
. ,
I

Pilkington Library

._ Loughborough

., University

A h IF·I· T· I 5 l-\o!:~:\)(tM~ ut or ling It e ·······

..
. -r

Vol. No. Class Mark

Please note that fines are charged on ALL
overdue items.

I

0402806433

111111111111111111111111111

Extending Functional Databases for use in .

Text-intensive Applications

by

Simon N Sheldrake

Doctoral thesis submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of Loughborough University

August 2002

© by Simon Sheldrake 2002

Abstract

This thesis continues research exploring the benefits of using functional
databases based around the functional data model for advanced database
applications-particularly those supporting investigative systems. This is a
growing generic application domain covering areas such as criminal and military
intelligence, which are characterised by significant data complexity, large data
sets and the need for high performance, interactive use. An experimental
functional database language was developed to provide the requisite semantic
richness. However, heavy use in a practical context has shown that language
extensions and implementation improvements are required-especially in the
crucial areas of string matching and graph traversal. In addition, an
implementation on multiprocessor, parallel architectures is essential to meet the
performance needs ariSing from existing and projected database sizes in the
chosen application area.

The work described deals with the general topic of devolving functionality to a
lower level in the query evaluation process. It builds on earlier work to show
that substantial performance gains are possible in many areas. It then pays
particular attention to string handling and the data structures supporting this to
provide a richer set of search options for the user-options hitherto unavailable
in a functional database. By exploiting the inherent parallelism in list
comprehensions-and the optimisations that are available-it is possible to
provide language extensions based around a parallel architecture. This
architecture uses the basic principles of dataflow graphs, loosely coupled MIMD
machines, together with a novel RAID configuration combining mirroring and
parity schemes, and obviates the need to maintain complex, low-level indexes.
Attribute data is stored separately from entity data, combining the benefits of the
functional data model with those of the relational data model to reflect more
naturally data usage and provide a further boost to graph traversal operations.

Initial results are promising and show that combining mature technology with
novel ideas is achievable without compromising the known advantages of the
functional paradigm. The results of this, and other, research work should
provide added impetus in making functional databases a more realistic choice for
use in advanced, text-intensive database applications.

Keywords: functional data model; functional database;
functional programming; function graph model; RAID;
parallel processing; dataflow; text searching; triple store

Acknowledgements

The following people have helped and encouraged me in different aspects of my

work and I offer sincere thanks to them all. At Birkbeck College, University of

London, Professor Peter King, Fefie Dotsika and Jonathan Lawder. At

Loughborough University, technical staff Jeff Pitchers, Gurbinder Sarnra and

Andre Schappo. For administrative support thanks to Irene and Debby, and for

emotional support and putting up with me in our shared office for the last two

years, special thanks to Marina. For academic help in the Department of

Computer Science during various stages of my work, thanks are due to Colin

Machin, John Cooke, Roger Stone and my Director of Research Chris Hinde.

Special thanks go to my Supervisor, Professor Victor Maller, for all his support,

encouragement, patience and kindness, and for arranging the necessary finance

through ICL and EPSRC. This thesis is dedicated to my late and dear friend

Katie. Without her, none of this would have been possible.

i

Table of contents

Abstract

Acknowledgements ... I

Table of contents .. il

List of figures ... 11 11 •••••••••••••••••••• viii

List of tables .. x

Chapter 1 Introduction to the thesis ... 1

1.1 Introduction ... 1

1.2 Context of the thesis .. 2

1.3 Background to the thesis ... 4

1.4 Thesis methodology ... 5

1.5 Contribution of the thesis ... 5

1.6 Limitations of the thesis ... 6

1.7 Thesis structure ... 6

Chapter 2 The Current Implementation .. 9

2.1 Introduction ... 9

2.2 The software triple store•... 9
2.2.1 The storage of triples .. 10
2.2.2 The parameter driven splitting policy .. 11
2.2.3 Parameter driven merging and reorganisation policies 12
2.2.4 The inverted directory array .. 13

2.3 The lexical token converter ... 16

2.4 Interface functions .. : .. 20
2.4.1 File utility operators .. 21
2.4.2 Update only operators .. 21
2.4.3 Query only operators .. 22
2.4.4 Operators provided by the L TC software 22

2.5 File management .. 23

2.6 Discussion ... 26
2.6.1 String matching ... 26
2.6.2 Tokenisation ... 27
2.6.3 Functionality ... 28
2.6.4 The data model ... 29
2.6.5 Directory structure .. 31

2.7 Summary ... 33

ii

Chapter 3 Background to areas of work covered .. 34

3.1 Introduction ... 34

3.2 A review of similar alternatives .. 34
3.2.1 Grid file variants .. 34
3.2.2 Other binary relational storage structures 37
3.2.3 A triple store based on space-filling curves 39
3.2.4 Conclusions for grid file and BRSS applicability 42

3.3 Text searching and user requirements .. 43
3.3.1 An introduction to text searching .. 43
3.3.2 What users expect .. 45
3.3.3 Categories of users .. 47

3.4 A review of storage and access methods .. 48
3.4.1 File structure design issues .. 48
3.4.2 Main memory databases or disk-based databases? 51
3.4.3 Summary of design considerations ... 52

3.5 Using a search engine ... 53
3.5.1 Record structure ... 55

3.6 Parallel processing .. 56
3.6.1 Implementing problems in parallel .. 56
3.6.2 The choices for parallel implementation 59
3.6.3 The vigorous parallelism of AGNA .. 65

3.7 Introducing redundancy ... 66
3.8 The physical model for data storage ... 67

3.9 Introduction to our proposals ... 70
3.9.1 The data model. , ... 70
3.9.2 Improving string handling .. 70
3.9.3 Extending interface functionality ... 71
3.9.4 Making the architecture parallel .. 71

3.10 Summary ... 71

Chapter 4 Enhancing string manipulation ... 72

4.1 Introduction ... 72

4.2 Enhancements to the current software .. 72
4.2.1 Comparisons between object-level and user-defined functions .. 80
4.2.2 Comparisons between conjunctive and disjunctive search types 81
4.2.3 String searching techniques used ... 83

4.3 A different approach to string handling .. 84
4.3.1 A new type for large text documents .. 85
4.3.2 Combining strings and tokens .. 86

4.4 The data structures ... 92
4.4.1 The string tables ... 92
4.4.2 The string triples ... 93

iii

4.4.3 Other lexical types .. 94
4.4.4 The attribute records .. 95
4.4.5 The structure of text documents ... 95
4.4.6 Recent developments in text structuring : 99
4.4.7 Pre-processing of documents ... 100

4.5 Description and results ... : 100
4.5.1 Basic structure .. 100
4.5.2 Description of search algorithms .. 102
4.5.3 Results .. 104

4.6 Discussion ... 107
4.6.1 Functional data languages .. 108
4.6.2 Object-oriented database systems ... 109
4.6.3 Convergence of the functional, object-oriented and relational
approaches to database systems .. 110

4.7 Summary ... 112
4.7.1 Devolving string matching functionality 112
4.7.2 Handling strings differently ... 113

Chapter 5 Extending Interface functionality .. 116

5.1 Introduction .. 116

5.2 Extending the language level functionality .. 117

5.3 Extending the operator level functionality .. 118

5.4 Extending the storage level functionality ... 119
5.4.1 Introduction ... 119
5.4.2 Update operators .. 120
5.4.3 Schema data .. 120
5.4.4 Instance data .. 127
5.4.5 Extensional primary functions ... 127
5.4.6 Intensional primary functions .. 129
5.4.7 Secondary functions ... 130
5.4.8 Retrieval operators ... 131
5.4.9 File utility operators .. 133

5.5 Discussion ... 133

5.6 Summary ... 135

Chapter 6 An architecture to support parallel processing 136

6.1 Introduction ... 136

6.2 Using a proven parallel processing architecture design 136
6.2.1 The NCRlTeradata DBC/1012 database machine 137
6.2.2 The NCR 3700 database machine ... 140
6.2.3 Adopting this architecture to suit our needs 140

6.3 A new RAID level .. 144

iv

6.3.1 Our RAID approach .. 145
6.3.2 Improved search times ... 148

6.4 Combining records and triples ... 150
6.4.1 Entity triples .. 151
6.4.2 Attribute records ... 151

6.5 Our architecture .. 153
6.5.1 Distribution of data .. 154
6.5.2 Computation ... 155
6.5.3 The data processing elements (DPE) 158
6.5.4 The control processing element (CPE) 161

6.6 Search strategies .. 163
6.6.1 Membership triples ... 163
6.6.2 Other meta data .. 163
6.6.3 String tables .. 163
6.6.4 String triples .. 164
6.6.5 Triples and records ... 165

6.7 Discussion ... 165
6.7.1 The choice of a MIMD architecture ... 166
6.7.2 Why RAID? .. 167
6.7.3 The storage modeL ... 167
6.7.4 The AD MS model ... 168
6.7.5 The associative model of data .. 170
6.7.6 The Universal data modeL .. 173

6.8 Summary ... 173

Chapter 7 Transformation, optimisation and translation 174

7.1 Introduction ... 174

7.2 Transformation to the sub-language .. 175

7.3 Optimisations .. 177
7.3.1 Passing down filters and generators ... 179
7.3.2 Inverse functions .. 180
7.3.3 Selection functions ... 182
7.3.4 High hit rates for lexical values ... 183
7.3.5 Text searching functions ... 184

7.4 The abstract reduction machine .. 185
7.4.1 The reduction process .. 186
7.4.2 A reduction example ... 189

7.5 Translation into dataflow graphs ... 193
Optimisations to DFGs .. 198
7.5.2 Translation to parallel code ... 202
7.5.3 Graph analysis .. 211
7.5.4 Allocation of frame slols .. 214
7.5.5 Mapping DFGs to parallel code .. 215

v

7.6 Performance improvements .. 218

7.7 Discussion ... 220
7.7.1 Using a core sub-language ... 220
7.7.2 Optimisations .. 221
7.7.3 Why use dataflow? ... 221
7.7.4 Comparison with AGNA .. 222
7.7.5 Parallel Haskell ... 223

7.8 Summary ... 223

Chapter 8 Database creation, population and maintenance 225

8.1 Introduction ... 225

8.2 Creating a new database .. 225

8.3 Populating a new database ... 227
8.3.1 Inserting membership triples ... 227
8.3.2 Inserting instance data .. 229

8.4 Attribute records .. 230
8.4.1 Id_field .. 232
8.4.2 Entity field ... 232
8.4.3 Relations field ... 232
8.4.4 Attributes .. 232
8.4.5 Timestamp .. 233
8.4.6 Text type ... 233
8.4.7 BLOB type .. 234
8.4.8 Multi-valued attributes ... 234
8.4.9 Default values and intensional values 235

8.5 Storage requirements and placement on disk 235
8.5.1 Attributes .. 235
8.5.2 String tables and lexical triples ... 239
8.5.3 Text attributes ... 240
8.5.4 Entity triples .. 241
8.5.5 Documents .. 243
8.5.6 Total storage requirements ... 244

8.6 Indexing ... 246
8.6.1 Schema triples .. 246
8.6.2 Membership triples ... 247
B.6.3 Entity triples .. ,1 •••••••••••••••••••••••••••••• 247
8.6.4 Attribute records and documents .. 247
8.6.5 String tables .. 248
8.6.6 Lexical triples .. 248
8.6.7 Temporal indexing .. 249

8.7 Adding and deleting data ... 253
8.7.1 Membership triples ... 254
8.7.2 Attribute records and documents .. 255
8.7.3 Entity triples .. 255

vi

8.7.4 Lexical triples and string tables ... 255
8.7.5 Schema data .. 256

8.8 Other DBMS related issues ... 257
8.8.1 Data integrity .. 257
8.8.2 Concurrent access .. 258
8.8.3 Security ... 259

8.9 Summary ... 259

Chapter 9 Summary, conclusions and further work 261

9.1 Introduction ... 261

9.2 Statement of the problem .. 261

9.3 The solution ... 263

9.4 Proof of solution .. 266

9.5 Conclusions ... 270

9.6 Further work .. 271
9.6.1 Build complete system .. 271
9.6.2 Partially structured data .. 272
9.6.3 Optimisation, transformation and searches 273
9.6.4 Hybrid RAID systems .. 274

References .. 276

Appendix ... 290

A.1 North Yorks crime database - schema ... 290

A.2 North Yorks crime database - triple allocation 291

A.3 Presented at IDEAS '98 Conference, Cardiff UK, July 1998 292

A.4 Presented at BNCOD, Exeter UK, July 2000 294

A.5 'C' program files for text searching based on using records 298

A.6 'C' program files for text searching using 5.5 million records 308

A.7 Initial functions used for experimental searches 317

A.8 Final search functions used in software .. 329

vii

List of figures

Figure 1.1. The TriStarp Architecture .. 3

Figure 2.1. Mapping from logical data space regions to physical disk storage. 11

Figure 2.2. Merging schemes .. 13

Figure 2.3. The grid array .. 14

Figure 2.4. IDA data structures .. 15

Figure 2.5. The R-module data structure ... 16

Figure 2.6. Format for storage of Short strings as string triples 18

Figure 2.7. Short string internal storage .. 19

Figure 2.8. The Triple Store architecture ... 25

Figure 2.9. Graph traversal for attributes ... 30

Figure 3.1. The BANG file scheme .. 35

Figure 3.2. The temporal grid file ... 36

Figure 3.3. The Hilbert Curve .. 40

Figure 3.4. First and second order curves ... 41

Figure 3.5. States the Hilbert curve can take ... 41

Figure 3.6. Outline of CAFS .. 54

Figure 3.7. Typical record format.. ... 55

Figure 3.8. MIMD configuration ... 57

Figure 3.9. Parallel processing terminology ... 58

Figure 3.10. The ADMS data model. ... 69

Figure 4.1. Crime database schema (part of) .. 79

Figure 4.2. Improvements in string functions ... 80

Figure 4.3. Comparisons between different orand and functions 82

Figure 4.4. Document mapping ... 96

Figure 4.5. Mapping between document and document file card 98

Figure 4.6. Overall string matching results .. 105

Figure 4.7. Search times with and without a data filter 106

Figure 6.1. The Teradata DBC/1 012 architecture .. 138

Figure 6.2. RAID 100 disk layout. .. 144

Figure 6.3. RAID 15 configuration ... 145

Figure 6.4. Schema for RAID example .. 146

Figure 6.5. Outline of storage model. .. 151

Figure 6.6. Outline of our architecture ... 153

Figure 6.7. Structure of an open list. ... 156

Figure 6.8. Construction of filtered lists ... 157

viii

Figure 6.9. Graph traversal across DPEs .. 159

Figure 6.10. The Control Processing Element. .. 161

Figure 6.11. Mapping whole string .. 164

Figure 6.12. Mapping truncated string ... 165

Figure 6.13. The associative model of data ... 171

Figure 6.14. Sentences inverse functions ... 172

Figure 7.1. Arithmetic DFG .. 194

Figure 7.2. Example of a DFG procedure .. 196

Figure 7.3. Conditional DFG .. 197

Figure 7.4. DFG for apply 198

Figure 7.5.

Figure 7.6.

Figure 7.7.

Figure 7.8.

Figure 7.9.

Figure 7.10.

Figure 7.11.

Figure 7.12.

Figure 7.13.

DFG for built-in function .. 200

DFG for string lookups .. 201

DFG for restrict .. 202

Organisation of the parallel machine ... 203

Methods of dependence sets .. 213

Procedure frame .. 214

The lookup operator .. 216

The string-map operator .. 216

The subtract operator .. 216

Figure 7.14. The restrictoperator .. 217

Figure 8.1. Raw data schema .. 230

Figure 8.2. North Yorks crime database - Triple allocation (part of) 237

Figure 8.3. Storage architecture .. 246

Figure 8.4. Schema changes ... 256

ix

List of tables

Table 2.1.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 4.8.

Table 4.9.

Allocation of type labels to token space .. 17

Current built-in string functions .. 73

Experimental string functions .. 77

Object-level string functions .. 78

Comparisons between contains and em1 80

Timings for different types of or and and functions 82

String table record structure .. 93

Example of string table .. 93

String triples .. 94

Search types ... 101

Table 4.10. Forward names file .. 101

Table 4.11. Search patterns and timings .. 106

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

Table 6.5.

Table 8.1.

Table 8.2.

Table 8.3.

Table 8.4.

Table 8.5.

Table 8.6.

Table 8.7.

Table 8.8.

Table 8.9.

Record identifiers .. 121

Type identifiers .. 121

Contrast between primary and secondary functions 124

Schema table .. 126

Schema table for RAID example ... 146

RAID triples ... 147

Improved search times using RAID 15 .. 149

Comparison of popular RAID levels .. 149

Triples used in single processor example 160

New type labels ... 226

Example of attribute data values ... 231

Description of record fields .. 231

Attribute record storage requirements (in bytes) 239

Lexical triple store requirements .. 241

Total document storage requirements ... 244

Total storage requirements ... 245

Storage requirements for temporal index 251

Optimised temporal index requirements 252

Table 8.10. Triples and records for schema changes 256

x

Chapter 1

Chapter 1 Introduction to the thesis

1.1 Introduction

Functional programming languages have been in use for over twenty-five years

fulfilling many early promises made by their supporters. Indeed, in the 1980s,

the functional approach was seen as the answer to numerous problems in

computing and gave rise to considerable research in many countries throughout

the world. In particular, their appeal as elegant ways to provide parallel

processing generated great interest. However, some of the initial hopes had to be

modified because of discovered drawbacks. Specifically, handling input/output

and updates have remained difficulties. Furthermore, the task of implementing a

parallel functional language is much more substantial than it first appears

[TRI96j.

Where database systems are concerned, the functional option is just one of a

number of paradigms available to developers and is not usually the first choice.

Increasingly, commercial database systems need to handle large volumes of text

efficiently, and text handling has never been a particular strength of functional

languages. However, as the shortcomings of relational databases become

increasingly noticeable, and object-oriented systems fail to make a significant

impact commercially [WILOOj, there is still room for the functional approach.

More optimistically, a functional basis can be used to provide a stricter formalism

to underpin a syntheSiS of the relational and object models-thus combining the

best of both worlds. This is beginning to happen and is evident in the recent

standard for SQL:1999 [MEL02j.

This thesis aims to add impetus to this argument proving that enhancements in

certain areas are achievable without compromising the earlier benefits. The work

described in this thesis forms part of a collaboration with the TriStarp project, to

which an introduction and background is given next.

1

Chapter 1

1.2 Context of the thesis

The TriStarp-Triple Store Applications Research Project-started under the

guidance of Professor King at Birkbeck College, University of London in 1984

and has used the binary relational approach for its database development since

then [KIN90). Starting from the basic storage level and moving up to the user

interface and conceptual views, full functional database systems can be

developed which include deductive facilities, integrity constraints, temporal

data, and provision for modelling and storing arbitrarily complex objects. Also

database systems can have a higher level of data independence than has hitherto

been achieved. Increases in hardware power and improved software techniques

have the potential to make such systems practically realisable for the next

generation of database management systems.

Frost reviewed the binary relational approach and devised the Binary Relational

Storage Structure (BRSS) [FR082). A BRSS holds data in three fields with the

format <subject, relation, object> termed a triple. A triple can hold facts like

"Fred reads The-Times", or be used for structures like binary trees-where

format <node, left-subtree, right-subtree> is used to construct a triple set.

