a MIMD architecture 

Database computers have been in existence for over 25 years but have often been 

confined to research applications. Of the five categories of architecture identified 

in [SUSS], the most promising has proven to be multiprocessor database 

computers. A consensus on parallel and distributed database systems has 

emerged [DEW90] based on the shared-nothing hardware approach [STOS6]. 

Teradata is a proven performer in the domain of large-scale applications 

therefore tailoring this architecture for use in the functional paradigm is a 

persuasive argument. Moreover, a distributed instead of a shared model of 

physical memory is easier to scale and allows the locality of persistent data to be 

exploited by use of data filters. 

Other parallel functional systems have been developed over the years. Of special 

note must be the various parallel implementations of Haskell, a pure functional 

language [ARGS7]. Glasgow Parallel Haskell uses the additional functions par 

and seq in user algorithms to instruct the compiler when to employ parallel or 

sequential execution. Evaluation strategies, as this approach was designated, 

was discussed in the earlier section 3.6.2 as was Haskell on GRIP. The Flagship 

project produced a parallel machine supporting declarative programming that 

uses the Hope+ functional language. Unfortunately, the results proved 

disappointing [ROBS9] and there were problems experienced with side effects. 

However, modules proved much faster to write. 
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6.7.2 Why RAID? 

RAID is now considered as standard for the majority of new computer systems. 

During recent years there has continued to be improvements and enhancements 

in several areas. These include: 

• faster drives - new 10,000 RPM drives provides improved 

performance over 7,200 RPM drives by 37% 

• smaller RAID arrays - desktop RAID systems are now becoming 

commonplace 

• more fibre channel - fibre channel with its 100-megabytes-a-second 

data transfer rate eliminates SCSI bottlenecks 

Moreover, the cost of disks continues to reduce in relative terms. In 1995 [HIL95] 

the price-per-throughput of RAID 100 was the lowest of all RAID schemes. 

RAID 15 can be viewed similarly. The philosophy behind adopting RAID 15 can 

be summed up in the following argument. Having decided to incorporate a 

RAID system, why not put it to better use by making it complement the storage 

architecture to take advantage of the underlying data model used. 

6.7.3 The storage model 

The ADMS model [CR082] and the idea of grouping like data into sets was our 

motivation for dividing instance data into entity triples and attribute records. 

More is said about the ADMS model in the next sub-section. However, we 

believe our architecture combines the best of the two models used-the relational 

data model (RDM) and the functional data model (FDM). The strengths and 

weaknesses of these models have been referred to in earlier chapters but the 

ways in which they can complement each other can be summarised as follows. 

167 



Chapter 6 

The RDM is good for grouping attributes of a named instance together, which is 

useful for display purposes. It does so in a 'flat' or tabular way but requires the 

use of complex, inverted indexing methods to achieve rapid access of attribute 

sets. Moreover, the joining of relations for what are in fact graph traversal 

operations, is complex and costly. The FDM, as originally designed, does not 

easily group attributes of an entity. There is duplication of entity identifiers and 

triples are clustered on the relation (or function) name, not on the entity itself. 

Thus, to display attributes of a common entity, the RDM is to be favoured. 

However, the strengths of the FDM include the ability to model nested objects, to 

cater for a hierarchical structure of data incorporating aggregation and 

generalisation when needed. Entities can be migrated to higher or lower levels in 

the hierarchy without necessarily altering the attributes. This would be difficult 

to achieve using the RDM alone. The object-relational model falls somewhere 

between the RDM and FDM and is often viewed as the RDM with a few 

'addons'. 

6.7.4 The ADMS model 

Using collections of like data was part of the Associative Data Management 

System (ADMS) model [CR082j. However, this model does not easily translate 

to the FDM so cannot benefit from the advantages the FDM has to offer. The 

shortcomings in the ADMS model that are alleviated by our combined model are 

as follows. The ADMS model does not permit more than one relationship 

between entities-this is of course possible and indeed desirable so real-world 

situations can be accurately mapped using it. To cope with this, the ADMS 

model has to introduce transformations of relations into dummy entity sets thus 

forcing the user into a particular schema design where entities exist that may not 

actually be required. 
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Integrity constraints, although included in the ADMS model, do not go as far as 

the integrity provision possible with our system. In ADMS this is a function of 

the arcs between entities and incorporates labels attached to each entity. In the 

FDM, the arcs represent the function (relation name) between entities and 

attributes. Moreover, a relationship between an entity and itself is not intuitive 

to model in ADMS; again, a transformation is used to introduce a dummy entity 

set. This is not necessary in the FDM where, for example, an entity person can 

have a married_to relation that refers back to person by simply naming a relation 

married_to that goes from person -7 person. In the ADMS model, for the implicit 

navigation algorithm to work successfully, the graph model should have the 

property that any two or more nodes have at least one common meeting point or 

upper bound. Where this is not the case, a dummy entity set is created to form a 

link between the two sub-entities. This is not necessary in the FDM. 

For the reasons given above, we believe that our architecture-based on the FDM 

and incorporating ideas from ADMS-provides a more realistic way to model 

and then store data. Moreover, our scheme combines the benefits of the 

relational model (for attribute records) with those of the functional model (for 

entity traversal), and goes some way to achieving the four goals in the extended 

relational model [COD79]. In this Codd suggests that a data model should aim to 

have four 'personalities': 

• tabular - for display and updating purposes 

• set-theoretic - using relational algebra for search 

• predicate calculus - for inferencing techniques, and 

• graph-theoretic - to aid understanding for users and designers. 

Moreover, the benefits of combining the FDM with functional programming have 

not been compromised. The ability to declare and store extensional and 

intensional function definitions is maintained. The defining of unknown and 

undefined values is catered for, as these can appear in any part of the database. 
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We have also shown how bulk data (multi-valued) attributes are handled-in 

both functional directions-at the entity-attribute level and for entity-entity 

functions. Finally, because of the semantic freedom using entity identifiers, 

object migration can be accommodated in our architecture. An example of this is 

given and discussed in chapter 8. 

6.7.5 The associative model of data 

A recent claim to be a radical new database model merits attention. This is the 

Associative Model of Data [WILOOj. This is the name given to the set of concepts, 

structures and techniques underpinning the Sentences database management 

system. The associative model of data builds on academic research into triple 

stores, semantic networks, binary-relational storage structures and entity­

relationship modelling. The model is based around the concept of entities and 

associations (links). The associations are, essentially, the function names of the 

FDM. Schema are constructed incrementally-as in our model-and many of the 

disadvantages of the RDM are obviated using this model. Views of data are 

handled via permissions set in individual user profiles. These are like integrity 

constraints and can be defined at a low level of granularity-a single relationship 

(or link) is given as an example. 

Chapters (rules) may be added to, or deleted from, a user's profile at any time. 

Individual entities and links exist in peer networks in individual chapters. When 

chapters are collected together into a profile, the terms and links in each chapter 

simply form a wider peer network and chapters become transparent. Deletions 

are not physically made. Instead, a 'stop' link is introduced which asserts a 

deleted link. Thus the association may appear to be either deleted or not 

according to whether the chapter containing the stop link is part of the user's 

profile. Re-naming is handled in a similar way. 

170 



Chapter 6 

The storage architecture underpinning Sentences is not clear but the indexing 

structure is based on the R-tree [GUT84j. Version 2 was released in October 2001 

with the intention to include improved indexing techniques and a better internet 

interface. From the literature available it seems clear that the graphic 

representation of the model is not intuitive. As well as entities and links 

(functions in our model) there are small circles that represent 'links between 

links' or 'associations'. An example of a bookseller problem taken from their 

literature is shown below. 

lives 
in 

customer of 

from the 
date of 

Figure 6.13. The associative model of data. 

sells 

The best way of thinking about the small circles is to see them as embedded 

associations. The first association in the above schema would be the triple 

<person, customer-of. legal-entity>. This fact is stored by their system as­

for example-identifier 231. This is then used in the association from the first 
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circle to form the association <231, orders, book>. This can be viewed as a 

sentence with parenthesis around the sub-clauses thus: «person is a customer of 

a legal entity) orders books). The database is stored in two tables: one that links 

identifiers with names and one that holds triples as 4-tuples-where the first field 

holds the identifier of the triple itself-231 in the above example. This is very 

similar to the FACT database system [MAG80j and obviates one of the 

weaknesses of binary relational models, namely, repetition of identifiers. We 

believe our combined model of triples and records does the same thing, is more 

intuitive, and retains the attributes as a record while avoiding the profusion of 

foreign keys found in the RDM. 

It is not immediately clear how inverse functions are handled in Sentences. They 

make the point that inverses are (sometimes) important and these can be 

explicitly defined in the schema. However, they also use a method of implicit 

inverse functions where verbs (function names) such as "has" are replaced by "of" 

in, e.g., "has customer" becomes "customer of "-shown below. 

Figure 6.14. Sentences inverse functions. 

Again, it is not clear how the storage of such inverses is effected. Bulk data types 

(multi-valued functions) are also handled obscurely. There are choices-zero or 

one, one only, one or more and any number-for mappings from domain to 

range. However, several customers use Sentences as a commercial product. Its 

share of the market will surely increase as people look for tried-and-tested 

commercial products-rather than academic projects-to replace the 

shortCOmings of the RDM. 
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6.7.6 The Universal data model 

This is another recent commercial product marketed by Universal Data Models 

LLC [SIL01]. It is SQL-based and provides 'off the shelf' data models (schema) 

solutions for a variety of business organisations. These include: health care, 

telecommunications, manufacturing, financial securities, insurance, service 

industries, travel industries and e-commerce enterprises. However, there is not a 

model that covers investigative systems. Moreover, as the model is aimed at 

relational database systems, it would seem inappropriate in our case. 

6.8 Summary 

In this chapter we have set out to describe and justify three elements of our 

architecture: using an industry proven MIMD machine configuration; 

harmonising the two RAID levels-mirroring and parity-to complement the 

inverse functions used in our model; and a physical storage architecture and data 

placement strategy that unifies the best of the functional data model (triples) with 

the best of the relational data model (records). The final element of our 

architecture concerns the use of dataflow graphs to distribute computation and 

long-latency requests between processors. This is discussed in the next chapter 

that deals with parallel execution and optirnisation. 
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Chapter 7 Transformation, optimisation and translation 

7.1 Introduction 

In section 1.3, the background to the thesis outlined the areas of research to be 

investigated and the motivation behind these choices. Of the research topics 

discussed, parallel processing has been the least developed in the remaining 

chapters. This is partly because our work has added little to the existing 

technologies of dataflow and MIMD, and partly because no overall system has 

been developed on which to run accurate experiments. 

However, what this chapter sets out to achieve is to show how our proposals for 

string handling and enhanced functionality-discussed in earlier chapters-can 

synthesise with a parallel data flow architecture. In particular, in discussing 

parallel code, we concentrate on describing the code for our interface functions 

and string optirnisation functions. When evaluating performance gains in section 

7.6, we compare our potential improvements with the AGNA dataflow system­

since this motivated our decisions to choose dataflow and MIMD-and INGRES, 

as comparisons can be directly made between these. The sub-sections of this 

chapter are now introduced. 

To allow for the parallel execution of expressions, transformations and 

optimisations have to be made on initial user expressions. The transformation 

stage involves using a sub-set of the language to introduce local bindings so that 

sub-expressions can be executed in parallel. User expressions can often be 

optimised-particularly where they involve list comprehensions. We describe 

how standard techniques can be applied to our architecture and how to extend 

these to complement our text handling facilities. 

After local bindings are introduced, sub-expressions are marked for reduction 

before the reduction process takes place. We describe the rules for the reduction 
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process and the data structures involved. Dataflow graphs (DFGs) are then 

introduced and shown to fit into our architecture. These include optimisations, 

transformations and how DFGs are mapped to parallel code. Performance 

improvements are described (as outlined above) before our discussion of why we 

made the choices we did and, importantly, how this relates to earlier work. 

7.2 Transformation to the sub-language 

In order to make expressions easier to optimise and execute in parallel, the 

following transformations on the full language to a sub-set of the language are 

needed. Features that make programs easier to write but add no new expressive 

power to the language are removed. Also included in this stage are 

optimisations on list comprehensions, inverse mappings and other operations 

that will be performed on persistent objects in the database. 

Ephemeral objects, unlike persistent objects, only exist for the duration of a 

transaction or database session. A user expression can be considered as a lel .. in 

block. The mappings are now shown where x indicates a new, local binding that 

is unique. The right arrow (~) shows the transformed expression and == means 

'takes the value of'. Note that the following steps describe the process of 

translating user expressions to the sub-language for the purpose of potential 

parallel processing. They do not represent graph reduction. Graph reduction 

transformations are described specifically in section 7.4.1. 

function : exp ~ x == (declare function exp) 

e.g. (name: employee -> string) ~ x == (declare name (employee~string» 

function exp, <= exp, ~ x == (define function exp, exp,) 

Used to insert information into the database e.g., 

(name $n <= "Mary") ~ x == (define name $n "Mary") 
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where $n is a previously allocated global variable with an entity surrogate for a 

person whose name is to be defined as Mary. Also used for manipulation 

functions such as map/filter and fold. 

$9 == exp 7 $9 == (exp) 

This case can be carried straight across although (exp) may of course need further 

reducing. 

type :: nonlex 7 x == (type nonlex) 

type:: exp 7 x == (type exp) 

The first case is for defining a new entity type type. The second case is to create a 

constructor function. 

x == type 7 x == (type) 

To create type synonyms such as: money -- real. . Again/ type could be a 

constructed type. 

if exp, exp, exp, 7 let x == exp, in (if x exp, exp,) 

Conditional expressions like this have to be transformed into a let block because 

expl must always be evaluated before exp2 or exp3. 

All_type 7 x == (All type) 

Simply returns the current extent of type type to binding x that is a list. 

inv_function op exp 7 x == (inverse function op exp) 

Inverse functions can be optirnised to handle other relational operators-not just 

equality. This is discussed in a later section. The expression exp has to be 

evaluated to give either a constant value or a non-lexical identifier before the 

application of this function. 
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function exp -7 x == (function exp) 

function -7 x == (function) 

Applying a function function to a given expression (the first case) or, where there 

are functions with zero arity (the second case). 

create type $g -7 $g == (create type) 

Creating an instance of a non-lexical type can be carried across using the given 

global variable ($g in this case). 

delete $g -7 x == (delete $g) 

Here x indicates the success or failure of the transaction. 

op exp, exp, -7 x == (built-in op exp, exp,) 

Primitive function applications-like +, div and matches-can be passed across 

using the sub-language function built-in. 

List comprehensions are transformed into a combination offlatmap, if-then-else, or 

cons and nil structures according to standard rules as in [PEY87bj for example. 

These functions are themselves defined in terms of other functions such as 

append, cons, head and tail. During the transformations, any nested functions are 

lifted out to the top level of the block by a process known as lambda lifting. This 

involves adding to its parameter list all free variables, lifting the function to a 

local binding with a new unique name and replacing all uses of the function by 

an application of it to its free variables. 

7.3 Optimisations 

There are well known transformations that can be applied to list 

comprehensions-see [TRI89j for example. The usual way this is done is by 

algebraic and implementation-based techniques. Algebraic transformations 

involve promoting filters in the expression so that they appear immediately after 
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the generator with which they are used. This is especially advantageous in 

comprehensions that involve filtering of base extents. As an example consider 

the expression 

[a 11 (a.b)~ AB & (c.d)~ CD & b = c & d = 99] 

which, after transformation, becomes 

[a 11 (c.d)~ CD & d = 99 & (a.b)~ AB & b = c] 

The CD generator and filter is promoted before the AB generator and filter 

because the CD bound filter includes a constant and the equality operator. 

Implementation-based techniques involve knowledge about the data such as 

indexes available and the size of the various extents to be searched. We do not 

make use of complex indexes in this way. Instead we use processor-based data 

filtration complemented by a coarse index structure. The size of the extent is 

maintained in the schema table so promotion of extents is possible. A little time 

spent pre-processing a comprehension has long been known to prove worthwhile 

in reducing execution time. 

Another optimisation involves combining unary operators so that only one pass 

over an extent is needed. This produces an intermediary list for the selection 

function to use. The query 

[sname x 11 x ~ All_student & grade x >= 7] 

would first proceed by having a list constructed by filtering the extent (using the 

predicate) at the same time as the extent is traversed. 

It is also possible to combine selection and filtering operations. For instance, in 

the above example there would be no intermediate list constructed of entity 
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identifiers that satisfy grade >= 7. Instead what happens is that, once an entity 

identifier is selected it is immediately passed to the selection function to display 

the sname while the filtration over the rest of the extent is handled in parallel. 

This is possible because of non-strictness and the use of open lists. Each time an 

entity identifier is selected the result list is extended by one more CONS cell to 

accommodate the new identifier to have its sname displayed. The concept of 

open lists was discussed in the previous chapter. 

In AGNA [HEY91], when an expression is evaluated, pre-processing of filters can 

identify if there are any that map over the same extent. This gives the case of 

multiple access paths and, if these exist, an algorithm selects the optimum route 

to the data based on simple heuristics and the extensive use of indexes. In our 

architecture, such expressions can be passed to the storage sub-system for 

assembling a list of entity identifiers that satisfy all filters over the same extent. 

Again, in the AGNA system it is possible to pass down to the storage sub-system: 

the extent to be used, the filter condition and the select conditions if they are over 

the same extent. However, this would not always be possible due to the depth of 

functionality that can be (and often is) applied to list comprehensions. More 

complex expressions often appear in the 'select' part of a comprehension-to the 

left of the 11 bar-also the qualifiers themselves can take more complex 

expressions. However, the concept of 'passing down' an extent generator and 

any filters over it is more easily controlled and is discussed next. 

7.3.1 Passing down filters and generators 

A scan of the expression list reveals any generators where there are filters that 

share the same variable. These can be 'wrapped' into a predicate condition that 

we call restrict 

x == (restrict extent num-of-preds {function-name operator EXP)) 
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where the sub-language function restrict is followed by the number of predicates 

then by an extent name--e.g. student-and then a number of relation-operator­

expression triplets (where the expression evaluates to a constant) that are to be 

used in the filtering operation when list x is constructed. For the sub-expression 

x f- All_student & sname x matches "SIrLth%" & grade x > 7 

the first transformation would give 

x == (restrict student 2 (sname matches "Sm_th%". grade> 7)) 

then the procedure would be: 

1. search integer triples matching pattern <grade, 7, ?> (or greater 
than 7) to generate a set of entity identifiers. Call this set I-set 

2. search string tables for string identifiers matching pattern 
"Sm_th%". Call this set 5-ids 

3. search string triples for matching pattern <sname, 5-ids, ?> to 
generate a set of entity identifiers. Call this 5-set 

4. x == I-set n S-set. 

The generated set x would then be used in any further expressions such as 

selection of records to display. However, there is another way of passing down 

generators for low-level assembly of the list required that involves inverse 

functions. 

7.3.2 Inverse functions 

Currently, inverse functions can only be applied using implied equality. The 

generator x f- inv_fname "Fred" implies "the list x will hold all entity identifiers 

where the condition fname = "Fred" holds. This, of course, works perfectly well 

for other types such as x f- inv_grade 7. However, if we want to use other e 
conditions, we are forced into using a generator and filter combination. To print 

the sname (surname) of all students who have a grade> 6, the expression would 

have to be: 
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[sname x 11 x f- All_student & grade x > 6] 

Therefore with equality conditions both methods can be used. The following two 

comprehensions were compared using the same data set taken from the crime 

database. (See appendices Al and A2 for the crime database schema and triple 

breakdown.) 

count [cat x x f- All_itm & cat x = "VIDEO"] (1) 

count [cat x x f- inv_cat "VIDEO"] (2) 

Where (2) out-performed (1) by around two orders of magnitude. This is because 

(2) is evaluated at the storage sub-system level. (1) involves the generation of a 

list and then filtering it with the two operations controlled from the language 

level. The inverses of functions are not held explicitly, they are derived in the 

following way through software. For any first-order single-argument function 

f:t7s, where t is a non-lexical type and s is a non-list type, the derived function 

invJs7(list t) is also available. The equation defining inv_f can be considered to 

exist as follows 

inv_f s <= [y 11 y f- All_t & (f y) = s] 

A similar function is used where s is a list type. What happens is that a set of 

triples is opened with the pattern <f, ?, s> and the entity identifiers (y) are 

retrieved lazily. Because inverse functions perform so· much faster than the 

combination of generators and filters, it would be advantageous to make more 

use of them. In the current system a search through triples for the third 

component s-where s could have any e condition as well as = attached to it­

would usually mean searching the entire extent because of the ordering of the 

triples. 
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To improve the choices available for inverse function applications, care has to be 

taken in matching the operator to the type of the attribute from which the inverse 

is taken. For instance, if the operators ">", "<" and "<>" (not equals) were allowed 

for strings the implications might be too severe. Whereas string operators like 

contains or begins could more realistically be used to select strings that contain or 

begin with a certain pattern. Additionally, for integer attributes the a operators 

above could be acceptable but for real types they might not be. The format of the 

inverse function is 

x == (inverse function-name operator EXP) 

where EXP is a sub-expression that evaluates to a constant. 

We handle inverse functions in two ways. If the function maps from an entity to 

a lexical attribute (E ~ A), the lexical triples provide the inverse function 

mapping. For integers involving range queries, a scan of the integer set will give 

the entity identifiers to be returned. For strings, the string tables identify the 

string tokens that are in turn used in the string triples. If the inverse mapping is 

from an entity to another entity (El ~ E2), the mirror array provides the 

mapping. 

7.3.3 Selection functions 

Another area where a sub-language function can be used to good effect is for 

selecting fields of an entity that need to be displayed. Although comprehensions 

can have complex expressions, often involving graph traversal to the left of the 11 

bar, there are circumstances where a simplified instruction can be used for 

selecting attributes. If a comprehension has the form 

[{function, x, function, xlllx f- All_entity & ••• J 
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where all the selection functions are over the same variable, a select sub-function 

can be used to locate the attributes for display. Like other low-level functions 

that pass down expressions to the storage sub-system, a combination of the type 

extent plus the set of attribute functions is 'wrapped' into the sub-function select 

as follows 

X! == (select entity x (function-name!, function-name2, ... , function-namen }) 

The bound variable x is the relevant entity identifier (which could be a list). The 

local variable x! will become the list of attributes to display using the standard 

print function. The select function will be expanded upon in a later section that 

discusses the mapping of sub-language functions to code for parallel 

implementation. 

7.3.4 High hit rates for lexical values 

A fundamental part of our architecture is the ability to provide better text 

searching facilities. A new optimisation makes it possible for users to decide 

whether or not to continue with a search that is likely to have a high hit rate and 

therefore take a long time to execute. This is possible by checking for constant 

patterns to be evaluated from the string tables to identify any that will give rise to 

a large result set of entity identifiers. 

If the user is to be given a choice of whether to continue with a search or abort it 

based on the number of hits found, a function· must be used to obtain that 

information. When the total hits exceed some 6 condition, the function must pass 

the number of hits to the user and await their instruction to proceed. The point at 

which this request is made has to be between the searching of the string tables 

and searching for string triples. This is because the string tables have a 'number 

of occurrences' field and it is this information that has to be passed back to the 
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user. The pseudo code for this is shown below where dpes is the number of data 

processing elements available. 

BEGIN 
dpes 

occs = L occurrences (string_look_up (string-pat) )i 
i=l 

IF (occs > 9) ( 

) 

ok = ask_user (occs) 
IF (NOT ok) 

abort transaction 

get string triples 
END 

The two kinds of expression that contain patterns are function applications and 

inverse function applications. After the creation of local bindings, these· two 

functions will be of the form: 

x == (function EXP) and 

x == (inverse function-name operator EXP) 

where EXP evaluates to a constant and operator was discussed in section 7.3.2. In 

these cases the local variable x can therefore take the 'abort' command as well as 

lists of results in the normal way. 

7.3.5 Text searching functions 

A class of functions not discussed yet are those that operate solely on texts. 

Recall that attributes of type text are held contiguously across the disk array in a 

format decided upon at database set-up. The functions that operate on them can 

also be passed directly to the storage sub-system in the way described above, so a 

list of entity identifiers that satisfy the conditions can be constructed. A sub­

language function, text-fun, initiates a search of the text attributes and has the 

form 

x == (text-function {function-name operator EXP)) 
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and is handled the same way as built-in function restrict. For example, one of the 

built-in functions introduced in chapter 4 was order _str. This takes two strings­

pat and text-to see if pat is embedded in text and can have the meta character "<" 

in between sub-patterns of pat. This function is appropriate for use on large texts 

and, from the list comprehension, the mapping to the sub-language would give 

the binding for example 

x == (text-function report order_str "flick<knife") 

which would return all entity identifiers where the attribute called report of type 

text had the word "flick" somewhere before the word "knife". Note that these text 

functions are in addition to the string matching functions (previously described) 

that can be equally applied to text searching. 

7.4 The abstract reduction machine 

The preceding discussion shows how user expressions can be transformed into 

the sub-language and the various optirnisations that can be applied. The 

identification of sub-expressions to be reduced is considered next. In this section 

we give the rules for these with an example to show how reduction can proceed 

and how this affects the data structures. The reduction process begins with the 

following starting components: 

• the expression to be evaluated: EXP 

• the current extent of the database: DBcurr and 

• an update table to hold changes: T. 

The new database extent can be defined as: 

DBnew == evaluate (EXP, DBcurr, T) 

The current extent of the database consists of a top-level environment that maps 

names to values in persistent store or memory, and a heap that maps identifiers 
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to values. The heap maps ephemeral identifiers to values (those that last for the 

duration of a session) and temporary identifiers used for the duration of an 

expression evaluation only. These identifiers are allocated by the system as and 

when needed and are not usually visible or meaningful to users-although they 

can be declared as such. So, to follow previous notation, we show these as $n 

values. Both data structures have space for new values that will be used to 

update the extent if the transaction is successful. Also included in these structures 

are references to integrity constraints. 

The update data structure records changes to type extents (insertions and 

deletions) and attribute values (insertion and deletion) and is used to keep track 

of alterations that will affect persistent objects such as integrity and meta triples. 