There were several developments of the BRSS concept and the Birkbeck Triple

Machine (BIM) is one such implementation [DER89). This is described in

chapter 2.

The functional database language FDL [POU92) was the culmination of several

years' research work into functional programming done at various British

universities. It remedied earlier drawbacks by unifying the functional data

model with functional programming. This allows it to be used for effective

modelling as well as computation. From a database viewpoint, FDL has as its

model the functional view of the binary relation model usually known as the

functional data model. In a binary relational model, entities may be lexical-they

2

Chapter 1

can be written down, viewed or printed-such as string or integer; or they may

be non-lexical. Non-lexical entities cannot be viewed or expressed directly, they

may only be referred to by the (lexical) attributes that define them.

The advantage of this model is that people without any prior mathematical

knowledge or special training may easily understand it. As a consequence, it is a

persuasive data model for capturing real-world semantics of a domain as well as

being able to represent schema information in a simple diagrammatic form for

easy comprehension.

Issues tackled earlier in the project include temporal dependency, the ability to

handle intensional as well as extensional function definitions and the ability to

handle incomplete or unknown information. The use of a functional data model

allows for extensible schemata, while the benefits of functional programming

include the ability to support constructed types and recursive functions over

them. The TriStarp architecture is shown in Figure 1.1 below.

APPLICATION USERS AND DEVELOPERS

I I
End User Development
Interface Tools

./

~./
Functional
Language

I
I

Triple Store
(enhanced)

I

HARDWARE I SOFTWARE PLATFORM

Level 2
(User Level)

Level 1
(Data Model and Semantics)

Level 0
(Semantic-free Storage)

Figure 1.1. The TriStarp Architecture.

3

Chapter 1

1.3 Background to the thesis

Previous investigations by Professors Maller and King evaluated the suitability of

a functional database language being used to support large applications in the

field of investigative systems [KIN96a]. This is a growing generic application

area covering criminal and military intelligence and characterised by significant

data complexity, large data sets, and the need for high performance, interactive

use [MAL96].

The evaluation confirmed the soundness of this approach but heavy use in a

practical context showed that language extensions were needed, together with

implementation improvements, particularly in the areas of string manipulation

and graph traversal. Also, an implementation on multiprocessor, parallel

architectures was considered necessary to meet the performance requirements

arising from existing and prOjected database sizes in this application area.

Five objectives from the above investigation were achieved but completion of the

following areas remain outstanding:

(a) refine, extend and re-specify the abstract machine interfaces

(b) reassess implementation methods, particularly the use of parallel

architectures to boost performance at level 0

(c) further investigate, refine and re-specify level 2 facilities.

The subject of this thesis is to investigate improvements in areas (a) and (b)

above. The three main areas of investigation are string handling and improved

searching facilities, graph traversal and the incorporation of parallel processing

techniques and enhancing the abstract machine level interface (and general)

functionality. The initial investigation did, however, lead to other areas of work

that are detailed below.

4

Chapter 1

1.4 Thesis methodology

This study combines findings from different, but inter-related, disciplines of

computer science. These are:

• functionalprogranurrring

• data models

• redundancy

• parallel processing and dataflow

• text processing and data filtration, and

• database management systems.

The literature review is therefore presented in two different forms. The bulk of

this is contained in the second and third chapters of the thesis. Then later

chapters extend upon this where necessary to set the scene for each topic that the

chapter covers. Each of the chapters 4 to 8 autonomously tackles an area of the

work giving individual results or examples as proof of concept where

appropriate. The last chapter draws together the various components of the

thesis into appropriate conclusions.

1.5 Contribution of the thesis

More than one area of work is described in this thesis. As set out in the

methodology above, there are several inter-related disciplines involved and

contributions are made to the following areas.

Architecture - The combination of attribute records and entity triples for physical

storage seems to complement naturally the identical graphical representation that

the user sees and uses to form queries. This approach also aims to synthesise the

benefits of the relational data model with those of the functional data model.

5

Chapter 1

String manipulation - The removal of strings from the data model and associated

physical storage constraints would seem a sensible thing to do. This allows for

the provision of more powerful string handling operations and the inclusion of a

potentially richer type system, e.g. for type text. This permits further diversity of

functionality to differentiate between string and text operations.

Redundancy - Using a combination of mirroring and parity-where the mirror

complements inverse functions that are part of the data model-a novel RAID

level more naturally supports the new architecture of attribute records and entity

triples. This is in addition to a much greater level of data security provided.

Functionality - Devolving functionality is taken a stage further than has hitherto

been done in functional languages-specifically in relation to string manipulation

and inverse function evaluation.

1.6 Limitations of the thesis

Although they clearly complement each other, the contributions detailed above

have been achieved largely in isolation. There is no all-inclusive working system

that incorporates all of these concepts. This would have proved difficult to

achieve in this instance as the areas of contribution cover a wide range of

disciplines. Moreover, the work involved in writing a complete working system

would not have contributed directly to the areas of work thernselves-each of

which is considered and evaluated in its own right.

1.7 Thesis structure

The first three chapters constitute the introduction and background to the work

presented in the later chapters of the thesis. A synopsis of each chapter is given

below.

6

Chapter 1

Chapter 1 (this chapter) is the introduction to the thesis.

Chapter 2 introduces the current triple store architecture including the lexical

token converter and interface functionality before identifying where

shortcomings are evident and where improvements could be made. .

Chapter 3 begins by discussing alternative implementations based on similar

architectures. User requirements are then considered followed by a review of

storage and access methods. Parallel processing techniques are an important

area of the work presented later on, so the basic concepts are introduced here.

The chapter concludes with an introduction to the topics that form the remaining

chapters of the thesis.

Chapter 4 specifically tackles one of the main areas of investigation, namely,

improvements to string manipulation. This is done in two stages. The first stage

involves providing improvements within the confines of the current architecture

giving results and making comparisons where appropriate. The second stage

suggests an alternative approach using different data structures to provide

improved searching opportunities. This strategy is then compared to other

systems.

Chapter 5 investigates areas for improving functionality with specific emphasis

on the interface functions between levels 0 and 1 of the software hierarchy shown

in Figure 1.1.

Chapter 6 covers another main area of investigation in this work, namely,

architecture. A brief introduction is given to the NCR/Teradata database

machine configuration that serves as a model for the proposed architecture. A

novel RAID level is then described by example and compared to other RAID

7

Chapter 1

levels. The concept of combining records and triples is folJowed through again

with examples before the choices made are put into context of other work.

Chapter 7 goes into the detail of transformations, optimisations and translations

that are made to user expressions. The abstract reduction machine is described

and the translation into dataflow graphs is shown by example. An important

area of this work is the devolution of functionality to a lower level in the

evaluation process. This is described in the context of previous research and, in

particular, to the string and text enhancements (and inverse functions)

introduced earlier in this thesis.

Chapter 8 uses figures extrapolated from the North Yorks Crime Database and

covers creation, population and maintenance issues. An important aspect

missing from the original TriStarp proposals was temporal indexing, so this is

described here. Finally, other database issues are summarised.

Chapter 9 gives a summary and conclusions including related work and further

work arising from the thesis.

Throughout this thesis the words entity, non-lexical, abstract entity and object will

be used synonymously. The terms lexical, lexeme and attribute will be used

likewise, as will the terms relation and function.

8

Chapter 2

Chapter 2 The Current Implementation

2.1 Introduction

In this chapter we begin by describing the storage architecture used in the

TriStarp software-with particular emphasis on the storage of triples and the

directory structure with its optimisations employed. We then briefly detail the

mapping used for creating the lexical and non-lexical tokens used in the triple

store together with the interface functions and file management system used.

Finally, we discuss the current implementation highlighting areas where

improvements could be made.

2.2 The software triple store

The triple store is essentially an abstract machine that provides two facilities: a

method of storing triples and a set of interface functions to manipulate the triples.

The triple store is based on the concept of a Binary Relational Storage Structure

(BRSS) [FR082j. All data are held as triples with the format

<subject, relation, object> and the valid operations are: inserCa_triple,

retrieve_seCof_triples and delete_seCof_triples. For simplifying queries the notation

'*' for a known value and'?' for an unknown value is used. Thus there are seven

Simple Associative Forms (SAFs) available to manipulate the triples:

<*,7,?> <?,*,?> <?,?,*> <*,*,?> <*,?,*> <?,*,*> <*,*,*>

«7,7,7> is an eighth but serves no purpose as it means dump the whole store.)

The advantages of a BRSS include simplification of design and use and the

improvement of data independence [MCK92j: a disadvantage is the need to hold

more triples to store the same information than would be held in a record-based,

relational system. One implementation of a BRSS is the Birkbeck Triple Machine

(BTM). BTM comprises two components: a software Triple Store and a Lexical

9

Chapter 2

Token Converter (LTC). The function of the triple store is the storage, retrieval

and deletion of triples (note that the BTM holds triples in the form

<relation, subject, object». The LTC handles the mapping of the external

representation of the components of a triple (strings, integers, etc.) into an

internal representation of fixed-length identifiers (32 bits for each identifier).

Internal representation of a triple therefore appears as 96 bits. The LTC also

handles the reverse conversion when triples are requested by users. A set of

functions is provided that enables the use of a uniform interface for triple store

access. Indeed, as the BTM is semantic-free, it has been used effectively in

functional and logical database projects at Birkbeck.

2.2.1 The storage of triples

The data structure behind the BTM is based on the grid file [NIE84]-a dynamic,

multi-dimensional method of data organisation within a file. The logical data

space available for the storage of triples is determined by taking the Cartesian

product of the domain of each of the three key attributes-thus the BTM is a

three-dimensional grid file.

When a new triple store repository is opened, the whole of the data space region

represents (points to) a data page on disk. As the file expands-Le. triples are

inserted into the file-the data space will require division into new regions as

data pages fill up and new ones are required. The regions are divided into

hyper-rectangular sub-spaces by repeated bisection of the domains of attribute

values in one of the three dimensions. Similarly, when triples are deleted from

the file, merging of two pages into one may be possible and thus sub-space

regions can be combined along the same lines. There is a direct mapping

between data space regions and data pages on disk, which is shown in Figure 2.1.

10

Chapter 2

The data space reg ions Storage on disk

page 1

page 2

page 3

page 4

Figure 2.1. Mapping from logical data space regions to physical disk storage.

There is a threshold of page occupancy-optirnally set at around 70%-which,

when reached, requires that the page be split into two new pages. Similarly,

when page occupancy falls below a threshold-optimally 30%-a check is made

to see if any merging of regions (and thus data pages) can take place. So

maintaining an effective, dynamic triple store depends on efficient splitting and

merging operations performed on data space regions to reduce data page

accesses-which are heavily I/O-bound-to a minimum. There is also the

problem of trying to map triples from multi-dimensional data space, on to a one

dimensional storage medium so that triples close together logically are also close

together physically. Maintaining a dynamic triple store also depends on the

form and granularity of the directory used to access the data pages.

2.2.2 The parameter driven splitting policy

The splitting and merging of regions can be done in several ways. The original

method suggested by Nievergelt uses a halving of domain partitions in alternate

dimensions. This makes merging easier but takes no account of the highly likely

situation of triples clustering in the data space, and can lead to under-populated

or empty regions and a complex directory structure. The BTM overcomes this by

11

Chapter 2

testing potential split pOints in a region using a selecCsp-point algorithm. This

chooses the point of split in a region so that the resulting new regions created are

much less likely to be empty. This also reduces the size of the directory.

However, the dimension to be split must first be chosen. BTM uses occurrence

and reference probabilities known about the data to calculate a cost of split in

each dimension; it then effects a split in the dimension of lowest cost [Dera90j.

Occurrence probabilities, as to the expected form a partially specified query will

take, can be provided by the Database Administrator (DBA). These probabilities

are given at the time the triple store is opened and correspond to six of the SAFs

described above and are denoted as Q{l} for <*,7,7> through to Q{2,3} for <7, *, *>.

Reference probabilities use information on the probability distribution of values

specified in queries and are a weaker element of the policy as they have to be

hard coded by the DBA so are less easily changed.

The cost of a split is independent of the state of the file and only makes use of the

parameters provided by the DBA, although different occurrence probabilities can

be given each time the store is opened. Since most partially specified queries

have the relation field known, the probabilities provided by the DBA reflect this

and so splits are often biased towards partitioning in the relational dimension.

2.2.3 Parameter driven merging and reorganisation policies

The merging of regions also uses the above probabilities provided by the DBA.

There are two merging schemes: buddy and neighbour. In the buddy system

only one candidate in each dimension can be considered for merging. This

candidate is the one that, if merged with, would form a region that could have

been obtained by repeated bisections of the domain. BTM uses the less restrictive

neighbour system. In this system a region can merge with either of its

12

Chapter 2

neighbours in each dimension. (See Figure 2.2 below in two dimensions for

clarity.)

A A B
A A B

C C

Figure 2.2. Merging schemes.

Buddy system: each region with label n is a candidate for merging with a region

of the same label (diagonal Ns excepted). Neighbour System: any region could

merge with another so long as the resulting new region is hyper-rectangular. So

lower-right A could merge with upper-right A, lower-left A or lower B but not

with left C because this would give a non-rectangular region.

The situation can arise when an under-populated region has no legitimate region

to merge with because of the configuration of the data space. In this case a low

utilisation of the storage space would result-to the obvious detriment of the

system performance. This situation is referred to as deadlock [HIN85j and can

only be resolved by a reorganisation of some or all of the data space regions.

BTM has a parameter driven reorganisation policy to handle deadlock where

neighbouring regions in all dimensions are looked at to see if splits in other

dimensions would allow for more efficient merges to take place.

2.2.4 The inverted directory array

The maintenance of a directory is crucial to minimising page accesses to

secondary storage and has been the subject of much research since the grid file

was first proposed in 1984 (discussed further in chapter 3). The grid file directory

uses one linear scale for each of the three dimensions to maintain a record of

partition points used in the organisation of the file. The Cartesian product of the

13

Chapter 2

intervals used forms a three-dimensional array termed the grid array, each

element of which is termed a grid block. The grid array is usually too large to be

held in main memory-unlike the linear scales used for its partitioning.

Each grid block contains a pointer that either points to a data page in memory, or

is a null pointer if the region to which that grid block refers contains no records.

The original grid array had many null pointers because of the nature of the cyclic,

halving policy used for splitting: at its worst, the grid array could grow

exponentially [FRE87]. This is because, as each new data partition is created, a

hyper-plane is inserted through the data space creating many new under

populated or empty grid blocks to be added to the grid array. As the BTM uses a

splitting algorithm to ensure that empty regions are kept to an absolute

minimum, some of the problems of null pointers are removed. However, this

still leaves the problem of having too many grid blocks pointing to the same data

page. In the two-dimensional Figure 2.3 below, the p# in each grid block points

to a data page in memory. There are thus nine data space regions and 16 grid

blocks in this example, but only eight data pages in memory.

100
p4 p7 pS pS

75 -
p3 p7 pS pS

50
p2 p5 p6 null

25
p1 p5 p6 null

o
Linear I I
Scales 0 25 50 75 100

Figure 2.3. The grid array.

As there can be several grid blocks pointing to one data page, BTM uses an

Inverted Directory Array (IDA) [DER89] to remove the duplicate pointers. This

is done by maintaining a set of pOinters for each interval plane. The intersection

14

Chapter 2

of two or three of these sets provides a set of pointers that determine the relevant

data pages to search. The IDA consists of data structures that facilitate the above.

Linear scales are referred to as extended scales (E-scales); the set of pointers for

each interval of each E-scale is referred to as a set record (S-record). The

collection of 5-records forms the set module (5-module). (See Figure 2.4 below.)

E2
100

75

50

25

o

Linear

Grid array

p4 p7 pS

p3 p7 pS

p2 p5 pS

pl p5 pS

El 0,25

pS
25,50

5075
pS

75100

pg
E2 0,25

pg
~",OU

50,75

Scales 0 25 50 75 100 El 75100

E-scales

Figure 2.4. IDA data structures.

{pl,p2,p3,p4}

{p5.p7} \

{p6,pS}

{pg.pS}

{pl,p5,p6,p9}

{p2,p5,p6,p9}

I {p3,p7,pS}

{p4,p7,pS}~

S-module S-records

Following the example above, there are eight duplicate page pointers removed

from the directory structure by using IDA.

The IDA can effectively map linear scales onto data page pointers using the

above data structures. Merging and splitting of data space regions can be done

more efficiently without needing a re-write of the whole directory. However,

there are occasions when a mapping is required in the opposite direction, e.g.,

when a data page becomes over- or under-populated.

In this situation the directory wants to know which regions will need to have

their linear scales (E-scales) updated. To cope with this, the IDA has another data

structure-the region module (R-module)-to hold a list of all the data pages in

15

Chapter 2

the file and their interval boundaries. (See Figure 2.5 below for the R-module

relative to the previous example.)

<p1,[0,24],[0,24],c> <p4,[0,24],[75,99],c> <p7,[25,49],[50,99],c>
<p2,[0,24],[25,49],c> <p5,[25,49],[0,49],c> <p8,[50,99],[50,99],c>
<p3,[0,24],[50, 74],c> <pS,[50, 74],[0,49],c> <p9,[75,99],[0,49],c>

Figure 2.5. The R-module data structure.

The 'c' in the above structure refers to the number of triples in each page; it is

done to obviate explicitly counting triples each time the page is considered for

merging or re-organisation. The price to be paid for this is that the R-module

requires updating each time triples are inserted or deleted from the triple store.

The R-module is organised as a B-tree structure with two layers: the root is held

in main memory and the nodes are held in R-pages-an R-page being the unit of

storage in the triple store.

2.3 The lexical token converter

The Lexical Token Converter (LTC) builds on the original ideas of Lavington and

Wang [LAV84], who built a hardware LTC for the Intelligent File Store (IFS)

[LAV88]. BTM uses a software LTC where each triple consists of three identifiers

each of which is 32 bits long. As the domain of 32-bit integers is insufficient to

represent instances of all the data types that are required, a conversion of triples

from their external representation to internal identifiers is necessary. The LTC

uses a set of internal interface functions to maintain a one-to-one mapping

between triples and their internal identifier tokens.

In addition to the standard data types of string, integer and real that are referred

to as lexical tokens, the L TC also handles non-lexical tokens and system tokens.

Non-Iexicals are used for the representation of the abstract entities defined by the

user and are described by the lexical tokens they form relations with. The

16

Chapter 2

abstract entity "person" cannot be accessed directly-only via the functions that

describe it (name, date-of-birth, etc.). Non-lexical tokens are maintained by

consecutive identifiers. System types are for individual users to tailor for their

own particular needs relative to how their software will use the triple store. FDL

uses system tokens for constants, labels used in query trees, built-in function

identifiers and semantic error codes.

The 32-bit token space is partitioned into disjoint subspaces to allow for the

storage of each of the types required. If the token space is considered in

10000000hex blocks, the types are allocated space in the following ratios that are

proportional to the expected number of occurrences of each type. These are

identified by the most significant of the 32 bits (MSB) which are used as a type

label. (See Table 2.1 below.)

type ratio range type label

Short 2 00000000 to 1 FFFFFFF o 0 0 X

Long 2 20000000 to 3FFFFFFF o 0 X 1
Res-short 2 40000000 to 5FFFFFFF o 1 0 X

Res-long 2 60000000 to 7FFFFFFF o 1 1 X

Non-lex 1 80000000 to 8FFFFFFF 1 0 0 0
System 1 90000000 to 9FFFFFFF 1 0 0 1

Integer 2 AOOOOOOO to BFFFFFFF 1 o 1 X

Real 4 COOOOOOO to FFFFFFFF 1 1 X X

(Where X indicates "don't care".)