7.4.1 The reduction process 

The expression to be evaluated starts off as an initial block of expressions after 

type checking and bindings have been created as just described. After which the 

following sequence of transformations occurs. At each stage of the re-write 

process the next expression to be evaluated is marked for reduction with symbol 

:R. So the initial state of an expression is: :R(let ((Xl,Sl), •.• (Xn,Sn)) in 5). Where each 

x and s pair represents a uniquely bound sub-expression from the original 

expression. Reduction of an expression proceeds from this state until no further 

re-write rules can be applied. In the final state of a successful transaction, all 

expressions in the top-level block are reduced to values ... The reductions are as 

follows 
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Declaration reductions 

~(type nonlex) 7 type nonlex 

~(x == type) 7 x == type 

~(create $g) 7 create $g 

~(delete $g) 7 delete $g 

Chapter 7 

No further reduction is possible when declaring, creating or deleting non-lexical 

types or a type synonym. These rules do, however, entail alterations to the 

schema information and update tables. 

~(type exp) 7 type ~(exp) 

Constructed types may include sub-expressions that require evaluation. 

~(declare function exp) 7 declare function ~(exp) 

Where exp can refer to simple type signatures such as: sname ~ string or more 

complex signatures like: (alpha1 alpha2 ~ list (alpha1)) ~ list (alpha2) that need 

looking up in the top-level environment. 

Definition reductions 

~(define function expl exp2) 7 define function ~(expl) ~(exp2) 

Both expressions can be marked for potential parallel execution. EXPl is the input 

parameter(s) and exp2 the output parameter(s) as described in section 7.2 earlier 

in this chapter. 

~($g == exp) 7 $g == ~(exp) 
The marker is propagated to the expressions whose ultimate value will be passed 

to $g. 
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Application reductions 

~(All type) -7 All type 

~(fun) -7 fun 
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In each case no further reductions are possible. 

~(function exp) -7 function ~(exp) 

~(inverse function op exp) -7 inverse function op ~(exp) 

For a function application (or inverse) that consists of an expression, the marker 

is moved to that expression. 

~(built-in op expl exp2) -7 built-in op ~(expl) ~(exp2) 

~(restrict extent exp) -7 restrict extent ~(exp) 

~(text-function exp) -7 text-function ~(exp) 

Primitive function applications-such as + and div plus restrict and text-fun--can 

have the marker moved to any sub-expressions they contain. Arguments may 

then execute in parallel. All other arithmetic, logic and relational functions have 

similar reduction rules. 

~C-7 c 

A constant requires no further reduction 

~(if expl exp2 exp3) -7 if ~(expl) exp2 exp3 

-7 ~(if true exp2 exp3) -7 ~exp2 

-7 ~(if false exp2 exp3) -7 ~exp3 

For conditionals the above rules ensure the first expression is evaluated and 

reduced to a Boolean value before the second or third expressions are reduced. 
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The outline pseudo code for the reduction algorithm can be considered as 

follows: 

input (expression_list) 

var count = 0 
var next[MAX_STRl 

BEGIN 

END 

WHILE expression_list NOT empty 

next = expression_list[countl 
if (reducible(next)) mark_for_reduction 

increment count 

END-WHILE 

where the procedure reducible uses the given rules. The expression list is the user 

expression after it has been reduced to the sub-language, described in section 7.2, 

and optimisations have taken place. 

7.4.2 A reduction example 

Finally in this section we give an example of how a transaction would proceed. 

The following three expressions-to locate a person called Fred and change the 

name to Freda as well as define the age as 21-are transformed as follows. (Note 

the propagation of the marker :R, is shown from a visual perspective and in 

parallel. This saves time and space but is not necessarily how it would actually 

occur.) 

$n == inv_fname = "Fred"; 

age $n <= 21; 
fname $n <= "Freda"; 

After type checking, this is transformed to a let ... in block with local bindings 

naming Xl, X2 and result and the reduction marker showing there are reductions 

to be done. 
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3t (let $n == inverse fname = "Fred"; 

x, == define age $n 21; 

x 2 =;:; define fname $n "Freda"; 

result == x, A x,) 
in result 

Next the 3t marker is propagated to the three sub-expressions that have now been 

bound to local identifiers. 

3t(let $n == 3t(inverse fname = "Fred'); 

X, == 3t(define age $n 21); 

x, == 3t(define fname $n "Freda'); 

resul t == 3t (x, A x,)) 
in result 

The next stage propagates the 3t to all sub-expressions of these three expressions: 

3t (let $n == 3t (inverse 3tfname = 3t" Fred' ) ; 

x, == 3t (define 3tage 3t$n 3t21) ; 

x, == 3t(define 3tfname 3t$n 3t"Freda" ); 

resul t == 3t (3tx, A 3tx,) ) 
in result 

At this point there are no further reductions possible. So the next step is to map 

top-level names to tokens. Note we have assumed for this example that the name 

"Fred" is unique. The first step involves replacing constants with the tokens that 

represent them. This gives: 

3t(1et $n == 3t(inverse 3tfname = T-Fred); 

X, == 3t(define 3tage 3t$n T-21); 

x, == 3t(define 3tfname 3t$n T-Freda); 

resul t == 3t (3tx, A 3tx,) ) 
in result 

(1) 

where T-... indicates a token mapping. Top-level function names can now be 

converted to tokens giving: 
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!R (let $n == !R (inverse T-fname = T-Fred); 

x, == !R(define T-age !R$n T-21); 

x, == !R(define T-fname !R$n T-Freda); 

result == !R (!Rx, A !Rx,)) 
in result 

(2) 

We now have to evaluate the first expression to obtain a token for $n before the 

second and third expressions can continue: 

!R(let $n; 

X, == !R(define T-age !R$n T-21); 

x, == !R(define T-fname !R$n T-Freda); 

result == !R (!Rx, A !Rx,)) 
in result 

(3) 

This now allows us to bind $n in expressions two and three with the newly 

allocated token giving: 

!R (let $n); (4) 

X, == !R (define T-age $n T-21); 

x, == :R, (define T-fname $n T-Freda); 

result == !R (3{x, A !Rx,l) 
in result 

Finally the two remaining expressions can be reduced to tokens and the result 

can be returned. Although in this example there is no visible output to the user 

screen, the binding of the user-defined global variable $n to the token has been 

successfully completed. 

This transaction also changes the top level environment in the following ways. 

Assuming a simple environment for the moment, the changes are: 

name token name token 
fname T-fname fname T-fname 
age T-age age T-age 
Fred T-Fred <Fred> <T-Fred> 
... Freda T-Freda 
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Note that lexical names are taken from the lexical tables and are only discarded 

when there are no other bindings for them. The integer 21 does not need an 

explicit mapping: integer tokens are inferred by simple bit manipulation. In this 

case we have assumed the name "Fred" does not occur elsewhere in the database 

so can be deleted (shown as <Fred> above). The heap would have a mapping for 

the user-defined global variable $n to link it to the entity identifier that has fname 

function mapping it to Fred (now Freda). The two intermediate variables, Xl and 

X2, would not be stored as they were not requested by the user. Their only 

purpose is to hold the results of sub-expressions that are evaluated along the way 

to the ultimate result. After that, any resources they required are freed back on to 

the heap. The triples to be inserted and deleted are: 

triple time Insert/delete 
<T·fname, $n, T-Fred> <32-bits> delete 
<T-fname, $n, T·Freda> <32-bits> insert 
<T-age, $n, T-21 > <32-bits> insert 

Note that not all information held in triples is shown in the above table and that 

the $n only represents the token for the entity identifier that is used in persistent 

store. At this stage integrity constraints are checked before binding new names 

to identifiers and printing out any results. Only then can the transaction be 

closed. Committing updates, which can be done at any time by the user, causes 

updates to become persistent. 

During the transformation process there are several places where parallel 

execution of expressions could take place. In (1) and (2) above, both the looking­

up of top-level names and the mapping of constants to identifiers could be done 

in parallel. As soon as $n is defined, occurrences of it in other sub-expressions 

could also be defined (3). Lastly, the two defining functions in (4) could be 

performed in parallel. After all sub-expressions have been marked for reduction, 
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the next step is to transform the various sub-expressions into dataflow graphs for 

possible parallel execution. 

7.S Translation into dataflow graphs 

This section begins with an introduction to dataflow graphs. Readers familiar 

with the basic concepts involved may wish to proceed to section 7.5.1 where 

optimisations are discussed. 

Instead of using a simple graph reduction process, data can be thought of as 

dynamic, flowing through a collection of passive transformers (the operators). 

Each operator performs some task on the data, as they become available on input 

arcs and passes the result to other operators via output arcs. This computational 

model is defined in terms of dataflow rather than control flow or graph reduction 

and programs are thus represented as dataflow graphs (DFGs). DFGs have some 

advantages over the other models; one of which is that DFGs are acyclic. This 

means that, once an operator has consumed input on its input arcs and passed on 

the results via its output arcs, the resources it used can be discarded. This greatly 

simplifies garbage collection. Once DFGs have been constructed, there is scope 

for parallel execution of sub-expression within the overall query. The basic 

dataflow machine can thus be said to be data driven, implementing eager 

evaluation using the call-by-value computational rule. 

DFGs are particularly appealing for use in declarative languages because they do 

not require complicated dependency analysis. Traditional languages are usually 

tied to an imperative model where partitioning of instructions into fine-grain 

threads for parallel execution makes control far more complex. It has been 

shown [ARV88] that compilers for declarative languages can extract orders of 

magnitude more parallelism than is possible with traditional languages. It is 

possible to modify the DFGs to a demand-driven version that permits lazy 
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evaluation using the call-by-need computation rule. However, this makes control 

mechanisms significantly more complicated. 

The various constructs of a programming language can be represented 

graphically by DFGs where the nodes represent operators and the arcs represent 

data dependencies. Data driven means nodes 'fire' when their required input 

arcs are available. Parallel implementation is easily achievable using this model 

with a referentially transparent functional language. 

After the initial transformations to the sub-language, an expression will have all 

its functions named-via lambda lifting-and defined at the top level with local 

bindings. The basic operators used in DFGs are: primitive junction, copy, value, 

fork, merge and (the most complex) apply-see [FlESS] for full descriptions of 

these. As a simple example of a DFG, the expression (x + y) * (x - y) might have 

the graph 

x y 

Figure 7.1. Arithmetic DFG. 

The graph consists of three instructions each with an opcode, two input arcs and 

one output arc. Data values are carried on tokens that flow from the output arc 

of one instruction to the input arc of another instruction. Instructions only 

execute when their 'firing rule' is satisfied. The firing rule for strict operators, 

such as + above, states that the instruction may fire only when both inputs are 

present. 
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Execution of an instruction consumes input-sometimes producing side effects 

such as creating a new persistent value-and creates output. DFGs capture all 

the fine-grain parallelism of the source language and make explicit any data 

dependencies and multiple use of a variable. The + and - operations may 

execute serially or in parallel-it makes no difference. However, the * operator 

depends on the + and - operators and so cannot fire until both its input arcs have 

tokens placed on them. 

Some instructions, such as constant, have no normal input values. But, without 

input values there is no way to give a firing rule. To resolve this, trigger tokens 

are added to the DFG. These carry no meaningful value but are used to initiate 

execution of an instruction. For such instructions the rule states that the 

operation should execute when its trigger input token is available-plus any 

inputs that are needed. 

A related problem is what to do with outputs of operations that are not actually 

required for the result. These include triple additions and deletions that are 

made as a side effect of an expression but not actually consumed in any way by 

other instructions. While such outputs do not contribute directly to the result of 

the expression, it would be useful to know when they have completed and are 

available if required. The answer is to collect such outputs together into a 

'complete' instruction which issues a completed signal token when its inputs are 

all fired. 

Although signal tokens carry no meaningful value, once they are fired (along 

with the result return output) they enable all computation in a DFG to terminate 

successfully. In our system the DFG in Figure 7.2 shows how triggers and signals 

fit into the overall DFG deSign. The expression 
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$n == inv_fname :::: "Fred n i 

age $n <= 21; 

fnarne $n <;:::: "Freda n i 

would first be transformed to 

let $n == inverse fname = "Fredni 
x, == define age $n 21; 

x 2 == define fname $n "Freda ll
) 

resul t == x, 11 x, 
in result 

then the DFG 

trigger 

terminate 
signal 

to calling 
procedure 

Figure 7.2. Example of a DFG procedure. 

This graph shows what happens to the signal and result tokens. The result can be 

returned to the calling procedure as soon as it is available: the signal token is 

issued when all other activity in the graph is complete., The finished operator 

196 



Chapter 7 

collects the signal and result outputs and passes a terminate signal to the caller. 

Resources can then be freed by the callee. 

The above graph can be considered as a lambda (nameless) function or procedure 

for the purposes of controlling a sequence of transactions. The lambda 

instruction is connected to the graph in which it is embedded via the trigger and 

terminate signals. The firing rule is: when the trigger is activated, the procedure is 

created on the heap and a token carrying a reference to it is placed on the result 

output. In the graph, define and inverse are built-in operators that directly 

accesses the storage sub-system once their arguments have been provided. Note 

that in our architecture a function is applied to all of its arguments (full 

application) not a partial (or curried) application. Conditional expressions, such 

as if-then-else, are a special case and are handled using the following DFG. 

'---,..--' ~;:::::J-r:::::::. to calling 
procedure 

terminate 
signal 

Figure 7.3. Conditional DFG. 

When the result of expl is known either the then or the else path is selected. When 

either of these has successfully completed, the signal and result outputs are 
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activated accordingly. However, in this case similar outputs from both branches 

are joined using the merge operator before becoming the inputs to the complete 

and result operators. This ensures that either branch can fire the complete and 

return triggers thus embracing the semantics of conditional operators. Any 

expression or part of an expression that requires sequential execution is ordered 

in a sequential manner so that execution does not proceed in parallel. 

7.5.1 Optimisations to DFGs 

function arguments 

Figure 7.4. DFG for apply. 

The most complex DFG operator is apply. This is needed for user functions and is 

shown above. Each invocation of a user function forces the creation of a new 

apply operator with its own function name and argument inputs. Application of 

user functions are embedded in the apply operator where the non-strictness of 

applications is embodied in the firing rule. Because of non-strictness, a CONS 

cell can be returned before the evaluation of the arguments. This is in keeping 

with dataflow schemes, so we can immediately pass back the CONS cell while 

the rest of the list is being assembled. After each apply completes, the result is 

returned back to the caller apply and, ultimately, the initial starting expression 

block. Even using tail-recursion, the final result has to pass back along the chain 

of applies before a result can be returned. 

One of the optimisations employed in AGNA involved altering the apply 

construct to handle tail recursion better. This was achieved by propagating both 

the result and termination signal of each nested function call forward to the next 
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iterative apply instead of back to the calling apply. A new signal input is added to 

each call to ensure that a call invoked via tail-apply does not complete and send a 

termination signal prior to its caller completing. 

DFGs used in our system are enhanced by the inclusion of operators to 

complement our architecture; define and inverse were mentioned above. The 

standard DFG operator lookup is used to map a bound variable or constant name 

to a token. For names that are part of the meta data-function names, types, and 

global variables-this is easily achieved using the schema tables held in memory. 

Mapping non-string types to tokens is trivial too: simple bit manipulation turns 

an integer or real into a token. However, mapping strings to tokens is more 

complex because of the number of strings used and the possible use of meta 

characters embedded in them, and can give rise to large token sets. We also want 

to give users the choice of aborting a query if there is a high hit rate. To facilitate 

these features, a new DFG operator is introduced to complement the standard 

lookup operator. We call this operator string-map to reflect its use. 

When it has been fired, string-map searches the string tables to accumulate a set of 

string tokens that match the pattern. When this has been done, a count is made 

of the total occurrences there are of words matching the given pattern in the 

database. This total is passed to the user if it exceeds a threshold asking for 

confirmation to continue with the query. If the query is to proceed, the set of 

string tokens is used to accumulate a set of entity tokens for the inverse function 

mapping. This new operator was used in the earlier DFG. 

How do we know when to use string-map and when to use lookup? Lookup is 

used for non-string cases-meta data names, relations etc: the string-map operator 

is used for string constants including those with embedded meta characters. This 

implies there may be more than one instance of the pattern that would generate a 

199 



Chapter 7 

list of string tokens. In the DFG shown in Figure 7.2, the two string constants 

"Fred" and "Freda" are handled by the string-map operator as they are strings and 

might, in other circumstances but not in this, generate a list of results. 

Built-in functions 

Recall from the introduction to DFGs that there is a primitive function operator. 

This is used for built-in functions such as +, -, div etc which often come at a level 

beneath user functions. This category could also cover our range of built-in 

string matching functions discussed in chapter 4. However, as outlined in the 

previous discussion, the patterns involved in handling strings can be such that a 

large set of string tokens is assembled for the mapping process. For built-in 

functions that do not operate on strings the operation proceeds as follows. 

Consider the simple predicate age x > 21. The DFG for this would be 

. list of filtered X's 

Figure 7.5. DFG for built-in function. 

The above shows how the apply function generates a list of triples matching the 

template <age, ?, x> for the third component to be used in the comparison with 

21. For straightforward string expressions (including those with embedded meta 

characters) the situation is different. We use a function contains that essentially 

means the pattern "must be contained in" the attribute. So the predicate, 

fname x contains "Fred%", used with the following DFG, uses set intersection to 

200 



Chapter 7 

obtain a list of string identifiers, then entity identifiers, before the contains 

comparison is made. 

list of filtered Xs 

Figure 7.6. DFG for string lookups. 

Here the apply operator is used to generate a set of XS that may have already been 

reduced by an earlier function application. Therefore the contains operator will 

ensure only those entity identifiers that are relevant will get through. 

Furthermore, note the string-map operator also embodies the apply operator. This 

is discussed in the next section on translation to parallel code. However, there is 

often a better way to handle such functions. Where generators and filters range 

over the same extent, the restrict operator may be more applicable. 

The sub-language function restrict is used to handle generators and filters bound 

to the same variable and passes them to the storage sub-system for the creation of 

the result list. The format of this function is 

x == (restrict extent num-preds {function-name, operator, EXP}) 

where EXP evaluates to a constant. Once this has been done, the restrict function 

can be applied. Thus, for example, the outline DFG for the expression: 

restrict student 2 fname contains "Fred%" age> 21, is shown below. 
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trigger 
student 2 
fname contains "Fred%" 
age> 21 

list of Xs 

Figure 7.7. DFG for restrict. 

Note that the low-level functions restrict, inverse and text-map do not use apply to 

evaluate. Nor do they use lookup and string-map in the same way as user 

functions do. Instead their list of arguments is passed directly to the storage sub­

system to compile a result list once any embedded expressions in their graph 

have been evaluated. The looking up of strings is handled differently because of 

the need to pass conditions directly to the disk array to arrive at a filtered list of 

entity identifiers. The "abort" condition can also be returned from here if the user 

does not wish to continue with the query. 

Finally, the select function is used to select attributes of an entity for display 

purposes. The DFG for this function is similar to those for restrict etc, in that the 

inputs are the trigger and the condition list and the output is a list of items to 

display using a standard print instruction. The next stage involves transforming 

DFGs into machine level instructions and organisation of parallel threads of code. 

7.5.2 Translation to parallel code 

In this section we discuss our parallel abstract machine proposals. In the 

following three pages we give a brief outline of this topic setting out the standard 

code. We pay particular attention to the novel areas that are specific to our 

architecture. The fine-grained threads that underpin the parallelism are allocated 

and managed by a parallel machine. The parallel machine consists of a pool of 

active thread descriptors and separate memories for frames and the heap. Each 
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thread consists of an instruction pointer (IP) and a frame pointer (FP). IP points 

to the current instruction residing in the code of a heap-based procedure call; FP 

points to a frame. 

Frames are allocated and de-allocated as part of procedure call and return, and 

provide local storage for arguments and computation. Organised into a tree, 

there is a frame for each procedure call. Multiple frames can be active 

simultaneously and each frame can have many active threads. The parallel 

machine proceeds by extracting an active thread, executing its current instruction 

and adding to the thread pool any necessary descriptors. The execution order for 

threads is not specified and multiple threads may execute concurrently. 

(a) 

IffI 
O£l 
IffI 
[IfJ 

(b) 

(c) 

(a) Thread descriptors, (b) Frame memory, and (c) Heap memory. 

Figure 7.8. Organisation of the parallel machine. 

Memory is divided into persistent store-storage held in the disk array-and 

heap memory. The heap is used for persistent objects-triples, records, meta 

data-that are added to the database extent after successful termination of a 

transaction, and transient objects-variables, lists, etc-used for the duration of a 

database session or duration of a transaction. 

The semantics of parallel instructions are in terms of state transitions on frame 

memory, heap memory (including persistent store) and the pool of thread 

descriptors denoted (FP, IP). The instructions required for the parallel machine 
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include the standard operators for reduction machines which are found, for 

example, in [HEY91). (In all cases r, ri and rj refer to offsets.) 

Control flow 
• jmp L - add descriptor (FP, L) 

• jmc r L - if frame[FP+r) = 0 add descriptor (FP, L) 

else add descriptor (FP, IP+l) 

• fork L - add descriptors (FP, L) and (FP, IP+l) 

• die - add no descriptor 

• join r bn - if bit n of frame [FP+r) set 
add descriptor (FP, IP+l) 

else add none 

toggle bit n of frame [FP+r] 

Join is used to combine and synchronise parallel threads creating a successor 

descriptor only if the join bit is set to one. For example, in the code below threads 

Tl and T2 are combined and synchronised by the join instruction at Ll: 

Tl: rl f- x 

jmp Ll 

T2: r2 f- y 

Ll: join r3 bO - wait for x and y 

add r4 rl r2 

Tl and T2 place x and y into frame slots rl and r2 and transfer control to Ll. Tl 

transfers control via jmp, whereas T2 just "falls through" where the join bit is 

initially set to zero. When join is first executed (by Tl) the bit is set to one and no 

new successor descriptor is added-the thread is terminated. When T2 executes 

join, the bit is set back to zero and the thread continues with the addition. 

Arithmetic, logic and relational operators 
• binop rl r2 r3 - frame [FP+rl] = frame [FP+r2] binop frame[FP+r3] 

• unop rl r2 - frame[FP+rl) = unop frame [FP+r2] 

• loadc rl c - frame [FP+rl] = c :where c is a constant 

In each case a new descriptor, (FP, IP+l), is added. 
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Heap access 
• load rl r2 - frame [FP+rl] = heap[frame[FP+r2]] 

• store rl r2 - heap[frame[FP+rl]] = frame [FP+r2] 

In each case a new descriptor, (FP, IP+l), is added. 

Inter-frame transfers - call and return 
• f call rl r2 - caller frame initiates callee frame 

let FP' == frame [FP+rl] 

let lP' == frame [FP+r2] 
add descriptors (FP, IP+l) and (FP', IP') 

• fret rl r2 r3 r4 - callee frame transfers result to caller 

let FP' -- frame [FP+rl] 

let lP' -- frame [FP+r2] 

let r == frame[FP+r3] 

let v == frame[FP+r4] 
frame[FP'+r] = v 

add descriptors (FP, IP+l) and (FP', IP') 

In addition to these standard instructions, there are several longer, macro-style 

instructions for frequent database operations. These include the following. 

• AllocObj ect ri rj - allocate & initialise new object on heap 

let type -- frame [FP+ri] 

let size -- frame [FP+ri+l] 
let addr = allocate block of heap memory for size 

frame [FP+rj] = addr 

add descriptor (FP, IP+l) 

• AllocFrame ri rj - allocate and initialise new frame 

let CFP -- frame [FP+ri] 

let RIP -- frame [FP+ri+l] 

let SIP -- frame[FP+ri+2] 

let Res -- frame[FP+ri+3] 
let slots == frame[FP+ri+4] 

:CFP = caller's FP 

:RIP = result IP 

:SIP = signal IP 

:Res = where result stored 

:number of slots required 

let FP' == new frame & set slots to zero 

FP' = (CFP,RIP,SIP,Res) 
frame [FP+rj] = FP' 

add descriptor (FP, IP+l) 

• MakePersist ri rj - move object from heap to persistent store 

let obj == frame [FP+ri] 

frame [FP+rj] = obj 
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frame[FP+rjj = lookupPerAdd(obj) 
else 

let A == address in persistent store 
copy (obj ,A) 

frame[FP+rjj = A 

frame [FP+rj+lj = true 

add descriptor (FP, IP+l) 

• DeAllocate ri - frees heap storage held at address 

let obj == frame[FP+rij 
addtofreelist('obj, length(obj)) 

add descriptor (FP, IP+l) 

Then there are macros pertinent to our architecture. These include 

• InsertNonlexDec - insert non-lexical declaration into update table T 

• DeleteNonlexDec - mark the above as deleted 

• InsertPriFunDec - insert primary function declaration into update table T 

where table T is part of the heap. These match the interface functions introduced 

in chapter 5. As an example, consider the third macro InsertPriFunDec used to 

add the triple 

< 11 age" I 0010 I "person 11 I 0110, 11 integer l1 
I 0010, times tamp > 

to the table T. In this triple, the second field identifies the type of the triple 

(primary function definition), the fourth and sixth fields are the types for the 

third and fifth fields. The macro to add this is 
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let reI -- frame [FP+ri} 

let tty -- frame [FP+ri+1} 

let sub -- frame [FP+ri+2} 

let sty -- frame [FP+ri+3} 

let obj -- frame [FP+ri+4} 

let oty -- frame [FP+ri+S} 

let sec -- frame [FP+ri+6} 

if (ok) 

frame [FP+rj} = () 

:relation name 

:triple type 

:subject name 

:subject type 

:object name 

:object type 

:timestamp 

add (rel,tty,sub,sty,obj,oty,sec) to T 

add (FP,IP+l) to thread pool 

else return error 

The other procedures relevant to our architecture are those that deal with passing 

down generators and filters, inverse functions and selection. These require new 

loader instructions to set up the frame memory. 

loadr rl exp - to load restrict expressions 

loadi rl exp - to load inverse expressions 

loads rl exp - to load selection expressions 

The loadr instruction sets up the required frame offsets to store the extent name, 

the number of predicates and the predicates themselves. The loadi function sets 

up the required frame offsets for the extent-inferred from the function name­

the function name, the operator and the value. The loads function sets up the 

frame memory with the extent, list of entity identifiers and list of functions to use 

for retrieving attribute values. As an example loadr is handled as follows 

Loadr ri exp 
frame [FP+ri} = exp[l} 

frame [FP+ri+1} = exp[2} 

for (j = 1; exp[2} x 3; j += 3) 
frame[FP+ri+l+j} = exp[2+j} 

frame[FP+ri+1+j+l} = exp[2+j+l} 

frame[FP+ri+l+j+2} = exp[2+j+2} 

: extent 
:num preds 

: function 
:op 

:value 
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This uses the number of predicates held in the expression to control how many 

offset places are needed to hold the three elements of each predicate. The Laakup 

procedure is set out below. 

Lookup ri rj 

let name == frame[FP+ri] 

let token == get token for name from meta triples 

if (found) 

frame[rj] = token 
add descriptor (FP, IP+l) 

else return error 

This uses the meta triples to establish and return a token bound to the top-level 

name. The procedure for string-map is more complex and uses the manipulation 

functionfaldr: this is discussed below. 

String-map ri rj 

let name == frame [FP+ri] 

let fun == frame [FP+ri+l] 

let (occ,stoks) == foldr (k rest) APPLY dpe k string-match name 
(0, nil) 

in 

dpes 

if (occ > 6) AND (NOT ok=ask_usr(occ» 

frame[rj] = abort 

else let eids == foldr (m rest) APPLY dpe m open-s fun stoks 

nil 

dpes 

in 

frame[rj] = eids 
add descriptor (FP, IP+l) 

This procedure begins by extracting the name pattern and searching for the set of 

string tokens that fit this pattern across all DPEs using the faldr function. At the 

same time, the number of cumulative occurrences of this pattern is stored into the 

variable ace. If ace is greater than some e threshold, the user is asked if the query 

is to proceed. If the response is yes or ace is under the threshold, the function 

apen-s and the function name fun plus the list of string tokens stoics are used to 
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construct a list of entity identifiers eids to which a reference is added to the frame 

memory. 

Foldr is used for both searching operations so that the list is constructed in 

parallel. Each use ofJoldr would, of course, generate a separate graph so parallel 

execution could proceed. This is not shown explicitly in this example for the sake 

of brevity. However, the ability to do this is the essence of where functional 

programming and parallel processing techniques combine to allow the fine-grain 

parallelism that is required. 

The ability to pass down generators and filters bound to the same variable, is 

captured in the next example procedure for Restrict. This function has a similar 

appearance to string-map but now has to cope with all types-not just strings­

and closes the procedure by making an intersection of each set of entity 

identifiers created for each predicate in the filter. In this procedure 

fun, op and val are the function name, operator and value of each predicate and 

ext is the entity class extent used in the search. Vtype holds the type of the value 

var and, once again, occ is used to hold the cumulative total. 
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Restrict ri rj 

let ext == frame [FP+ri] 

let npreds -- frame [FP+ri+1] 

for (i = 1, j = 1; i <= npreds; i++, j =+ 3) 

let fun == frame[FP+ri+j+1] 

let op == frame[FP+ri+j+2] 
let va1 == frame [FP+ri+j+3] 

let vtype == the type of val 

let ftok == get fun token from meta triples 

if (vtype == string) 

else 

let (occ,vtok) == 

in 

foldr (k rest) APPLY dpe k string-match val 
(0, nil) 

dpes 

if (occ > 9) AND NOT (ok=ask_usr(occ» 

frame [rj] = abort 

else 

hd(vtok) 

let vtok == transform(val) 

in 
let eids[i] == foldr (m rest) APPLY dpe m open-s fun vtok 

nil 

in 

dpes 

npreds 
frame[rj] = rI eids[i] 

i=l 

add descriptor (FP, IP+1) 

The invert procedure handles inverse function mappings of the form 

(inv_fun, op, value) and is similar to restrict. The values are mapped to 

tokens, asking the user if the query should continue where applicable, before 

assembling a set of entity identifiers as the result. Lastly in this section, we show 

the select function used to locate attributes for a given entity identifier or list of 

identifiers for printing purposes. 
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Select ri rj 

let ext == frame [FP+ri] 

let atts == frame [FP+ri+l] 

let eids == frame [FP+ri+2] 

let (rtoks,vals) == foldr 

in 

(k rest) APPLY dpe k get-recs ext atts eids 
(nil ,nil) 

dpes 

frame[rj] = hd(rtoks,vals) 

add descriptor (FP, IP+l) 

This procedure passes down the extent to be searched, a list of entity identifiers 

and a list of relation tokens that are used to retrieve the attribute values. The 

storage sub-system function geCrecs accumulates the results to be displayed and 

in turn uses function geCattributes (discussed in chapter 5) to extract the required 

attributes. Using joldr, each disk in the array retrieves its list of relation­

token! attribute-value pairs (rtoks,vals) to construct its list in parallel. These 

would then be used for any display and print options. 

7.5.3 Graph analysis 

A simple heuristic developed by Iannucci [IAN88j called the Method of 

Dependence Sets (MDS) is used to decide which graphs are worth reducing in 

parallel and which are more concisely performed sequentially. As a simple 

example consider the two ways of reducing the following graph (shown in 

prefix) (* (+ x y) (- x y». 
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x: rlO f- x x: rlO f- x 
fork Tl jmp T 
jmp T2 y: rll f-y 

y: rll f- y T: join r9 bO 
fork Tl add rl2 rlO rll 
jmp T2 sub rl3 rlO rll 

Tl: join r9 bO mul rl4 rl2 rl3 
add rl2 rlO rlI 
jmp T3 

T2: join r9 bI 
sub rl3 rll rl2 

T3: join r9 b2 
mul rl4 rl2 r13 

With full parallelism With partial parallelism 

Note the offsets, rn above, have been chosen so as not to clash with control offsets 

etc. as described in section 7.5.4. With full parallelism, synchronisation occurs for 

inputs x and y and also for the join instructions. In the partially parallel version 

the only synchronisation is for values x and y. After that, all three arithmetic 

operations are performed in sequence. With around 50% less instructions in the 

partial version, it makes sense in this instance to use sequential execution and 

forgo the possibility of executing the arithmetic operations in parallel. The basic 

idea behind MDS is that parallelism is preserved between long-latency 

operations while sequential code is used for connected sub-graphs that do not 

include such operations. 

We include MDS in our architecture because it is well understood, provably 

deadlock free and the latency-directed approach is appropriate for long-latency 

persistent parallel systems. Comparing it to other approaches is not part of this 

thesis. As with list comprehensions, the rationale is that a little pre-processing 

can prove advantageous in the final outcome. MDS analyses and partitions the 

DFGs into parallel and sequential 'blocks' of instructions. A simple example is 

shown below 
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Signal 
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(b) 

(c) 

Figure 7.9. Methods of dependence sets. 

.• 

In this graph the long latency sub-graph-partition (a)-is made parallel. This is 

because any operation that involves the lookup operator could mean access to the 

storage sub-system is required. The arithmetic sub-graph-partition (b)-is 

sequential, executing as + then - then " as shown in the parallel code on the 

previous page. While partition (c) is again parallel. This is because (b) depends 

on (a)'s outputs and (c) depends on (b)'s output plus the initial signal token. The 

partitioning is performed on the graph in the body of each procedure 

definition-the instructions encapsulated by each lambda. Iannucci's algorithm 

for determining dependency sets is as follows: 

1. topologically sort the instructions in each lambda block 

2. uniquely name each long-latency output in the graph 

3. for each instruction j in the block calculate the dependency set (DS). 

DS(i) = <UDS(J) U (0 10 EO i\ long _latency(o) } 
jeJ 
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Where J is the set of instructions from which i receives input and 0 is the set of 

output arcs that connect instructions J to i. 

7.5.4 Allocation of frame slots 

Here the temporary storage implicit in the DFG's is mapped to frame slots that 

hold the synchronisation and values required. Each transaction has one control 

frame to hold details of the transaction, plus any number of procedure frames 

where one frame maps to each user-defined procedure-shown in Figure 7.8. All 

frames consist of lineally addressed memory. The control frame merely consists 

of a slot for frequently used constant 0, a slot for a self-pointer (self FP) and as 

many other dynamic slots as are required. Procedure frames are more complex 

and are shown and described below. 

o 
1 

2 

3 

4 

5 

6 

, 

constant 0 

self FP 
caller FP 
result IP 

signallP 

resu~ 

first argument 

last argument 

first dynamic 

" 
last dynamic 

Figure 7.10. Procedure frame. 

After staring constant 0, self FP, caller FP, result lP and signal lP, the result slot 

refers to the slot in the caller's frame where the result is held. Then there are slots 

for the procedure's arguments followed by dynamic slots. The algorithm for 

mapping graph storage to frame slots, traverses the graph and, for each 

instruction, slot bits for synchronisation, internal use and outgoing, value-
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carrying arcs are added. Static analysis determines when a slot is no longer in 

use and can therefore be considered for re-use quite safely. 

Because the execution of instructions may be unspecified, static allocation may 

not always be enough to guarantee the safe re-use of dynamic slots. For example, 

if a slot ri holds the result of a procedure application, it is only after all the 

following users of the result have consumed its value that it can be safely re­

used; this may not be determinable at run-time. The rule used to determine safe 

re-use is summarised as follows. If there is only one consumer, slot ri can be 

safely marked for re-use. If all consumers reside in the same partition and are 

executed sequentially, the slot ri can be safely re-used after the last one has been 

fired with its value. 

Two sets of free slots are maintained. One set free-slots contain those that are 

immediately available. The other set pending contain slots that will become free 

after the current level of graph instructions are complete. Free slots cannot 

simply be carried forward to the next node in the graph because of the above 

discussion on allocation. There has to be a one-node delay before a slot can be 

considered safe to re-use. 

7.5.5 Mapping DFGs to parallel code 

In this section we show how the DFG operators introduced earlier are mapped to 

the parallel code just discussed. Parallel code for the transaction consists of the 

expanded code of the body followed by frame de-allocation, using the 

DeAllocate instruction, and thread termination, using the die instruction. The 

die instruction ensures that when the partitions are appended, there can be no 

'dropping through' the code of one section to the code of the next section. The 

final transaction code consists of a header, the frame size, base address, the 

parallel code and a static data area where strings are, stored. It is not in the 
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interests of efficiency to copy or even simply move strings around in memory, so 

the static data area is where they are kept. 

Constants are mapped with the lookup operator using the loadc instruction 

followed by the Lookup procedure. 

loadc r7 sname 
Lookup r7 r8 

Figure 7.11. The lookup operator. 

This simply places the constant value into an offset of frame memory for the 

Lookup procedure to handle the mapping to a token. Meta string constants would 

not be moved from the static data area; a pOinter to them is passed into the offset 

of frame memory. For string patterns, the string-map operator translates to the 

procedure String-map, again after the patterns have been placed into frame slots 

beforehand. 

loadc r7 11 Fred%" 
String-map r7 re 

Figure 7.12. The string-map operator. 

The standard primitive function operators easily map across to parallel code. For 

example, the subtract function is as follows 

r~_ rS --loo.. 
-,. sub r9 r8 r7 

r9 

Figure 7.13. The subtract operator. 
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Included in this group are our built-in functions that operate by passing down 

filters and inverses directly to the storage sub-system. The procedure restrict 

translates as follows 

r7 

restrict("student 2 {grade >= 7, age = 36}") 

rB 

loadr r7 "student 2 {grade >= 7 age = 36}· 
Restrict r7 r8 

Figure 7.14. The restrict operator. 

The procedures for inverse and select are similar. Finally, the basic idea behind 

the encapsulating lambda procedures is summarised. Recall that these are used 

for user-defined functions. Expansion of these functions recursively expands the 

body of procedure code. The procedure code is placed in the static data area for 

the overall transaction and a reference to it (the result) is placed in the result slot 

via loadc. Result-return and signal-return translate to the instructions: 

start! r2 r3 r5 rlO and startO r2 r4 respectively. 

The general translation scheme for user applications is this. First, 

synchronisation is provided for procedure input (if required) and a new frame of 

the appropriate size is allocated. When the frame is available, threads in the 

procedure body receiving the trigger, signal and all arguments not requiring 

synchronisation are started. Arguments requiring synchronisation are started 

when both the argument value and new frame pointer are available. Lastly, 

threads are set up to dispatch the result and termination signal. 
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7.6 Performance improvements 

As explained in the introduction to this chapter, performance gains are more 

speculative regarding the provision of a parallel implementation. For this reason, 

and because our dataflow approach is motivated by the AGNA system, we first 

give their improvements and then describe how our projected improvements are 

possible given our enhancements described in earlier chapters. 

From the empirical results of AGNA using a 50,OOO-record database at 202 bytes 

per record, the following improvements apply [HEY91j. With a single processor 

and no index, improvements are as follows. Using low-level filtering-where the 

result list is constructed and filtered in the storage sub-system rather than on the 

heap-query evaluation times reduce from 148 seconds to 34 seconds (a 75% 

saving). There is a slight increase in additional time spent in the storage sub­

system using low-level filtering-from 8 seconds to 12 seconds. However, the 

largest saving is in the reduced time taken to check the predicate-from 114 

seconds down to 4 seconds. Applying indexes reduces response times 

considerably. 

For a single processor using indexes, the initial search figure of 34 seconds comes 

down to 1.1 second. The AGNA system uses an extensive assortment of indexes 

and quotes a total transfer rate of 0.56 megabytes per second. Our architecture 

incorporates a data filter capable of a transfer rate of 12 megabytes per second on 

each processor coupled with a much coarser indexing structure. Their quoted 

figure of 1.1 second using a B-tree comes down to 0.84 of a second using a data 

filter and a full scan of the 50,000 records. However, the average number of 

records to be scanned could reduce to around half that-thus taking 0.42 of a 

second. In both cases time taken to construct the result list is negligible at 0.04 of 

a second. 
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When the same query was run using an INGRES database the execution time was 

0.3 of a second. Therefore, potential response times using our approach would 

come somewhere between the B-tree-indexed, persistent object system (AGNA) 

and the commercial database product (lNGRES). Furthermore, processing 

queries in parallel enhances performance rates still further. 

Speedup is linear for non-indexed access, whereas for indexed records the 

optimum number of processing elements-called DPEs in our architecture-is 

frequently quoted as eight [CHA96]. However, we suggest using ten DPEs for 

the RAID system proposed and feel this is a reasonable compromise. Scale-up­

where the database extent is increased in proportion to the number of processing 

elements-shows response times are constant where there is no index. Where an 

index is used there is a gradual increase in response time in relation to the 

number of machines used. This is due to the increase in communications 

overhead. 

The above figures all assume an even distribution of record placement across the 

processing elements. We showed this is possible and indeed far more likely for 

large data sets by generating random numbers to simulate entity identifiers and 

checking the standard deviation was within acceptable parameters. 

Further comparisons between our approach and INGRES, when parallel 

evaluation of queries is taken into consideration, show the following. Relational 

databases, such as INGRES, have weaknesses when used for graph traversal 

operations because of the 'flatness' of the relational data model. Furthermore, in 

languages such as INGRES, complex operations have to be embedded in a host 

language that gives rise to impedance mismatch problems and the difficulty of 

allowing the compiler to optimise expressions. Additionally, there is a lack of 

expressive power and semantics in relational languages, which is only now being 
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addressed in standards such as SQL:1999. But, while these are still in their 

infancy, functional languages have used such features for many years. 

Finally, the concept of using the RAID copy directly for inverse function steps in 

graph traversal operations means traversal times are reduced. From the 

empirical comparisons between AGNA and INGRES cited earlier, reverse 

traversals were between 1.9 and 2.6 times slower than forward traversals. This 

disparity is not applicable in our system. 

7.7 Discussion 

Following on from chapter 6, we have introduced further concepts in this chapter 

that also form part of our architecture. These are: transformations to a core sub­

languagei the use of optimisation techniquesi the use of an abstract reduction 

machinei and translation of sub-expressions to parallel code using dataflow 

graphs. The aim is to produce fine-grained threads of code for parallel execution. 

These choices are now discussed. 

7.7.1 Using a core sub-language 

Using a core sub-language taken from the query language is a standard way of 

reducing a query language to a more manageable sub-set for the compiler to 

work with. The sub-language has eliminated from it all features of the query 

language that make programs easier to write, which at the same time add no new 

expressive power. The smaller set of instructions can then be used with the 

reduction machine to reduce expressions in a more controlled way. 

Using a reduction machine also complements the functional paradigm more 

naturally. Moreover, if an expression can be optimised by passing down 

generator/filter combinations directly to the sub-system, the user need not be 
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aware of this. So functions like restrict can be used safely as they are brought 

into use by the compiler, not the user. 

7.7.2 Optimlsations 

The optirnisations introduced in this chapter fall into three categories. Firstly, 

there are the traditional algorithrnic- and implementation-based optirnisations 

that have been around for some time. Secondly, there are the optirnisations first 

introduced by AGNA that pass down selections and projections (generators and 

filters) to the storage level for evaluation using open lists. Lastly, there are our 

optirnisations that pass down string and text functions to the storage level and 

those that improve the treatment of inverse functions. 

The functions that operate on strings and texts are an enhancement of the AGNA 

work as they have the capacity to offer far more powerful searching operations to 

the user. Inverse functions are handled by adding an operator to the expression 

and passing this down too. For entity-entity traversal, the storage sub-system 

can then use the inverse triples and the operator to produce a set more quickly 

than by using a generator-filter combination and inferring inverses by software 

alone. Again, this is not obvious to the user. 

7.7.3 Why use dataflow? 

The central theme in this chapter has been the strategy of using a dataflow model 

supporting a MIMD parallel architecture to exploit the inherent parallelism in 

functional languages. Our model uses fine-grain parallelism with data-driven 

execution-both for computation and for long latency disk input/output. Earlier 

research into dataflow architectures has clearly shown this is an efficient way to 

mask the long latencies inherent in a parallel computer [MOR99] [NAJ99]. As a 

model of computation, dataflow has a long history. It has demonstrated its 

flexibility and efficiency in representing computation by the wide variety of areas 
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in which it has been used but is particularly suited to the functional paradigm 

UUL97]. 

7.7.4 Comparison with AGNA 

AGNA was developed as a persistent object system using the functional 

paradigm and list comprehensions built around a lisp-like syntax. Coupled with 

a MIMD parallel processing model and dataflow graphs, AGNA showed how 

subordinating tasks to a lower level can vastly improve upon one of the most 

serious shortcomings of functional languages: performance. 

However, in AGNA the user has to formulate queries in such a way as to make 

predicates for passing to the storage sub-system explicit to the compiler. We do 

not take this view, instead preferring the use of optimising techniques applied to 

queries supplied directly by the user in their raw form. This is easily achieved as 

it merely involves collecting together similar variables with their functions which 

are bound to the same entity class. 

Examination of the schema information during the optimisation process 

identifies functions that range over the same domain thus enabling grouping of 

predicates to be done safely. One way to do this is to move sub-expressions 

around within the expression list that the user supplies in their query. This is the 

way many list optimisations are handled. Again, the strategy is that a little more 

time spent in the pre-processing stage can pay dividends in later query 

evaluation-especially when handling large data sets. 

AGNA made extensive use of indexes on all object fields. This has obvious 

implications for update routines but was in keeping with the thinking behind 

relational languages that use similar strategies. Using a coarse index-sequential 

structure and an on-processor data filter, our architecture is more suited to set 
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collation of triples and records. Moreover, because of the way strings are held­

in look-up tables-searches for incomplete strings can be multi-cast to all disks in 

the array, in the same way as triple requests are handled. 

7.7.5 Parallel Haskell 

Included in the proposals for Haskell 98, is the ability to call 'C' operating 

systems functions directly using the primitive ecaU. The syntax of this is: ccall 

proc e, '" e.. Here proe is the name of a 'C' procedure and el ... en are the 

parameters to be passed to it. This is used in their monads system for 

input/output [PEY93j. 

The ecaU operator is, in fact, a constructor-not a function-that allows stricter 

control of its use and reduces type-checking constraints. However, it is not clear 

if the use of this operator can be embedded in a nested expression of arbitrary 

complexity as our string manipulating functions permit. Moreover, as our string 

manipulating functions are part of the language, they can be called directly and 

do not require an explicit call through the operating system. An example of eeaU 

in a monad for 'putting' a character to the screen translates to the expression: 

putcIO a = ccall putchar a 

7.8 Summary 

This chapter has examined three crucial areas in our architecture: transformation, 

optimisation and translation. Transformation involves converting a user query in 

the model language into a sub-language to make the work of the compiler easier. 

This is shown together with examples. Optimisation can sometimes be 

performed on a given user query-particularly when the query involves using a 

list comprehension. Earlier work in this field is summarised as an introduction to 

our particular optimisations that involve inverse functions, text searching 

functions and selection functions. 
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We adopted a scheme that uses dataflow graphs (DFGs) to show the translation 

of queries into sections of code that can be executed in parallel. DFGs were 

chosen because they are well understood and complement functional languages 

nicely. Again, we highlighted the general concepts before introducing our 

enhancements in the areas of text searching, inverse functions and low-level 

filtering of extents where examples are given to show how the concepts are 

applied. A brief description of graph analysis-using method of dependence 

sets-shows it has been proven that comprehensive parallel processing of queries 

is not always advantageous. The process of mapping DFGs to parallel code is 

covered showing how our functions fit into the overall scheme. 

Finally, the performance gains possible are described. In particular, how our 

approach compares with AGNA and INGRES databases, and how our timings 

come between these two systems. When taking into account parallel processing 

and redundancy, improvements are greater. Using our RAID scheme for inverse 

graph traversal operations removes the disparity of execution times between 

forward and reverse searches in AGNA. 
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Chapter 8 Database creation, population and maintenance 

8.1 Introduction 

Up to this point in this thesis we have discussed a database architecture based on 

the triple store for all data and identified areas where there are weaknesses due 

to the homogeneous nature of this approach. Our answer to this is a new 

architecture that combines the benefits of the functional data model with those of 

the relational data model in such a way that parallel processing of graph traversal 

operations is more easily accomplished. Part of this architecture involves storing 

lexemes separately from entity triples and attribute records so they can be 

searched more easily. In this chapter we show how the standard operations such 

as database creation, population and maintenance are achieved and discuss 

integrity and security issues. 

Throughout the rest of this chapter we frequently refer to two running example 

databases. The North Yorks crime database, with 2,501 crimes used for training 

purposes, and a larger database with 500,000 crimes. This is done to show how 

our architecture scales-up with a realistically sized database for timings and 

space requirements. The schema and triple breakdown for the North Yorks 

crime database are shown in appendices Al and A2. In section 8.4 we introduce 

another, smaller crime database that is used in examples. This is to show 

instances of all data types and the outline structure of data in records. 

8.2 Creating a new database 

Creating a database often involves an experimental and development stage 

before the final database schema and other meta data is agreed upon. It is only 

then that full population of the database can proceed. In this chapter we use the 

term population to mean adding bulk data to the database to put it in a position 

where it can be used effectively. However, as part of the database set-up 

procedure various parameters and constant values need agreeing before 
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population can begin. These include page and buffer sizes, reserved integers for 

the undefined (@) and unknown (?) null values that are supported, the MIN and 

MAX values for each of the type domains, and the reserved integers to be used 

for default entity values, plus any other reserved values. We note that the range 

of built-in types will be extended to include the type text, introduced in chapter 4, 

and the type binary large object (BLOB). BLOB types are used for non-textual 

attributes such as fingerprints and photographs and are deemed essential to 

provide for the richer type structure required in our application domain. The 

token space for each type is drawn from the domain of 32 bits and allocated as 

shown in Table 8.1. (This means, of course, that a 64-bit architecture can easily be 

catered for too.) 

type ratio range type label 
Siring 4 00000000 to 3FFFFFFF OOXX 
Text 2 40000000 to 5FFFFFFF o 1 0 X 
BLOB 2 60000000 to 7FFFFFFF o 1 1 X 
Non-lex 1 BOOOOOOO to BFFFFFFF 1 0 0 0 
System 1 90000000 to 9FFFFFFF 1 0 0 1 
Integer 2 AOOOOOOO to BFFFFFFF 1 o 1 X 
Real 4 COOOOOOO to FFFFFFFF 1 1 X X 

(Where X indicates "don't care".) 

Table 8.1. New type labels. 

The justification for the intervals is largely based on what is in place in the 

current system (see chapter 2 table 2.1). The only difference being that a sub­

domain for internal strings is no longer needed so this has been merged with that 

for strings. Recall that strings are now held delimited toward level, so a larger 

domain will be required for them. The range above allows for 1 billion 

instances-more than adequate in our case. The sub-domains for text and BLOB 

types are just arbitrary: 500,000,000 should be adequate for each. The sub­

domain for text is used for document identifiers and the sub-domain for type 

BLOB is used for BLOB identifiers. 
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In addition to the above, the following data structures are also required. The 

schema table held in main memory (introduced in chapter 5) and the string tables 

and lexical triples both held on disk (discussed in chapter 4). The meta data is 

held in triples, as is the case now and can easily be accommodated in main 

memory-membership triples excepted. The meta data for the North Yorks 

crime database, whose schema is shown in appendix A1, needed 6,170 triples (9 

pages) for storage and this figure is unchanging (it does not increase in relation to 

the volume of instance data). The meta data to be stored includes the 'base_load' 

files that TriStarp uses to hold base types, constructors and string functions as 

well as the standard manipulation functions, such as head, tail and map used in 

user-level functions. The addition of meta data is handled with the functions 

introduced in chapter 5, which are: insert_typcdec(dec), inserCconfun_dec(dec), 

inserCnonlex_dec(dec), insert-Jlfun_dec(dec) and insert_sfun_dec(dec). The ordering 

is on the record identifiers shown in Table 5.1. 

8.3 Populating a new database 

Populating a new database is achieved using macros that can handle the bulk 

creation of membership triples and instance data in the form of entity-entity 

triples and entity-attribute records. In this section, we describe the handling of 

membership triples and outline the procedure for instance data. The treatment of 

instance data is then explained in later sections. 

8.3.1 Inserting membership triples 

The number of 'is-a' or membership triples broadly reflects the sum of the entity 

instances. In the North Yorks crime database there were approximately 10 times 

more membership triples than crime records. (26,500:2,500). Membership triples 

cannot be wholly accommodated in main memory, so need spreading across the 

disk array. After the schema information has been loaded as part of the database 
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set up stage, there are unique identifiers for the various non-lexical types to be 

added-employer, person, etc. 

In the North Yorks crime database there are 2,501 records and 8 non-lexical entity 

types. This combination generated 26,500 membership triples. With a 16k-page 

size and 24-byte triples, this means page capacity is 682 triples-thus 

necessitating around 40 pages. The larger database, with 500,000 records, might 

generate 5 million membership triples requiring around 7,400 pages-too many 

to fit into primary storage. These need spreading evenly across the OPEs. 

Membership triples are inserted with the interface function inserCnon-lex_defldeJ>. 