Table 2.1. Allocation of type labels to token space.

String types are handled as follows: the first two types, Short and Long, are used

to generate unique, consecutive identifiers_ The string can then be broken down

into sub-strings and stored as special triples within the subspace identified by the

third and fourth types, Res-short and Res-long. The subspaces 010 ... and 011 ... are

inaccessible to the user and are referred to here as the reserved subspace for the

storage of string triples.

17

Chapter 2

Given a Short string of length n, the LTC generates a unique identifier from the

domain of type Short. A slot system is used to achieve a uniform distribution of

string identifiers resulting in a more efficient use of database resources. The

identifier space for Short strings is divided into 128 equally spaced slots and

identifiers are issued according to a cyclic pattern with the current slot counter

incremented as each new identifier is issued. When the store is closed the values

of the counters are saved as special triples and re-installed each time the store is

re-opened.

Once the LTC has generated a unique identifier, it then proceeds to decompose

the Short string into sub-strings for storage in the reserved subspace as string

triples. A string of length n will require the creation of a set of n di v 6 + 1 string

triples, each of which has as its first element the unique identifier (29 bits long)

generated by the LTe. In the second and third elements there is room to store,

per element, three characters (8 x 3 bits) plus five offset bits together with 010 as

the Short string type label. (See Figure 2.6 below.)

<J0~ol
(a)

29

(b)

I 1010 I I I I I 1010 I I I I I
35888 35888[>

I (a) (c) (d) (d) (d) I (a) (e) (d) (d) (d)

(a) Type label
(b) Unique set ID
(c) Offset 1
(d) Single character
(e) Offset 2

Figure 2.6. Format for storage of Short strings as string triples.

The last reserved triple in the chain must have a null byte added to indicate end

of string. The concatenation of the offset bits gives the position that the sub

string will take in the complete string. Therefore, the maximum length for a

Short string is derived by multiplying the size of the offset by the number of

characters held in each string triple less one byte for the null terminator. Thus

18

Chapter 2

the maximum length of a Short string is (2"-1) x 6 - 1

about two pages of A4 text with font size 10.

6, 13 7 characters-

Long strings use a similar scheme to the one described above but with some

important differences. Firstly, the third MSB of each string triple (Figure 2.6) is a

"1" for all Long strings. Secondly, each triple generated has an additional non

key triple associated with it. The term non-key is used here to describe a triple

that is not part of the grid file index system. Hence, these triples are not part of

the triple store data space and can take any 32-bit values without corrupting the

indexing system. This provides space for an additional 12 characters to be

associated with each triple-four characters in each of the three non-key, 32-bit

data fields. ThusthemaximumlengthofaLongstringis (2"-1) x (6 + 12) - 1

= 18,413 characters-about six pages of A4 text.

A set of internal functions is provided to enable the L TC to perform the storage,

retrieval and deletion of string triples that correspond to user manipulation of

external triples. Two immediate problems became apparent: there is often much

duplication of characters at the beginning of strings and; any string with a length

that is a multiple of six characters will need an extra triple in the set that will

store six null bytes to terminate the string. Apart from wasting space, this has

implications when collecting together a set of strings to search as there will

always be a large set of string triples having six null bytes in them. Figure 2.7

shows how the Short strings "simon" and "victor" are stored ("\0" = null byte) .

... 0011 ,10101 0011 s I i I m I , 10101 010 I 0 I n 110 I>

.. .0101, 10101 0011 v I i I cl, 10101 0101 t I 0 I r I>

... 010 1, 10101·· 011110 I 10 110 I, 10101 1001 10 I 10110 I>

Figure 2.7. Short string internal storage.

19

Chapter 2

The BTM uses two search methods to counteract the above problems: one that

searches from the front of a string and one that searches from the end. The

criteria used in deciding which method to use is as follows: use reverse search if

there is at least two non-null characters in the final reserved triple and the string

is composed of more than two reserved triples, otherwise use forward search. A

trivial examination of the search string will reveal which method to use.

The storage of integers is handled by straightforward bit manipulation. The

three MSBs are needed for the integer label and the fourth MSB is used as a sign

bit. Therefore the range of integers available is _228 to 228_1.

Reals are stored in a similar way to integers. The two MSBs are needed for the

type label and the third MSB for the sign bit. As reals must conform to the IEEE

754 standard for a 32-bit word size, a bit shifting function is used to regain the

required length. This results in a small loss of accuracy as two bits of the

mantissa are lost during conversion to internal format and padded with zeros

when converted back again. One of the problems with the original L TC

maintaining numerical ordering-has been addressed by the BTM

implementation.

Non-Iexicals are generated from a counter using the domain of the non-lexical

type subspace in a similar way to string identifier generation. At the end of each

session the counters for non-lexical type and string types are saved as special

triples. Non-lexical tokens are completely semantic free: there is no ordering

implied regarding the class of entity that they represent.

2.4 Interface functions

To enable the BTM to be used effectively by other software modules, a set of

interface functions provides operators for the creation, opening, closing and

20

Chapter 2

manipulation of a store. The operators are classified into three categories: file

utility, update only, and query only. These categories are now described.

2.4.1 File utility operators

A new triple store can be created with the ts_create function that must be

supplied with the file name as parameter. Each time the store is opened new

values for occurrence probabilities can be provided in the parameters-together

with the upper and lower limits for data page occupancy. The form of a call to

open a store is:

where each p{x} refers to the occurrence probability for each of the six SAFs that a

partially specified query Q{x) can take-from section 2.2. The sum of the p{x)

values must of course be equal to one. Lim_1 and Lim_2 are the lower and upper

limits for data page occupancy. Finally, ts_c/ose will close the store currently in

use.

2.4.2 Update only operators

This group provides for the insertion and deletion of triples. The interface

functions available are: ts_insert(triple) that inserts a triple specified in the only

parameter and, ts_delete(template) that deletes triples specified in the template

provided as the only parameter. A template must match one of the six SAFs and

uses the value -231+1 to indicate an unspecified value. An unspecified value can

be in one or two of the three fields: the case of all three fields being unspecified is

not allowed. There are similar functions for operation on ranges of triples.

21

Chapter 2

2.4.3 Query only operators

The following operators provide facilities for querying various aspects of the

triple store that is in operation. In particular, the four operators: ts_open_set,

tSJange_open_set, ts-fetch_another and ts_close_set, provide the means for the

retrieval of triples matching a given template.

ts_open_set(template) takes a triple template and returns a unique set identifier

that is used in lazy retrieval of the triples. tSJange_open(template) operates in a

similar way. ts_close_set(seUd) merely disassociates the set identifier from the

open set. Several retrieval sets can be open at the same time, so the operator

ts-fetch_another(seUd) will return the next member of the set identified by seUd.

A further function tS...J'resent(template) can be used to retrieve a fully specified

triple with format <*, *, *> or, indeed, just to see if a triple matching these fields is

present in the store. There are similar operators for the manipulation of ranges of

triples where two ranges are provided for each element of a triple-the upper

and lower limits of the range to be acted upon.

2.4.4 Operators provided by the L TC software

Very briefly, the operators provided by the LTC software and their purpose are

as follows. ltc_inserCstring(str)-takes a string as parameter and generates a

string identifier returning true for success. If a token already exists for the given

string then that is returned instead. ltc_str _to_id(str)-returns an identifier for the

given string. ltOd_to_str(id)-returns a complete string given an identifier as

parameter. There are similar 'pairs' of functions for the mapping of integers and

reals. ltc...generate_nonlex-is guaranteed to return a unique identifier from the

domain of non-lexical integers available. The operator ltc...get_type(id) will return

the type of a given identifier. The LTC software does not currently provide

facilities for deleting strings and unwanted non-lexical identifiers.

22

Chapter 2

2.5 File management

The buffer manager is responsible for operations on the buffer pool that

comprises a fixed number of slots-each slot having the same size as a page in

memory. The number of slots is configurable at initialisation and is not

constrained to remain fixed throughout the lifetime of a database. To alter the

number of slots the source code must be re-compiled with the new value.

The result of a fetch_another -page operation causes the following to happen: a

check is first made to see if there are any free slots available in the pool. If there

are, then the required page is copied into a free slot. If there are no free slots a

page must be dumped from the pool to free a slot for the new page. Pages in the

buffer can be FIXED or UNFIXED depending on whether the page is likely to be

accessed frequently or not. The buffer manager takes this into account and,

whenever a page needs to be dumped from the pool, it first looks for unfixed

pages. If none can be found it uses the least recently used (LRU) [KNU73]

algorithm to select a page to be dumped to make room for the new page. If the

page to be dumped from the buffer pool has been modified since in was copied

into the pool, then it is written back to the file before its slot is overwritten by the

contents of the new page.

Once a data page has been copied into the buffer pool it can be searched for

triples matching a given search template. The triples are ordered within each

data page: firstly on the relation field, within that on the subject field and within

that on the object field. Because of this, and the fact that the majority of searches

specify the relation field or a combination of the relation-subject fields, a binary

search technique can be used when either: the first; the first and second; or the

first, second and third fields are given. So, using the previously described

notation of '.' to indicate a known value and '?' to indicate an unknown value,

23

Chapter 2

search templates with the form <*, ?, ?>, <*, *, ?> and <*, *, *> can be matched

using a binary chop method of searching.

However, if a search template of < * , ?, *> is specified, a linear search would have

to be done once the first occurrence of the matching relation field was found. The

ordering of triples within a page was a deliberate attempt to improve response

time for queries, albeit at the expense of update performance. When a matching

triple is found, a pointer to it is returned to the calling function. On the execution

of a fetch_another instruction, the search continues from the position of the last

matching triple. A flag is used to indicate when the search is complete.

Search templates with the form <?,?, *>, <?, *,?> and <?, *, *> cause particular

problems in that, because of the ordering of the pages, they are much more likely

to produce a large set of page identifiers whose pages may contain a match.

When this happens, the page identifiers are themselves held as triples in retrieval

pages (see below) and await being passed to the calling function under the

implementation of lazy retrieval.

All the information that is kept on disk is stored in one file termed the database

file. The database file consists of a header and a set of pages of the same size,

with the page size being set on configuration. The header stores the information,

such as the E-scales, that resides in virtual storage when the triple store is in

operation. At the start of each session, the contents of the header are copied into

virtual storage for subsequent use and, at the end of the session, they are written

back to the database file. A page in the database file is one of the following five

types:

24

R-page:

S-page:

data-page:

Chapter 2

holds information required for the region module

holds information required for the set module

for the storage of individual, unique triples

retrieval-page: used for storing the identifiers of the data pages that contain

possible matches to a query. Such a page is then retrieved lazily

free-page: not one of the above pages and available for use.

Finally, the TriStarp triple store component is shown in Figure 2.8.

Triple Store
Interface

Operations

Parameter Driven
Re-organisation

(Virtual Storage)

E-Scales

Buffer
Pool

R-module
~----------~ S-module

data tri les

Figure 2.8. The Triple Store architecture.

Parameter Driven
Splitting Policy

25

Chapter 2

2.6 Discussion

There are several areas of the implementation just described where

improvements could be made. These are now discussed.

2.6.1 String matching

String matching poses particular problems for the following reasons:

1. the recursive nature of functions makes them slow and difficult to

optimise when executing string matching operations

2. the creation of unwanted string tokens during searches of text

3. the difficulty in handling case discrepancies and word contractions

4. the difficulty of coping with missing characters, quorum functions

and word ordering.

Databases used in investigative systems will typically make extensive use of text

and string variables and be used primarily in browsing mode [MAL96]. String

matching can only be implemented by functions declared at the model level

such functions make use of three built-in base functions available as primitives:

length, substr and concat. With these, other string manipulating functions can be

constructed. In the current system text searching creates many unwanted

tokens-this is a corollary of persistence and the way the search is recursively

executed. A search through large texts frequently causes the available token

space for strings to become exhausted thus giving unexpected results.

Displaying strings does not cause any noticeable delays because of clustering.

However, each time a string is needed for a comparison operation, it has first to

be re-assembled. This has proved a satisfactory method of string storage up to

now because the majority of databases thus far have been accommodated in main

memory. This situation would not be the case if much larger data sets were to be

26

Chapter 2

considered. There is also no garbage collection to remove old, unwanted strings

from the store thus freeing up obsolete tokens for re-use.

With hindsight the handling of strings, and the importance attached to text

searching, was not given enough priority in the original proposals. The reason

for this is clear: all data were made to fit into the homogeneous triple store sub

system underpinning the data model. This restricts what can be efficiently done

in terms of string matching. Furthermore searches that involve stem matching

and elastic matching using wild-card characters, are harder to program at the

model level. These areas are now recognised as weaknesses of the software and

are discussed later in this thesis.

2.6.2 Tokenisation

The tokenising of integers and reals is trivial and sensible: it need not be

discussed further here. However, the situation regarding string tokenising is not

so clear cut.

There has always been a strong case for tokenising strings. Compact storage in

memory (and on disk) together with ease of use by the compiler. Moreover, once

a string has been tokenised, any repetition of the string (whatever length it may

be) will only result in the addition of one extra 12-byte triple to represent it.

These were the overriding reasons why a fully tokenised system was adopted.

However, tokenising strings implies a precision of data entry that is not always

possible to achieve. Users can and do misspell words, they abbreviate them, use

word contractions and varying formats of case. They may also want a search

option where they only need enter a few characters in order for the search to be

more general. A less rigid adherence to the concept of string tokens would allow

27

Chapter 2

for more scope when searching that takes into account imprecision and

accommodates a greater flexibility for the user.

One of the achievements of TriStarp was the provision of persistence for all data.

However, this gives rise to a conflict of interests between using it as a functional

programming language in the traditional sense, and using it to support a

database based on the functional model. Because of persistence a query posed,

such as length "George", would result in a token being created for George even

though no data held in the database needs to be consulted. This is because

comparisons are made between tokens. Moreover, a search for pattern "Fred" in

text "Christmas" would produce tokens for "Chri", "hris", etc. as the search

proceeded recursively through the text-even though the result of the expression

would end up being false. A search through a text of length t for a pattern of

length p could result in the creation of t - p + 1 string tokens-the majority of

which would be useless.

2.6.3 Functionality

There are two areas for discussion. Storage-level interface functions and model

level functionality.

Storage level functionality

The decision to use a semantic-free triple store was in keeping with other

research at the time [MAR84j; it was a deliberate attempt to keep the storage

mechanism simple by providing a small set of interface functions. We suggest

that the set of functions provided was perhaps too restrictive as it had to tie into

the concept of a homogeneous triple store for all data. In order to provide

optimisation techniques for string matching and parallel processing, we believe

additional interface functions should be made available that would allow more

searching and comparing tasks to be delegated to the storage sub-system where

28

Chapter 2

they can be handled more efficiently. This would allow data storage to reflect

data usage in a way that helps boost performance in favour of text searching and

browsing operations.

Model level functionality

Model level functionality was not discussed in much detail in the earlier sections

of this chapter because it is largely a matter for each model level language

developer to decide what to provide for their language. In the particular case of

TriStarp, we have already highlighted the weaknesses of string matching and text

searching options in section 2.6.1, and that more importance needs to be given to

these areas to enable more efficient implementations to be developed.

2.6.4 The data model

From the outset, the TriStarp Group made a conscious decision to plan their

research into database languages within the constraints of having to store their

data at an atomic level as tokenised, semantic-free triples. The interface functions

decided upon to provide access to the store placed further limitations as to how

the data model could be manipulated, and drew a clear dividing line as to the

demarcation of core functionality tasks such as join, search, etc. In other words,

the storage and access mechanism came first and the development of the

database languages at level 1-FDL, Exegesis [SMA88j, Fudal [KIN92j, Hydra

[KIN96bj and Relief [MER98j-came second, and had to tailor their development

taking the above considerations into account. However, the TriStarp work was

done at an experimental level and not particularly aimed at a group of end users.

To say the design choices made were inappropriate would be wrong-they

certainly provided a workable solution to the given problem at the time but, with

hindsight, perhaps what was lacking was a mapping from the logical view of the

world as triples to the physical view required for storage. The rationale behind

29

Chapter 2

the initial design choices were clearly in line with other research at the time

[SHASS] but any attempts at optimisation now had to be done at the data model

level (levell) and were unable to take advantage of using additional, low-level

processing power. One of the later additions to the TriStarp level 1 languages is

Hydra [KIN96b] which makes a distinction between meta data and instance data,

in that the former does not need to conform to the function graph model.

The way graph traversals are handled is that for each attribute Axn linked by

relation Txn to entity Ex and used as a filter on instances of Ex, the required triples

are accessed and collated sequentially in arriving at a final set of entity

identifiers. Similarly, the final selection of attributes Ayn via relation Tyn from

entity Ey is handled sequentially. The relevant segment of a list comprehension is

below, then the figure shows the path taken.

• • • • •
~ ..

•• +.

• • • • • •• • • •• •
•• r yl then then r and and r3 +. x A x 'U: rx ~.+ .4. ry2~ +.

• • : .. •• 8 y3
•-. •• a 3 • •• .. .4: x ..

• .. 8x2 • rx3 x ..

.., ayl ••~-
.'" • "" Select

Select. + "'I ay2. ry> y
r Ml x. '<f • • true
a true r x2 x •

= true
ryl Y • Select.-

ry2 Y ..

Figure 2.9. Graph traversal for attributes.

We believe that searching and collating attributes at the 'ends' of traversal paths

can be handled more efficiently than this by using a different physical model and

parallel processing techniques. These are discussed in later chapters.

30

Chapter 2

As far as entity-entity graph traversal steps are concerned, the concept of a triple

is a good one. The progression from A to B via relation r (r:A-7B) naturally fits

the model of a triple <r, A, B>. However, a not insignificant amount of traversals

are of the inverse variety (r1:B-7 A) and these are not held as triples explicitly,

they are derived through software. Searching for function inverses means

constructing a temporary list of triples used to test for the inverse property. For

example, the equation defining the inverse of function f is

which searches the extent of t to get a list of y, then checks that function f applied

to each y evaluates to s. Although there would be additional storage

requirements if inverse triples were to be held explicitly, we believe this can be

achieved as part of a new architecture. Moreover, these triples could also be used

to provide redundancy.

2.6.5 Directory structure

Directory organisation in grid files has been the subject of much research since

1984. There is no doubt that the original grid file directory has been improved

upon by the data structures used in the BTM. This is as a direct result of using a

selecCsp-point algorithm to reduce the number of grid blocks, together with the

lDA data structures to reduce the number of data page pointers. However, the

efficiency of using the IDA can vary greatly according to the configuration of

data space regions and the high likelihood of a non-uniform distribution of data.

Of the nine databases analysed in [DER89J, one configuration resulted in 11 page

accesses being necessary, although the total directory size (S-module plus R

module) can be a linear function equal to the size of non-uniform data

distribution.

31

Chapter 2

The concept of a three-dimensional grid file is a good generic model when

storing database records that have a fixed format for their three, key attributes.