The format a membership triple takes is as follows: 

<id_bits, "is-a", " employee 11 , Se, NULL, tirnestamp> 

where "is-a" and "employee" are reserved integers from the system domain and 

$e represents the randomly generated, 28-bit identifier for this particular instance 

of an employee. The "id_bits" and "timestamp" fields were discussed in earlier 

chapters. The fifth field is unused. Because of object migration no semantic can 

be attached to the entity identifier in field four. 

Membership triples are ordered on their 'is-a' tag and, within that, on the field 

three type. The data placement algorithm uses the system-generated entity 

identifier (which is guaranteed to be unique) to decide which OPE will hold the 

triple. If ten OPEs are used-as suggested in section 7.6-then the placement 

algorithm needs to inspect the least significant digit (base 10) of field four where 

the range of 0 .. 9 will determine on which disk the triple will be placed. This will 

ensure all membership triples are spread across all participating disks in the 

array. 
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Using as an example the larger database, the figure for membership triples is as 

follows. If 5 million membership triples are to be stored across ten DPEs, there 

will be around 500,000 to each disk. At 24 bytes per triple, this represents around 

12 MB of storage required per disk. With 5 million randomly generated 

identifiers used for (say) 10 entity types across 10 disks, the probability of a fairly 

even distribution is quite likely. In fact randomly generating 5 million integers 

and distributing them in this way gave a mean of 500,000 and a standard 

deviation of 508. 

To search 12 MB of storage with a search accelerator takes around 1 second. With 

the membership triples ordered on type, a coarse index (held in memory) enables 

an indexed sequential search method to be used to reduce search times further. 

8.3.2 Inserting instance data 

Populating a new database with raw data is done with the aid of macros. The 

use of macros has already proved successful with builders of TriStarp databases 

and a full description is given in the TriStarp manual [DOT96j. After macro 

creation (by the DBA), first the attribute records and then the entity triples are 

loaded, linked and inserted into the homogeneous triple store. However, in our 

situation there are some notable differences that reflect the alternative approach 

to storage that we adopt. First, there are different arrangements for storing entity 

attributes and entity-to-entity links. Second, inverse copies have to be created as 

part of our redundancy scheme. Third, we use different data structures for 

lexemes to provide the mapping to entity identifiers. 

So the additions to these data structures are an important part of populating a 

database. The next sections show how additions of the various forms of instance 

data are handled using examples where appropriate. 
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8.4 Attribute records 

One of the crime databases used for training purposes that we examined had 

entities person and report. We use these in the following pages with 

embellishments to show examples of all types used. The schema is shown in 

Figure 8.1 below. 

Figure 8.1. Raw data schema. 

The raw data is held in records (usually one per line) grouped on a variable 

identifier for the entity class name-e.g., per for entity person. The data is entered 

using a typical higher-level graphical interface that controls the format of data 

entries. This is the standard way for data entry as used (for example) in 

INDEPOL [SOU97]. The attribute links in Figure 8.1 might be set out as follows: 

per (pers_no, sex, race, colour, details, 

finger-print, age, height, previous, keywords) 

and an example of the mapping to instance data is shown in Table 8.2: 
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per Instance data 
pers no ~ "42015" 
sex ~ I'M" 
race ~ ? 
colour ~ @ 

details ~ TEXT01 -link to file personal-42015.doc 
finqer _prints ~ BLOB01 -link to file finqer-print-42015.pic 
age ~ 36 
heiqht ~ 3.74 
previous ~ TRUE 
keywords ~ ("GBH","ABH") 

Table S.2. Example of attribute data values. 

The field descriptions are as follows: 

field description 

I'string- quotes indicate string type (N.B. - a single 
character such as "M" is counted as a string. 

? reserved for unknown value 
@ reserved for undefined value 

TEXT01 references the document that follows 

BLOB01 references the binary large object that follows 

36 integer 

3.74 real 

TRUE Boolean 

{ ... , ... , ... } used for list of attributes 

Table S.3. Description of record fields. 

As mentioned above, it is important to stress that entering raw data into the 

system (not the database yet) is done using a strict format. This enables 

continuity to be maintained. Other constraints on data entry- such as how the 

text is entered and delirniters to be used-are not discussed here, suffice to say 

that there is a common 'look and feel' to all aspects of data entry. Entering an 

attribute record proceeds as follows. A new entity identifier-guaranteed to be 

unique-is generated from the sub-domain of non-lexical types (Table S.l. refers). 

The attribute record is written to the DPE indicated by the last digit (base 10) in 
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the entity identifier. In chapter 6, section 6.4.2, we introduced attribute records 

and the fields they comprise which have the following structure 

«id_field,entity, (relations},{attributes},timestamp» 

These are now discussed. 

8.4.1 Id_field 

This is a fixed length field holding the following information. The length of the 

record, the number of attributes in the record and one bit to indicate whether the 

record is 'live' or 'dead'-Le. current or superseded. 

8.4.2 Entity field 

This is the fixed length, randomly allocated surrogate to be used as a guaranteed 

unique identifier for every instance of all entities. 

8.4.3 Relations field 

The (relations} fields-shown in braces to indicate the storage of a set-comprises 

ordered pairs of fixed-length relation identifiers (4 bytes) and offsets (4 bytes) 

into the record. So for the example in Figure 8.1 this field might contain 

{<#pers_no,'offset>,<#sex,'offset>, .;., <#keywords,'offset> } 

where each #x refers to the relation identifier and Aoffset refers to its starting 

position later in the record. 

8.4.4 Attributes 

For (attributes} fields, when a record in raw data format is read the order of the 

fields is set out in the code of the macro created. Each field is comma-separated. 
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As such, the type of each attribute can be inferred from the schema data so that 

lexemes are mapped in the correct way for their respective type signature. This 

means attributes of type string (indicated by" ...... " around a value) require 

storing in the string table as space delimited words. For example, if a single­

valued attribute had the value "bogus gas-man", there would be two entries in 

the string tables-one for "bogus" and another for "gas-man". 

8.4.5 Timestamp 

This is simply the 32-bit times tamp for time of insertion. 

Unknown (?) and undefined (@) values are reserved 32-bit integers. This leaves 

the treatment of text types, BLOB types, multi-valued attributes and default 

attribute values to be discussed. 

8.4.6 Text type 

The way text documents are created is governed by the particular format for that 

class of document. Documents can have field identifiers, sections and sub­

sections and, unlike straightforward string attributes, they are searchable. The 

reason they can be made searchable is that the type text can carry with it a whole 

range of functions to perform specific searches aimed at certain fields of a 

document. For example proximity searches-where it is required that word x be 

no further than y words apart from word z-are applicable to documents but not 

strings. 

Moreover, document searches can seek words in particular sections of a 

document, such as in the abstract or not as the case may be. These searches 

cannot be done easily using the string triples alone. A discussion on this was 

presented in chapter 4. 
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When a database is populated each word in a document (stop words excepted) 

has to be added to the string tables. This is a similar process as happens with 

strings and, once done, the address of the document is added to the appropriate 

part of the attribute record. This is used if the document needs to be displayed. 

If it is desired, creating a set of document triples could provide an inverse 

mapping from document to entity (as with other classes of lexemes). Note that 

the type text is similar to the type CLOB (Character Large OBject) that is included 

in the proposals for what is now designated SQL:1999 [MEL02]. 

8.4.7 BLOB type 

The entry in an attribute record that refers to a BLOB is merely the address of the 

object on disk. BLOB types are not searchable in the same way that text types 

are, but they might be in the future. Again, as with text types, the constraints for 

the type class will allow certain functions only to access BLOBs so the control is 

maintained at a type check level. We note that BLOB type is to be part of the 

SQL:1999 standard [MEL02]. 

8.4.8 Multi-valued attributes 

Included in the attributes there may be some multi-valued relations (sometimes 

referred to as bulk data or l:N relationships). We note from the foregoing 

discussion that these will be identifiable from the schema data (that checks the 

type signature) and the actual raw data where any multi-valued relations will be 

enclosed in braces I .... } in comma-separated format. The layout for the attribute 

field of a record is 

{ <attribute-length, value>, ... , <attribute-length', value> } 

with examples (where the attribute-length value refers to bytes used) 
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{<5,"4201S">, <l,nMn>, <4,?>, <4,@>, <4, "TEXT01>, <4, "BLOB01>, <4,36>, 

<4,3.74>, <4, TRUE>, <{<3,"GBH">, <3, "ABH">}>, <4,timestamp» (1) 

8.4.9 Default values and intensional values 

Recall from chapter 5 section 5.4.6 that default values for an entity attribute 

(lexical or non-lexical) are possible, as are intensional definitions. These are a 

fundamental part of the data model and must not be compromised. Examples of 

these are 

age (x:person) <= 30; 

age Fred <= age MarYi 

/* default function definition */ 

/* intensional function definition */ 

There can be only one default function definition for each function in the 

database and there will be very few intensional function definitions. The schema 

table identifies which functions have intensional definitions and they are held in 

main memory as part of the schema data. In the attribute records (or entity 

triples), a reserved integer-EXP-associates the particular attribute with an 

intensional definition which is then looked up. 

8.5 Storage requirements and placement on disk 

Storage requirements and the placement of data on disk, is now considered for 

the following data types: attributes, string tables and lexical triples, entity triples 

and documents. 

8.5.1 Attributes 

Once an attribute record has been prepared and all the relevant entity mappings 

have been created in the lexical data structures, the record is written to disk. As 

with other data, the last digit (base 10) of the entity identifier determines on 

which disk the record should be placed. 
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Following the discussion on attribute layout, the total storage needs for attributes 

are as follows. From the above example (1) the requirement for the person record 

would be 56 bytes-per-record-not forgetting a byte for each attribute to hold the 

length. To this must be added the id_field, the entity identifier, the set of 

relation-offset pairs and the time the record was entered. The general rule for the 

storage requirement for attribute records for a database is summarised by the 

equation 

where C = number of entity classes, I = instances of each class then, for each 

instance: n = number of attributes, s = id_field size, e = entity identifier field size, 

r = relation field size, 0 = offset field size, a = attribute size and t = timestamp 

field size. However, in the North Yorks crime database the above equation is not 

so easy to implement. Unfortunately, we do not have access to the raw data: it is 

still considered sensitive and thus classified. However, using the triple store, it is 

possible to extrapolate the data and this is shown in appendix A2. Some of this is 

reproduced in Figure 8.2 and used in the following sections which show the 

storage requirements using our new architecture and data structures. 

The information in Figure S.2 comprises four triple types. The membership triples 

map easily to our new ~rchitecture and are not the main focus of discussion here. 

The entity -7 entity triples are likewise straightforward to map across and are 

discussed in the later section S.5.4. The other two triples types, showing the 

breakdown of string triples and non-string triples, are required in several data 

structures-namely attribute records, string tables, lexical triples and documents. 

In all cases, the format a -7 b indicates a mapping from entity a to attribute b­

where b could be another entity or a lexical value etc. 
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Numbers of membership triples for each entity type 
erm 2,501 itm 8,598 pit 5,002 
soe 2,501 gtn 2,501 mop 2,501 
day 2.770 bet 147 Total 26,521 

Numbers of entity-entity triples (A ~ B) - relation name omitted 
gtn ~ itm 8,598 erm ~ gtn 2,501 
erm ~ mop 2,501 erm ~ soe 2,501 
erm ~ pit 5,002 soe ~ bet 2,501 
pit ~ day 5,002 Total 28,606 

Numbers of string triples - Including Internal string triples 
erm ~ tag' 2,501 itm ~ eat' 8,700 

• ~ eir ,!l~,OOO .. " " ~ des 118,000 

" ,2,501.1 • '''t'''':'P'~ """1 
+ + ~ .. !l,.59.8i 

" ~ sep 314,000 mop ~ hfe' 2,700 ,,.,,,. ", . ",.-; 
• + . 2,501 : • ~ mud' 4,400 

" ~ cno* 5,002 • ~ poe' 9,800 

" ~ oir* 2,501 soe ~ pat' 6,800 
• ~ ofn' 4,400 • ~ ped' 2,501 

gtn ~ prt' 2,501 • ~ add 4,000 

" ~ get' 6,700 " + ~,'501J 
bet ~ bed' 147 day ~ dywk' 2,700 

Total = 592,000 

The remaining non-string triples 
erm ~ hoe 2,501 itm ~ val 8,598 
gtn ~ ant 2,501 mop ~ glv 2,501 
" ~ ear 2,501 • ~ Igt 2,501 

" ~ eye 2,501 " ~ fen 2,501 

" ~ emp 2,501 • ~ ied 2,501 
day ~ dno 2,770 bet ~ pph 147 

" ~ mno 2,770 
, 

~ osb 294 

" ~ yno 2,770 soe ~ irl 2,501 
• ~ dnwy 2,770 • ~ gqd 2,501 

Total 47,630 

Figure 8.2. North Yorks crime database - Triple allocation (part of). 

In the section for string triples there are four (shaded t:"C) that have an extra 2,501 

(or 8,598) triples included in the figures. The string totals for these four are 

sufficiently large to require that each of the entity classes will need the string 

identifier triples as well as the totals for the (now broken down) string triples. 
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Examination of the data in appendix A2 shows there are over 639,000 lexical 

triples of which some 592,000 refer to string attributes. Comparing the number of 

triples required in this database, to the size of attribute records held in our 

structure is difficult to do. From the breakdown of triples it is reasonable to 

assume that the scp (definitely) and cir (probably) attributes would now be held 

as documents of type text. Whereas add and des would most likely stay as strings. 

This is because a sample inspection of add and des attributes showed strings are 

spread more evenly across their triples. 

The 47,630 non-string triples all hold a value that fits into 4 bytes. To this must 

be added the 8 bytes for the relation-offset pairs and 1 byte for the attribute 

length per string. The large attributes that relate to scp and cir-now treated as 

text documents-have 383,000 triples between them (314,000 + 69,000). The 

count of words in the scp attribute gives a total of 315,OOO-very close to the triple 

total of 314,000. This is not surprising as each triple holds six characters of a 

string and the average length of a word in the English language is around six 

characters. 

Applying this to the two text attributes gives 383,000 words or around 2.3 million 

characters to be stored which, at 1 byte each, equates to 2.3 MB for the document 

storage. In each record there will be 4 bytes for the link field, 8 bytes for the 

relation-offset pairs and 1 byte for the length (total 13 bytes). As there are 2,501 

for each of the two text types, this translates to 5,002 documents sharing the 

383,000 triples. 

The remaining string triples total of 209,000 averages across 39,000 instances. 

This figure is arrived at by adding the entity identifier count for the string triples 

minus the text triples-the relevant attributes are marked (*) in Figure 8.2. This 

gives around 6 words (bytes) per record (209,000/39,000) to which must be 
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added the 9 bytes above. Putting all this information together and scaling up for 

the larger database example, the storage requirements for attribute records are as 

are as follows. 

non-string triples 47,630 x (4 + 9) 619,190 
string triples (exe. documents) 39,000 x (6 + 9) 585,000 
document values 5,002 x 13 65,026 
actual documents 383,000 x 6 2.3MB 
record_length(2) + id_field (1) + entity surrogate (4) + 
second of entry (4) = 11 x 26,521 291,731 

TOTAL 3.9 MB 
x 200 for larger database = 773 MB 

Table 8.4. Attribute record storage requirements (in bytes). 

With an allocation of 10 DPEs, the above data is stored at around 77 MB per disk. 

In addition to the lexical values held in the attribute records, the requirements for 

the string tables and lexical triples have to be calculated . 

. 8.5.2 String tables and lexical triples 

The duplication of strings might at first seem wasteful. But, this is mitigated by 

the benefits of greater search opportunities (discussed in chapter 4), together with 

the redundancy value of duplicating the string table in reverse order. Moreover, 

because of the nature of our application domain (investigative systems) there is 

likely to be a recurring vocabulary in strings and texts following the initial 

loading of a few records. 

By first eliminating 'stop words' the dictionary of the domain quickly becomes 

clear; an inspection of the North Yorks crime database confirmed that there is 

much duplication of short strings across records, and of individual words in long 

strings. In the current system, using the triple store, the first occurrence of a 

string generates a set of triples to hold the full string. Thereafter subsequent 
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instances of the same string merely result in one triple being added to the store. 

In our case each new word added requires a new row in both string tables; 

repeats of a word only require the occurrences field to be incremented. 

The size of the string tables is a function of the number of unique values to be 

stored. A standard dictionary might have 0(68,000) separate references that we 

use as an example case in this section. The composition of a table row is as 

follows 

word token length occurrences 
averages (say) 7 bytes 4 bytes 1 byte 2 bytes 

so a reasonable estimate of the size might be 68,000 x 14 bytes = around 1 MB of 

storage required, although this is highly variable. This table is duplicated under 

the RAID architecture where the second copy is in reverse string order. The 

storage requirements for the lexical triples are more complex to calculate. In our 

example for the North Yorks crime database, there are 36 lexical attributes of 

which 18 are for non-string types. For these attributes each value is capable of 

being held in four bytes, so the triple total of 47,630 is the same. 

For the 18 string attributes, the two large, text attributes for cir and scp are 

discussed below. The other 16 attributes are either one word attributes or 

represent multi-valued attributes. Even the attribute total for des (118,000) is not 

excessive bearing in mind the 8,598 instances of itrn in the database. Moreover, 

examination of the des attributes showed there is very little word duplication. 

This translates into a triple-far-triple measurement. Therefore there would be 

around 209,000 string triples for these 16 attributes. 

8.5.3 Text attributes 

For the remaining two text attributes (scp and cir with 314,000 and 69,000 triples 

respectively) simply mapping their total triples of 383,000 to words is not 
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accurate enough. It does not take into consideration word duplication that can 

occur in the same document. To reach a figure for the scp attribute we counted 

the number of words that re-occurred in the first 10 records. These first 10 

records contain 1,113 separate, space-delimited words of which only 631 are 

unique, representing 56%. If this is applied to all the words that comprise the 

two text attributes-and this does not seem an unreasonable assumption-their 

combined word total of 383,000 @ 56% equates to around 215,000 unique words 

that require storage as string triples. 

We note that there is also much duplication of strings across records, so the 

215,000 unique words correspond to the number of string triples needed but not 

rows in the string tables. This is because every occurrence of a unique word in 

every attribute requires an entry in the string triples data structure. Putting the 

foregoing figures together we can arrive at a lexical triple store requirement as 

shown in Table 8.5 where a scaling up factor of 200 gives similar figures for the 

larger database of 500,000 records. 

number of string triples non·strlng text attributes totals 
records triples .. 

2,501 209,000 47,630 215,000 471,630 

500,000 41,800,000 9,500,000 43,000,000 94,300,000 

Table 8.5. Lexical triple store requirements. 

A summary of the storage requirements for all structures is discussed in 

section 8.5.6. Next we consider the addition and storage of entity triples. 

8.5.4 Entity triples 

In the current system the raw data is inserted into the database in the following 

order. First the lexical attributes are loaded using predefined macros that match 
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the ordering of the raw data, then the entity triples (or links) are created using a 

unique key from the attributes. Again, this is done using macros and local 

variables to obtain the inverse (A-7E) of a function (E-7A) that gives the entity 

identifier to be used in the link. Using our example from Figure 8.1, we could 

imagine a link called link from person -7 report where we want to connect a person 

with pers_no "123" to a report with rep_no "789". (In this case the linking attributes 

are guaranteed to be unique and, as such, act like the primary keys in a relational 

database.) To do this, inverse functions are used on the two attributes to obtain 

the required person and report identifiers and the link is then set up. Instructions 

to do this as part of the macro are: 

$p ;::;: head inv....,pers_no "123 11 i 

$r == head inv_rep_no 11789"; 

link $p <= include $r; 

As inverse functions are not physically stored in the current system, the above 

sequence can involve considerable effort in collecting the required triples to map 

to the inverse. The result is always a list-hence the need to use head to extract 

the desired element. With our data structures we can use the string table to 

ascertain the entity identifier-given the lexeme and relation-without an 

exhaustive search of the records themselves. 

Once the two global variables-$p and $r-hold the two entity identifiers for 

person and report, the triple can be written to disk. In the case of the above 

example, the following triple is constructed (where all fields are of fixed length). 

~id_field, link, person, report, NULL, timestamp;> 

This is stored on the disk that shares the last digit of the person identifier. In the 

case of multi-valued entity -7 entity relationships, for example, the mapping 

person -7 crime via relation commits in Figure 8.1, the process is as follows. First 
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each given key attribute value for the range (crime) is used to generate a range of 

entity identifiers, i.e. a set of crime identifiers in our case. Then the domain 

identifier person is obtained, as described above for inverse functions, before 

being mapped to each crime identifier in the set. This results in the following 

triple assignment-the existence of entity identifiers $p for person and $c1, $c2 

and $c3 for crime is assumed. 

«id_field, relation, $p, $cl, NULL, timestamp» 

«id_field, relation, $p, $c2, NULL, timestamp» 

«id_field, relation, $p, $c3, NULL, timestamp» 

The storage on disk is such that triples are grouped into entity classes first and 

then ordered on relation field, domain field and (if needed) range field. Storage 

requirements are as follows. From the triple summary in Figure 8.2, we note that 

the North Yorks crime database has seven entity -7 entity relations that use 28,606 

triples which, at 24 bytes per triple, amounts to a storage requirement of 686,000 

bytes. For the larger database of 500,000 records there would be 5,721,200 triples 

needing 137,308,800 bytes of storage. When these are spread across 10 OPEs and 

duplicated for RAID and inverse function use, there are around 27 MB on each 

OPE. 

8.5.5 Documents 

Finally, in this section, we must consider the additional storage requirements for 

the field delimiters in the actual documents themselves. Recall that the 383,000 

triples equate to 2.3 million characters (bytes) at 6 bytes per triple. Also recall 

that the number of triples relates closely to the number of words. So, with 

383,000 words split into an educated guess of 14 words per sentence, there would 

be around 27,300 sentences. Each of these needs a start and stop byte giving 

55,000 bytes of storage. 
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To this must be added some bytes for section and paragraph delirniters although 

there will be fewer of these. It's not easy to arrive at an accurate figure for the 

number of sections or paragraphs, as each document will differ greatly. 

However, using the statistics from this chapter for example, we can estimate that 

there could be around 1,000 sections and 4,000 paragraphs in the documents that 

total 383,000 words. This would result in another 5,000 start and stop bytes 

needed totalling 10,000 bytes. 

The final analysis of individual documents could vary greatly but, using our 

assumptions, the revised amount of space required for the documents is now 

shown below. 

database document bytes plus plus section total storage 
size word size required sentence and paragraph requirement 

delimiters delimlters In bytes 

2,500 383,000 2,298,000 55,000 10,000 2.36 MB 

500,000 76,600,000 459,600,000 11,000,000 2,000,000 472MB 

Table 8.6. Total document storage requirements. 

8.5.6 Total storage requirements 

To summarise this section, we give figures for typical storage requirements with 

the running examples used. In some areas the figures are fairly arbitrary but give 

an indication of how the architecture scales up. The figures also include an 

amount for a temporal index: this is discussed in the next section. 
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2,500 record crime 500,000 record 
database database 

triples or storage required triples or storage required 
records (in bytes) records (in bytes) 

schema triples 6,170 148.000 6.170 148.000 

membership triples 26.521 636.000 5.304.000 120.000,000 

entity triples 28.606 2 x 686.000 5.720.000 2 x 137,300.000 

attribute records 26.521 I.S61,OOOt 5,304.000 312,200,000 

documents - 2.360.000 - 472.000.000 

string tables - 2 x 1.000.000 - 2 x 1.000.000 

lexical triples 471.000 5.652.000 94.300.000 1.131.600,000 

temporal index - negligible - 880.000,000 

TOTALS around 13.7 MB around 3.2 GB 

Table 8.7. Total storage requirements. 

For a comparison with the current storage requirements of the Birkbeck Triple 

Machine (BTM) the following is noted. Of the triples shown in appendix A2, the 

crime pattern analysis triples are not applicable; they were added to the software 

for a specific purpose and are not included in our calculations in this chapter. 

The remaining 710,095 triples are packed 382 triples-per-page with a page size of 

16,384 bytes. Comparison with the figure of 13.7 MB in Table 8.7, however, has 

to be made assuming a full page capacity of 682 triples (as we have done above). 

Therefore a fairer measure of the storage requirement for the BTM is as follows. 

710,095 x 16,384 17 
--'----'-- '" MB 

682 

The 13.7 MB above provides a space saving of 3.3 MB or '" 19% on the BTM. 

In our system, the placement of data on to a disk in the array is shown in Figure 

8.3 where each section has a pool area for additions. 

t Taken from Table 8.4 minus the actual documents themselves. 
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8.6 Indexing 

Chapter 8 

system triples (schema) 
membership triples (is-a) 

entity triples 
attribute records 

documents 
temporal index 

string tables 
lexical triples 

Figure 8.3. Storage architecture. 

One of the features of this architecture is that indexing is kept simple and at a 

coarse level. This complements the use of a search engine. There is little to be 

gained-indeed time can be added-in maintaining a complex indexing structure 

to give a more precise entry point into the disk arrays [MAL79]. Often such 

complex indexes cannot fully reside in main memory and overheads can 

accumulate as sectors are retrieved to follow a potentially lengthy trail of 

pointers to the data. Maintaining the integrity of complex indexes is also costly. 

However, index provision is an essential part of a storage system, so the 

proposals for our architecture are set out in the following sections. 

8.6.1 Schema triples 

There are only 6,000 or so of these which, at 24 bytes each means storage of 

148,000 bytes. This is sufficiently small and can be accommodated wholly into 

main memory occupying around 12 pages using a 75% occupancy rate. Indexing 

is therefore not an issue. 
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8.6.2 Membership triples 

With around 12 MB per disk this gives a complete search time of around 1.2 

seconds using sequential scan (n = 12 MB and search rate = 10 MB/sec). If each 

disk had a local index for entity class boundaries within its allocation of 

membership triples, this would give an indexed-sequential entry point for each 

class of entity on each disk to be used if required. This could bring scan rates 

down to an average of .6 of a second. 

8.6.3 Entity triples 

At 24 bytes per triple and duplicated in inverse function order, these require 

around 275 MB of disk space spread over 10 disks. Again, a simple index on 

entity class boundaries provides an indexed sequential method of access to 

reduce the 27+ MB to be searched on each disk. Note that each disk needs two 

indexes-one for the normal function mapping and one for the inverse that 

doubles as a RAID copy. 

8.6.4 Attribute records and documents 

After the lexical triples and temporal index structure, this set represents the 

largest to be stored on the disk array. Inspection of the storage requirements for 

the attribute records and documents in Table 8.4 reveals the following. Of the 3.9 

MB total storage for the North Yorks crime database, around 2.3 MB refers to 

documents pointed to from their respective record via a document identifier. 

Scaling these figures up by 200 means that, for the larger database, there is 

around 300 MB relating to attribute records and around 470 MB relating to the 

documents themselves. Therefore searching the index for attribute records is 

confined to the 300 MB held in class order on each disk at 30 MB per disk and, 

within that, in relation and entity identifier order. As before, using indexed 

sequential access and a search accelerator, the required records can be identified 

on each disk in parallel for return to the controlling processor. 
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The documents themselves are searchable and have structure (sub-sections) 

within them and are indexed indirectly via string identifiers and entity 

identifiers. Documents also have their own set of search functions applicable to 

text type attributes only-as described in chapter 4. The start and stop section 

markers can be used as a (very) coarse index to specific points within a document 

from where a sequential scan can begin. 

8.6.5 String tables 

The strings are duplicated in reverse order (the RAID copy) and, although the 

size of these tables is very dependent on the particular vocabulary for the 

application, the indexing will always be fairly coarse. In our earlier examples we 

quoted 68,000 unique strings giving around 1 MB of storage for each table. 

However, this figure could vary considerably. 

In our experimental programs, where we searched through 5.5 million strings, 

we used an index based on the 26 letters of the alphabet. This proved sufficient 

to locate a starting pOint for sequential scanning of a sub-set of the strings. 

Following the collation of a set of string tokens, the next stage is to map these to 

entity identifiers via the lexical triples. The size of these is considerably larger 

and is discussed next. 

8.6.6 Lexical triples 

As there are in excess of 1 GB of lexical triples to store, the index for these triples 

represents one of the largest to be maintained in the system. Recall that the 

lexical triples are ordered on each disk as follows: 

1. sort into entity class order 

2. within that sort into relation order 

3. within that sort into lexical token order 
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4. within that sort into entity identifier order. 

Table 4.10 in chapter 4 gives a small example of the structure for storing string 

triples. Following our earlier example of a 500,000 record database, the 94.3 

million lexical triples require indexing as follows. 

Non-string triples 

From Table 8.5 there are 9.5 million of these. They provide the mapping from 

non-lexical types-such as integer and Boolean-to entity identifiers. Ordered as 

above, they are spread across the disk array by a hash value taken from the 

lexical value. For example, a triple with the pattern: 

<relation, 23135", entity_id> 

would be placed on disk 5 because 5 is the last digit of the lexical token. On each 

disk indexed sequential access follows a coarse index on the relation. 

String and text triples 

These form the bulk of the lexical triples-over 84 million in our example (41.8 

million string + 43 million text)-and are ordered as above. As they are created, 

loaded and sorted at the time the database is populated, a standard way to index 

such large numbers is via a B-tree. However, if we wish to maintain consistency 

with a coarse granularity indexing structure, an indexed sequential method is 

used on each disk to search around 8.4 million triples which, at 12 bytes-per­

triple, gives around 100 MB to search at around 10 MB on each disk. 

8.6.7 Temporal indexing 

A feature recognised as missing from the original TriStarp proposals, was the 

ability to make searches of the triples in historical context. The tag field used to 

store the date of insertion was not easily searchable as it was not specified as a 
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secondary key. This situation can be remedied by building a secondary index on 

the times tamp field. This is done on database set-up and updated on database 

re-organisation. As the ordering of these triples is a sequential set, an 

appropriate data structure is a B+-tree [KNU73]. The salient features of which 

are: 

• an integer M controls the maximum children allowable for each node 

• all nodes, except the root node and terminal nodes, have at least M/2 
children and not more than M children 

• all terminal nodes are at the same level, and thus the same distance 
from the root node 

• a non-terminal node with k children contains k - 1 keys 

• terminal nodes represent the sequence set of the data file. 

In our case we are using the structure in a static way, so the level of bushiness, M, 

can be determined by how much information can be accommodated on a page in 

memory. If a page in memory is taken as 16,384 bytes, then the following needs 

to be held in it. A number of index keys-in this case representing the 4-byte 

timestamp fields-and a set of pointers to children (other pages in the tree) that 

are accessible from this node. We have chosen 4 bytes for the tree pointers (232 

giving ample range) although 3 bytes could equally have been used. 

The timestamp field need not be held in its entirety as the key. Some of the high­

order bits in the times tamp field are identical-and therefore could be factored 

out of the index key. However, if we were to use a 10-year slot as the critical time 

slice, we would still require 29 bits in the index key; this number of bits is needed 

to store 315 million+ seconds that appear in 10 years. It is just as easy to store the 

full 32 bits of the times tamp field as the index key and therefore keep the field 

modulo8. 
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The terminal node level does not need tree pointers but instead needs 

record/triple addresses that are also 4 bytes long. For the non-terminal nodes, 

there must be one more tree pOinter than there are index keys. So, if the tree 

pointer is 4 bytes long, this means a 16 Kbyte page for non-terminal nodes can 

best accommodate 2,047 index keys and 2,048 tree pointers (2,047 x 4) + (2,048 x 

4) = 16,380 bytes. There are then 4 bytes free in which to store the current 

number of index records in the page. M is therefore 2,048. From Table 8.7, the 

depth of the B+-tree for 5.7 million E-7E triples, 5.3 million E-7A records, 5.3 

million 'is-a' triples and 94.3 million lexical triples is: flog204S110,OOO,ooo 1= 3. 

To accommodate all of the non-terminal index nodes in memory for 110 million 

triples and records could require 20482 or 4 miIlion+ pages. This is looking at the 

maximum pages required. If the root level (1 page) and the second level (2,048 

pages) were held in memory, 2,049 pages (33.5 MB) are required. Then there is 

one disk access needed to get the terminal node information from the last level of 

the non-terminal index nodes before the terminal node level itself can be accessed 

as a sequential set. Finally the triples/records themselves need retrieving. 

However, this is a rather expensive approach as shown in the following table. 

level pages contents storage needs 

1 1 2,048 keys & pointers 16 KB in memory 

2 2,048 4+ million keys & pointers 33 MB on disks 

3 4+ million max 8 billion keys & pointers ? on disks 

then retrieve triples/records from disk 

Table 8.8. Storage requirements for temporal index. 

A better scheme takes the storage requirements from the bottom up. For 

maximum efficiency, we need to determine the total storage needed for the 

terminal node pages and work up allocating non-terminal node pages as 

251 



Chapter 8 

necessary. The terminal node pages require 110 million 4-byte keys and 4-byte 

triple/record pointers plus a pointer to the next page in the sequence. 

index keys (2,047 x 4) = 8,188 bytes 
triple/record pointers (2,047 x 4) = 8,188 bytes 
sequence pointer 8 bytes 

16,384 bytes 

So 110,000,000/2047 gives 53,738 pages to hold the terminal indexing 

information. At 16 Kbytes per page, this gives a storage requirement of 880 MB 

to be held on disk. The higher levels can then be held in main memory as shown 

in the following table. 

level pages contents storage needs 

1 1 27 keys & pointers 28 pages and 460 

2 27 53,738 keys & pointers Kby1es in memory 

3 53,738 110 million keys & pointers 880 MS on disks 

then retrieve tripleslrecords from disks 

Table 8.9. Optimised temporal index requirements. 

This shows the allocation of pages optimised for placing the non-terminal levels 

into memory. Now just one disk access is needed to get the terminal index node 

information. 

The terminal node level of the index can be held in a different data structure, as it 

is a sequential set. The 880 MB of storage required is spread evenly across the 

disk array-giving around 88 MB to search on each disk in a lO-disk array. In 

order to involve each disk in a temporal search and spread the load evenly, the 

same placement algorithm used for entity triples can be applied here. In other 

words, the least significant digit (base 10) of the index key is used to determine 

which disk a 'key/disk address pointer' combination goes on to. Searches now 
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proceed by multiplexing the range of seconds and collating the results. On each 

disk, an indexed-sequential search is again used. 

Note that the structure in Table S.9 has flexibility built into it. Storage at the first 

and second level could be raised to 1 MB-for example-using around 62 pages. 

These pages would provide for at least 129,000 terminal node level pages which, 

in turn, could hold up to 264 MB of 'key/disk pointer' pairs. 

8.7 Adding and deleting data 

One of the benefits of functional programming languages is referential 

transparency, which means the value of any expression is immutable. Therefore 

functional programming languages enjoy ease of reasoning, freedom from 

detailed execution order and, freedom from side effects. However, the price to 

pay for these advantages is that assignment, or updates-in-place, are not allowed. 

Because updates in a purely referentially transparent database are so difficult, 

many languages-often referred to as impure languages-compromise and use 

assignment. The consequences of this can be severe. 

A detailed evaluation of different update methods is beyond the scope of this 

thesis. However, some examples of different approaches are as follows. McNally 

et al [MCN90] use response/request streams. These incorporate lazily evaluated 

lists but are hard to write and understand. The scoped referential transparency 

scheme of Meredith and King [MER9S] permits updates by functions with side 

effects. To counteract these side effects, an effects checker is used. In parallel 

Haskell [ARG87] a tree structure is used to underpin the database. Each time an 

update occurs, only the nodes in the path from the root to the new value are 

replicated. 
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FDL was developed as a pure language where updates can only occur at the 'top 

level' by using let .. in constructs. This means that it is not possible to perform a 

group of assertions atomically in a concurrent program. The way this is handled 

is by marking the triple to be amended as deleted and then inserting a 'new' 

triple with the amended value. The old triple is then archived at a later date and 

replaced by the new one. In our case, we are now dealing with records and 

triples but there is still scope for the 'deletion and insertion' method as above plus 

a temporal dimension as previously described. 

Recall from chapter 4 that in our application domain databases are primarily 

used for browsing and searching. Data entry tends to be done in batch entry 

mode with the database being updated and optimised off line. In chapter 3 we 

identified that only 5% of the UK Inland Revenue files required alteration (on a 

daily basis) and that this could easily be done overnight. From the earlier 

discussion in this chapter, it is clear that our treatment of adding bulk data is that 

this is done statically. This means it can be optimised for such tasks as indexing 

and searching. However, any working system must cater for the dynamic 

dimension with new data being available to browsers immediately. So, additions 

and deletions of the various types of data are as follows. 

8.7.1 Membership triples 

As these are spread across the disk array ordered on their last digit, new triples 

can be directed to the appropriate disk for addition to a pool area at the end of 

the sub-section of that disk. A re-ordering of the triples can be done when a 

suitable threshold is reached on each disk in the array independent of other 

disks. Examination of the id_field of any triple identifies whether the triple is 

'current' or 'deleted', although deleted triples are not removed at the time of 

deletion. The new triple added to the pool area supersedes the old one and is 

used in any operations that involve its entity class. In our example database, 5% 
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of 5,300,000 triples gives an average of around 265,000 updates each day which, 

at 24 bytes per triple, equates to 6.3 MB. 

8.7.2 Attribute records and documents 

Attribute records are updated in the same way-by marking a record 'deleted' in 

the id_field and adding another to the pool area in the sub-section of the disk 

reserved for attribute records. The only difference being that the average length 

of an attribute record is 150 bytes compared to the 24 or 12 bytes for other triples. 

5% of 5,300,000 attribute records would give an average daily update of 265,000 

records-around 40 MB of data to be updated. Document additions/deletions 

are treated similarly. However, when a document is deleted, the words in it also 

need deleting from the string triples and the string tables occurrences field is 

reduced accordingly. 

8.7.3 Entity triples 

With 5.7 million that need duplicating, there will be a total of around 11 million+ 

triples, where perhaps 500,000 need updating each day. Again, the id_field will 

identify the status of a triple in situ. Furthermore, for this type of data-where 

there is always a fixed length-better placement of data can be achieved. 

8.7.4 Lexical triples and string tables 

Each time a new word is added a check is made to see if the word already exists 

in the string tables. If it does, the only action is to increment the occurrences field 

and then insert the required lexical triples. If the word does not already exist, a 

new record entry is created in the string tables with a new and unique string 

identifier allocated for the new word. Any lexical triples are then added as 

necessary. Deletion of a word from the string tables can only be permitted when 

there are no other uses of that word in the database. Provision can also be made 

to archive unused words. 
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8.7.5 Schema data 

From the information obtained from the North Yorks crime database, schema 

triples amount to only 6,170 representing 148 Kbytes. This figure is largely 

invariant and can be accommodated quite easily in memory. However, any 

major changes to the database schema can involve altering large amounts of 

instance data (records and triples) and membership triples-although, because 

semantic-free identifiers are used, there should be no need to alter lexical triples. 

For example, object migration might mean an entity, E, is split into two entities, 

El and E2, where some of the attributes are carried over to El and others to E2. 

This is shown in the next simple example where we assume two instances of 

entity person whose identifiers are 1234 and 5678 respectively. 

Al A2 

Figure 8.4. Schema changes. 

The triples accompanying the person entity and how they need changing to reflect 

the new entities man and woman are shown below followed by an explanation of 

what data is affected. 

With person entity With man/woman entities 

1 <is-a, person, 1234> <is-a, man, 1234> 

2 <is-a, person, 5678> <is-a, woman, 5678> 

3 <married_Io, person, person> <married_Io, man, woman> 

4 <1234, (rl, All, (r2, @l,l> <1234, (rl, All, I> 

5 <5678, (rl, @l, (r2, A2l, I> <5678, (r2, A2l, I> 

6 <married 10, 1234, 5678> <married 10, 1234, 5678> 

Table 8.10. Triples and records for schema changes. 
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The is-a triples (lines 1 and 2) merely need altering to reflect that the entity has 

changed from person -7 man or person -7 woman. As the is-a triples are spread 

across the disk array, the changes and any re-ordering can be handled on each 

disk. The schema triple (line 3) is held in memory and is a simple change. The 

entity triple (line 6) requires no alteration. However, the biggest changes are 

required for the attribute records (lines 4 and 5). Each attribute record needs 

splitting so that the correct attribute(s) are saved with the respective entity 

identifier. This means deleting the original attribute and entering the two new 

ones. As with other data types, the last digit signifies which disk the attribute 

records are on and this will remain the same for all such cases. Note that such 

changes do not affect the string tables or lexical triples. 

Generalisation-combining two or more entities into a single entity class-can 

also be achieved. In the example above, for instance, we might want to merge 

man and woman into person. The reverse of the actions described above would 

therefore be required. For more complex changes, it is more likely that a new 

schema would be described and the database re-created from the raw data 

[GUE92J. 

B.B Other DBMS related issues 

In this section we briefly mention other important areas that must be considered 

by the database designers-integrity, concurrency and security-and show how 

they can be adequately accommodated within our architecture; although these 

areas are not a main focus of this thesis. 

8.8.1 Data integrity 

These are aspects of database systems that have been well documented over the 

years. In our case, integrity constraints are considered as schema data (and held 

as schema triples) and are adequately catered for via the integrity constraints in 
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list comprehensions discussed in [POU89]. An example follows where the 

existence of entity person and relation name_of is assumed. The integrity 

constraint is designed to ensure that there is no person with an unknown '7' or 

undefined '@' name. Integrity constraints are Boolean-valued functions with zero 

arity and must always evaluate to true-the empty list. They are used when data 

is being entered at population time or when later data is added to a working 

system. 

must_have_name : ~ Boo1; 

must_have_name <= [ x 11 x ~ A11-person & 

(name_of x = @) or (name_of x = ?)] = []; 

It is customary for standard systems to maintain transaction logs for day-to-day 

usage. If a system crash occurs inspection of the logs enables data to be 

recovered. In our system, copies of entity triples and string tables as part of our 

RAID mirroring scheme provide security, particularly in the case of corruption of 

a whole disk. There are also the additional parity RAID disks that can be used to 

re-constitute any of the other disks in the array to get the database back to a 

correct state. 

8.8.2 Concurrent access 

In today's large-scale multi-user systems, it is standard practice to use a 

combination of object locking and timestamping to maintain data conSistency. 

Our situation is no different. However, this only applies to the work of data 

entry personnel, it should not be allowed to affect browsing of data. The effects 

of data entry can be minimised by updates to sections of the files so that locking 

is applied at a record level rather than at a database level. 
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8.8.3 Security 

Users require that their data be protected against unauthorised access and 

update. The 'value' of data varies between different systems: by value we mean 

the costs involved if data is disclosed or destroyed against the wishes of its 

owner. These considerations will have more bearing for some systems than 

others. In the domain of investigative systems, the personnel browsing the 

system will be trained officers and expected to seek connections between various 

items of data. Moreover, the phenomenon sometimes applicable to statistical 

databases-whereby unauthorised access to sensitive information is gained by 

counting records using set and Boolean operators and negation-does not apply 

in our case. The information is there to be manipulated using any number of 

hypotheses to arrive at various conclusions. However, protection must be 

provided against improper deletion of data-which can be built into integrity 

constraints. 

8.9 Summary 

In this chapter we have used two running example databases to show how 

database creation, population and maintenance are handled. The North Yorks 

crime database is built around real-life data used for training purposes by the 

North Yorks police force. It gives a good idea of the types of data used in our 

domain and how entities and attributes relate. We scale up the data in the crime 

database to arrive at a much larger and more realistic database. 

Because we do not have access to the raw data from the crime database, we are 

unable to obtain an accurate estimate of the size of a larger database built using 

our architecture. Therefore we obtained the required information by 

extrapolation from the triples that constitute the crime database and create the 

records and triples that would exist if this data were stored using the new 

architecture. It is then possible to calculate the storage requirements and how 
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they map to disks in the array. An important aspect of the development of our 

system is that object migration-generalisation, specialisation etc-must be 

searnlessly catered for. We show that using a combination of triples and records 

does not compromise object migration because the semantic freedom of object 

identifiers is maintained in our architecture. We also discuss an index scheme to 

add a temporal dimension, although there are many other ways to go about 

achieving this. 
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Chapter 9 Summary, conclusions and further work 

9.1 Introduction 

This chapter draws together all aspects of this thesis into a summary that 

contains the statement of the problem, alternative solutions considered, the 

solutions chosen with reasons, evidence to support the solutions and conclusions. 

Finally further areas of work in relation to this thesis are suggested. 

9.2 Statement of the problem 

The Triple Store Applications Research Project (TriStarp) was started in 1984 and 

led by Professor Peter King at Birkbeck College, University of London. The 

objective was to explore and develop the functional view of the binary relational 

approach as a database formalism and combine this with functional 

programming. The results were successful and the project has undergone several 

enhancements since then. In 1994 Professor Victor Maller joined Professor King 

in a collaborative project of which this thesis is a part. The storage sub-system 

underpinning the project since its inception has been a software triple store­

discussed in detail in chapter 2. We highlight below areas where we believe 

there are important omissions from, or weaknesses in, the TriStarp proposals that 

this thesis aims to tackle. 

An intrinsic belief from the outset of the TriStarp work has been the strict 

adherence to a triple store for all data. Clearly some data is best considered as 

triples and the concept nicely complements the functional model with its three­

element data structure <subject, relation, object>. However, other data does 

not fit as easily into this structure. Strings are the main example and were 

discussed at length in chapter 4, but other data types-such as binary large 

objects-would be just as unwieldy broken down into a triple structure. We 

believe this distinction between the logical level of data and the physical level of 

data was an important area overlooked. Although the simplicity of a semantic-
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free interface is persuasive, we believe it is too rigid to permit the enhancements 

necessary to make the software a more attractive commercial prospect. We are 

not aware of any comparable system that uses triples for all data in the way 

described in chapter 2. 

Another feature of the original proposals that was not given enough 

consideration was the functionality available for string handling. This is an area 

of data manipulation where functional languages have traditionally been 

somewhat weak. There are two distinct problems here. Firstly, the way strings 

are manipulated in functional languages-usually using list construction, head 

and tail etc-is often a slow and resource-consuming exercise. Secondly, the way 

strings are decomposed into triples as part of the homogeneous triple store 

makes them more difficult to work with. The constant re-construction of strings 

for comparison with search patterns, together with continually crossing the 

interface between levels 1 and 0, seriously impedes performance. Moreover, the 

significant number of tokens created for the comparisons, are otherwise useless 

and deplete the token space available for strings-sometimes to exhaustion­

thus compromising data integrity. 

Since the binary relational storage structure was first proposed by Frost as a 

means of underpinning Shipman's functional data model, there has not been 

agreement on the optimal way to store data. However, there seems to be a 

consensus that a balance needs to be struck between the degree of duplication 

desirable for rapid access of triples set against the increased costs of maintaining 

this duplication. Additionally, the way graph traversal operations are handled 

necessitates the sequential processing of each step for the 'start' (initial filter 

attributes) and 'stop' (display attributes) in a series of graph traversal steps. 
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Another significant topic for discussion is the applicability of a parallel 

implementation. This must be considered if the software is to handle large data 

sets and therefore be of realistic value with the potential of being used as the 

basis for a commercial product. The current architecture could be made parallel 

in a number of ways: these are assessed in chapter 3. 

The more general topic of enhancing interface functionality is another area that 

requires investigation. The reduced set of semantic-free storage level interface 

functions provides a simpler interface for the model level language developer, 

but means there is less flexibility. This was in keeping with the triple store 

concept discussed above. However, functionality for handling data types­

particularly strings-is a separate issue. There are possibilities to introduce 

functionality at a lower level in the query evaluation process. 

Note there are other issues from the original proposals that may be alluded to but 

not discussed at length in this thesis. These include: providing richer data types, 

improving the user interface, improving the treatment of range queries, scoping 

of updates, handling unknown information and extracting schema information 

from partially structured data. These areas have been, or will be, the subject of 

other research. 

9.3 The solution 

Our solutions to the problems identified above and the alternatives considered 

are as follows. 

A main theme of this thesis is that an alternative storage architecture is needed. 

One that combines the advantages of the triple store-best suited to storing 

binary relational data-with the benefits of holding data as collections of records, 

which underpins the still-popular relational data model. Chapter 3 considers 

263 



Chapter 9 

alternatives to triple stores and their inherent indexing structures and concludes 

that a combination of the two alternative approaches is possible. We base our 

architecture on the ADMS data model. This makes it possible to store attribute 

data as record sets while leaving the entity-to-entity relationships and meta data 

as triples. Included as part of this scheme is the removal from records of 

attributes for some data types that are then stored separately. Text type and 

binary large object type are examples. 

Coupled with the storage model for data is the use of a MIMD, dataflow model to 

permit parallel processing. MIMD was chosen because it has emerged as the de 

facto standard for distribution of instructions and data using a loosely coupled 

processor/memory configuration. Our scheme is based on that used by the 

Teradata Corporation-a proven leader in this field. Parallel MIMD machines 

are dominated by asynchronous events and these are more effectively handled by 

an interrupt-driven model rather than a model that uses polling. An interrupt is 

an example of data-driven scheduling which naturally complements the use of a 

dataflow model for computation and long latency operations. 

Because of the referential transparency of functional languages, there are many 

ways in which they can be made parallel. We consider these before deciding 

upon dataflow, which naturally complements the functional approach and can 

extract orders of magnitude more parallelism from a functional language than 

from an imperative language. Moreover, dataflow used with a functional 

language obviates many of the control and communication overheads that exist 

in imperative languages. 

The improvement in string manipulation is effected in two ways. Firstly, within 

the confines of the current architecture, we enhanced the functionality for string 

handling. This meant making available more functions to manipulate strings, 
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which involved allowing search patterns to contain missing characters and/or 

left- and right-handed truncation. These functions do not compromise the 

benefits of using a functional approach as they are evaluated at the storage sub­

system level and can thus be considered as built-in or object-level operators. 

However, this does not address the difficulty of how strings and search patterns 

are broken down into triples for storage and comparison. 

Secondly, and in keeping with our strategy that not all data is best stored as 

triples, we discuss different data structures for strings. There are advantages and 

disadvantages in using a tokenised scheme. The merits of this are presented 

before describing our data structures for strings. By storing strings in a look up 

table more powerful functions can be provided to manipulate them. We describe 

some of these and generalise the argument for providing functionality in this 

way. 

Improvements to general functionality are also possible. In chapter 7 we examine 

the work done with AGNA and extend it to support our string and text types in 

particular. With judicious optimisation of user queries and list comprehensions, 

it is possible to collect similar predicates into a generator/filter operation that can 

be pas~ed down to the storage sub-system. This can be done safely so as not to 

compromise referential integrity or any other advantages of the functional 

paradigm. 

As part of our architecture proposals, we discuss redundancy and show how this 

can be used effectively for our system. We introduce a novel RAID configuration 

that uses a combination of parity and mirroring. In each case the mirror disk is 

not a direct copy of the data disk but a combination of different data placement 

strategies for different data. For attribute records, meta data and lexical triples, it 

is an exact mirror. But for entity-to-entity (E-7 E) triples and string tables the data 
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is duplicated in reverse order. This is explained in chapter 6. These alternative 

approaches to holding data complement the functional data model as well as 

functional languages. In both cases it is often necessary to traverse the graph 

model from range to domain-the inverse function. For E~E triples this can 

mean using the inv-f of the function f. For attribute data this can mean using a 

similar function or just using the function as a filter condition. For E~ E triples, 

the alternative disks can be used to evaluate more quickly the application of a 

function. For string searches where the pattern has an unknown left-hand end 

and a known right-hand end, the inverse string tables can be used. 

Finally, we compared using inverse function with conditions other than equality. 

At the moment equality is implied in inverse functions that map a constant to an 

entity identifier or set of entity identifiers. By making it necessary to include the 

operator (theta condition) as part of the expression, greater flexibility can be 

provided for inverse function operations. 

9.4 Proof of solution 

The choices made above and how they synthesise with our architecture are now 

discussed. 

Combining records and triples 

Our solution for holding a combination of triples and records for instance data is 

shown to work with no loss of information for the following reasons. Each 

attribute is ordered in a look up table for its type. Each attribute is safely 

mapped to the entity identifier. The record collections also hold the actual 

attribute values that can then be used for printing and display purposes. Bulk 

data, default information and missing information are an important part of the 

data modeli chapter 6 shows how these are handled without compromising any 

information. Moreover, some data types-such as documents and binary large 
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objects-are best kept in unfragmented format and are large enough to be held 

separately from the records with a link to maintain the connection. 

The semantic freedom of entity identifiers is important to maintain. This is so 

object migration-Le. generalisation and specialisation-can be accommodated 

seamlessly into the data (and storage) model. Chapter 8 shows this is still 

possible with our combined data model. 