Earlier attempts at storing triples in hierarchical structures, such as B+-trees

[DER85], proved unacceptable as it was difficult to add a re-tuning facility and

gave poor performance of response time for partial match queries at lower levels

of the hierarchy-although there was efficient space utilisation. Therefore, a grid

file variation seems to remain the best method for indexing records of three key

attributes, if that is to remain as the underlying data model.

One of the reasons for adoption of the grid file was that it easily lends itself to the

indexing of triples, which could now be accessed from one or two of the three

fields. The grid file is also a dynamic indexing structure and the implementation

used for the triple store can have its parameters set to give a clustering priority to

a particular dimension. However, frequent updates and re-organisations with

splitting or merging of pages have to be made to maintain a balanced index.

Access via the third field of a triple (the object) can cause lengthy delays if the

parameters are set to favour clustering on the relation or subject fields as is often

the case. Even if a later session with the same database file re-sets the access

priorities in favour, say, of the object and object-relation combination, the

previously-entered data will still be structured around the parameters supplied

when it was loaded.

It was found in the BTM implementation that frequent re-organisation of the

directory-together with the splitting and merging of pages-led to a less

efficient system than was expected [DER89]. The storage and searching of text

does not necessarily lend itself to this highly idealised form of indexing and

would perhaps benefit from a coarser indexing structure and greater processing

power, provided at a lower level, to facilitate the flexible searching of loosely

structured text.

32

Chapter 2

2.7 Summary

In this chapter we have reviewed the storage architecture underpinning the

TriStarp software and identified areas for improvement, paying particular

attention to string matching and graph traversal operations. Tokenisation is

limiting what can be done to broaden text-searching capabilities and boost

overall performance levels. Interface functionality needs to be enhanced so there

is more choice available to users. Finally, we suggested that a mapping from

logical triples to physical records was lacking in the original proposals and that

not all data need conform to the function graph model. A less dynamic approach

to indexing would be worth investigating too.

In the next chapter we begin by examining alternative variations to the triple

store. We then discuss the categories and needs of users before reviewing storage

and access methods in general. Finally we introduce our alternative to the

homogeneous triple store architecture outlining the areas for further

investigation that are discussed in the later chapters.

33

Chapter 3

Chapter 3 Background to areas of work covered

3.1 Introduction

As set out in chapter 1, there are several areas of work described in this thesis.

This chapter provides background material to these areas as an introduction to

the individual topicS of interest covered in later chapters. The main items

presented in this chapter are therefore: a review of other grid file and binary

relational storage structures, an introduction to user requirements and text

searching, a brief review of storage and access methods, using a search engine

and parallel processing. Following these topics, our proposals are introduced

which then form the remainder of the thesis.

3.2 A review of similar alternatives

We describe the evolution of grid files since their introduction in 1984, then

highlight more general binary relational storage structures whose concepts have

been around for much longer. Finally, we consider the latest triple store

implementation that involves the use of space-filling curves and draw

conclusions for this section.

3.2.1 Grid file variants

Since Nievergelt's keynote paper much research has been done arising from the

original proposals for the grid file [NIE84] and several hybrid systems have been

developed [HIN85, WHA85, WHA91, OUK85, OZK85]. (See [DER89] for full

details of these schemes.) Since then research has continued investigating ways

of providing optirnisations to the original grid file design. Ouksel et al have

improved on their Interpolation-based grid file in relation to concurrency control

[OUK92, OUK94]. Whang and Krishnamurthy et al have continued their research

into the Multilevel grid file improving the execution of join operations [KIM95]

and directory growth [KIM97, KIM98]. These schemes have one thing in

34

Chapter 3

common: they all use a cyclic, halving of domains in alternate dimensions when

splitting data space regions which must remain hyper-rectangular at all times.

The one notable exception is the BANG file [FRE87, FRE89]. The BANG file

allows nesting of data space regions and so a hyper-rectangular shape is not

necessarily required.

B

A

C

Figure 3.1. The BANG file scheme.

The distinctive feature to note here is that embedding of data space regions is

allowed, and the way this embedding is handled. In this example, data space

regions Band C are embedded in A. So, to obtain the records that are in the

logical data space region A, a subtraction of the data space regions embedded in

the physical region A must be done-thus, A-B-C-which gives the appropriate

data pages to search.

As well as nesting of data space regions, the BANG file uses a splitting algorithm

that will select an embedded area in the over-populated region such that there is

an even distribution of records between the two logical regions. The BANG file

also has a directory size that is a linear function of the number of stored records

whatever the record distribution. This is because it avoids the creation of empty

regions when splitting, and has a single entry in its directory for each data page.

The BANG file also enjoys a higher degree of freedom when merging regions,

since a region can merge with either: the region in which it is embedded; any

35

Chapter 3

region which is embedded in it; or its buddy region. Since then, Hosur et al

[HOS92] have improved upon the established superiority of the BANG file, by

providing efficient, dynamic adding and removal of attributes which results in

changes to the dimensionality of the structure-although there are serious

shortcomings with the index construction and maintenance. Moreover, a full

implementation of the BANG file has never been built [LA WOO].

There is another partitioning method for grid file directories [CHU89] which is

worthy of note as it is similar to the selecCsp-point algorithm used in BTM. This

system improves an earlier algorithm by Cranston [CRA75] that guarantees non

empty data space regions. Some other recent work on grid files includes a spatial

grid file for multimedia data that is specific to high dimensional data indexing

[ALP97], and a novel scheme to handle temporal interval data (as well as other

attributes) in a way that does not result in a skewed directory structure [LEE98].

In this scheme, the data space is represented by a right-angled triangular space so

that the time start (TS) is always before the time end (TE).

lE

lS

Figure 3.2. The temporal grid file.

The valid grid space is the lower-left section shown in Figure 3.2. Records are

always inserted at point Now. As time passes the hypotenuse moves up and out

from the origin 0 ensuring TS :5 TE.

36

Chapter 3

The main design features of the grid file are as follows. For a reasonably large

relation, retrieval of a tuple requires at most two disk accesses-one to the correct

portion of the directory and another to the correct data page that holds the tuple.

The nature of the file structure is order preserving on each attribute domain, so

that tuples that are close logically are likely to be close physically. These

properties allow for efficient retrieval of point queries and range queries. In

theory, the grid file index structure can adapt gracefully to insertions and

deletions and performs well in static or dynamic operations although this is not

always the case.

3.2.2 Other binary relational storage structures

There have been several implementations of binary relational storage structures

over many years. They include the following early variants-discussed in detail

in [DER891-plus some more recent additions.

Relational Data File (RDF) [LEV671 which is quadruple based and holds four

separate files for data-each one indexed on one of the four key attributes.

Leap [FEL691, which uses triples and holds three copies of the data-each one

indexed by hashing on two of the three attributes. As static hashing is used the

file size must be estimated beforehand and, after overloading, performance

degenerates rapidly.

Titrnan [TIT741 proposed a triple-based system where a separate file was held

for each relation in the database. In each file the <subj ect, obj ect> pairs would

be stored. This results in efficient storage but poor performance where the

relation field was not specified. A very similar method is used by the Well

system [MUN781.

37

Chapter 3

The FACT system [MAG80, MAG82] uses a quadruple approach with a look-up

table maintained for conversion of external attributes into internal, fixed-length

tokens. Entries can be arbitrarily nested and generalisation is supported. There

are three lists maintained for every internal identifier-one each for where the

identifier appears as relation, subject and object. This concept has been followed

up more recently in what has been termed the Associative Model of Data

[WILOO]. This is discussed at greater length later in the thesis.

NDB [SHA78, WIN79, SHA88] adopts a triple approach and represents every

entity with a three-component data structure called a v-element which holds

links to the other elements linked to the current one. There is no distinction

between entities and attributes, as they are all stored in the same way.

The Oggetto object-oriented database system [MAR92] uses a BRSS to underpin

the storage of facts and methods. It includes inheritance and allows for object

migration and database closure (via an expand function). There are three triple

stores used for access:

• a triple 'heap' that is used for temporary storage of triples

• Trible-a system that uses inverted files to speed access

• OSR05-a system that uses combinations of the three fields for

dynamic hashing of triples.

Two other points of interest are that in-store object information is held in a data

structure that stores the name and type of every attribute in the database. This

structure also holds details of instances of a type, which are built up internally

before being stored as triples. They also agree that names (strings) are better

stored away from a homogeneous triple store and it is this store that is used to

supply the identifiers that are then used in the main triple store. This idea was

used in the Universal Triple Machine [SHA88].

38

Chapter 3

A more recent adaptation of a binary relational storage structure is the

3-tuple model as presented in [OZA96]. The idea is that users are allowed to

store data first and then structure the data via a schema. The relationships

between schema and data, and schema and schema can be altered without

changing the whole database and is termed the 'bottom up' approach. Each tuple

is of the form <object, attribute, value> and can accommodate arbitrary

nesting. An n-order, finite, directed labelled, graph is used to represent objects.

A set of tuples with the same first element represents an object; a set of tuples

with the same second element represents an association. In the model, instance

data and meta data are unified in the graph by object classification. Basic objects

are integers, reals, etc. Compound objects are further divided into three types:

• class object - represents a set of instance objects which share

the same property-Le. it is a schema

• instance object - holds the data for each class as above

• free object - is not constrained by either of the two class

objects above.

There are also class relations, instance relations and free relations to match the

above objects. Free objects are able to migrate from one schema to another but it

is not clear how this migration is handled at the physical level-nor is it clear

how data is stored physically in any case. There is no temporal dimensionality

discussed, nor is an indexing structure mentioned.

3.2.3 A triple store based on space-filling curves

A recent addition to TriStarp has been a triple store based on space-filling curves.

The concept of space filling-curves has been around for a long time [HIL1891]

and only a simple example will be given here-for more details see [SAG94]. The

basic idea is to map an n-dimensional space on to a one-dimensional linear array

so that adjacent points in the n-space are as adjacent as possible in the array.

39

Chapter 3

Taking the case of the Hilbert curve as an example this is best described

pictorially (in two dimensions for clarity) in Figure 3.3 below. Several curves

were investigated but the Hilbert curve proved the most successful. This is

because it has the adjacency property of being at all times continuous-whereas

the other curves do not share this property.

111

110

101

100

011

010

001

000

r-

'-

r-

'-

2r
,I

-,
L

--,
--1

1

l-J

-,'
4

r
f-l

I
I

I
L

- - h r -
L ...J

- - h I -
1 L -

I 1
..J L h L -
-, I f-l r ~

I I 1

xyscales 000001 010011100101110 111

linear scale I 0000001 0000011 m ____ 1101010 I

Figure 3.3. The Hilbert Curve

The linear scales are formed by concatenating the x and y co-ordinates for the

whole of the data space. In this example, there are 64 points in the two

dimensional data space to be mapped onto 64 partitions of the array. The curve

starts at the bottom left of the figure (datum point 000000) and follows the line

until it reaches the bottom right which has datum point number 111000. The

datum points do not map exactly to the numerical partitions of the grid. For

example, the third datum point will have partition number 3 (000011) but the co

ordinates of the curve will be 001001 (x concatenated to y).

40

Chapter 3

r-h r -
L --1

'-h r -
- i-J L -

Figure 3.4. First and second order curves.

Figure 3.5. States the Hilbert curve can take.

Moreover, the number of steps or iterations of the curve-called orders-(Figure

3.3 is a third-order curve and Figure 3.4 shows first and second order curves)

require different orientations (states) for the direction the curve takes as shown in

Figure 3.5. This is to ensure it is at all times continuous thereby retaining the

adjacency property. There are therefore four orientations of a curve section.

These are referred to as states-in the state diagram sense-and by knowing the

state and the order of the curve an accurate key value can be obtained. An

important difference from grid files is that the splitting and merging of pages is

made according to partitions of data rather than partitions of the key space. This

approach obviates the problems of partitions overlapping within the index.

The array is used to construct, algorithmically, the appropriate data pages to

search, which are held in a B-tree structure that can expand and contract as

necessary. More details and a full evaluation of this scheme are given in the PhD

thesis of Lawder [LA WOO]. An immediate observation is that the method of page

searching could be amenable to parallel processing techniques. If a page is in a

block that contains (say) four smaller blocks, then a search of these four blocks

could be done in parallel. This is an area for further investigation.

41

Chapter 3

Initial results described by Lawder [LA WOOl indicate that a space-filling curve

triple store performs similarly to the current implementation based on the grid

file in two or three dimensions. However, as the number of dimensions

increases, the space-filling curve triple store outperforms the grid file triple store.

An issue not addressed by this approach is the complexities involved in the

relational algebra: join, intersection and union of large sets of data. Moreover,

the experiments were run against data sets held entirely in main memory; in

large, practical applications it is most unlikely that all data would be held in

memory.

3.2.4 Conclusions for grid file and BRSS applicability

Frost identified the advantages of binary relational storage structures as

providing a simplification of system design and use and, improvements in data

independence. He also cites the disadvantage that data may only be retrieved

singularly-groups of related items may only be retrieved by issuing several

commands. Added to this is the fact that the majority of triples are ordered on

the relation field, so are likely to be clustered on that field in preference to any

common entity they have.

In his original proposal for the storage of binary relations, Frost suggested

holding six copies of the triples, with each set indexed on one of the six simple

associative forms for querying the database. This is the ultimate fast access

solution but has the most serious implications for update out of all the systems

described. The trade-off is often one between speed of access and cost of

updates. However, there is often little to choose between many storage methods

that use either triples and/or fixed-length tokens to store data. As a modelling

concept a triple is a good idea. But, from a storage viewpoint the idea has never

caught on in the same way and is too restrictive to accommodate easily the richer

data types that are now required.

42

Chapter 3

3.3 Text searching and user requirements

In this section we briefly introduce the fundamentals of text searching and user

requirements. Readers familiar with the background to these areas may wish to

proceed directly to section 3.4.

3.3.1 An introduction to text searching

Text searching is a vast subject area alone and is only covered briefly here. For a

more detailed explanation the reader is referred to [MEA92].

A text can consist of words, collections of words (clauses and phrases), sentences,

paragraphs etc, all comprising alphanumeric characters drawn from the domain

of the grammar. Differentiating between these classes can be difficult and often

depends on the meaning of the text (its context) and any delimiters used to break

up the text into smaller, multiple word structures. For instance, is "bogus gas

man" a text, phrase, two words or three words? The choice can vary depending

on what the collection of characters will be used for. At the lowest level a word

might be considered as a collection of alphanumeric characters delimited by

white space characters (single space, tab, carriage return etc.) The choice of word

delimiter can be crucial and, although this is usually the space character, it need

not be.

The degree of freedom for searching must be greater for text than for words with

multiple word structures somewhere between the two. The same words in a text

can be analysed in terms of various patterns of occurrence. A text has

vocabulary-but this need not be tightly controlled-as well as patterns of

vocabulary where syntax can indicate word ordering for example. The patterns

can be used to construct an index of terms for searching.

43

Chapter 3

The actual form a query takes is often qUite simple and is likely to have the

format: attribute condition value-as in: "author = Shakespeare". This fits

naturally into the triple construct. Variations on this can include provision for

truncation of the search pattern, inclusion of wild card characters that can

represent one missing character or zero or more missing characters-whether in

words only or across word boundaries. Case sensitivity can easily be

accommodated too. Another feature of text searching is the ability to make

proximity searches. In this case, word ordering and space between words can be

passed to the search algorithm via meta characters included as part of the search

pattern or indicated in some other way. This can be extended in various ways

Stem matching is important in text searching as it allows different inflections

from the same base word to be located. Thus, if the search was for "harmony"

and any derivatives, the pattern entered could be "harmon%" where "%"

indicates match zero or more characters to the end of the word. This search

might find harmony, harmonise, harmonious, etc. It would also find harmonica,

which, in this instance, would not be required. But, it is often better to have

terms returned that can be accepted or rejected at the discretion of the user than

allow the system to make such judgements. Stem matching allows the users to

enter short strings quickly and be used in conjunction with various search terms

over the same text.

To search for a person whose name is Fred or Frederick, who lives in Lower

something or other and whose job is something to do with telecommunications,

the search could take the format:

fname = 11 fred% I' 1\ street = It lowe% 11 A job = 11 tele% 11 •

This is also the way British Railways ticket machines operate and British

Telecommunications inquiries are handled.

44

Chapter 3

There are other text retrieval techniques that construct (quite complex) indexes

for the majority of words in the text. The excluded words are known as stop

words and include the most often-used words in the English language

prepositions, articles, conjunctions and pronouns. Stop words are a list of very

general words that lend no significance to identifying the subject matter of a text.

In [MEA92] the stop words are given as: an, and, by, for, from, of, the, to and with.

These can be viewed as a base to which other words would be added depending

upon the context of the application domain. (Note that the letter A is not

included; this can often form a search term as, for example, it represents a

vitamin.)

The maintenance overhead and the sheer size of many index files (which can be

bigger than the original text) often supports the argument for not making heavy

use of indexes. Other options include: similarity measures that make further

statistical pre-processing knowledge available about the text for use in searching;

text or association techniques that use word occurrence statistics to measure the

strength of association and; clustering techniques that group together records

that have similar frequency distributions for attribute values. The use of

signature values that act as (shorter) keys for frequent search terms is another

optimisation that can be used. All these techniques involve the use of much meta

data that can be cumbersome to maintain and can negate the benefit of its use.

3.3.2 What users expect

In this short section, unless otherwise specified, the term users implies regular

users, such as data query and data entry operatives as opposed to systems

personnel. We quote material from Southerden specifically, as he outlined an

improved interface for ICL's well established investigative systems software

INDEPOL [SOU97]-which is very relevant to our area of work.

45

Chapter 3

Users want a simple view of their data. This means that the view offered by the

database system must, as realistically as possible, reflect the general conceptual

view of data they might have in a non-computerised setting. They do not want,

nor need, to know about data mapping, storage sub-system structures, indexes,

etc.

Users want to express their needs simply. Users are likely to be skilled in the use

of the computer system and have a good working knowledge of the database-its

content and structure. They want to express their needs with the minimuin of

typing effort. To satisfy these needs the database management system should

provide an enquiry update language with such tools as form filling, palette

provision, drag and drop facilities and a syntax-directed editor-all in a

graphical user interface environment. To a certain extent the TriStarp Group has

achieved this as their software includes a graphical query language, Gql [P AP95j.

However, this area is still the subject of continuing research.

Users expect a fast response. The time that elapses between a user issuing a

search command and getting the answer back is crucial. It's difficult for a user to

switch attention while waiting for the outcome of a task and any delay is seen as

lost or unproductive time. When using a system in browsing mode, users often

want to build up a search query by increasingly refining their search parameters

to hone in on their target. Coupled with this is the reality that users may have to

make several, related queries to a database before obtaining anything useful. The

data management program should have the ability to recognise requests that will

take a long time to service. Such information should be relayed to the user who

then has the choice of whether to proceed with the request or to abort it.

46

Chapter 3

Users expect protection against misuse. The sorts of misuse implied here are

security of access rights etc, and integrity of data that may be lost or rendered

unusable during updating.

3.3.3 Categories of users

Southerden further identified four core sets of users:

1. those whose main tasks are data entry and data query

2. those whose main tasks involve simple investigations, research or analysis

3. experts who build queries for others and

4. technical developers and support staff.