Because we do not have access to the raw data for the crime database, we had to 

extrapolate from the data as best we could. This was done to show how a 

standard database would be loaded, sorted and indexed for our architecture. In 

chapter 8 we use the crime database statistics to show how triples from this 

database would be held as records with all necessary identifier information 

added. As the crime database uses a rather small data set, we multiplied the 

extrapolated information by a factor of 200. This allowed us to demonstrate the 

triple/record allocation for a more realistic database. 

String enhancements and data structures 

The first stage involved adding string manipulating functionality within the 

confines of the triple store architecture. Chapter 4 sets out the experimental 

function that we developed. From these functions a more meaningful sub-set 

was produced for use in the crime pattern analysis work that is another area of 

research within the TriStarp project. The improvements of some orders of 

magnitude are not surprising as, using the new string functions, there is no need 

to cross the interface boundary so frequently. Moreover, there is no longer any 

need to create a mass of sub-strings-and concomitant tokens-that are only 

required for comparison with the search pattern. Because the functions are non­

updating and can be regarded as object-level primitives, such as + and -, they can 
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be safely included in user expressions and nested to the same depth without 

compromising integrity. 

Using alternative data structures, where strings are no longer stored as triples, 

experimental programs were run against a larger data set of over 5 million 

records. Where the search pattern has a known beginning and/or ending, the 

search can take around 3 to 5 seconds with a search engine. Exhaustive searches 

of the strings, or where neither the beginning nor end of the search pattern is 

known, can take around 30 seconds with a search engine. These are basic figures 

for a uni-processor architecture only. As has been shown in this thesis, a parallel 

architecture reduces the search times accordingly. 

Comparisons with SQL are difficult to make and not necessarily fair. This is 

because SQL uses far more comprehensive indexing techniques-often using 

complete names to provide very rapid entry into a database. The main 

advantage of our data structures is that the software can now handle far more 

powerful searching functions within the computationally more comprehensive 

functional paradigm. 

Redundancy and inverse functions 

Chapter 6 gives an example of how redundancy is used in our architecture. 

Using examples we show how triples are allocated to the data disk and the 

mirror disk. The search path used in the example has both normal and inverse 

function applications to show that no information is lost when executing a query. 

Bulk data and missing or unknown information are also catered for so the data 

model is not compromised. The data placement algorithm ensures there is an 

even distribution of triples across the array. 
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The combination of RAID technologies-mirroring and parity-substantially 

improves the mean time between failure (in theory to 34 billion years!). The 

throughput handled by a RAID 3 system can be dealt with in 60% of the time 

using our RAID 15 system. The price of average throughput for RAID 15 

compares favourably with RAID levels 1 and 5; is significantly better than RAID 

3 but is well below RAID 100. However using RAID lOO-where data is written 

to the mirror disk in reverse placement order to that stored on the data disk­

would not suit our architecture or data structures so well. 

Inverse functions now require the test condition to be added to the expression. 

Chapter 7 gives an example of how this was used in the crime database and that 

an improvement of two orders of magnitude is possible in the case of equality. 

For other theta conditions, care must be taken to restrict the set of conditions 

available for each specific type used in the database. This has to be checked as 

part of the type system but, once done, these expressions can be passed directly 

to the storage sub-system for evaluation. This is discussed next. 

MIMD and dataflow 

Our use of a MIMD parallel machine configuration and dataflow model sensibly 

follows on from earlier research in these areas which has already proved 

successful commercially. Moreover, the concept of reducing functionality to a 

lower level in the query evaluation process was included in the AGNA project. 

We extend this to include additional functionality for string and text 

manipulation, inverse function applications and optimisations to complement 

our architecture. Our coarse-indexed access method does not severely 

compromise the advantages of non-indexed access, and at the same time does not 

add much to communications overheads. This is because of our use of set 

collation and open lists and is explained in chapter 6. 
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9.5 Conclusions 

This thesis set out to investigate two specific areas of the continuing TriStarp 

project. String manipulation and graph traversal. Additionally, our 

investigation identified other areas of weakness in the functionality, plus 

constrictions imposed by the data model used. This led to the development of 

string manipulating functions based on well-known algorithms for inclusion in 

the current architecture. This proved highly successful but the addition of more 

powerful string manipulating functionality was still limited by the triple store 

architecture. 

The next step was to show how strings could be taken out of the homogeneous 

triple store without compromising the functional paradigm. This was 

incorporated into a new architecture that combines the best of the functional data 

model with the best of the relational data model. 

The architecture draws a distinction between the logical view of data as triples 

and the physical view of data as entity sets and attribute records. Again, this 

does not compromise the fundamental strengths of the data model. Included in 

this is a novel RAID configuration that complements the inverse functions and 

reverse graph traversal steps that are frequently used in functional programming 

and the functional data model respectively. 

The final part of our strategy for a new architecture is the inclusion of parallel 

processing techniques to boost performance further. We adopt two tried and 

tested areas in this field-MIMD and dataflow-and show how our physical 

model and enhanced functionality can be easily accommodated by these 

techniques. The concept of devolving functionality is taken from earlier research 

work and enhanced. Timings are given that show the improvements achievable. 
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The conclusion of this thesis is that enhanced string manipulation and general 

functionality are possible without compromising the strengths of the data model 

and functional programming. Moreover, our storage model and use of 

redundancy combines the strengths of the functional and relational models with 

those of functional programming in a novel way. These are the areas of 

contribution in this thesis. 

9.6 Further work 

We are pleased with the findings from the areas of work investigated in this 

thesis. However, there are several areas that suggest further work. 

9.6.1 Build complete system 

An obvious step would be to build a complete system incorporating all the ideas 

introduced in this thesis. However, the best way to do this is not immediately 

clear. The current TriStarp model level languages are not written with dataflow 

or even parallelism in mind. This would mean a complete re-write of the 

compiler and parser would be needed, and this is a major undertaking. 

However, some concepts could be incorporated into the current software more 

easily than others. 

The string manipulating functions, providing a much broader set of search 

options, were incorporated in the software as explained in chapter 4. A richer 

type system for text would allow further functionality to be added that could be 

targeted to the larger strings that are more loosely connected. For instance, a 

function that would "find string a and string b in cases where they are no more 

than n words apart and return the sentence(s) in which they appear" could be 

meaningful and practical for text objects. 
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Incorporation of function inverse facilities would be more complex to implement 

and would have implications for the parser. This is because the application of 

each specific operator-equals, not equals etc-needs careful checking and 

constraining so that predicates involving inverses for certain types only permit 

certain operators allowable for that type. For example, not equals when used 

with a string predicate might result in an unacceptably high hit-rate-although 

this would, of course, be conveyed to the user for confirmation to continue. But it 

might be decided beforehand to disallow this operation for strings. 

9.6.2 Partially structured data 

In chapter 4 we highlighted the growing need to differentiate between short 

strings that tend to form a close semantic unit and long strings that have looser 

semantics. As was made clear, this is a sensible thing to do and merely follows 

current database technology where free-text objects are increasingly used. 

However, in addition to a richer type system mentioned above, we believe more 

can be done in this area. In particular, concerning data that is partially formatted. 

Partially formatted data is a combination of structured data-based around a 

pre-defined schema-and unstructured data held in its raw state. The term 

partially structured data seems a good description of such a combination and is 

used in the TriStarp work, although it should not be confused with the term 

semi-structured data which is taken to mean 'self-describing' data as found in 

[ABIOOj for example. A police officer's scene of crime report, which may already 

be a field in the database, is an example of unstructured data-although to the 

police officer it might be considered as structured data. Such data is used in 

keyword searches and may be displayed or printed for human consumption but 

is not otherwise processed in the sense that nothing new is added to the database 

schema. We believe that it could be used to add semantics to the database and 

that this is an area for further investigation. 
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Applications that might benefit from this approach are those where alterations to 

both type and instance data are viewed as equally important. The database 

schema should be capable of evolving as increased semantics are drawn from the 

raw data although, in most cases, it is envisaged that the raw data remain 

unchanged by any schema alterations. For domains such as ours it is quite likely 

that a significant amount of initial information may be of a free-text form. By 

applying proven techniques from natural language processing and 

computational linguistics to the free-text, new types and instances would evolve 

and could be added to the database. 

9.6.3 Optimisation, transformation and searches 

In chapter 4 section 4.2.2 we gave comparisons between conjunctive and 

disjunctive searches in the context of using our multi-match functions and user­

defined functions. The inference was that further work could be done in this area 

in relation to optimisations in functional languages. 

Passing down expressions directly to the storage sub-system has already been 

discussed in relation to our work and the work of others. However, the passing 

down of different search terms embedded in the same search pattern has not, to 

our knowledge, been investigated before and could prove an interesting area for 

further research. There could be different ways of providing users with complex 

and powerful search strategies, perhaps in the form of regular expressions 

similar to those used in the UNIX operating system. Moreover, searching for 

several search terms in a text could be combined at a lower level in the evaluation 

process thus reducing search times further. 

List comprehensions have, for several years, been the subject of various 

optimisation techniques. These frequently involve moving sub-expressions 

around in the overall expression to promote certain operations that-for 
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example-reduce the search space more quickly. Our improved functionality 

and grouping of expressions with like terms follow this approach. However, 

when the database is used merely as a functional programming language and 

persistent data is not consulted, there seems to be little point in creating string 

tokens which are then added to the database string triples, when they are not 

ultimately part of the instance data. 

A detection mechanism needs to be incorporated so that, if the database is used 

for non-updating computation, e.g. 337 + 989, or simple string comparisons, e.g. 

contains "trivia%" "this is a trivial sentence", these operations can be 

evaluated immediately. This would mean the database is not consulted and thus 

obviate the time-consuming lexeme -7 token mappings etc. A first step might be to 

scan the initial expression to see if any functions are used that form part of the 

database schema. If there are not, then an alternative evaluation should proceed. 

Differentiating between expressions in this way has been achieved in the Prolog 

Functional Data Model language P /FDM [GRA92j which incorporates function 

methods and action methods. Function methods are used when there is no side 

effect: action methods are used where there are side effects. 

9.6.4 Hybrid RAID systems 

Our combination of parity and mirroring RAID system is novel in that the 

placement of triples is reversed on the mirror copy. However, there have been 

other combinations of parity and mirroring RAID systems developed in recent 

years [MAS97j. Some of these use virtual disks of either, striped and then 

mirrored or mirrored and then striped arrays. The consensus is that striping of 

mirrored arrays is the preferable option. The discussion in chapter 6 made it 

clear that we suggest using both mirroring and parity in the physical sense-as 

opposed to the virtual sense-to provide extra protection etc. However, what is 

274 



Chapter 9 

not clear is which of the schemes to implement first-mirroring or parity. From 

the foregoing, it would appear that writing to the mirror array followed by the 

striping across (each) array is the better option. However, as our use of the 

mirror is unique for our architecture, further work is required to ascertain the 

best approach to adopt in our case. 
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Appendix 

A.2 North Yorks crime database - triple allocation 

After creating the database and adding all schema details 6,170 

Membership triples 
crm 2,501 itm 8,598 pit 5,002 
soc 2,501 gtn 2,501 mop 2,501 
day 2,770 bet 147 26,521 

Entity-Entity Triples 
gtn -7 itm 8,598 crm -7 gtn 2,501 
crm -7 mop 2,501 crm -7 soc 2,501 
crm -7 pit 5,002 soc -7 bet 2,501 
pit -7 day 5,002 28,606 

Directory Pages - 26 pages @ 382 triples per page 9,168 

String Triples 
crm -7 tag 2,501 itrn -7 cat 8,700 

-7 cir 69,000 -7 des 118,000 
+ 2,501 + 8,598 

-7 scp 314,000 mop -7 hfe 2,700 
+ 2,501 -7 mud 4,400 

-7 eno 5,002 -7 poe 9,800 
-7 oir 2,501 soc -7 pat 6,800 
-7 ofn 4,400 -7 pcd· 2,501 

gtn -7 prt 2,500 -7 add 14,000 
-7 gct 6,700 + 2,501 

bet -7 bed 147 day -7 dywk 2,700 
around 592,000 

Non-String Triples 
crm -7 hoc 2,501 itrn -7 val 8,598 
gtn -7 ant 2,501 mop -7 glv 2,501 

-7 car 2,501 -7 fgt 2,501 
-7 eye 2,501 -7 fen 2,501 
-7 cmp 2,501 -7 icd 2,501 

day -7 dno 2,770 bet -7 pph 147 
-7 mno 2,770 -7 osb 294 
-7 yno 2,770 soc -7 irl 2,501 
-7 dnwy 2,770 -7 gqd 2,501 

47,630 
Crime Pattern Analysis Triples 

pat_bools 2,502 x 18 mud_bools 2,502 x 22 
hfe_bools 2,502 x 16 poe_bools 2,502 x 24 
gtn_bools 2,502 x 24 260,208 
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Abstract 

Earlier work by V.A.J. Maller, and P.J.H. King 
eva'luated the suitability of a functional database 
language (FDL) being used to support large 
applications in the field of investigative systems [1]. 
This is a growing generic application area covering 
criminal and military intelligence and characterised by: 
significant data complexity; large data sets; and the 
needfor high performance, interactive use [2J. 

The evaluation confirmed the soundness of FDL but, 
heavy use in a practical context, showed improvements 
were needed to areas like string matching and graph 
traversal. Also, an implementation on multiprocessor, 
parallel architectures would help meet the performance 
requirements arising from existing and projected 
database sizes in this application area. 

This paper discusses some of the proposed changes 
to the interfaces in the software architecture for a future 
system that should meet both the requirements of 
extendedfunctionality and potential parallelisation. 

1. Background 

The functional database language (FDL) [3] was 
developed as part of the TriStarp (Triple Store 
application research project) at Birkbeck College, 
University of London. The objective was to explore and 
develop the binary relational approach as a common 
framework - from the storage level, through the data 
model level, to the user level. A uniform set of 
functions provides the interfaces between the three 
levels. 

Frost [4] reviewed the binary relational approach 
and devised the Binary Relational Storage Structure 
(BRSS). A BRSS holds data in three fields with the 
format: <subject, relation, object> termed a 
triple. A triple can hold simple facts like: "Fred reads 
The-Times", or be used for structures like binary trees. 
In this case, a set of triples with the format: 
<node I left-subtree, right-subtree> is used. 

There were several developments of the BRSS 
concept and the Birkbeck Triple Machine (BTM) is one 
such implementation [5]. The BTM underpins the 
storage level of the TriStarp work and provides 
persistence for all data. 

2. The current position 

The BTM comprises two components: a software 
triple store and a lexical token converter (LTC). The 
triple store provides the storage mechanism via the 
following sets of interface functions: file utility 
operators - create_db, open_db and close_db; update 
operators - insertjriple and delete_triple; and retrieval 
operators - open_set, closejet, fetch_another and 
present. 

The LTC handles the mapping between elements of 
a triple - strings, integers, etc. termed lexemes - and 
their unique, fixed-length (32-bit) token identifiers used 
to represent them in the triple store. Entities - termed 
non-lexicals - are represented by unique surrogates and 
are not directly visible to the user. 

Using tokens saves duplicating strings (which form 
the bulk of the lexemes) and ensures compact storage in 
memory. However, most strings need decomposing into 
a set of triples because one triple can accommodate only 
six characters. Therefore reconstruction of strings into 
their full representation adds significantly to response 
time - particularly when handling large data sets. 

Metadata and manipulation functions, like map, are 
stored in binary tree triples and clustered around unique 
identifiers where possible. However, triple retrieval and 
function reconstruction can add further overheads to 
response time. 

As no semantics are attached to triples, the BTM is 
used effectively by both functional and logical 
databases. The decision to use a semantic-free triple 
store was in keeping with other research at the time; it 
was a deliberate attempt to keep the storage mechanism 
simple by providing a small set of interface functions. 
This means the majority of core database tasks like 
select and join have to be programmed at level I which 
can make them slow and difficult to optimise. 
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3. Research activities 

The following are being undertaken: 

• enhancing the interface functions, 
• restructuring the physical model for data storage, 
• incorporating additional hardware, and 
• structuring changes to allow for parallel processing. 

To improve string matching and graph traversal 
operations, the homogeneous triple store needs 
reworking so that data storage complements data usage. 
This will aid devolved functionality - for example, 
metadata would be bulk loaded into memory at the start 
of each session. The language Hydra [6], developed to 
evaluate associational features, highlighted two types of 
function definition: primary functions that hold instance 
data, and secondary functions - like map or Jold - that 
manipulate instance data. These can be stored using 
different physical models. 

Primary functions can be further subdivided into 
extensional and intensional varieties. The former are for 
simple <subject, relation, obj eet> triples and are 
many in number; the latter are for equations involving 
expressions or variables on either side of their definition 
(such as default values) and are few in number, e.g.: 

age Bill <= 47 
age loe <= age Eve 
age x <= 30 

extensional definition 
intensional definition 
default intensional definition 

Surrogate tokens will be used for entity instances 
and relation names only: strings will be held in full. 
Although this results in some duplicated data, there are 
benefits where string matching is concerned. 

The update operators insert_triple and delete_triple 
need semantics so the store manager will know where to 
store or locate them. We propose a richer set of 
interface functions for update operations, e.g.: 

insert-Pfun_extdeJ 
insert-Pfun_intdeJ 
insert_sfun_deJ 

extensional primary function 
intensional primary function 
secondary function 

The retrieval operators would be enhanced by 
providing different levels of retrieval and associational 
functions. We plan to store triples with format: 
<enti ty, relation, attribute> in cliques grouped 
around the common entity. Parallel processing and data 
filtering techniques can then be used to boost 
performance levels. The entity triples with format: 
<entity, relation, entity> will remain, as these 
are used for graph traversal operations. So the retrieval 
choices proposed are: 

geuriple 
gecattributes 
gecEtriples 
gecallJrom 
gecalCto 
get-paths 

for one <E, r, Po> triple 
for <E, r, (A]> triples 
for <E, r, {E}> triples 
for <E, r, {E}> + <E, r, {A}> 
the inverse of the gecallJrom 
retrieves paths from En to Em 

Restructuring the physical data model is now 
underway. 

4. Conclusions 

We believe these improvements will: provide a 
more coherent software architecture; improve 
performance levels and; support devolved functionality 
via a parallel processing array or a mature search engine 
such as ICL's CAFS [7]. After completion of this study 
phase, an operational system will be built which, 
together with an enhanced language FDL2, will be 
evaluated in an operational environment. 
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Abstract. Functional languages. despite their many advantages. are not always 
seen as a first choice for database applications involving extensive string matching. 
One reason for this is their relatively poor performance in this area. This paper 
shows a way to resolve this without compromising the advantages of the functional 
paradigm 

Background 

Earlier research evaluated a functional database. built over the functional data model. 
in the domain of investigative systems. This is a growing generic application domain 
covering areas such as criminal and military intelligence. which is characterised by 
significant data complexity, large text-intensive data sets and the need for high 
performance interactive use (Mal96). The evaluation confirmed the soundness of the 
functional approach but heavy use in a practical context showed weaknesses in crucial 
areas. particularly in string manipulation and graph traversa!. This paper tackles the 
first of these. 

The functional database language FDL (Pou92) was developed as part of 
the TriStarp project (Kin90) which set out to explore and develop the binary 
relational approach as a common framework for database design. FDL has as 
its model the functional view of the binary relational model, usually known as 
the functional data model or entity-function mode!. Such models view the 
world as consisting of non-lexical (abstract) entities-person, crime, etc.-and 
lexical (scalar) attributes-integer, string, etc.-used to describe the entities. 
Advantages of entity-function models include: 

• intuitive and incremental schema evolution 
• the ability to underpin other models-including the object-oriented (Ban90) 
• ease of use provided by a graphical query language 
• graphical representation of objects which may be viewed at various levels of 

abstraction. 
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The benefits of functional programming include: 

• the ability to define complex data structures and recursive functions over them 
• freedom from side effects because of referential transparency 
• freedom of execution order facilitating parallel processing. 

FDL extended these to include: 

• persistence for all data 
• the ability to define extensional and intensional definitions over the same function 
• improved handling of null and undefined values-thus enabling database closure. 

Persistence for all data is provided via a software triple store where all data is mapped 
to 32-bit tokens. This aids query evaluation and for most cases is very efficient. 
However, with strings, there are overheads imposed that may be tolerable in small­
scale databases but are unacceptable for practical applications. The particular 
problems in our context are: 

• recursion makes string functions slow to execute 
• comparing strings has to be done using their tokens 
• superfluous tokens are created during searches-sometimes to the point of 

exhaustion which compromises data integrity 
• allowing for missing or unknown characters in the search pattern is non-trivial. 

The aim is to improve string manipulation without losing the aforementioned benefits 
of a functional language-simply using another language would clearly compromise 
these benefits. The next section shows how improved string manipulation within the 
current architecture was achieved. Then, with different data structures for strings, it is 
shown how more can be done to provide users with the kind of facilities found in 
systems more traditionally associated with string handling. 

Improvements to the Current System 

String manipulation was accomplished by declaring functions in the language itself­
at the user-level. Such functions, however, only had three built-in functions available 
for use in their algorithms-concat, length and substr. As user-level functions are 
recursive, each function call resulted in additions to the query evaluation tree and the 
creation of more tokens at each stage of the search. Built-in functions, on the other 
hand, merely 'drop out' of the evaluation tree, execute and return a single result. To 
resolve this, new built-in functions have been added that are fully compatible with a 
functional language. These functions search for space-delimited words and permit 
missing characters, left-hand or right-hand truncation of a search pattern and multiple 
search patterns. The new built-in function, matches, was compared to the FDL user­
defined function, contains, and run against a trial database holding test data derived 
from real-world events. The results are shown below. 
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Triple store Improvements 

Seconds 

10000 

1000 

100 

10 

User-defined 
function 

"contafns" 

function 
"matches" 

0.1L-~ ________________ -. 

1 10 100 1000 10000 

Records .. avg 3 kbyteslrecord 

Alternative Data Structures 

Although the above represents a substantial improvement, it is still difficult to provide 
users with comprehensive searching facilities. It is proposed, therefore, to take strings 
out of the homogeneous triple store so they can be more easily manipulated. Holding 
entity attributes (including strings) in their full format and clustered on their common 
entity, provides a physical storage structure combining the advantages of the 
relational model with those of the entity-function model. With strings delimited to 
word level and held in a look-up table, the important inverse mapping from attribute 
to entity can be made. Examples of these structures are: (where # indicates a uniquely 
generated word token.) 

The occurrences field allows the user to ascertain quickly whether or not they wish to 
continue with the current search. With all attributes clustered on their common entity, 
the token-ta-string mapping is unnecessary. Moreover, these structures are more 
amenable to search acceleration using a search engine such as CAFS (MaI79). From 
the above table the string triples might be: (where $ indicates an entity surrogate.) 

token relation entity 
. #49 has.:..skills_as $343218 

#49 I job_title $923432 
#3741 has skills_as $123456' 
#3741 has skills as $128332 
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The ability to include missing characters was built into the search algorithm with the 
wildcards !I_I! _ match anyone character and. "%" - match zero or more characters. 
An example program demonstrated the speed-up that is possible: the results are shown 
below. 
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A.S 'C' program files for text searching based on using records 

1* File name : headers.h *1 
1* Files which use this are: main.c pat.c load.c search.c *1 

#define MAXSTRING 30 1* max length of any string *1 
#define MAXLENGTH 
#define BIGLOOP 

2000 
0 

1* 
1* 

max number of entries in table *1 
used for stats purposes *1 

#define LOOPMAX 4000 1* used for stats purposes *1 

typedef unsigned char uchari 
typedef unsigned short ushorti 

1* function prototypes *1 

int get"'pattern (uchar *pattern, ushort *patlen) ; 
int load (uchar *index_char, char *file_name) i 

void reverse-pat (uchar *8) ; 
void fold_index (void) ; 
void fixed (uchar *pat, ushort plen) ; 
void front (uchar *pat, ushort plen, ushort search_type); 
void mid (uchar *pat, ushort plen, short wild) ; 
void midlast (uchar *pat, ushort plen, short wild, 

ushort search_type); 
void bothends (uchar *pat, ushort plen) ; 
void midmid (uchar *pat, ushort plen, short wl, short w2) ; 
int exact (uchar *p, uchar *t, short i) ; 

int elastic (uchar *p, uchar *t, ushort patlen); 

/*********************************************************************/ 
1* enumeration used to classify search patterns, thus: with: *1 
1* * I 
1* NONE = 

, ... L = " . . . . . %'1 M , . . .% •• " F first *1 
1* ML = , .. .% • • • %" F = "% •• .. . " FL = n%. . . • %1' L = last *1 
1* FM n % •• • %. " .. MM = " .% • • • % • • I. M = mid *1 
/*********************************************************************/ 

enum pattern_type {NONE, L, M, ML, F, FL, FM, MM}; 

struct record { 1* used for each entry in the table *1 
ushort length; 1* string length *1 
uchar *stringi 1* actual string *1 
unsigned token; 1* id for the string *1 
ushort occurrences; 1* how many triples it appears in *1 

} entry[MAXLENGTH]; 

short wild [3] ; 1* place holders for any '%' wildcards in pattern *1 
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/* File name: main.c */ 

#include "stdio.h" 
#include "time.hl! 
#include "headers.hl! 