Of these the vast majority of users fall into the first category. INDEPOL is a tried

and tested investigative system, so it is sensible to adopt the same user priorities

and concepts. We can classify the above user groups into the following

categories including a split of the first category:

1. data entry operatives

2. data query operatives

3. experts who build search strategies for category 2 users and

4. database developers and support staff.

Data entry can be done in two ways: bulk loading at the time the original

database is created and on-line by users with pre-defined forms-which is

another feature used in INDEPOL Client. The experts who build the meta

functions in category 3 will need to be aware of any schema updates, integrity

constraints etc., to build sound search macros and functions. Category 4 users

are the database administrator and development staff responsible for (among

other things) schema evolution, updating the database, garbage collection,

security and integrity issues.

47

Chapter 3

3.4 A review of storage and access methods

Following our review of grid files and binary relational storage structures earlier

in the chapter, we now address the wider aspect of storage and access issues.

Basic file structure design is briefly covered as well as the argument for main

memory databases. Finally a summary of design considerations is presented.

3.4.1 File structure deSign issues

Here we discuss basic file structure design issues and compare and contrast

them. Our arguments for our chosen architecture will be given later in this

chapter and expanded upon in the following chapters.

The overall aim of the storage sub-system in a large, operational database system

is to arrange the data in a suitable format-across one or more files if necessary

in such a way that data can be accessed by the application programs that need to

use it in an efficient way, while maintaining security and integrity considerations.

At a fundamental level, data is traditionally held in atomic structures that can be

built up into data structures like records, sets, lists, etc. of the required

complexity for the application. The first design issues to consider might prompt

the following sequence of questions:

• what do we want to do with the data? Mainly browse it or alter it?

• who is going to access it and what views do they want of it?

• what are the types of the data to be stored (text, numbers, etc.)?

• how should the data be ordered to effect the required accesses?

The last question usually comes down to a choice between single-key or multi

key ordering. For single-key processing only one attribute of a record is used to

order the file and the main access choices are to use indexing methods based on

B-tree and hashing. Hashing is fast if only one record is required-but not so

48

Chapter 3

suitable for range queries. Btrees are more appropriate for retrieving a range of

records.

If records are to be retrieved by more than one key then the multi-key file

organisations are more suitable. Access methods for these structures often

involve a complex indexing structure using inverted files that can add a

considerable overhead when updating or adding records. The more recent grid

file organisations, mentioned earlier, are a more natural way to index multi-key

record structures as they can guarantee a hit in no more that two disk accesses for

known information. Also, the directory used in grid files can adapt more

gracefully to record insertions and deletions; range queries are also well

supported.

In general, determining the best file organisation method and the most efficient

access techniques are difficult. We consider the basic parameters that can be

used to determine the best method to be as follows: time, file-use ratio, space, and

volatility (from [SMI87j):

The time parameter includes time to develop and maintain the software: the

more complex the file structures required, the greater the time factor for updating

the storage sub-system. If updates have to be done off-line in batch mode, then

this must be included in the time parameter.

The File-use ratio is obtained by dividing the total records held in the file by the

number of records actually used. If the ratio is high, meaning that most of the

records are needed regularly, then a sequential organisation method is

preferable. If the ratio is Iowa hashing scheme might be better.

The space parameter refers to the total space requirement for the instance data,

meta data, indexes etc. that are associated with the system. Any space needed for

49

Chapter 3

temporary sorting or other re-organisation of the data must also be included. A

balance has to be struck between what is to be held on disk and what needs to be

held in memory (see the next sub-section for further discussion on this). How are

updates to be handled? What space is needed for recovery procedures in case of

file loss or corruption of data? What can be held in duplicate to speed up access?

Volatility concerns how often the data held in the file changes. If there are

frequent changes to the data the maintenance of complex access structures like

indexes or having to re-hash some of the data may prove unworkable. On the

other hand if most of the data will remain unaltered, even though a lot of it may

need frequent accessing, some form of coarse index-sequential access method

might suffice.

An important aspect affecting the design choice concerns maintaining database

integrity. The well-known problems of update anomalies across files, tables or

data structures in general are, unfortunately, still with us. Also, an integrated file

system must handle concurrent access (where applicable) and maintain data

integrity. Other more fundamental design issues include:

• selection of page size (affected by logical record size)

• selection of blocking factor (number of pages per block)

• allocation of buffers (multiple buffers can significantly

improve performance)

• organisation of blocks on secondary storage

• handling of file growth (static or dynamic) and

• reorganisation point (a point where a thorough reorganisation

of the files is required so that performance does not

deteriorate beyond acceptable levels).

Finally, a choice has to be made about whether the files should be static or

dynamic. The above four criteria-time, file-use, space and volatility---clearly play

50

Chapter 3

an important part in this choice but there are other difficulties surrounding

dynamic file organisation. Held and Stonebraker [HEL78j suggest that, although

a dynamic index is easier to maintain in situ, the cost of doing so is threefold:

insertions, deletions and movements within a B-tree can result in complex

pointer maintenance; concurrency problems can occur-locking out a B-tree node

is non-trivial and; additional pointers are required in non-leaf nodes because they

can split/merge dynamically. The branching factor is thus smaller and the

height of a tree likely to be greater than that of a comparable static index.

Operations such as search, insert and delete will therefore take longer than for a

static structure with no overflows.

3.4.2 Main memory data bases or disk-based data bases?

Up until now TriStarp databases have fitted into main memory. The arguments

for main memory databases are forceful [GAR92j and frequently include some

form of encoding (tokenisation) coupled with increased solid-state memory

[COC98j. However, there are drawbacks to this philosophy, which include the

volatility of main memory to failure, resulting in the need to make frequent back

ups to disk anyway. Moreover, there will always be databases that are too large

to fit into main memory; the requirements of growing data sets matches the

improvement in main memory capacity, and this trend is likely to continue.

Important factors to consider are set out below:

• main memory access costs are orders of magnitude less than disk

based access costs

• main memory is often volatile, whereas disks are non-volatile

• disk accesses have fixed costs for blocks, while main memory is

not block oriented so costs are variable

• the layout of data is crucial on disk but not in main memory

51

Chapter 3

• sequential access is faster for disk than random access. Sequential

access is not so important for main memory

• main memory is directly accessible by the processor, while disks

are not.

Whether or not to use a main memory database system or a disk-based system

ultimately comes down to the specific application domain that is required in each

case. There is a compromise for some large databases whereby data can be

designated 'hot' or 'cold'. Hot data are often accessed or modified: Cold data are

less often accessed or modified. The former can be held in main memory: the

latter on disk. The idea of splitting data this way seems complicated for a text

intensive, application domain that would not facilitate searching operations in

the optimum way.

3.4.3 Summary of design considerations

In this section we summarise the salient design issues discussed earlier setting

out how they best fit our specific requirements. The specification of our database

system has the following characteristics:

• it will be used mainly in browsing/searching mode

• the system will be used to link facts across a function graph model

• data hypothesis is the responsibility of the user, not the system

• much of the data will comprise strings, some in large texts

• it is not imperative that all data be updated dynamically, some updates

can be performed off-linet

• information will, at the lowest level, be represented by atomic binary

relationship between entities and attributes (non-Iexicals and lexemes)

• there is a close relationship between attributes of a common entity

t The UK Inland Revenue name and address file holds 48 million records and requires the
addition or amendment of around 5% of these on a daily basis [WIL851.

52

Chapter 3

• there is often a close relationship between attributes shared by different

entities

• file-use ratio will be high because of the searching and browsing

operations

• space saving is not a crucial factor. However, some removal of

duplication is desirable where this does not impair performance

• because a functional paradigm is used, the properties of referential

transparency guarantee freedom from undesirable side effects.

• integrity constraints, at the meta data level, are already a successful

method of enforcing database integrity

• it is most likely there will be too much data for a main memory database

system to be used

• the system is to be multi-user.

From our specification above we believe the bulk of the instance data should be

stored on disk in a format well suited to rapid searching techniques while leaving

main memory free for other uses. It would be difficult to upgrade a main

memory system to a multi-user, browser-oriented, client-server environment

qualities that a large, text intensive, operational database system would need to

have. If instance data is kept primarily on disk in a client-server environment, it

is easily accessed by all system users for browsing etc, while leaving reliability,

integrity and security as server system functions [PR098].

3.5 Using a search engine

The incorporation of a search engine as a data filter on each processor forms part

of our architecture proposals so is introduced here. Readers familiar with the

concepts behind search engines may wish to skip this section and go to

section 3.6.

53

Chapter 3

Search engines have been in use for twenty years now and are therefore

considered 'mature' technology. However, they are still a useful tool and have an

established track record where devolving certain searching and data filtering

operations are concerned-although there are some architectures that search

engines are not as capable of exploiting as others. Some design considerations

such as record structure-are therefore crucial in making a decision to use a

search engine. There have been several search engines used over the years-a

good resume is given in [SUSS]. Here we describe the basic concepts behind one

such search engine that has been in commercial use for over 20 years.

The ICL Content Addressable Filestore (CAFS) [MIT76] is connected to a disk

controller and accepts logical requests for data. The disk controller has hardware

that can perform key matches. The controller can be loaded with constants to

describe record fields and values and with a microprogram to determine if a

particular record satisfies a request. See [CAFS5] for various papers describing

the components of CAFS. A good general description of CAFS can be found in

[MAL79] and a brief overview of the key components is now given with the aid

of Figure 3.6 found in [BAB79].

'"

1111 [0(' t SUPPlll!R, "UC! , 'OR , ISUPPlIER .. "fIUS' OR "~:lI.f ."RESI$TOR"" ,.AICe: '" h]

I I
1171· 1111 IJI

tofUl TJP\.l!lI[O '110101 U" TO
12 TUCKS

'"
Olse ,SUPPLIER: TEXAS, PART: orOOf, 'R,el::,,1

"
PART: ItUISTeR

'"

R(HUnA\,. UNit

'"
flU

SEARCH
1 [VAU/AflOH

UNIT ,illl
It 011 tQ)

"HO 11

15U"'\.I(II., p",eE) ISU""\.II!R: Tit ... " ,Alef 'p,

""

Figure 3.6. Outline of CAFS.

TO HOST
CCJoIPu1fR

54

Chapter 3

The selector (18) sets up the key registers (3-5) with the key value pairs taken

from the selector. The tuple (2) arrives from the disk (1) and is placed in each key

register where a latch is set according to the theta condition. These are compared

to the required theta condition and the latch comparators (6-8) are set before the

result is passed to the search evaluation unit (12). Here they form part of a logic

expression derived from the selector that, if true, informs the retrieval unit (14) to

pass the relevant items from the tuple to the host computer. The search

evaluation unit (12) can handle nested Boolean expressions and threshold

functions and the hardware can support up to twelve disk channels via

multiplexing.

3.5.1 Record structure

To facilitate the use of a search engine the data must be stored in a format that

permits the various filtration processes. The options CAFS offers include: logic

operators AND, OR and NOT; weighted threshold functions; theta conditions =,

~, >, <, 2: and ~; masking of data items to byte level and stem matching. The

record structure has therefore to include data and field identifiers as well as the

actual data. This can be done to various levels of granularity and is introduced in

chapter 4 where it is highly relevant to document structure where this

mechanism is required. Typical record structure is shown below [MAL79].

fixt>d It>nglh
dala ilpmS

1

first group fiE'ld
1 ,

variablE' Ipnglh
dala ilE'm

A

se-cond group lie-Id ,

Figure 3.7. Typical record format.

rE-cord
trailer

TT

55

Chapter 3

For the key registers to carry out their function, the data needs to be stored in

fixed field format or permit variable length fields with identifiers included (as

shown above). If an individual item is required for comparison, e.g. stem

matching, it can be isolated easily by using a mask. Using CAFS as described in

this section will typically decrease search times by a factor of between 5 and 100.

Moreover, the workload for the processor is reduced by more than 90% as the

amount of data transferred to the processor is significantly less than in traditional

methods when considering un-indexed data. Three different implementations of

the CAFS product have been achieved in three technologies. The latest

implementation being for VLSI in the late 1980s [ILL96].

3.6 Parallel processing

In this section we again introduce the basic concepts behind parallel processing,

so readers familiar with these may wish to proceed to a later section.

3.6.1 Implementing problems in parallel

A problem may be solved by exploiting the parallelism inherent in an algorithm

(algorithmic decomposition) or by applying the algorithm to different parts of the

problem (domain decomposition). Domain decomposition involves examining

the problem domain to ascertain the parallelism that may be exploited by

applying the algorithm to several distinct sets of the data at the same time. The

solution can be applied as a data driven method-where the sum of the tasks is

divided into the number of processors used, or demand driven method-where

each processor 'demands' a new task from a central 'pool' as and when it finishes

a previous task.

A processor taxonomy was established by Flynn [FL Y72] based on principal

interaction patterns of instructions and data streams. The most useful of these

has proved to be multiple instruction, multiple data (MIMD) where each processing

56

Chapter 3

element (PE) can operate asynchronously. By providing the processors with the

ability to communicate with each other, they may interact and co-operate in the

solution of a given problem. The level of interaction and access to memory has

led to two types of system being developed. Where global memory is shared the

interaction is known as tightly coupled and where each PE is responsible for a

section of (private) memory the interaction is known as loosely coupled. These are

shown below.

[
.. J

Shared memory
••• H, ... '" ... "",,

PE PE····· PE

Tightly coupled

Interconnection method

~~ ~
Loosely coupled
(with memory)

Figure 3.8. MIMD configuration.

A topology is a number of processors connected by a network in some

configuration-token ring etc. A process is a segment of code that runs

concurrently with other processes on a single processor. A processing element (PE)

consists of a set of processes used in harmony on a single processor. Links in the

interconnected system can be between processes on the same processor (internal

links) or between processes on different processors (external links).

57

Chapter 3

/',/"""""-------------......... :~::, -..
/ ~E1" r---+-\-'t---:=-.

I \
;' "'" '\)4--7 External
I ,....... ~ '" \ links ! processing ~:::':............... PE2 '-__ \
I elements -'-, 1
I Y..

\, · ··E···: ,/ """ , , ,
"'\" PEn //// "','<-.---->,,-+-f---.J

..... ;','

I nterbonnectloA.fletW'ork

Internal links

Processes

Figure 3.9. Parallel processing terminology.

To provide a useful parallel processing environment there must be access to

input/ output facilities. It is customary to achieve this by using one of the PEs as

a system controller. As well as handling the input/output interface, the system

controller is responsible for collecting and collating the results from the other

PEs.

If PEs could spend 100% of their time doing useful computation, linear speed-up

would be possible and each PE added would improve performance. In practice

this is not possible. The choice of an appropriate computational model is of

paramount importance to ensure that each data item is acted upon and

determines how tasks are allocated between PEs. The optimum model will see

that the workload is distributed evenly among all available PEs. The

computational models are

Data driven-where data items are allocated to PEs in advance of computation.

It can thus be considered a 'static' scheme where the computational requirements

of data items must be known in advance.

58

Chapter 3

Demand driven-the opposite of data driven and considered 'dynamic'. In this

model work is allocated to PEs as they become idle. This model comes with

greater communication overheads but problems like 'load balancing' are more

easily handled.

Hybrid-a combination of the above two and useful where an initial set of

known problems can be handled statically before other problems of unknown

complexity are tackled more dynamically, depending on the demands of the

situation.

If the size of the problem domain is too large to be accommodated in its entirety

at one PE then it may be distributed across all PEs as well as secondary storage

devices if required. The management of the data involves optimising data

fetching and use of cache at PEs to maximise the solution of a problem.

3.6.2 The choices for parallel implementation

Parallel processing of functional languages has been a research activity for

several years. The original hopes for exploitation of the implicit parallelism in

functional languages led to several avenues of research in a number of promiSing

projects. However, the task of implementing a parallel functional language is

much more substantial than it first appears [TRI96]. Difficulties include the

management overheads involved and the increased complexity for the operating

system. Many parameters for parallel tasks are of a dynamic nature, which adds

further complexity. Wilhelm [WIL96] in fact argues that the difficulties of

parallel execution are likely to remain. A good resume of early research is given

in [LIN96] but some notable areas are highlighted here.

59

Chapter 3

FAD, implemented on the parallel database machine Bubba [BOR90j, did not

incorporate list comprehensions instead using operations like map and filter to

achieve the same results. Moreover, in FAD functions were not first class objects

and updates were imperative.

GRIP is a functional database implemented on a parallel machine [PEY87aj. It

does not have a parallel I/O system so the database has to reside in main

memory. It is also based on a shared memory system and the consensus about

how memory is split in parallel applications is a that shared nothing memory

system-as defined by Stonebraker for instance [ST086j-has often proven the

better option. The research into GRIP progressed into the work done using

parallel Haskell.

Glasgow Parallel Haskell (GpH) [PEY96j is an extension to the pure functional

language Haskell [ARG87j. It aims to provide more expressive strata upon

which to build sophisticated I/O performance using such techniques such as

monads. The goal was to attain implicit semantically transparent parallelism, but

the version available uses explicit parallelism [TRIOOj by including the par

instruction in algorithms in a scheme called evaluation strategies. Evaluation

strategies suggest to the compiler places in an algorithm where parallel

processing might be possible; the par instruction is used to direct the spawning of

new processes.

Evaluation strategies use lazy higher-order functions to separate the specification

of an algorithm from its dynamic behaviour (parallelism). The definition of a

function has two parts: the algorithm and the strategy [TRI98j. A practical

application of evaluation strategies relevant to our subject area is that for accident

blackspots. This loads map reference details of accident blackspots from police

traffic reports and is typical of a data-intensive complex-query domain. The four

60

Chapter 3

phases of the program were tested for parallelism. The results proved to be

somewhat disappointing for the authors. The data sets used were small: 1000

accidents occupying .3 Mbytes of store. However, one area that was more

promising involved splitting the data on a geographical basis into 'tiles'. This

meant sub-sets of the data were safely used in parallel leaving intersection points

as the only area requiring special treatment [LOI97].

In our case, there are several areas where the application of parallel processing

techniques could be used to improve performance. These are now discussed.

Passing the base expression to all processors

This would rely on domain decomposition being able to take advantage of data

placement across all disks participating in the array. The parsing of expressions

would be handled simultaneously on each PE that would then be responsible for

constructing a query evaluation tree to solve the expression using the data on its

own disk. The idea of simply multiplexing an expression across all PEs initially

seems a good one. However, there are some drawbacks to this approach.

Queries involving lexical attributes would necessitate inter-process

communication to obtain (for example) tokens for strings. This would be difficult

to manage effectively and could overload the inter-process bus with data and

message passing operations as non-lexical data is transferred between various

PEs. The same inter-process communications would be required for each step in

a graph traversal operation to ensure no links are missed.

61

Chapter 3

Parallel graph reduction of evaluation tree

Peyton Jones [PEY89j introduces this in a keynote paper. The basic idea is that

nodes of a graph are allocated to different processors where there is control

maintained over the parent-child reduction sequencing. Difficulties occur when

a PE has to fetch or update a non-local node and issues such as object locking and

deadlock become relevant. Again, the results are often too fine-grained after

considering inter-process communication and the additional costs involved.

Parallel processing at the storage sub-system level

This would include the searching for matching pages that might contain a triple

or record. Triple store interface functions such as ts-present, used to return a

matching triple and discussed in chapter 2 section 2.4.3, could be sent to all PEs

thus achieving parallelism. However, the improvement could be small and

would need careful co-ordination. Consider the following simple algorithmic

analysis of a typical expression (using list comprehensions) to display the last

names of all people with a first name of John. Each step of the algorithm is

described in words afterwards.

[Lname xlix f- All_emp & Fname name x "John" 1

BEGIN query
1. ts_string_to_token (John) - returns token TJOhn

2. ts_string_to_token (Fname) - returns token T
Fn

_

3. ts_open_set «TFn_, 7, TJohn» - returns Toet id

4. ts_string_to_token (Lname) - returns tOKen Ten_

5.WHILE there is still a member of the set to retrieve DO
5.1. ts_fetch_another (T .. Ud) - returns <TFn_, Temp' TJohn>
5.2. ts-present «Ten_., T ,7> - returns Teurr
5.3. ts_token_to_string(Teu,,) - returns last name
5.4.add last name to print tree

END WHILE
END query

Step 1 involves accessing the triple store to obtain the token for the name "John".

Trohn is the resulting token. Step 2 searches the meta triples for the token for the

function name "Fname" and returns the token TFname. Step 3 passes to the triple

62

Chapter 3

store the triple template <TFname, ?, TJOhn>-where ? represents the entity

identifier position. The triple store opens a set of entity identifiers using this

template. The returned value Tseud 'points to' this set. Step 4 obtains a token for

the other function, Lname, used in the expression and returns a token TLname. The

while loop in step S iterates over the entity identifiers in the set accessed through

Tseud and in each case: uses ts-fetch_anather to get a new entity identifier token

Temp, uses ts-present to return the token for the Lname-called Tcurr, before

converting the Lname token to a string in step S.3 and adding it to the print tree

in step S.4.

An analysis of this algorithm reveals the following. Lines (1), (2) and (4) are

obvious candidates for parallel processing as they can be considered as separate

tasks. However, the allocation of strings across pages is complicated by internal

string decomposition-each external string requires splitting into smaller

'chunks' of six characters. Line (3) is dependent on lines (1) and (2) executing

correctly and could be done at the same time as line (4). The opening of a set can

involve a great deal of searching through many pages-although the set of triples

that match the search template are not retrieved as such. Retrieval pages are

used to store the identifiers of pages that may contain matching triples. The

actual triples are then retrieved as required (in the while loop) under the lazy

implementation that is used.

Line (S.l) is clearly a sequential process where the page returned would be held

in cache to speed up the next access anyway. Line (S.2) must follow on from (S.l)

and, again, must be completed before converting the Lname token to its lexeme

and adding this to the query tree. Any token_ta_string function-as with

string_ta_token functions-can incorporate much searching and collating of

internal string triples. Larger expressions such as

63

Chapter 3

[Lname xlix +-- All_emp & Fname x "John" &

Y +-- All_cust & Cus_no y = 12345 &
Has_ac x = y]

are more amenable to parallel execution where the x and y entity sets can be

created on different processors. This is a more promising area to exploit but, at

the moment, is again hampered by the structure of the underlying tokenisation.

Moreover, the format these expressions take is not fixed: users can create well

formed expressions in several ways.

Domain decomposition

The data domain is centred on triples that are held in a homogeneous triple store

repository indexed (primarily) on the first field. For instance data, the first field

is most often the relation or function name. Hence clustering tends to place

triples with the same function on to the same or consecutive data pages. This

makes parallel searching for pages within the current architecture difficult to

organise.

Many searches involve strings; and strings are further decomposed into internal

string triples for storage purposes. String triples suffer from the same problem as

other triples in that they are clustered around their first field-in this case, the

first field is used for the string identifier. There are two types of function call that

involve searching the domain of string triples-ts_string_to_token and

ts_token_to_string. Both of these involve calls to sub-functions to search for and

collate the sub-strings needed that constitute the complete string and might

therefore be candidates for parallel implementation.

Internal strings are already searched for in two different ways-either from the

beginning of the string or from the end of it, dependent on the length of the

string-see chapter 2 and the discussion of the lexical token converter. In order

64

Chapter 3

to make the searching of sub-strings amenable to a parallel solution, the sub

strings could be allocated differently (declustered) across pages or disks.

The options for de-clustering of sub-strings are many. They could be spread

across processors on a sequential, round robin or hashed basis; they could be

clustered on the six characters they hold in their second and third elements. It is

possible to allocate blocks of six characters of the search string to different

processors. They could even be de-clustered according to their length with

different modulo string lengths being allocated to different pages or disks. Each

of these schemes would require additional co-ordination and incur the

communication overheads that are an inhibitor to parallel processing. Moreover,

balanced data placement might be difficult to achieve. In general, it is possible to

distribute all data from the homogeneous triple store in-for example-a random

distribution method across n processors. Because of the difficulties in employing

parallel processing techniques within the constraints of the current storage

architecture, we suggest a new architecture that tackles the problem at the model

level rather than at the physical level.

3.6.3 The vigorous parallelism of AGNA

AGNA [HEY91] is a parallel persistent object system that makes heavy use of list

comprehensions and indexes, and pursues parallelism very vigorously at the

model level. In the body of a block, all expressions are potentially evaluated in

parallel, and the value of the body may be returned as soon as it is available.

Also, in primitive applications (including CONS-the list constructor operator)

and in function applications where each argument is evaluated in parallel even if

not ultimately required. The only exception is for conditional expressions and

where data dependency is involved. Optimisations occur in three ways:

transformation of comprehensions; translation into dataflow graphs; and

translation into code for the multi-threaded abstract machine P-RISC.

65

Chapter 3

The language is also implicitly parallel (the programmer does not specify what

must be done in parallel). It uses MIMD architecture where the data (objects) are

randomly distributed across the array sequentially. Because AGNA is non-strict,

once the first CONS cell has been constructed a reference to it can be returned

while the rest of the list is constructed in parallel. Non-strictness also permits the

construction of 'open' lists (not NULL terminated), so that the APPEND function

can be used to join the lists from each processing element. The results using a

uni-processor system showed they were 'within shooting distance' of INGRES.

While for multi-processor systems, the optimal processor array size was around

eight. Results from AGNA showed it was a fair distance behind relational

systems, such as the GAMMA project [DEW90a], but most of it was written in

software: there was very little hardware assistance. Moreover, AGNA, as a

functional language, enjoys the benefits that the functional paradigm has to offer.

3.7 Introducing redundancy

The use of redundancy is worthy of consideration for any new system nowadays

as it reduces the risk of data loss to extremely low levels. Once again, the basic

concepts are introduced here therefore readers familiar with these may wish to

skip this section. Redundant Arrays of Inexpensive Disks (RAID) [PAT88] link

together arrays of smaller, cheaper disks to do the work of larger, more expensive

ones. In recent years drive technology has progressed to such an extent that

many consider the "I" in RAID now stands for "Independent".

There are six, official RAID levels (0 to 5) proposed by the RAID Advisory Board.

But there are other, unofficial RAID levels devised by users for their own

particular needs. Recently, the RAID Advisory Board has suggested three new

levels to replace some of the confusion that exists. However, for most practical

systems the choice is between RAID levels 1,3 or 5.

66

Chapter 3

RAID controller hardware provides data redundancy to improve reliability. This

is done either with a second, mirrored copy of the data disk (as in RAID 1), or by

incorporating parity information held on one extra disk that can be used to

reconstruct information in the event of data disk failure (as in RAID 3 and

RAID 5). This allows RAID systems to continue to operate even if one drive fails.

Failure rates are measured in the number of years a disk is expected to work

between failures. The Mean Time Between Failure (MTBF) rates are practically

insignificant nowadays; using a RAID 5 system with four data disks and one

parity disk will give a MTBF of 71,000 years.

Two ways that RAID improves performance are by reducing disk bottlenecks

and by increasing disk transfer rates. In the parity schemes, data is allocated to

disks on a round-robin basis. It is said to be "striped" across disks in "chunks" of

fixed block size. The extra disk needed for parity can either be used entirely for

parity information (as in RAID 3) or interleaved with the other disks (as in

RAIDS).

The biggest single impediment to RAID is the "write penalty" [FRI96j. The Small

Computer Systems Interface (SCSI) method, currently used to interconnect RAID,

is likely to give way in the near future to new technology in the form of Serial

Storage Architecture (SSA) and Fibre Channel Arbitrated Loop (FCAL). Fibre

channels offer 100 megabyte per second data transfer rates and eliminate SCSI

bottlenecks. Our ideas for a novel RAID configuration are discussed in chapter 6.

3.8 The physical model for data storage

Shipman-in a keynote paper [SHI81j-crystallised earlier work following the

introduction of the functional data model (FDM). Since then, considerable

research has been done that embodies some elements of the FDM and applied

these to database systems. These include: DAPLEX at CCA, FQL at the

67

Chapter 3

University of Pennsylvania, P /FDM at the University of Aberdeen and, of course,

the TriStarp work at Birkbeck College, University of London. Some of these

projects were aimed at specific domains-for instance, the P /FDM system was

primarily set up for scientific and design databases [GRA92].

Most of the early work on the FDM was done before the relational data model

became a sound commercial product. The FDM has stood the test of time

because it is well defined being based on very good principles. Because of this, it

is evolving into a formalism for the less weIJ defined object-oriented model. Our

proposed architecture is, however, motivated by earlier work that contributed to

the FDM and very much complements the fundamental principles involved. This

is the Associative Data Management System, which is now introduced.

The Associative Data Management System (ADMS) data model [CR082] uses

concepts from set, relation and graph theory and provides the model that we

wish to use for our physical storage structure. In ADMS the database is modelled

as a directed graph where all the sets of data elements appear as nodes and the

directed connections show the relationships between them. The data can be

shown pictorially or in tabular form by listing the end nodes on each of the arcs.

Additional labelling information is attached to the nodes, which divide the graph

into cliques of stored record sets. Labels are also used to hold details of access

rights for the record sets.

1:1 correspondences and N:1 functions are easily handled by ADMS, but M:N

mappings are transformed by introduction of a compound entity set. This

replaces the relationship name and means that the arcs are not labelled in any

way and thus do not convey meaning between nodes. Nodes are held as "twins"

within the database and there is some duplication of sets due to the clustering of

cliques into record sets. Two other transforms are done: the introduction of a

68

Chapter 3

"dummy" set if a set is related to itself; and a "link" set is created when a group

of sets needs connecting at the highest level. This is called the "upper bound".

Querying the database is done by macro substitution using a stack so that plain

English words can be used to formulate the user queries. ADMS is used with the

CAFS, purpose-built hardware described in section 3.5. Ambiguities can arise

when there is more than one path between two sets. In this case the user is asked

to select a path. Database update is at the record-set level with a unique data

element identifying which records are updateable by which groups of users.

Figure 3.10 below shows the ADMS file structure.

salary-hi story

~\
salary
start

salary

/'

~

(-i..some -person

/,~A'-.
./ "-

/' '-.

salary
• person

person

/

sex

~person-detajIS~
Figure 3.10. The ADMS data model.

69

Chapter 3

3.9 Introduction to our proposals

Our solution to the problems discussed thus far in the thesis is that a new

architecture is required that incorporates: parallel processing, improved string

manipulation and other areas of general functionality, and redundancy.

3.9.1 The data model

Some data (for instance meta data) does not form part of the function graph

model and could be stored differently. Attribute data does not form such an

important part in graph traversal, often being used only at the start and end of a

series of traversal operations. This leaves just the entity data-the links between

entities-as 'real' triples that are used in the graph traversal process.

So, the underlying structure for our architecture involves storing entity-to-entity

triples separately from entity-to-attribute records. Included in this is the storing

of attribute-to-token mappings (string tables being the most common example)

separately from the entity triples and attribute records. Our architecture is

discussed in chapter 6.

3.9.2 Improving string handling

Once strings are more loosely structured, faster searching techniques, such as

those found in [BOY77, HOR80j can be implemented. Moreover, it would be

desirable to add functions to perform stem matching (truncation)-left-hand end

searching, right-hand end searching (or both), and enable the use of wild card

characters for elastic matching. A split of the generic type string into two sub

types representing short attributes and text, would allow for more control over

searching operations generally. Our proposals for string handling and extending

search options are discussed in chapter 4.

70

Chapter 3

3.9.3 Extending interface functionality

One of the key elements in the original proposals was the adoption of a simple

set of interface functions; the benefits of this approach were identified in

chapter 2. However, we believe interface functionality can be extended for the

storage level interface without compromising the model level. These extensions

are outlined in chapter 5. Additionally, functionality can be enhanced at the

model level for strings (in particular) and in other more general areas

incorporated in optirnisations. These are discussed in chapter 7.

3.9.4 Making the architecture parallel

These proposals include ensuring that the chosen architecture is amenable to

parallel processing techniques. There are several ways this can be done and

some of them have been covered earlier in this chapter. Our choice is to adopt a

MIMD taxonomy with dataflow. The design of this and the decisions taken are

set out in chapters 6 and 7. The creation, population and maintenance of a

database using our architecture are discussed in chapter 8. Here we use a North

Yorkshire Police crime database used with test data based on real-life crimes.

3.10 Summary

Following chapter 2, where we described the strengths and weaknesses of the

current implementation base on a triple store architecture, this chapter has

introduced the background to other areas of work that form part of our

proposals. These include alternative grid file implementations and other storage

and access methods, the fundamentals of binary relational storage structures and

related data models. Additionally, parallel processing and redundancy are

described, as is the basics of text searching and the importance of user

requirements. Finally the proposals for the areas of work discussed in later

chapters are set out.

71

Chapter 4

Chapter 4 Enhancing string manipulation

4.1 Introduction

We highlighted in our introduction that string handling was one of the weak

areas identified in the trials of the TriStarp system [KIN96a]. In this section we

discuss string handling, dividing our attention between two strategies where

improvements can be made. These approaches are:

• enhancements to the current implementation and

• identifying possible improvements using the new architecture.

We begin by showing how changes to the current system can easily achieve large

performance gains. This is done within the framework of the triple store

architecture for all data. We then describe how de-tokenising strings can lead to

improved searching techniques. Moreover, by using a new data type for large,

document-type strings, additional functionality for string manipulation becomes

possible. Results are given for improvements achieved within the current

architecture and those for a new architecture. We summarise these in the context

of other functional data languages and object systems and show how object

oriented concepts-underpinned by the functional model-are being

incorporated into the relational model [MEL02].

4.2 Enhancements to the current software

The current built-in, object-level, string-manipulating functions, their

descriptions and examples of their use, are shown below. (Note the terms 'object

level' and 'built-in' are used synonymously through this chapter.)

72

Chapter 4

function description example
concat takes two strings, joins them and concat Ilabc" IIdef"

returns the resultinQ new strinQ returns strinQ "abedef"
length takes a string and returns its length length "abedef"

returns integer 6
substr takes a string and two integer substr "abcdef" 2 5

parameters and returns a sUb-string returns string "bede"
from the position of the first integer
to the position of the second intsQsr

Table 4.1. Current built-in string functions.

Any string manipulation is accomplished by the creation of user-defined

functions that can include the above object-level functions as part of their

definition.

Queries are parsed in the following way-see [POU89] for a detailed description.

A query tree is constructed which breaks down an expression into a collection of

nodes to be evaluated by the compiler. The pattern-matching algorithm

evaluates the query by recursively reducing the nodes of the query tree by a

process known as eager graph reduction. This involves evaluating the children

of node n, then evaluate node n itself, finally replacing n by the result. The

evaluation continues until the root is reached and a result can be returned to the

user.

There are standard arithmetic object-level functions +, - , < , > , = , * , /

(integer division) and % (the modulo function) for use in queries, plus the three

string manipulating functions-concat, length and substr mentioned above. Other

functions for use in queries are termed user-defined and have to be coded

directly at the model level or loaded as part of the environment at database

creation.

As a query is evaluated, object-level functions may be encountered. In this case,

the compiler breaks off the graph reduction process and evaluates the called

73

Chapter 4

function with the given parameters. The current node of the query tree is then

replaced with the returned value of the called function and the evaluation

continues from there.

For simplicity, strings are held in the query tree in tokenised form, along with

names of functions etc. This enables a query tree to hold nodes of fixed length

and aids compilation as all comparisons are made between tokens. However,

when an object-level, string-manipulating function is called, any strings have to

be re-constructed into their full forms before the object-level function can be

invoked.

As an example, consider the user-defined function contains which searches for a

pattern in a text and returns a Boolean result. The function contains is itself

defined in terms of another user-defined function search as follows

contains (text,pat) <= search(text,pat, 1). The function declaration and

definition for contains and search are given below where prefix notation is used.

search: string string integer -> bool /* function declaration */

search text pat n <=

let a == length pat in

let b -- length text in
if > a (+ - b n 1) false

/* else */

/* function definition */

if = pat substr text n (- + n a 1) true

/* else */

search text pat (+ n 1)

contains string string -> bool /* function declaration */

contains text pat <= search text pat 1

A use of this function might be contains "abcdef" "def" which would be

evaluated as follows.

74

Chapter 4

1. The whole expression is parsed to form a query tree that involves

crossing the level 0 interface to generate and return tokens for

"abcdef" and "def". The evaluation process begins by calling

contains and replacing it with search and its parameters. Now

included is the integer 1 for the string starting position.

2. search" abcdef" "def" 1 is called. The lengths of the two strings

are calculated using object-level function length and stored as local

variables adding branches to the query tree.

3. A test is made to see if the search pattern is longer than the

remaining portion of the text. If it is, the function exits returning

false. Otherwise, a comparison has to be made between the search

pattern and a part of the text of a similar length. The object-level

function substr is then called.

4. substr "abcdef" 1 3 returns "abc" (the 1st to 3rd characters of the

string). This involves building more branches of the query tree and

crossing the level 0 interface to generate and return a token for the

sub-string • abc". If the string tokens are the same the function exi ts

returning true. If not, a recursive call is made to search.

5. search "abcdef" "def" 2 is called and the process continues from 2

above until the token for text string "def" matches the token for the

pattern 'def" at which point true is returned to the user.

The initial call to contains results in one call to function search, which then calls

itself three times before the answer true is returned. During the process five

string tokens are created-two for the initial parameters "abcdef" and "def"

plus three others for the intermediate patterns "abc", "bed" and "cde". Only the

first two tokens are meaningful in this case.

The recursive nature of these expressions, together with tokenisation and the

continual crossing of the level 0 interface, is what leads to the unsatisfactory run

75

Chapter 4

time for such evaluations. Moreover, in large searches, the erroneous tokens

created quickly deplete the token space available for strings-sometimes to the

point of exhaustion, thus rendering the software unreliable and compromising

data integrity. Object-level functions only add tokens to the database for

complete strings and only then if they do not already exist.

We have extended the concept of string handling, object-level functions from the

above three primitives to include a much wider selection of functions that work

in the same way. These can access the storage sub-system more quickly in the

graph reduction process so execution is faster. Although the text and search

strings have to be re-constructed before the function is called, this strategy

obviates the laborious tokenisation and comparison of sub-strings in the text to

be searched. The compiler can now handle these searches in just one non

recursive function call.

We first provided 15 experimental, object-level, string matching functions from

which other, more complex, string matching operations can be constructed by the

user. The set includes features found in standard text retrieval systems and is

sufficient for the majority of user needs. The meta characters used in our

functions are as follows

" , match anyone character
11%" match zero or more characters
11111 OR operator
11&11 AND operator
"<" must-come-before operator

The choice of meta characters is arbitrary, although the elastic matching character

"%" and match anyone character "_" are taken from the syntax of SQL, any other

symbol could be used. We have tried to keep the meta characters intuitive

though. The functions provided, their deSCription, and examples of their use are

given in Table 4.2 below.