Appendix 

int alpha_index (27) ; {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 

MAXLENGTH} ; 

unsigned long hits; 

void main (void) 
( 

uchar pattern [MAXSTRING), *p; 
ushort patIen, in_index; 
enum pattern_type search-pat; 

#if BIGLOOP 
time_t start, end; 
unsigned ii 

/* these are used for */ 
/* stats purposes */ 

#endif 

search-pat ; get-pattern(pattern, &patlen); 

switch (search-pat) ( 

} 

case 0: case 1: case 2: case 3: case 7: 
in_index; load(&pattern[O),"forward.txt"); 
if (! in_index) { 

printf ("Not in table\n"); 
exit(1); 

} 
fold_index(); 
break; 

case 4: case 6: 
in_index; load(&pattern[patlen-l),"reverse.txt"); 
if (!in_index) { 

printf ("Not in table\n"); 
exit(1); 

} 
reverse-pat(pattern); 
fold_index(); 
break; 

case 5: 
load(NULL,"forward.txtll)i 
break; 

p ; pattern; 
while(*p) *p++ ; toupper(*p}; 

hits; 0; 

#if BIGLOOP 
start; time(NULL); 
for(i;O; i<LOOPMAX; i++) { 

#endif 
/* do search x times for effect */ 

299 



Appendix 

switch (search-pat) ( 

} 

case 0: fixed (pattern, patlen); 
break; 

case 1: front (pattern, patlen-1, 1); 
break; 

case 2: mid (pattern, patlen-1, wild[O]); 
break; 

case 3: midlast(pattern, patlen-2, wild[O], 3); 
break; 

case 4: front (pattern, pat1en-1, 4); 
break; 

case 5: bothends(pattern, pat1en-2); 
break; 

case 6: midlast(pattern, pat1en-2, pat1en - 1 - wild[1] , 6); 
break; 

case 7: midmid(pattern, pat1en-2, wi1d[0], wi1d[1]); 
break; 

#if BIGLOOP 
) 

end = time(NULL); 
printf(" The table took %d second(s) to search\n", 

(int) difftime(end, start»; 
#endif 

if (hits) printf(" %d matches found\n", hits); 
else printf(" Pattern not in tab1e\n"); 

} 

void reverse-pat 
(uchar *s) 

( 
uchar c, i = 0, j = strlen(s) - 1; 

for (; i<j; i++, j--) { 
c=s[i]; 
sri] = s[j]; 
s[j] = c; 

} 

void fold_index 
(void) /* if any index entries are still -1 they */ 

/* need changing to reflect the start of */ 
short i = 25; /* the next letter. */ 

for (; i >= 0; i--) 
if (a1pha_index[i] -- -1) alpha_index[i] = a1pha_index[i+1]; 

} 
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/* File name: pat.c */ 

#include 'stdio.h' 
#include 'headers.h' 

int get-pattern 

Appendix 

(uchar *pattern, ushort *patlen) 
/* Gets pattern> 3 characters long with */ 
/* 0, 1 or 2 wildcards in it. Returns to */ 

uchar i, total; 
uchar ok = 0; 
uchar C, *Wi 

/* "patlen n
, and the enumerated integer 

/* for the search strategy to be used. 
*/ 
*/ 

do { /* continue until we have a pattern which is ok */ 
w = pattern; 
printf ("enter pattern length 4 or greater "); 
while (isspace(c=getchar(») 

/* skip leading while space */ 
*w++ = Ci 

while « *w getchar(» != '\n') /* now get pattern until eR hit */ 
W++i 

*w = NULL; /* append null byte */ 
*patlen = strlen(pattern); /* and get length */ 
if (*patlen < 4) printf (' too small - re-enter\n"); 
else { 

wild[O] = wild[l] = wild[2] = -1;/* holds positions of wildcards*/ 
for (i=O, total=O; total<3 && pattern[i]; i++) 

if (pattern[i] == '%') wild[total++] = i; 
switch (total) { /* total now = number of wildcards in pattern */ 

case 0: return NONE; 
case 1: ok = 1; 

break; 
case 2: if (wild[l] - wild[O] == 1) 

/* adjacent %s + pattern short*/ 
if (*patlen == 4) 

printf ( "short pattern - re-enter\n 11) ; 
else { /* remove one of the wildcards */ 

} 
} 

) 

for (i=wild[l]; pattern[i]; i++) 
pattern[i] = pattern[i+1]; 

(*patlen)--; 
wild[l] = -1; 
ok = 1; 

else ok = 1; 
break; 

case 3: printf (" too many wildcards - try again \n") ; 
break; 

} while (!ok); /* pattern has zero, one or two wildcards only in it */ 

if (wild[l] == -1) { 
if (wild[O] == *patlen-1) 
if (wild[O] > 0) return M; 
else return F; 

} 

else 
if (wild[l] *patlen-1) 

/* ie, only one wildcard in pattern */ 
return Li 

/* two wildcards in pattern *1 
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if (wild[O] > 0) return ML; 
else return FL; 

else if (wild[O] == 0) return FM; 
else return MM; 

######################################################################## 

/* File name: load.c */ 

#include 11 stdio. h" 
#include "headers.h" 
#include "stdlib.h" 

extern int alpha_index[]; 
unsigned count = 0; 

int load 

{ 
(uchar * index_char , char * file_name) 

FILE *fp; 
uchar str[100], temp[20], last_char = '@', this_char; 
unsigned j, ki 

if ((fp = fopen(fileJlame,"r"))==NULL) { 
printf ("cannot open in file\n"); 
exit(l) ; 

} 

count = 0; 

while (!feof(fp)) ( 
fgets(str, 100, fp); 
if (!feof(fp)) { 

j = k = 0; 
while (str[k] != '-') temp[j++] = str[k++]; 
temp [j] = NULL; 
entry[count] . length = (short) atoi(temp); 
k++i 
j = 0; 

entry[count].string = malloc(entry[count].length+1); 
if (!entry[count] .string) { 

} 

printf ("memory allocation failure\n") i 

exit(l) ; 

while (str[k] != '-') entry [count] .string[j++] = str[k++]; 
entry [count] .string[j] = NULL; 
k++i 
j = 0; 

while (str[k] != '-') temp[j++] = str[k++]; 
temp[j] = NULL; 
entry[count].token = (unsigned) atoi(temp); 
k++i 
j = 0; 
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while (str[k] !; '-') temp[j++] ; str[k++]; 
temp[j] ; NULL; 
entry[count].occurrences; (short) atoi(temp); 

if (index_char) /* see if new index entry needed */ 
if ((this_char;toupper(entry[count] .string[O]» > last_char) 

alpha_index[this_char - 'A'] ; count; 
last_char ; this_char; 

} 

count++i 

fclose (fp) ; 

if (!index_char) 1* ie, no index created for "% .... %" patterns */ 

} 

return 1; 
else 

if «(alpha_index[toupper(*index_char)-'A']) ;; -1) 
return 0; /* no entries beginning with first letter of pat */ 

else 
return 1; 1* there is, so search can proceed */ 

######################################################################## 

/* File name : search.c */ 

#include "stdio.h" 
#include "headers.h" 

extern int alpha_index[]; 
extern int hits; 
extern unsigned count; 

uchar found, offset; 
unsigned start, stop; 

void fixed /* for patterns with no wildcards in them */ 

( 
(uchar *pat, ushort plen) 

if (isalpha(pat[O]» { 
offset; pat[O]-'A'; 

} 

start ; alpha_index[offset]; 
stop ; alpha_index[offset+1]; 

else { /* first char in pat is _ character */ 
start; 0; 
stop = count; 

} 

for (; start<stopi start++) 
if (plen ;; entry[start].length) ( 

found; exact(pat, entry[start] .string, plen); 
if (found) ( 

#if ! BIGLOOP 
printf("%s\n", entry[start].string); 

#endif 

303 



Appendix 

hits++; 

} 
} 

void front /* for patterns like: "abcde%" or lI%abcde" */ 
(uchar 'pat, ushort plen, ushort search_type) 

( 
uchar rev-pat[MAXSTRING]; 

if (isalpha(pat[O])) { 
offset = pat[O]-'A'; 

} 

start = alpha_index[offset]; 
stop = alpha_index[offset+l]; 

else { 

} 

start = 0; 
stop = count; 

for (; start<stop; start++) 
if (plen <= entry[start] . length) ( 

found = exact(pat, entry[start].string, plen); 
if (found) { 

if (search_type==4) ( 
strcpy(rev-pat, entry[start] .string); 
reverse-pat(rev-pat); 

#if ! BIGLOOP 
printf (I'%s\n", rev-pat); 

#endif 
} 

else ( 
#if ! BIGLOOP 

printf("%s\n", entry[start].string); 
#endif 

hits++; 

} 

void mid /. for patterns like: "abc%def" • / 

{ 
(uchar 'pat, ushort plen, short wild) 

ushort 
uchar 

len; 
*current; 

if (isalpha(pat[O])) { 
offset 
start 
stop 

} 
else { 

start 
stop 

} 

= 
= 

pat[O]-'A'; 
= alpha_index[offset]; 
= alpha_index[offset+l]; 

0; 
count; 

for (; start<stop; start++) 
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if (plen <= entry[start].length) ( 
current = entry[start].string; 
found = exact(pat, current, wild); 
if (found) ( 

len = entry[start] .length; 
found = exact (pat+wild+l, current+(len-(plen-wild», plen-wild); 
if (found) ( 

#if ! BIGLOOP 
printf("%s\n", entry[start] .string); 

#endif 
hits++; 

} 

} 
} 

void midlast /* for patterns like: "abc%def%l1 & 11 %abc%def 11 */ 
(uchar *pat, ushort plen, short wild, ushort search_type) 

{ 
uchar temp-pat[MAXSTRING], rev-pat[MAXSTRING]; 

if (isalpha(pat[O]» { 
offset = pat[O]-'A'; 
start = alpha_index[offset]; 
stop = alpha_index[offset+l]; 

} 

else { 

} 

start 0 i 
stop = count; 

strcpy(temp-pat, pat); 
temp-pat[plen+l] = NULL; 

for (; start<stop; start++) 

/* drop last % from pattern */ 

if (plen <= entry[start] . length) ( 
found = exact (temp-pat, entry[start] .string, wild); 
if (found) ( 

found = elastic(temp-pat+wild+l, entry[start] .string+wild, 
plen-wild) ; 

if (found) { 
if (search_type==6) ( 

strcpy(rev-pat, entry[start] .string); 
reverse-pat(rev-pat ); 

#if ! BIGLOOP 
printf("%s\n", rev-pat); 

#endif 

else 
#if ! BIGLOOP 

#endif 

} 

} 
} 

printf("%s\n", entry[start] .string); 

hits++i 
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void bothends / * for patterns like: "%abcde%" * / 
(uchar *pat, ushort plen) 

uchar temp-pat[MAXSTRING]; 
unsigned start, found; 

strcpy(temp-pat, pat); 
temp-pat[plen+1] = NULL; /* drop last '%' from pattern */ 

for (start = 0; entry[start] .string; start++) 
if (plen <= entry[start] . length) ( 

found = elastic (temp-pat+1, entry [start] . string, plen); 
if (found) ( 

#if ! BIGLOOP 
printf("%s\n", entry [start] . string) ; 

#endif 
hits++i 

} 
} 

} 

void midmid /* for patterns like: "abc%def%xyz" */ 
(uchar *pat, ushort plen, short w1, short w2) 

uchar 
ushort 

temp, temp-pat[MAXSTRING], *current; 
nu1lpos; 

if (isalpha(pat[O]» { 
offset = pat[O]-'A'; 
start = alpha_index[offset]; 
stop = alpha_index[offset+1]; 

else { 

} 

start = 0; 
stop = count; 

strcpy(temp-pat, pat); 

for (; start<stop; start++) 
if (plen <= entry[start].length) ( 

current = entry[start].string; 
found = exact (temp-pat, current, wl); 
if (found) ( /* "match% .... % .... " */ 

nullpos = entry [start] . length - (plen-w2) - 1; 
found = exact (temp-pat+w2+l, current+nullpos, plen-w2+1); 
if (found) ( /* " .... % .... %match" */ 

temp = current [nullpos] ; /* save char where */ 
current [nullpos] = NULL; /* null to go. */ 
temp-pat[w2] = NULL; /* stop pat at 2nd % */ 
found = elastic(temp-pat+w1+1, current+w1, w2-w1-1); 
current [nullpos] = temp; /* and replace char */ 
if (found) ( 

#if ! BIGLOOP 
printf('%s\n", entry[start] . string) ; 

#endif 
hits++; 

} 
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} 
} 

} 

int elastic /* looks for p to appear anywhere in t */ 

( 

} 

(uchar *p, uchar *t, ushort patlen) 

short textlen = strlen(t), i = patlen, j = patlen, k; 

while (j > 0 && i <= textlen) { 
k = ii 

} 

while (j > 0 && p[j-1J == toupper(t[k-1J) 11 p[j-1J -- '_') { 
k--; 
j--; 

} 
if (j > 0) { 

i++; 
j = patlen; 

} 
else return 1; 

return 0; 

int exact /* looks for exact match * / 

} 

(uchar *p, uchar *t, short i) 

while (i > 0 && p[i-1J == toupper(t[i-1J) 11 p[i-1J -- '_') i--; 
return !i ? 1 : 0; 
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A.S 'C' program files for text searching using 5.5 million records 

1* File name: headers.h *1 
1* Files which use this are: main.c pat.c load.c search.c *1 

#define MAXSTRING 30 1* max length of any string *1 
#define MAXLENGTH 5800000 1* max number of entries in table *1 

typedef unsigned char uchar; 
typedef unsigned short ushort; 

1* function prototypes *1 

int get""pattern (uchar *pattern, ushort *patlen) ; 
int load (uchar *index_char, char *file_name) i 

void reverse-pat (uchar *8) ; 
void fold_index (void) ; 
void fixed (uchar *pat, ushort plen) ; 
void front (uchar *pat, ushort plen, ushort search_type) ; 
void mid (uchar *pat, ushort plen, short wild); 
void midlast (uchar *pat, ushort plen, short wild, 

ushort search_type) ; 
void bothends (uchar *pat, ushort plen) ; 
void midmid (uchar *pat, ushort plen, short wl, short w2) ; 
int exact (uchar *p, uchar *t, short i) i 
int elastic (uchar *p, uchar *t, ushort patlen); 

1***************************************************** ****************/ 
1* enumeration used to classify search patterns, thus: I with: *1 
I * I * I 
/* NONE = ......... " L = " ........ %" M = 11 •••• % ...... IF = first */ 
/* ML = 11 •••• % ••• %" F = ut •••••••• " FL = n% .•..... %" I L = last */ 
/ * FM = 11 % ••• % •••• 11 MM = 11 •• % ••• % •• It I M = mid * / 
1***************************************************** ****************/ 

enum pattern_type (NONE, L, M, ML, F, FL, FM, MM); 

struct record { 1* used for each entry in the table *1 
ushort length; 1* string length *1 
uchar *string; 1* actual string *1 
unsigned token: 1* id for the string *1 
ushort occurrences; 1* how many triples it appears in *1 
entry[MAXLENGTH]; 

short wild[3]; 1* place holders for any '%' wildcards in pattern *1 
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/* File name: main.c */ 

#include "stdio.h" 
#include "time.h" 
#include "head.h" 

Appendix 

int alpha_index[27] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, MAXLENGTH}; 

unsigned long hits; 

void main (void) 
( 

uchar 
ushort 
enum pattern_type 

pattern [MAXSTRING], *p; 
patlen, in_index; 
search-pat: 

search-pat = get-pattern(pattern, &patlen); 

printf (" %ld\n" ,time (NULL) ) ; 

switch (search-pat) ( 
case 0: case 1: case 2: case 3: case 7: 

in_index = load(&pattern[O],"forward.txt"); 
if (! in_index) { 

printf ("Not in table\n"); 
exit(l); 

} 
fold_index ( ) ; 
break: 

case 4: case 6: 
in_index = load(&pattern[patlen-1] ,"reverse.txt"); 
if (!in_index) { 

printf ("Not in table\n"); 
exit (1); 

} 
reverse-pat(pattern); 
fold_index(); 
break: 

case 5: 
load(NULL,"forward.txt"); 
break: 

p = pattern; 
while (*p) *p++ 

hits = 0; 

toupper ( *p) ; 

/* printf("%ld\n" ,time (NULL) ); */ 

switch (search-pat) ( 
case 0: fixed(pattern, patlen); 

break; 
case 1: front (pattern, patlen-1, 1); 

break; 
case 2: mid (pattern, patlen-1, wild[O]); 

break: 
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} 
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case 3: midlast(pattern, patlen-2, wild[O], 3); 
break; 

case 4: front (pattern, patlen-1, 4); 
break; 

case 5: bothends(pattern, patlen-2); 
break; 

case 6: midlast(pattern, patlen-2, patlen - 1 - wild[l], 6); 
break; 

case 7: midmid(pattern, patlen-2, wild[O], wild[l]); 
break; 

printf (" %ld\n" ,time (NULL) ) ; 

if (hits) printf(" %d matches found\n", hits); 
else printf(" Pattern not in table\n"); 

void reverse-pat 
(uchar *s) 

( 

} 

uchar c, i = 0, j = strlen(s) - 1; 

for (; i<j; i++, j--) { 
c=s[i]; 
s[i] = s[j]; 
s[j] = c; 

void fold index 
(void) /* if any index entries are still -1 they */ 

/* need changing to reflect the start of */ { 
short i = 25; /* the next letter. */ 

for (; i >= 0; i--) 
if (alpha_index[i] -- -1) alpha_index[i] = alpha_index[i+1]; 

######################################################################## 

/* File name: pat.c */ 

#include "stdio.h" 
#include "head.hl! 

int get-pattern 
(uchar *pattern, ushort *patlen) 

/* Gets pattern> 3 characters long with */ 
/* 0, 1 or 2 wildcards in it. Returns to */ 

uchar i, total; 
uchar ok = 0; 
uchar c, *Wi 

/* "patlen", and the enumerated integer 
/* for the search strategy to be used. 

*/ 
*/ 

do ( /* continue until we have a pattern which is ok */ 
w = pattern; 
printf("enter pattern length 4 or greater: "); 
while (isspace(c=getchar(») 
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1* skip leading while space *1 
*w++ = Ci 

while ((*w = getchar()) != '\n') 1* now get pattern until eR hit *1 
W++i 

*w = NULL; I * append null byte * I 
*patlen = strlen(pattern); 1* and get length *1 
if (*patlen < 4) printf("too small - re-enter\n"); 
else { 

wild[O] = wild[l] = wild[2] = -1;1* holds positions of wildcards*1 
for (i=O, total=O; total<3 && pattern[i]; i++) 

if (pattern[i] == '%') wild[total++] = i; 
switch (total) { 1* total now = number of wildcards in pattern *1 

case 0: return NONE; 

} 

case 1: ok = 1; 
break; 

case 2: if (wild[l] - wild[O] == 1) 
1* adjacent %s + pattern short*1 

if (*patlen == 4) 
printf (" short pattern - re-enter\n 11) ; 

else { 1* remove one of the wildcards */ 
for (i=wild[I]; pattern[i]; i++) 

pattern[i] = pattern[i+l]; 
(*patlen) --; 
wild[l] = -1; 
ok = 1; 

else ok = 1; 
break; 

case 3: printf("too many wildcards - try again\n"); 
break; 

} while (!ok); 1* pattern has zero, one or two wildcards only in it *1 

if (wild[l] == -1) { 1* ie, only one wildcard in pattern *1 
if (wild[O] == *patlen-l) return L; 
if (wild[O] > 0) return M; 
else return Fi 

} 
else 

if (wild[l] == *patlen-l) 
if (wild[O] > 0) return ML; 
else return FLi 

else if (wild[O] == 0) return FM; 
else return MM; 

1* two wildcards in pattern *1 
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/* File name: load.c */ 

#include "stdio.h" 
#include "head.hlt 
#inc1ude "stdlib.h" 

extern int a1pha_index[]; 
unsigned count = 0; 

int load 

{ 
(uchar * index_char , char *fi1e_name) 

FILE *fp; 
char str[lOO], temp[20]; 
uchar last_char = I@I, this_char; 
unsigned j, ki 

if «fp = fopen(file_name, "r"»==NULL) { 
printf (" cannot open in file\n ") ; 
exit(l) ; 

} 

count = 0; 

while (! feof (fp» ( 
fgets(str, 100, fp); 
if (!feof(fp» { 

j = k = 0; 
while (str[k] != '-') temp [j++] = str[k++]; 
temp[j] = NULL; 
entry [count] . length = (short) atoi(temp); 
k++i 
j = 0; 

entry[count] .string = ma11oc(entry[count] .1ength+l); 
if (!entry[count] . string) { 

printf ("memory allocation failure\n"); 
exit(l) ; 

while (str[k] != '-') entry[count] .string[j++] = str[k++]; 
entry[count].string[j] = NULL; 
k++; 
j = 0; 

while (str[k] != '-') temp[j++] = str[k++]; 
temp[j] = NULL; 
entry [count] . token = (unsigned) atoi(temp); 
k++i 
j = 0; 

while (str[k] != '-') temp[j++] = str[k++]; 
temp[j] = NULL; 
entry[count].occurrences = (short) atoi(temp); 
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if (index_char) '* see if new index entry needed *' 
if «this_char=toupper(entry[count] .string[O]» > last_char) 

alpha_index[this_char - 'A'] = count; 
last_char = this_char; 

} 
CDunt++j 

fclose (fp) ; 

if (!index_char) /* ie, no index created for "% .... %11 patterns */ 

} 

return 1; 
else 

if «alpha_index[toupper(*index_char)-'A']) == -1) 
return 0; '* no entries beginning with first letter of pat *' 

else 
return 1; /* there is, so search can proceed */ 

######################################################################## 

/* File name: search.c */ 

'include "stdio.h" 
#include I'head.hll 

extern int alpha_index[]; 
extern int hits; 
extern unsigned count; 

uchar found, offset; 
unsigned start, stop; 

void fixed '* for patterns with no wildcards in them *' 

} 

(uchar *pat, ushort plen) 

if (isalpha(pat[O]» { 
offset = pat[O]-'A'; 
start = alpha_index[offset]; 
stop alpha_index[offset+1]; 

else { '* first char in pat is _ character *' 
start = OJ 
stop = count; 

for (; start<stop; start++) 
if (plen == entry[start].length) ( 

} 

found = exact(pat, entry[start] .string, plen); 
if (found) hits++; 

void front /* for patterns like: "abcde%" or "%abcde n */ 
(uchar *pat, ushort plen, ushort search_type) 

{ 
uchar rev-pat[MAXSTRING]; 
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if (isalpha(pat[O») ( 
offset = pat[O)-'A'; 
start alpha_index[offset); 
stop = alpha_index[offset+l); 

} 
else { 

} 

start = 0; 
stop = count; 

for (; start<stop; start++) 
if (plen <= entry[start) ,length) ( 

} 

found = exact (pat, entry[start) ,string, plen); 
if (found) { 

} 

if (search_type==4) ( 

} 

strcpy(rev-pat, entry[start) ,string); 
reverse-pat(rev-pat); 

hits++; 

void mid /* for patterns like: 11 abc%def 11 */ 

{ 
(uchar 'pat, ushort plen, short wild) 

ushort 
uchar 

1en; 
*current; 

if (isalpha(pat[O») ( 
offset pat[O)-'A'; 

} 

start = alpha_index[offset); 
stop = alpha_index[offset+l); 

else { 
start = 0; 
stop count; 

for (; start<stop; start++) 
if (plen <= entry[start) ,length) ( 

current = entry[start) ,string; 
found = exact(pat, current, wild); 
if (found) ( 

len = entry[start) ,length; 
found = exact (pat+wild+l, current+(len-(plen-wild», plen-wild); 
if (found) hits++; 

} 
} 

} 

void midlast /* for patterns like: "abc%def%" & "%abc%def" */ 
(uchar 'pat, ushort plen, short wild, ushort search_type) 

( 
uchar temp-pat[MAXSTRING), rev-pat[MAXSTRING); 

if (isalpha(pat[O») { 
offset = pat[O)-'A'; 
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start ~ alpha_index[offset]; 
stop ~ alpha_index[offset+l]; 

else ( 

) 

start ~ 0; 
stop = count: 

strcpy{temp-pat, pat); 
temp-pat[plen+l] ~ NULL; /* drop last % from pattern */ 

for (; start<stop; start++) 
if (plen <~ entry[start] . length) 

found ~ exact (temp-pat, entry[start] .string, wild); 
if (found) ( 

) 

found ~ elastic(temp-pat+wild+l, entry[start] .string+wild, 
plen-wild) ; 

if (found) { 

) 

if (search_type~~6) ( 
strcpy(rev-pat, entry[start].string); 
reverse-pat(rev-pat); 

else hits++i 

void both ends /* for patterns like: "%abcde%" */ 

( 

) 

(uchar *pat, ushort plen) 

uchar temp-pat[MAXSTRING]; 
unsigned start, found; 

strcpy(temp-pat, pat); 
temp-pat[plen+l] ~ NULL; /* drop last '%' from pattern */ 

for (start ~ 0; entry[start] .string; start++) 
if (plen <~ entry [start] . length) ( 

) 

found ~ elastic(temp-pat+l, entry [start] .string, plen); 
if (found) hits++; 

void midmid /* for patterns like: "abc%def%xyz" */ 

{ 
(uchar *pat, ushort plen, short wl, short w2) 

uchar 
ushort 

temp, temp-pat[MAXSTRING], *current; 
nullpos; 

if (isalpha(pat[O])) ( 
offset ~ pat[O]-'A'; 

) 

start ~ alpha_index[offset]; 
stop ~ alpha_index[offset+l]; 

else { 
start 0; 
stop = count; 
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} 

strcpy(temp-pat, pat); 

for (; start<stop; start++) 
if (plen <= entry[start] . length) ( 

current = entry[start] .string; 
found = exact (temp-pat, current, w1); 
if (found) ( /* "match% .... % .... " */ 

nullpos = entry[start] . length - (plen-w2) - 1; 
found = exact (temp-pat+w2+1, current+nullpos, plen-w2+1); 
if (found) ( /* " .... % .... %match" */ 

temp = current[nullpos]; /* save char where */ 
current [nullpos] = NULL; /* null to go. */ 
temp-pat[w2] = NULL; /* stop pat at 2nd % */ 
found = elastic (temp-pat+wl+1, current+wl, w2-w1-l); 
current [nullpos] = temp; /* and replace char */ 
if (found) hits++; 

} 
} 

} 

int elastic 1* looks for p to appear anywhere in t */ 

( 
(uchar *p, uchar *t, ushort patlen) 

short textlen = strlen(t), i = patlen, j = patlen, k; 

while (j > 0 && i <= textlen) { 
k = i; 
while (j > 0 && p[j-1] == toupper(t[k-l]) 11 p[j-1] -- '_') { 

k--; 
j -- i 

} 

if (j > 0) { 
i++; 
j = patlen; 

} 

else return 1; 

return 0; 

int exact / * looks for exact match * / 

{ 

} 

(uchar *p, uchar *t, short i) 

while (i > 0 && p[i-1] == toupper(t[i-1]) 11 p[i-1] -- '_') i--; 
return !i ? 1 : 0; 
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A.7 Initial functions used for experimental searches 

/*********************************/ 
/* Program new_strings.c */ 
/* includes object functions for */ 
/* string matching. */ 
/* written by S. Sheldrake 1999 */ 
/*********************************1 
#include <stdio.h> 
#include <setjmp.h> 
#include 'deLh" 

#define ALPHA_SIZE 256 
#define DELIMITER " " 

char text[MAXSTRLEN]; 
char pat[MAXSTRLEN]; 
char subpat[MAXSTRLEN]; 
char word[MAXSTRLEN] ; 

int em1(char *t, char *p, int s_type) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* looks for exact word matches only using #define DELIMITER */ 
( 

} 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat (pat,p); 
strcat(text,DELIMITER); 
strcat(pat,DELIMITER); 

if (s_type == 0) 

/* Add delimiter */ 
/* to font and */ 
/* back of text */ 
/* and pattern */ 

return exact(text,pat,strlen(text» >= 0 ? (OK) 
else 

return shift(text,pat,strlen(text» >= 0 ? (OK) 

int em2(char *t, char *p) 
/* searches for pat in text using a one-at-a-time */ 
/* strategy and permits missing characters in pat */ 
/* looks for delimited, exact word matches only */ 
( 

int i, j, k, I_text, patlen; 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat (pat, p) ; 
strcat(text,DELIMITER); 
strcat(pat,DELIMITER); 

i = j = patlen = strlen(pat); 
l_text = strlen(text); 

while (j > 0 && i <= l_text) ( 
k = i: 

(FAIL) ; 

(FAIL) ; 

while (j > 0 && pat[j-l] == text[k-1] 11 pat[j-1] -- '_') { 
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} 

} 

j--i 
k--; 

if (j > 0) { 
i++i 
j = patlen; 

} 
else return (OK); 

return (FAIL); 
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int em21 (char *t, char *p) 
/* searches for pat in text using a shift 
/* table and permits missing characters in 
/* looks for delimited, exact word matches 
( 

*/ 
pat */ 
only * / 

int i, j, k, l_text, patlen, shift, table[ALPHA_SIZE]; 
char *ptrj 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat (pat,p) ; 
strcat(text,DELIMITER); 
strcat(pat,DELIMITER); 

patlen = strlen(pat); 
ptr = pat; 

/* Add DELIMITER */ 
/* to front and */ 
/* back of text */ 
/* and pattern */ 

for (i=patlen -1, shift = -1; i > -1 && shift < 0; i--) 
if (pat[i] == '_') shift = patlen - i - 1; 

if (shift == 0) shift++; 
if (shift == -1) shift = patlen; 
for (i=O; i<ALPHA_SIZE; i++) table[i] = shift; 
for (i=1; i<patlen; i++, ptr++) table[*ptr] = patlen - i; 

} 

i = j = patlen; 
I_text = strlen(text); 

while (j > 0 && i <= I_text) { 
k = ij 
while (j > 0 && pat[j-l] == text[k-1] 11 pat[j-1] -- '_') { 

j--; 

} 

k--j 
} 
if (j > 0) { 

} 

i += table[text[i-1]] < shift? table[text[i-1]] 
j = patlen; 

else return (OK); 

return (FAIL); 

shift; 

int em3(char *t, char *p) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* copes with right-hand truncation by discarding wildcard char */ 
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/* looks for exact word matches only using #define DELIMITER */ 
( 

int i, j, k, I_text, patlen; 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat(pat,p) ; 

/* Add DELIMITER to front and end of */ 
/* text and to front of pattern. */ 

patlen = strlen(pat); 
patlen--; 
pat[patlenj=NULL; 
l_text = strlen(text); 
i = j = 0; 

/* gets rid of wild card character 
/* and null terminate pat. 