76

Chapter 4

name description example
em1 Looks for exact match words using a em1 IIhere it is!! lIitl' - true

move one-at-a-time strategy. em1 "here it is' "and' - false.
em11 Like em1 but uses a shift table. As for em1.
em2 Like em1 but allows for "_" character em2 I'here for" IIh_rell

- true.
in pattern. em2 "here for" "r e'-false.

em21 Like em2 but uses a shift table. As for em2.
em3 Allows for right-hand truncation in the em3 "aping" "ap%" - true.

search pattern via "%". em3 "aping" "app%" - false.
em4 Allows for left-hand truncation in the em4 "ended' "%ded' - true.

search pattern via "%". em4 "ended' "%ds" - false.
em41 Like em4 but uses a shift table. As for em4.
emS Allows elastic matching character '%" em5 "right" "r%ht' - true.

embedded in search pattern. em5 "right' "r%gh' - false.
em6 Allows "%" character at either end of em6 "right" "%igh%" - true.

one-at-a-time search pattern. em6 "right" "%uo%" - false.
em61 Like em6 but uses a shift table. As for em6.
mm1 Pattern contains multiple search terms mm1 "jo vie" "vilvic" - true.

separated by "I" characters. mm1 "jo vie" "vijval" - false.
mm2 Pattern contains multiple search terms mm2 "jo vie" 'vic&jo' - true.

separated by "&" characters. mm2 "jo vi" "vi&al ll
- false.

mm3 Pattern contains multiple search terms mm3 "jo vi al" "Jo<al" - true.
separated by '<' characters. mm3 "jo vi" "vi<io" - false.

ss1 Uses on-at-a-time search strategy to ss1 "one to one" "one" - 2.
return occurrences of pattern in text. ss1 "one two" "too" - o.

ss2 Like ssl but used shift table. As for ssl.

Table 4.2. Experimental string functions.

All of the above functions have the type signature: string string ~ bool except ssl

and ss2 which have type signature: string string ~ integer. A smaller set of

functions was then written that (generally) return the word that forced the match.

This is more significant for searches that involve elastic matching or conjunctive

search patterns. These functions are shown in Table 4.3.

77

Chapter 4

name description example
matches Returns first word that matches matches "here and now" "%nd"

pat or the empty string returns "and"
rest Finds first word matching pat rest "this and that or" "and"

and then returns remaining text returns "that or".
or the empty string. rest "this and that" "that"

returns '''' (the empty string).
or_str Allows the 'I' character as 0 R or_str "one and two" IIsix!two"

function. Returns first word returns "two".
matching pat and returns it. or_str "one and two" "ninelten"

returns "" (empty strinClI.
and_str Allows the '&' character as AND As for mm2 above.

function. Returns boo lean.

Table 4.3. Object-level string functions.

If used in list comprehension as part of a filter, functions that return strings have

to be embedded in an expression that returns a Boolean result. For example, to

list the ref_num of all persons where attribute name is like "Fre%", the following

expression is needed.

[ref_no xlix f- Al1-person & not = TIll matches name x "Fre%lI] i

The filter might look confusing because of the prefix notation, but it is saying

'only display the ref_no for persons where the search for name beginning "Fre ... "

does not result in an empty string being returned'. It is perhaps more natural to

use these functions in user-level functions such as in the following example

where we are trying to find all words like "WINDOW" in a crime database

described next. Functionfbelow again uses prefix notation.

f string (list string) -> (list string);

f a [] <= [];

f a [hit] <=

let x -- matches h a in
if = 1111 x fat

/* else */

[x I fat];

f "%IND%" map (scp) All_crm;

/* declaration */

/* definitions */

/* usage */

78

Chapter 4

The function AlCcrm is a zero-argument generator function of which there are

equivalent functions for all non-lexical types. AlCt returns the current extent of

type t as a set. The map function is a second-order function that (in this case)

maps the function scp over AlCcrm to produce a list of crime reports that is itself

passed to functionfas described above.

The function scp represents the "scene of crime report" attribute from the entity

crm in the crime database. The crime database is used in an operational

environment by the North Yorkshire Police Force and holds test data based on

2,500 reported crimes. There are 948,000 triples held in the triple store-where

approximately 314,000 hold strings for scene of crime reports. Appendix A2

gives a fuller description of the triple breakdown. A small part of the schema is

reproduced below-the schema is shown in full in appendix AI.

Figure 4.1. Crime database schema (part of).

For the remainder of this section, we will use examples from Table 4.2 as these

return Boolean results and are thus easier to read in list comprehensions. A

comparison was made between our exact-match, object-level function eml and

the user-defined function contains against the scene of crime data held in the

crime database.

79

Chapter 4

4.2.1 Comparisons between object-level and user-defined functions

The results of comparisons are first shown graphically in Figure 4.2 and then in

tabular form. Table 4.4 below gives the execution times in seconds of four runs of

an expression that uses the two types of functions in list comprehensions. Each

expression uses a global variable ($c) to hold a sub-set of the entity identifiers for

crimes. This sub-set is allocated with the user-defined function take-thus $c -

take 1 n All_crm. All runs were made on a Sun SP ARC station 2

count [scp x 11 x ~ $c & contains scp x "DOOR" 1; (1)

count [scp x 11 x ~ $c & eml scp x "DOOR" 1; (2)

Seconds User-defined
function

"contains"

$c
1

10
100
500

1000
2500

10000

1000

100

10

1

0.1
1

function
"em1"

10 100 1000 10000

Records - avg 3 kbytes/record

Figure 4.2. Improvements in string functions.

times for (1) times for (2)
9 9 9 9 <1 <1 <1

139 142 137 139 <1 <1 <1
1486 1457 1443 1459 1 <1 1

10244 9997 10053 10330 3 2 3
estimated at > 19 hours 6 6 6
estimated at > 49 hours 18 19 18

Table 4.4. Comparisons between contains and eml.

< 1
< 1

1
3
6

18

80

Chapter 4

Not surprisingly, there are substantial time savings using eml instead of contains.

This is clear from the above table and can be accounted for by the fact that

contains has to cross the level 0 interface so frequently, whereas eml does not.

The expression that uses eml removes the majority of the Itc_str _to_id

operations-some of which also generate new triples. In fact, using eml creates

only one extra triple-the one for "DOOR". In contrast, using contains means the

creation of 47,163 extra triples-all of which are needed only for the comparison

and are otherwise useless.

The timings of the four runs were close which suggests there is little to choose

between asking the LTC to generate a new token and then pass it back, or asking

the LTC simply to pass back an existing token. Another advantage is that using

object-level functions like eml does not deplete the token space available for

string tokens. The built-in search functions described in this section are shown in

appendices A7 and A8. They were incorporated into a new system we called

FDLS (FDL Strings). The searching techniques are described in section 4.2.3.

4.2.2 Comparisons between conjunctive and disjunctive search types

Leaving aside the clear superiority of object-level functions we now wish to

compare two ways of handling conjunctive and disjunctive searches. We have

provided these options as multi-match, object-level functions mml and mm2. The

same results can be obtained with user-defined functions and and or used

together with our exact match function eml. Consider the following expressions.

count [scp x 11 x f- All_crm & (3)
(em1 scp x "DOOR') or (em1 scp x 'ROOF')]

coun t [scp x 11 x f- All_crm & mm1 scp x 'DOOR I ROOF"] (4)

count [scp x 11 x f- A1l3rm & (5)
(eml scp x 'DOOR') and (eml scp x 'ROOF")]

count [scp x 11 x f- All_crm & mm2 scp x 'DOOR&ROOF'] (6)

81

Chapter 4

We note that tokens would be created for the patterns "DOOR I ROOF" and

"DOOR&ROOF" but these are the only ones that have to be added. We used the

above four expressions against all the 2,SOO crime reports (average length 7S0

characters). The number of search terms used was 2,10 and SO. These numbers

were chosen to show a trend in increased search times and can be thought of as x,

5x and 25x accordingly. There were several runs of each test which was done on

a Sun SPARC station 2. The results are shown in Table 4.5 below with times in

seconds.

search expression expression expression expression
terms (3) (4) (5) (6)

2 16 14 14 14
10 17 15 17 14
50 25 15 22 15

Table 4.S. Timings for different types of or and and functions.

From this table we can show, in Figure 4.3, that our multi-match functions scale

to provide an increasing advantage over using the standard or and and functions.

28 ,--------------------------------------,

26 ---

24

22

Seconds ~~ t~:;;::~~:::-:-;--~-~-~-~-~--~-c-c-c--c-~-o-~--~-~-~-~--~_c_~_~ __ ~_~_l
16 ---

14 ~~~.~.===--=--=-=--=-=--~--=-~--=-~--=-~--=-~--~-~--~--~-~--~-~--~-~--~-~-
12 ~----_r------~----~------,_----_,------~

2 10 18 26 34 42

Number of search lerms

__ or function (exp. 3 form) -_'- mml function (exp. 4 form)

__ and function (exp. 5 form) ~ mm2 function (exp. 6 form)

Figure 4.3. Comparisons between different or and and functions.

50

82

Chapter 4

A closer inspection of these figures reveals the expected result of and operations

executing faster than or operations. There is little to choose between either class

of function when used against a small number of search terms. However, as the

number of search terms increases, the advantages of the multi-match functions

become clear. This is because the standard or and and functions increase the size

of the query tree. We also experimented using a local variable to hold scp x in (3)

and (5) via a let ... in construct, but this made no difference to the timings. A

feature not investigated was filter optimisation; both the multi-match functions

search for "DOOR" before searching for "ROOF". Further runs showed that the

relationship between numbers of records searched and execution time is roughly

linear.

4.2.3 String searching techniques used

The object-level functions use two forms of searching techniques. Functions such

as eml match the pattern against the text from the right-hand end of the pattern

working left until the pattern is found or a mismatch occurs. Following a

mismatch, the pattern is moved along the text by one character and the search

process starts from the right-hand end again.

The other form of search, which is used in functions like eml1, uses a shift table

to calculate the amount the pattern can be moved along the text when a

mismatch occurs. This is based on the Boyer-Moore-Horspool (BMH) algorithm

[HORBO] that demonstrates a practical application of the generic Boyer-Moore

(BM) algorithm [BOY77]. The superiority of the BMH algorithm over the BM

algorithm is achieved by simplifying the pre-processing of the text and search

pattern. Only one of the shift tables suggested in [BOY77] is used-deltal-so

pre-processing is kept to a minimum.

B3

Chapter 4

Our shift table is based on the BM delta1 table and is sufficient to allow the

pattern to be moved along the text more rapidly so that, on average, two thirds

less comparisons are necessary. The delta1 table sets up a shift array for each

letter in the alphabet, where an integer indicates by how much the pattern can be

shifted to the right. If a letter is not in the search pattern, its integer is equal to

the length of the search pattern because we can safely move the search pattern

past the mis-matched letter without fear of missing any potential matches.

Because we use a delta1 table only, time is saved setting up the relatively under

used delta2 table proposed in [BOY77l and demonstrated in [HORBO]. The delta2

table searches for discovered sub-patterns in the search pattern and uses this

knowledge to check if a greater move for the search pattern can be made than the

delta1 table alone would suggest.

For patterns of length five or greater, the BMH algorithm is the better option

[HORBOl. However, we used our functions em1 and emll on identical queries

involving multiple search terms over the scp function in the crime database

(average crime report length 750 characters). There was no difference. When we

consider the functions that allow for missing characters and elastic matching,

there is even less to be gained by pre-processing the text because the "_" character

in the pattern can be matched against any character in the text. This means the

pattern will move more slowly through the text anyway. The conclusion being

that, in this case, pre-processing the strings is not worthwhile.

4.3 A different approach to string handling

The previous section showed that substantial improvements are possible by

changes in functionality to the triple store architecture underpinning the current

software. If the architecture for string storage were changed it may be possible to

B4

Chapter 4

remove the weaknesses of tokenising strings while retaining the advantages that

tokenisation offers.

In this section we endeavour to show that a new architecture for strings can

accommodate the benefits of tokenisation with a more flexible method of string

storage. Moreover, this can be done in such a way that powerful searching

facilities can now be made available to the user that have hitherto proved

difficult to provide.

4.3.1 A new type for large text documents

Part of our proposals include the introduction of a new type we have called text

to be used for large, document-type attributes, where text can be considered a list

of strings. A synonym for string could be word, so text could conveniently be

considered as a list of words. This would permit more powerful text searching

facilities to be provided-ones that would not necessarily be applicable to shorter

attributes.

Shorter attributes typically contain between one and a small number of words

that form a single semantic unit. Words included in a text, on the other hand,

have a looser connection within the context of the whole document. Each word

in a text document is delirnited-often with the space character, although this

need not be the case. A decision would have to be made upon database creation

and then used as a semantic rule to guide users. when entering queries. More

details of the structure of words in texts will be given later in this chapter.

For the rest of this section we shall refer to the short string types as type string

and the longer string types used in documents as type text. The dividing line

between whether an attribute should be a string type or a text type is application

dependent and would be set up at the model level as part of the database

85

Chapter 4

schema. By making a design decision like this, it is possible to devise string

searching functions that discriminate between the two types. Any improper use

of these functions would be flagged as type errors in the usual way by the type

checker.

We note that there is plenty of scope for further sub-typing of the generic type

string and our new type text. The concept could be extended to cover htrnl

documents for example. This is discussed later in this chapter.

4.3.2 Combining strings and tokens

The reasons that strings were tokenised before being stored in the triple store are

as follows:

1. duplication of strings is removed

2. compact representation of strings

3. compact storage into pages on disk and main memory

4. uniformity of fixed-length tokens for the compiler

5. adherence to the philosophy of homogeneous triples

6. to maintain simple interface functionality.

To allow for searches to contain missing characters, cover case and word

contraction inconsistencies, allow for left- and right-hand truncation' and

embedded elastic matching characters in a search pattern, it is desirable to hold

strings in their full text format somewhere in the storage sub-system. There are

several options available. Leaving aside text attributes for the moment, string

attributes have different possible representations:

86

Chapter 4

1. the complete multi-string attribute could be tokenised as is the case now

2. each word could be tokenised with these tokens held in sets

3. the actual words themselves could be held in full wherever they appear in

the database

4. a combination of the above.

An example mapping of 1 might be "white European" ~ 3278242123. An

example mapping of 2 might be "white European" ~ {1536691292, 3231125932}.

In each of these cases, the string "white European" would itself be broken down

into sub-strings for storage in the triple store. We believe strings should be

stored in full format in a string table used to provide the mapping string ~ token.

This is discussed in the next section. However, the alternatives to be considered

are as follows.

The first idea for the triples was that one token would represent each unique

string (as in 1 above) and we proposed to store the attributes in sets with the

following structure:

Where $e refers to an entity surrogate; $r refers to a relation surrogate and; $a

refers to an attribute token. Each field is of fixed length. This situation would

synthesise the benefits of data compression on disk and in memory, and provide

the more direct access to strings that is required via the string table.

However, we believe it is desirable to be able to identify individual words within

string attributes. Therefore, we propose breaking the attribute down into

delimited words before storage in the string table. Each delimited word is held

in alphanumeric order (case folded) and maps to a unique token. This means

that more powerful searching operations are available to the user. Firstly,

87

Chapter 4

searches for words can be ordered-e.g. "find attributes where the word

"Venetian" comes before the word 'blind"'. Secondly, quorum operations can be

used-e.g. "find an attribute with at least two of these words ''burglary, arson,

violence, firearms, aggressive, mugging" somewhere in it. Moreover, left- and

right-hand truncation are more easily catered for.

String searching functions would then proceed by searching for a string in the

string table and then return a set of tokens and an indication of the number of

times a string occurs in the database. The results of these functions would be

passed to the parser and used lazily in any remaining sub-expressions still to be

evaluated in the list comprehension. The choice of what should be stored in the

attributes is then between holding the full text representation, or holding sets of

word tokens. These options are now considered.

Holding sets of word tokens

This would require that each word (stop words excepted) be mapped to a unique

token and that each entity attribute would then have the following kind of

format:

<$e, ($f1, $a11, $a12, $a13), ... ,($rn, ... »

Where $a11, $a12 and $a13 each refer to a separate word in the string attribute. As

before, each field is of fixed length.

This option would combine the compactness of tokenisation with the improved

level of granularity for string storage. However if a set of tokens is stored for

each string attribute there is unlikely to be much saving of space and, any savings

there were to be made would be negated by the necessary reverse mapping

token ~ string that would be needed for printing and display purposes.

88

Chapter 4

The tokenisation of individual words could be done in a compressed format

dependent on the 10g2 of the number of words held in the string table. This

method has been used in the Hibase project [COC98) and requires variable length

tokens. It seems intuitive to maintain word token allocation from the sub

domain of 32 bits that are set aside for strings so there is uniformity with the

tokens of other types. It is also easier for data filters to scan fixed-length fields;

variable length tokens would require an identifier byte to indicate the token

length and would negate the benefits of using tokens in the first place.

Holding actual strings in the attributes

An alternative would be to hold the actual strings in the attributes and remove

the token -7 string mapping completely-although the tokens would still be used

for the inverse function mapping. The mapping of very long strings to tokens of

only 32 bits had the advantages mentioned earlier. However, as we now want to

hold strings at word level so we can do more with them, the option of holding

full format strings in the attributes does not carry such an overhead. If full

format strings were held the following would hold:

1. there would be duplication of data-as indeed there is with

tokens in the current system

2. self-identifying formats would need to be added, e.g. word

lengths. These would take the place of the "space" character

now no longer required

3. the average English word is six or seven characters long - equal

to 48 or 56 bits required. This is an increase of 50 to 75 percent

on the 32 bits currently needed for storage

4. there would be no need for a token -7 string mapping for display

purposes.

89

Chapter 4

In support of the argument for holding full strings in attributes, a comparison

between the new proposals and the criteria for tokenisation, should be made. So,

to rationalise these proposals with points 1 to 6 at the start of this section the

following are noted:

(i) there would be duplication of strings in the attributes; this is a

situation that has existed for many years with, for instance,

Oracle databases. With the continuing reduction of disk costs, it

is not as much of an overhead today as it once was. Moreover,

space is not one of the main design issues (refer to our summary

of design considerations in chapter 3)

(ii) tokens can represent large strings compactly but the strings still

require decomposing into internal sub-strings for storage in the

triple store. Furthermore, our plans for text attributes will

involve a text identifier being generated and held in the record

with the full text document held elsewhere. The text identifier

would therefore act in the same way as a token identifier does in

the current system. This is discussed further in a later section

(iii) compact storage on data pages would not be so easy to achieve

with variable length fields. However, as the types of database

for which this architecture is being developed are likely to be

very large, to be of a textual nature, and have fairly static data,

then data volatility and its inherent problems are less applicable.

The records would be placed compactly at database load/re

organise time, with subsequent records added to a temporary

area pending database re-organisation.

90

Chapter 4

Compact storage in memory would no longer be a prerequisite

as the use of a data filter would obviate holding large numbers

of pages in memory many of which are not accessed anyway.

(iv) the benefits for a compiler using only fixed-length tokens is

perhaps a little tenuous. Compilers tokenise their own

expressions anyway, so this problem should be easy to solve.