/* this time search is from front 

while (j < patlen && i <= l_text) 
k = i; 

} 

while (j < patlen && pat[jj == text[kj) { 
j++; 
k++: 

if (j < patlen) { 
i++: 
j = 0; 

else return (OK); 

return (FAIL); 

*/ 
*/ 

*/ 

int em4(char *t, char *p, int s_type) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* or using a shift table depending on value of s_type. */ 
/* Copes with left-hand truncation by discarding wildcard char */ 
/* looks for exact word matches only using #define DELIMITER */ 
( 

} 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcpy(pat,p+l); 
strcat(pat,DELIMITER); 

if (s_type == 0) 

/* Add DELIMITER to front and end of */ 
/* text and to end only of pattern. */ 
/* when copying p to pat, make sure */ 
/* to dump the wildcard character */ 

return exact(text,pat,strlen(text» >= 0 ? (OK) (FAIL); 
else 

return shift(text,pat,strlen{text» >= 0 ? (OK) (FAIL); 

int em5(char *t, char *p) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* copes with wildcard char anywhere in middle of search pat */ 
/* looks for exact word matches only using #define DELIMITER */ 
( 

int i, j, k, I_text, patlen, subpatlen: 

strcpy(text,DELIMITER); 
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strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat(pat,p); 
strcat(pat,DELIMITER); 

/* Add DELIMITER to front and end of */ 
/* text and pattern. */ 

patlen = strlen(pat); 
patlen--; /* gets rid of wildcard to be ignored */ 
i = j = patlen; 
I_text = strlen(text); 

while (j > 0 && i <= I_text) { 
k = i; 
while (j > 0 && text[k] == pat[j]) { 

j--; 
k--; 

} 

/* find RH end first */ 

if (pat[j] == '%') ( /* set things up to look from LH end */ 
strcpy(subpat,pat); /* first make copy of pat */ 
subpat[j]=NULL; /* and shorten it to LH end bit only */ 
while (text[k] != ' ') k--; /* line up k to be at */ 
subpatlen = j; /* beginning of word */ 
j = 0; /* store length of sub pat and set j to 0 */ 
while (j < subpatlen && pat[j] == text[k]) { 

j++; /* now do search from LH end to either */ 
k++i /* mismatch or success for sub pat */ 

} 
if (j < subpatlen) 

i++i 
j = patlen; 

} 
else return (OK); 

} /* endif pat[j] == '%' */ 
else { 

} 

if (j > 0) { 
i++i 
j = patlen; 

else return (OK); 

} /* while */ 
return (FAIL); 

int em6(char *text, char *pat, int s_type) 
/* takes pat, which now has an elastic meta character at each */ 
/* end, lops off the meta characters and does one-at-a-time */ 
/* search or using shift table (depends on s_type passed in.) */ 
{ 

} 

pat++; 
pat[strlen(pat)-l] = NULL; 

/* lose first % character 
/* lose last % character 

if (s_type == 0) 
return exact(text,pat,strlen(text)) >= 0 ? (OK) (FAIL) ; 

else 
return shift(text,pat,strlen(text)) >= 0 ? (OK) (FAIL) ; 

*/ 
*/ 
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int mml(char *t, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* 1 (bang) character, and searches for the sub-patterns - any of */ 
/* which will result in success being returned. Exact words only. */ 
( 

char *ptrj 
int match, l_text; 

strcpy(text,DELIMITER); 
strcpy(subpat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
I_text = strlen(text); 

/* adds the DELIMITER to either */ 

while (pat) ( 
ptr = subpat; 
ptr++j 

/* end of the textsstring 

while ((*ptr++ = *pat++) != 'I' && *pat != NULL) 

*/ 

if (*(ptr-l) == 'I') *--ptr = "; /* these lines add */ 
else *ptr = ' '; /* on the final DELIMITER and */ 
*++ptr = NULL; /* the NULL byte */ 
match = exact(text,subpat,l_text); 
if (match>=O) return (OK); /* found match - so return ok */ 
if (*pat -- 'I ') pat++; 
if (*pat == NULL) return (FAIL); 

} 
} 

int mm2(char *t, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* & (ampersand) character, and searches for the sub-patterns - all */ 
/* of which must be in text for success. Exact words only. */ 
( 

char *ptrj 
int match, I_text; 

strcpy(text,DELIMITER); 
strcpy(subpat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
I_text = strlen(text); 

/* adds the DELIMITER to either */ 
/* end of the texts string */ 

while (pat) ( 
ptr = subpat; 
ptr++i 

/* there's still a subpat to process */ 
/* use ptr to move thru' subpat */ 
/ * skip leading DELIMITER * / 

while (( *ptr++ *pat++) != '&' && *pat != NULL) 

if (*(ptr-l) == '&') *--ptr = ' , . , /* these lines 
final DELIMITER 

/* the NULL 

add */ 
else *ptr = ' I; 

*++ptr = NULL; 
/* on the and */ 

byte */ 
match = exact(text,subpat,l_text); 
if (match<O) return (FAIL); 
if (*pat -- '&') pat++; 

/* if any supbats not in text */ 
/* return fail */ 

if (*pat == NULL) return (OK); 
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int mm3(char *t, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* < (less than) character, and searches for the sub-patterns - all */ 
/* of which must be in text and in ascending order. Exact word only */ 
( 

char *ptri 
int match, last_match = 0, I_text; 

strcpy(text,DELIMITER); 
strcpy(subpat,DELIMITER) ; 
strcat(text,t); 
strcat(text,DELIMITER); 
l_text = strlen(text); 

/* adds the DELIMITER to either */ 
/* end of the text string */ 

while (pat) { 
ptr = subpa t; 
ptr++; 

/* there's still a subpat to process */ 
/* use ptr to move thru' subpat */ 
/ * skip leading DELIMITER * / 

} 

while (( *ptr++ = *pat++) != '<' && *pat != NULL) 

if (*(ptr-l) == '<') *--ptr = ' '; 
/* on the 

/* these lines add 
final DELIMITER and 

*/ 
*/ else *ptr = I r; 

*++ptr = NULL: /* the NULL byte */ 
match = exact(text,subpat,l_text); 
if (match < 0 I I match < last_match) return (FAIL); 
last_match = match; /* make sure matches are found */ 
if (*pat -- '<I) pat++: /* in the correct ordering */ 
if (*pat == NULL) return (OK); 

int exact(char *text, char *pat, int l_text) 
/* uses one-at-a-time shift to find match */ 
( 

) 

int i, j, k, patlen = strlen(pat); 

i = j = patlenj 

while (j > 0 && i <= I_text) { 
k = ii 
while (j > 0 && text[k-l] == pat[j-l]){ 

j--; 
k--: 

) 
if (j > 0) ( 

i++: 
j = patlen; 

) 

else return k; 

return -1: 

int shift(char *text, char *pat, int l_text) 
/* uses shift table to find exact match */ 
( 

int i, j, k, patlen = strlen(pat) , table[ALPHA_SIZE]; 
char *ptr = pat; 
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for (i=O; i<ALPHA_SIZE; i++) table[i] = patlen; 
for (i=l; i<patlen; i++, ptr++) table [*ptr] = pat1en-i; 

i = j = patlen; 

while (j > 0 && i <= I_text) { 
k = i; 
while (j > 0 && text[k-1] == pat[j-1]){ 

j --; 
k--: 

if (j > 0) ( 
i += table[text[i-1]]; 
j = patlen; 

else return k: 

return -1: 

int ssl(char *t, char *p) 
/* searches for pat in text using on-at-a-time moves */ 
/* returns the number of times pat appears in text */ 
( 

} 

int I_text, patlent i, j, k, count = 0; 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat(pat,p) ; 
strcat(pat,DELIMITER); 

I_text = strlen(text); 
patlen = strlen(pat); 

i = j = patlen: 

while (i <= I_text) { 
k = i: 

} 

while (j > 0 && text[k-1] -- pat[j-1]) { 
k--; 
j--; 

} 
if (j < 1) count++; 
i++: 
j = patlen; 

return count: 

int ss2(char *t, char *p) 
/* searches for pat in text using shift table and */ 
/* returns the number of times pat appears in text */ 
( 

char *ptr: 
int I_text, patlen, table [ALPHA_SIZE] , i, j, k, count = 0; 

strcpy(text,DELIMITER); 
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} 

strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat (pat,p); 
strcat(pat,DELIMITER); 
I_text = strlen(text); 
patlen = strlen(pat); 
ptr = pat; 
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for (i = 0; i < ALPHA_SIZE; i++) table(i] = patlen; 
for (i = 1; i < patlen; i++, ptr++) table(*ptr] = patlen i; 

i = j = patlen; 

while (i <= I_text) 
k :::: ii 

} 

while (j > 0 && text(k-1] -- pat(j-1]) { 
k--; 
j --; 

} 
if (j < 1) count++; 
i += table(text(i-1]]; 
j = patlen; 

return count i 

char *mm11(char *t, char *p) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* looks for exact word matches only using #define DELIMITER */ 
/* returns string found or empty string if not found */ 
( 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t) ; 
strcat(pat,p) ; 
strcat(text,DELIMITER); 
strcat(pat,DELIMITER); 

/* Add DELIMITER */ 
/* to front and */ 
/* back of text */ 
/* and pattern */ 

return exact(text,pat,strlen(text» >= 0 ? (p) : (''''); 
} 

char *mm22(char *t, char *p) 
/* searches for pat in text using a one-at-a-time */ 
/* strategy and permits missing characters in pat */ 
/* looks for delimited, exact word matches only */ 
/* returns the word from the text that caused match */ 
( 

int i, j, k, I_text, patleni 

strcpy(text,DELIMITER) ; 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(pat,p); 
strcat(text,DELIMITER); 
strcat(pat,DELIMITER); 

i = j = patlen = strlen(pat); 

/* Add DELIMITER */ 
/* to front and */ 
/* back of text */ 
/* and pattern */ 
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I_text = strlen(text); 

while (j > 0 && i <= I_text) { 
k = i; 

} 

while (j > 0 && pat[j-l] == text[k-l] 11 pat[j-l] -- '_') { 
j--; 
k--; 

if (j > 0) { 

i++: 
j = patlen; 

} 

else ( 

} 

strncpy(word, text+k+l, i-k-l); 
word[i-k-2] = NULL; 
return word: 

return " " . , 

char *mm33(char *t, char *p) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* copes with right-hand truncation by discarding wildcard char */ 
/* looks for exact word matches only using #define DELIMITER */ 
/* returns the word in the text that made the match */ 
( 

int i, j, k, I_text, rn, patlen; 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat (pat,p); 

/* Add DELIMITER to front and end of */ 
/* text and to front of pattern. */ 

patlen = strlen(pat); 
patlen--; 
pat [patlen] =NULL; 
I_text = strlen(text); 
i = j = 0: 

/* gets rid of wild card character 
/* and null terminate pat. 

/* this time search is from front 

while (j < patlen && i <= l_text) 
k = ii 
while (j < patlen && pat[j] == text[k]) 

j ++; 
k++; 

} 

if (j < patlen) 
i++; 
j = 0; 

else { 
m = 0; /* to step through word */ 
i++i /* move i past first space char in text */ 
while «word[m++] = text[i++]) != ' .) 

word[m] = NULL; 
return word; 

*/ 
*/ 

*/ 
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} 
} 
return 

} 

1111 • , 
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char *mm44(char *t, char *p) 
/* searches for pat in text using a one-at-a-tirne move strategy */ 
/* Copes with left-hand truncation by discarding wildcard char */ 
/* looks for exact word matches only using #define DELIMITER */ 
/* returns the word in the text that made the match */ 
( 

int n, ID :;:; 0; 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcpy(pat,p+l); 
strcat(pat,DELIMITER); 

/* Add DELIMITER to front and end of */ 
/* text and to end only of pattern. */ 
/* when copying p to pat, make sure */ 
/* to dump the wildcard character */ 

n = exact(text,pat,strlen(text»; 
if (n >=0) { 

while (text[n] != ' ') n--; /* gets n to beginning of match word */ 
while «word[m++] = text[++n])!= ') 

} 

word[m] = NULL; 
return word; 

else return 1111. , 

char *mm55(char *t, char *p) 
/* searches for pat in text using a one-at-a-time move strategy */ 
/* copes with wildcard char anywhere in middle of search pat */ 
/* looks for exact word matches only using #define DELIMITER */ 
/* returns the word in text that made the match */ 
( 

int i, j, k, I_text, patIen, subpatlen, m :;:; 0, ni 

strcpy(text,DELIMITER); 
strcpy(pat,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcat (pat,p) ; 
strcat(pat,DELIMITER); 

patlen = strlen(pat); 
patlen--; 
i = j = patlen; 
l_text = strlen(text); 

while (j > 0 && i <= l_text) 
n :;:; k = i; 

/* Add DELIMITER to front and end of */ 
/* text and pattern. */ 

/* gets rid of wildcard to be ignored */ 

while (j > 0 && text[k] == pat[j]) 
j--; 

/* find RH end first */ 

k--; 
} 
if (pat[j] -- '%') { /* set things up to look from LH end */ 
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strcpy(subpat,pat); /* first make copy of pat */ 
subpat[j]=NULL; /* and shorten it to LH end bit only */ 
while (text[k]!= ') k--; /* line up k to be at */ 
subpatlen = j; /* beginning of word */ 
j = 0; /* store length of sub pat and set j to 0 */ 
while (j < subpatlen && pat[j] == text[k]) ( 

j++; /* now do search from LH end to either */ 
k++; /* mismatch or success for sub pat */ 

) 

if (j < subpatlen) { 
i++; 
j = patlen; 

} 

else { 

} 

n--j 
while (text [n] ! = ') 

n--; /* gets n to beginning of match word */ 
while {(word [m++] = text [++nJ) ! = ' ') 

word [m] = NULL; 
return word; 

/* endif pat[j] -- '%' */ 
else { 

} 

if (j > 0) { 
i++i 
j = patlen; 

} 
else { 

} 

n--; 
while (text[n] != ' ') 

n--; /* gets n to beginning of match word */ 
while ((word [m++] = text [++n]) ! = ' ') 

word [m] = NULL; 
return word; 

} /* while *1 
return nil. , 

char *mm66(char *t, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* I (bang) character, and searches for the sub-patterns - any of */ 
/* which will result in success being returned. Exact words only. */ 
/* the word in the text that makes the match is returned. *1 
( 

char *ptrj 
int match, I_text; 

strcpy(text,DELIMITER); 
strcat(text,t); 
strcat(text,DELIMITER); 
strcpy(subpat,DELIMITER); 
l_text = strlen(text); 

/* adds the DELIMITER to either */ 
/* end of the textsstring */ 
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while (pat) { 
ptr = subpat; 
ptr++; 

Appendix 

while «*ptr++ = *pat++) != 'I' && *pat != NULL) 

} 

; 

if (* (ptr-l) == 'I') *--ptr = ' '; 
else *ptr = I I; /* on the 
*++ptr = NULL; 
match = exact(text,subpat,l_text); 
if (match>=O) { 

subpat[strlen(subpat)-lJ = NULL; 
return subpat+l; 

'f (*pat ' I ' ) t .... -- pa ++ i 
if (*pat -- NULL) return " , . , 

/* these lines add */ 
final DELIMITER and */ 

/* the NULL byte */ 
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A.S Final search functions used in software 

1*********************************/ 
/* Program new_strings.c */ 
/* includes object functions for */ 
/* string matching. */ 
/* written by S. Sheldrake 2000 */ 
1*********************************/ 
#include <stdio.h> 
#include <setjmp.h> 
#include "def.h" 

#define DELIMITER ' 

char *word(), *wild(), *embed(); 
char curr_word[MAXSTRLEN]; 
char curr-pat[MAXSTRLEN]; 

char *matches(char *text, char *pat) 
/* examines pat to see how many wild cards in it. If there */ 
/* are zero, one or two, it passes pat & text to appropriate *l 
/* function - either word(), wild() or embed() */ 
( 

} 

int i, total, len = strlen(pat); 

for (i = 0, total = 0; total<2 && pat[i]; i++) 
if (pat[i] == '%') total.+; 

switch (total) ( 
case 0 return word(text,pat); 
case 1 return wild(text,pat); 
case 2 if (pat [a] -- '% ' && pat [len-l] --

return embed(text,pat) ; 
else 

I % I) 

default 
return "incorrect position of wild cards"; 

return "too many wild cards used"i 

char *word(char *text, char *pat) 
/* searches for pat in text using a one-at-a-time move */ 
/* allowing for I in pat meaning anyone character. */ 
/* returns first word that matches. */ 
( 

int i, j = 0, x, plen = strlen(pat); 

while (text[j]) { 
i = 0; /* used as count through each word */ 
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL) 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

x = strlen(curr_word); 
if (plen == x) { 

while (x > 0 && pat[x-l] 
X--j 

curr_word[x-I] 11 pat [x-I] I_I ) 
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} 

if (Ix) return curr_wordi 
} 

return Ill! • , 

Appendix 

char *wild(char *text, char *pat) 
/* Searches for pat in text. Allows for one '%' character */ 
/* at either end of pat or in middle. Also allows for' , */ 
/* anywhere in pat. Returns first word that matches */ 
{ 

int i, j = 0, X, W = 0, plen = strlen(pat)-l, wlenj 
char *p, *t; 

while (pat [w] 1= '%' && pat [w] I = NULL) w++; 

.while (text[j]) { 
i = 0; /* used as count through each word */ 
while «curr_word[i++] = text[j++]) 1= DELIMITER && text[j] 1= NULL) 

} 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

wlen = strlen(curr_word); 
if (plen <= wlen) { 

x = W; /* look for back bit of pat in curr_word */ 
while (x > 0 && pat[x-l] == curr_word[x-l] 11 pat[x-l] -- '_'I 

X--j 

if (Ix) ( /* if found, set up and look for front bit */ 

} 

return 

x = plen - Wj 

P = pat+w+l; 
t = curr_word+(wlen-(plen-w)); 
while (x > 0 && p[x-l] == t[x-l] 11 p[x-l] -- '_') x--; 
if (Ix) return curr_word; 

It " • , 

char *embed(char *text, char *pat) 
1* takes pat, which now has form I%XXXX%I 

/* and returns first word that matches */ 
( 

int i, j = 0, X, y, z, plen, wlen; 

pat++; 
pat[strlen(pat)-l] = NULL; 
plen = strlen(pat); 

while (text [j]) { 

/* lose first % character 
/* lose last % character 

i = 0; /* used as count through each word */ 

*/ 
*/ 

while «curr_word[i++] = text[j++]) 1= DELIMITER && text[j] 1= NULL) 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

wlen = strlen(curr_word); 
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if (plen <= wlen) 
x = y = plen; 

Appendix 

while (y > 0 && x <= wlen) { 
Z = Xi 

while (y> 0 && pat[y-l] -- curr_word[z-l] 11 pat [y-l] -- '_') { 
z--; 

} 
} 

return 
} 

y--; 

if (y > 0) { 

X++i 
y = plen; 

} 
else return curr_word; 

"" . , 

char *rest(char *text, char *pat) 
/* searches for pat in text using a one-at-a-time move */ 
/* returns the rest of the text after the match. */ 
{ 

int i, j = 0; 

while (text [j]) { 
i = 0; /* used as count through each word */ 
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL) 

} 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

if (!strcmp(curr_word,pat» return text+j; 

return 1111. , 

char *or_str(char *text, char *pat) 
/* takes pat, which is a mUltiple pattern of patterns separated by */ 
/* 1 (bang) character, and searches for the sub-patterns - any of */ 
/* which will result in that word being returned. */ 
{ 

int i, j, y = 0 i 

while (pat [y]) { 
i = 0; /* used as count through each bit of pat */ 
while «curr-pat[i++] = pat[y++]) != 'I' && pat[y] != NULL) 

if (pat[y-l] == 'I ') curr-pat[i-l] = NULL; 
else curr-pat[i] = NULL; 

j = 0; 
while (text[j]) ( 

i = 0; /* used as count through each word */ 
while «curr_word[i++]=text[j++])!= DELIMITER && text[j] != NULL) 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 
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if (!strcrnp(curr-pat,curr_word» return curr_word; 
} 

if (pat [y] 
if (pat [y] 

-- 'I') y++; 
-- NULL) return 11 n • , 

int and_str(char *text, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* & (ampersand) character, and searches for the sub-patterns - all */ 
/* of which must be in text for success. Exact words only. */ 
{ 

int i, j, y = 0, found; 

while (pat [y]) { 
i = 0; 
while «curr-pat[i++] = pat[y++]) != '&' && pat[y] != NULL) 

if (pat[y-1] == '&') curr-pat[i-1] = NULL; 
else curr-pat[i] = NULL; 

found = 0; 
j = 0; /* used as count through text */ 

while (text[j] && !found) ( 
i = 0; /* used as count through each word */ 
while «curr_word[i++]=text[j++]) != DELIMITER && text[j] != NULL) 

} 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

if (!strcmp(curr_word,curr-pat» found = 1; 

if (text[j] == NULL && !found) return (FAIL); 
if (pat[y] -- '&') y++; 
if (pat[y] == NULL) return (OK); 

int order_str(char *text, char *pat) 
/* takes pat, which is a multiple pattern of patterns separated by */ 
/* < (less than) character, and searches for the sub-patterns - all */ 
/* of which must be in text and in ascending order. Exact word only *1 
{ 

int i, j = 0, y = 0, found; 

while (pat[y]) { 
i = 0; /* used as count through bits of pat */ 
while «curr-pat[i++] = pat[y++]) != '<' && pat[y] != NULL) 

if (pat[y-l] == '<') curr-pat[i-1] = NULL; 
else curr-pat[i] = NULL; 

found = 0; 
while (text[j] && !found) ( 

i = 0; /* used as count through each word */ 
while «curr_word[i++]=text[j++]) != DELIMITER && text[j] != NULL) 
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if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

if (!strcmp(curr-pat,curr_word)) found = 1; 

if (!found) return (FAIL); 
if (text[j] == NULL && pat[y] != NULL) return (FAIL); 
if (pat[y] -- '<'I y++; 
if (pat[y] == NULL) return (OK); 

int count_str(char *text, char *pat) 
/* returns the number of times pat appears in text */ 
( 

int i, j = 0, count = 0; 

while (text[j]) ( 
i = 0; /* used as count through each word */ 
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL) 

} 

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL; 
else curr_word[i] = NULL; 

if (!strcmp(curr_word,pat)) count++; 

return count; 

int count_words(char *text, char *pat) 
/* returns the number of words in a text */ 
( 

} 

int j = 0, count = 0; 

if (text[j]==NULL) return count; 

while (text [j]) ( 
while (text[j++] != DELIMITER && text[j] != NULL) 

if (text[j-l] -- DELIMITER && text[j] != NULL) count++; 
if (text[j-2] -- '\\') count--; 

return ++cQuntj 

int exact(char *text, char *pat, int I_text) 
/* uses one-at-a-time shift to find match */ 
( 

int i, j, k, patlen = strlen(pat); 

i = j = patlen; 

while (j > 0 && i <= I_text) { 
k = i; 
while (j > 0 && text[k-l] == pat[j-l]){ 

j --; 
k--; 
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} 

) 

if (j > 0) ( 
i++; 
j = patlen; 

else return k; 

return -1; 
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