As was shown earlier in this chapter, removing unnecessary

tokenising of data and devolving functionality to a lower level

in the execution process allows for a substantial improvement in

performance

(v) some data is clearly more suited to the triple concept-entity-to

entity triples and meta data for example-and these we intend

to keep tokenised and held as before

(vi) interface functionality needs enhancing so that data storage

reflects data usage in a way that boosts performance. This can

be done in such a way that does not compromise the robustness

of the interface protocols that are currently in place. This is

discussed further in chapter 5.

In summary, there is no need to maintain a token -t string mapping for displaying

the records if full text strings are held in the attributes. A string table provides

the string -t string_token mapping that will enable token sets to be collated for

further retrieval. They also provide the function mapping string_token -t

entity_id that is frequently used in query expressions. Lastly, there are now very

precise things that can be done in text searching and the type text allows for

specific functionality to be targeted to larger documents. In the next section we

91

Chapter 4

show how the data structures will synthesise the storage of strings and tokens to

allow for the mappings that we wish to provide.

4.4 The data structures

In this section examples of the data structures and mappings are given. The data

structures required are as follows:

• the string tables that provide the string -t string_token

mapping

• the string triples that provide the strin~token -t entity

mapping

• the other lexemes-integer, real, etc

• the attribute records, and

• the text type attributes-now referred to as documents.

4.4.1 The string tables

Each word used in the database is held in a string table. A word is defined to be

a delimited sequence of alphanumeric characters that has a meaning on its own.

The delimiter would be application specific but would often be the space

character. The string table is held in alphabetical order (case folded) on disk and

accessed by a coarse indexing structure (B-tree). This will enable string searches

to move rapidly to the relevant sub-section of the table that is then scanned by

the filtration hardware. The index could be ordered on (say) the 26 letters of the

alphabet, although this again would be application specific. The structure of each

entry in the string table is shown in Table 4.6 below.

92

Chapter 4

string strlng_ token length occurrences
full ASCII rep- fixed-length from sub- integer for the integer shows how
resentation of domain for strings length of a string many times word
a string occurs in relations

Table 4.6. String table record structure.

The string token identifier is used for the collation of string token sets and also in

the inverse function mapping string_token -7 entity_id. A count of the number of

occurrences provides a "fast track" into the system. It is used to enable users to

decide whether they wish to abort a query if, for instance, there are too many

'hits'. This lets them refine their search. An example of this structure is given in

Table 4.7 below where #n indicates the use of an arbitrarily generated string

token from the sub-domain of 32 bits used for string tokens.

string string_ token length occurrences
analyst #49 7 2,195
programmer #3741 10 74,545

Table 4.7. Example of string table.

The string table is then duplicated where the second copy holds the strings in

reverse order-e.g. "Fred" changes to "derF"-the other three fields being the

same. This enables searches from either end of the string to be made. Although

the mapping string_token -7 string is not required under our scheme, there is a

simple way this reverse mapping can be handled if it is necessary. This involves

holding a B-tree index on both the string and the string token.

4.4.2 The string triples

The unique token allocated for each string is used in the string triples data

structure to provide the mapping between strings and the entities to which they

are related. From the example data in Table 4.7, the string triples might be as

shown in Table 4.8 below, where $ indicates an entity surrogate taken from the

93

Chapter 4

sub-domain of 32 bits reserved for entity identifiers. The relations are shown in

full but would in reality also be tokens.

Table 4.8. String triples.

Each of the three fields is fixed length so these triples are held compactly on disk

indexed on the first field, within that on the second field and within that, on the

third field. Although this structure is similar to the triple store concept, it need

not be indexed as such. It is sufficient to use a B-tree structure indexed on

ascending relation order. As new entries are added to the string tables, string

triples are inserted to give the mapping to entity identifier. There is no

correspondence between the alphabetical ordering of strings and the ascending

order of string surrogates used. Therefore, the relation name is the primary

index key for string triples.

4.4.3 Other lexical types

Other lexical or base types include integer, Boolean and real. The mappings for

these types are trivial in comparison to string types. Integers merely drop the top

three bits that are required for the type signature leaving 29 bits for the value. A

similar arrangement for real type adheres to the IEEE 754 binary standard for

double precision floating point numbers. Boolean types have three values: true,

false and maybe, where reserved integers are used as tokens for each. The lexical

triples for these types simply hold three fixed length fields comprising the

relation, the lexical value and the entity identifier. These triples are ordered on

94

Chapter 4

the first field (relation). Text and BLOB types have an identifier in the second field

that is again allocated from a discrete domain.

4.4.4 The attribute records

Storing the actual string in the record would give a structure like:

<$e, {$n, ... , $r",}, {Al, ... , An}, timestamp>

Where $e refers to an entity identifier, $r refers to a relation surrogate (and its

offset) and An refers to an attribute. The words within each attribute would be

based upon an agreed delimiter-often the space character. A record structure

makes it easier to display all the direct attributes for a particular entity without

the need to perform a token ~ lexeme mapping. Because of the string triples, the

string attributes of a record are not called upon to provide the inverse mapping

that is often needed in expressions like:

[{age x, fname xlii x f- Inv_lname "Srni th" 1 ;

In this expression the string tables and triples would be used to obtain the people

with the last name "Smith". Then the attribute records for these people provide,

directly, the age and first name without a token -7lexeme mapping being

required.

4.4.5 The structure of text documents

In section 4.3.1, we introduced a new data type text that is used to hold a set of

strings that has a looser connection than the shorter string attributes. The strings

that make up a document of type text will also need delimiting to word level, so

the structure of a document needs to be able to cope with this. All the delimited

words in a document are included in the string table and are mapped to a unique

string token for that word. The token is then used in the string triples to identify

which entities contain that word and what relations join the two. The records

95

Chapter 4

themselves will not hold any text. The value for an attribute of type text is a

document identifier that indicates where the text document is held. Figure 4.4

shows part of a record that has two text attributes in its structure.

<$e, ... , ($r , 23421238), ... ,(r2, 30298721) , ... >

A text
document

Another text
document

Figure 4.4. Document mapping.

The documents are held as 'link' files and contain the full text with various

identifiers included. These are now discussed.

Documents usually have structure with headings, abstracts, titles, sentences,

numbered paragraphs etc. The more the software knows about a document the

more helpful it can be in enabling users to refine searches. There has been an

historical progression in the formatting standards for documents, culminating in

the XML/XHTML standards-discussed later. However, for our purposes we

refer to the Textrnaster document system [KA Y8S] which uses a normalised

document format (NDF), based on the Office Document Architecture (ODA)

[KOC94, FAN92]. This allows documents to be structured in three ways:

1. the structure of the document is internally defined using the built-in

features of NDF

2. the structure of the document is not defined using NDF but instead

uses markers edited into the text content. This allows documents to be

prepared on equipment that offers no support for NDF

96

Chapter 4

3. the document is regarded as being unstructured text. However, for

filing and retrieval purposes a number of document attributes can be

defined-author, title, etc.-that are then held in a separate document

card file (called a document profile in ODA).

The first two cases are more suitable for highly structured documents; the third

case is more appropriate to more loosely structured documents such as memos,

informal minutes and possibly crime reports. In this case the structure will tend

to vary from one document to another and the organisation imposes very little

control over the way they are written or typed. Often the person filing the

document has responsibility to create some order out of the text but has no

authority to alter it in any way. The document card file would carry the structure

of each document class-where document classes could be: memo, minutes,

crime report, etc. The entry of a document would then adhere to the constraints

that apply for the document class.

The setting up of the allowable attributes and fields for each document class

would be a centralised task so that, once done, a uniformity of document entry

can be maintained for all users. It's impossible to decide generally what fields

would apply but there may be a heading field, some key words and perhaps even

the word delimiter could be document specific. Document layout can also be

defined so that displaying a document will always be done consistently.

The Textmaster system keeps two copies of each document-one for display or

printing purposes that holds formatting information etc., and another that holds

the normalised text in self-identifying format for rapid searching. (Here,

normalised text is text which has had the stop words removed from it.) We

consider that the formatting information could be kept in the document file card

as part of the meta data, while leaving the actual document with just the field

identifiers and word lengths in it. At this stage it is not proposed to remove the

97

Chapter 4

stop words from the text document, although they would not be recorded in the

string tables.

Scoping identifiers, field codes and trailer records are used to delimit sequences

of words, sections etc., and are added at appropriate points in the document.

These identifiers enable quorum searches-and, indeed, searches in general-to

be restricted to sections, paragraphs, etc. depending upon the structure of the

document class. Proximity searches can also be made between terms that appear

in: (1) the same sentence, (2) the same paragraph, (3) the same field, etc.

Although the field types are very application specific, Figure 4.5 gives an idea of

how this is done.

document:
docu- field
men! header
class number

t ~

•

.

field word, word,
length length

document file card:
document class number
field name

word2 word2

length

field number I ,

-

field
end
marker

Figure 4.5. Mapping between document and document file card.

The individual fields can be nested according to the format held in the document

file card. The use of binary numbers for field identifiers allows for hierarchical

typing of text within a document. This structure supports queries that will vary

from the generic to the specific. A search accelerator can mask the scope

identifiers just as easily as masking data: it can ignore irrelevant or over-specific

aspects of the categorisation. By a suitable choice of binary identifiers, specific

searches can be converted into generic searches. The data is independent of any

strong typing etc. as it carries its own identifiers with it.

98

Chapter 4

4.4.6 Recent developments in text structuring

There has been extensive work done in text structuring in recent years and there

are several standards. ODA has been mentioned earlier and there is· also

Structured Generalized Markup Language (SGML) [GOL90j. However, these are

extensions beyond the simplified NDF format used in Textrnaster and are capable

of handling much more complex document structures such as text positioning,

graphics, hyperlinks etc. They could easily be incorporated into our architecture

if another primitive type, call it html, were deemed desirable.

Self-describing data formats have been in use for a long time for exchanging data

between applications. Their use for exchange between heterogeneous systems is

more recent. The Object Exchange Model (OEM)-part of the Object Database

Management Group (ODMG)-was developed for that purpose [CAT94j. It has

now become the de facto standard for semi-structured data. The converging

standards of the world wide web (WWW) centre around the W3C-the WWW

Consortium. The original mark-up language HTML (used to describe data

presentation) is being merged with XML (used to describe data structure) into a

new standard XHTML. There are various standards surrounding XML and the

tools/parsers associated with it. A detailed description of these is beyond the

scope of this thesis. However, the basic idea behind the mark-up of XML

documents could equally be applied to our architecture where our documents

could be structured along the same lines.

The whole area of semi-structured data is one of on-going research and is still

very much in its infancy [ABIOOj. The concepts behind applying database

schema to semi-structured data, that we call partially structured data, is an area

of continuing research. The intention is to show that meaning can be extracted

from partially structured data and used to create schema extensions without

changing the actual data upon which those extensions are based.

99

Chapter 4

4.4.7 Pre-processing of documents

Each document in the database belongs to a document class so that a uniform

format for its insertion and pre-processing will be available. It is of course

possible that a document is not required to have any format or structure at all.

However, this would still constitute a document class-albeit one with the

minimum of structure. It would consist merely of a list of delimited words and

their lengths prefixing them.

When a document is added to the database it must be done within the

specifications set out for its document class. Fields such as 'heading' etc, need

filling out on screen to enable the software to add appropriate identifiers. After

the document has been pre-processed, the delimited words included in it need

adding to the string tables-stop words excepted-together with incrementing

the count of occurrences. The string triples are then extended to include the new

word tokens and their corresponding relation surrogate and entity identifier.

4.5 Description and results

In order that this string architecture and enhanced searching opportunities can be

assessed, we coded some search algorithms (described in section 4.5.2) and

included them in two different programs using text files of people's names. We

first give an overview of the basic structure, then describe the algorithms

provided and the initial results.

4.5.1 Basic structure

The ability to include missing characters was built into the search algorithms as

shown in the table below. Search patterns of four or more characters are

required. However, a pattern like "%_%" would find all two-letter names and

greater. For brevity there were some restrictions on the use of the "%" character:

100

Chapter 4

the following alternatives were used as the eight search cases allowable in the

programs:

case pattern legend
N " " N none
L " ••••••••••••• 0/0 .. F first
M " 0/0 .••.••.

, M middle
ML " % 0/0" L last
F 11% ••••••••••••• 11 , " any character
FL 11% ••••••••••• 0/0

11 % = match zero or more
FM .1

%
••••• 0/0 ••••••

11 characters
MM " •••• % •••• % 11 • "can be used anywhere

Table 4.9. Search types.

The set of names (case folded) is held in two files calledforward.txt and reverse.txt

with the forward file structured thus:

string token length occurrences
Abidi 1103527590 5 0
Abraham 377401575 7 0
Abrahams 662824084 8 0
Acres 1147902781 5 0

Table 4.10. Forward names file. ..

The reverse file holds the strings in reverse order i.e. "Abidi" -7 "idibA". The

other three fields remain the same. The tokens were randomly generated.

Which string table to open is decided by examining the search pattern entered by

the user. For search cases N, L, M, ML and MM the forward file is used: for

search cases F, FL and FM the reverse file is used. A coarse index on each letter

of the alphabet is held in memory.

101

Chapter 4

4.5.2 Description of search algorithms

A brief description of the various algorithms used, which are shown in full in

appendices AS and A6, is now given. For our purposes, a display or count of the

matching strings is the output: it would be equally easy to return the

corresponding token for use by other functions.

Function: fixed

This is used for the simple case when no "%" wildcards are in the search

pattern---case N in Table 4.9. The variables start and stop limit the search to the

relevant part of the string table. The search is normally done from the index

pOSition of the first character in the search pattern to the start of the next

character in the index. However, if the first character in the search pattern is the

"_" the search is done over the entire string table. However, we note that this

type of search is not likely to be requested very often. The sub function exact is

used to match the search pattern character-by-character against each string

within the index parameters start and stop.

Function: front

This copes with left-hand or right-hand truncation---cases Land F. The start and

stop variables are set up as before and the search is done using forward.txt with

search patterns like "mall%" or reverse.txt with search patterns like "%ington".

After that the search_type variable is used to see if the pattern needs reversing

before displaying.

102

Chapter 4

Function: mid

Search patterns with one "%" wildcard embedded in them use this function-case

M. After search parameters have been set up, the search looks for an exact match

against each name in turn on the first part of the search pattern (up to the

wildcard). If this returns true, the last part of the search pattern is matched

against the last part of the same name.

Function: midlast

Used for cases ML and FM. Both cases are dealt with by searching for the known

part of the search pattern first-Le. " ... % ... %"-by dropping off the last wildcard

and searching for the first part and, when successful, the second part of each

string as in function mid above. Again, the name has to be reversed before

printing in FM cases.

Function: bothends

Used where the search pattern has truncation at both ends-case FL-and the

most expensive in terms of completion time. This algorithm discards the final

wildcard and uses function elastic on the remaining search pattern now with

format "%" looking for a match anywhere against each name. The search

through the names has to be exhaustive, as the search pattern could appear

embedded in any name or in itself be a complete name (the search for "%king%"

must find "King"). The function elastic is based on the Boyer Moore Horspool

algorithm [HOR80j.

Function: midmid

Finally, this algorithm handles search patterns like " ... % ... % .. ."-case MM.

Although it was not particularly necessary to add this case of search, it was done

to demonstrate how multiple cases of embedded wildcards would be handled. It

is thus the most complex of the search algorithms in this section. The positions of

103

Chapter 4

the two wildcards are passed to the function midmid so that the search can

proceed as follows:

exact match (front of search pattern, front of current name)

if (front of search pattern found)

fi

exact match (back of search pattern, back of current name)

if found

elastic match (mid search pattern, mid current name)

fi

The complexities of copying sub-patterns of the search pattern, and the

replacement of wild card characters, has not been discussed-see the full program

in appendices AS and A6 for complete details. The string matching algorithms

used are based on the algorithms described in section 4.2.3. The same reasons

apply to the choice of search strategy used as in that section.

4.5.3 Results

The number of records held in the file is 5,504,000. Each string has a unique

token randomly generated for it to simulate the allocation of actual tokens that

would be generated under sequential allocation. These tokens could be returned

to the user but we merely return a count of the number of occurrences of each

matching pattern. The times and how they scale up when using a data filter are

shown in Figure 4.6 below.

104

Chapter 4

Seconds

10000

1000
With ta filter

100 (scan te 10 Mb/sec)

10

1
~1--~10--~1~0~0--1~0~0-0~1-00~0~0--~

Records (millions)· avg 13 bytes/record

Figure 4.6. Overall string matching results.

Using some of the eight search cases described earlier, we ran searches using a

Sun SP ARCstation 4 on the search patterns listed in Table 4.11. These findings

are also shown graphically in Figure 4.7, together with the estimated timings

possible when using a data filter such as CAFS. The data filter in the example

uses a scan rate of 10 Mbytes/Second. The elapsed time of the scan (where a =

average record length, n = number of records and 5 = scan rate) is:

aXn

s

Further assume that the complexity of the search pattern does not exceed the

parallel processing capability of the CAFS search engine, i.e., only one search of

the data is required. This boosts scanning performance and reduces search times

by 90%. The timings for the first five cases include the use of a cluster index on

each letter of the alphabet. The timings for the last five cases reflect a linear

search.

105

Chapter 4

search average time matches
Datiern In seconds found

malleI' 34 3,927
mall% 34 7,861
%bert 33 19,566

m% er 40 23,434
br%e%on 53 3,910

%zz% 348 3,909
%zzz% 342 none
%aa% 323 none
% % 340 5,504,000

0/0 % 344 5,504,000

Table 4.11. Search patterns and timings.

400

350 ,
300 I,"'i f

I . -'I' , .:;\
'1 (" ":1 ',",

250 , Cl without data
seconds

,. , "i filter '. ,

~I ;"
" r> 'j 200 :~

., " .wlth data
(' ":1' filter

150 ':1 " ! " ''I
'(,
"f C

.';:
100 , ;') ,

i .
.~ " ",'

'\ " (

50+------

Figure 4.7. Search times with and without a data filter.

106

Chapter 4

4.6 Discussion

Text handling has always been a weakness in database systems generally and

relational systems in particular. The uncertainty about how to search· text

represents a principal difference between database management systems and

information retrieval systems-such as DIALOG. DIALOG is an example of a

system that makes use of inverted lists and set collation to handle user queries.

In this section we consider string handling in other functional languages and

object-oriented languages. Comparisons between functional and relational

languages are difficult to make and not necessarily fair. This is because relational

languages (for example SQL) frequently employ complex and comprehensive

indexing structures to provide rapid access, and typically use whole words as

index terms.

SQL has provided string manipulating functions (like =, > and <» for some time.

However, the concept of large text attributes has only recently gained acceptance.

In the SQL:1999 standard there is a new built-in type CLOB (Character Large

OBject). The string predicate like can be used on instances of type CLOB.

Moreover, the predicate substring can also be used in conjunction with

concatenate, position and charlength to enable users to search lengthy texts

[GRUOO). Also new to SQL:1999 is the predicate similar that can be used in

CLOBs. This lets users construct UNIX-like regular expressions in searches,

including an 'escape' character if needed e.g .

... SIMILAR TO 'The 7\% Solution' ESCAPE '\'

which would search for the film title "The 7% Solution". Although there are

limitations on the use of this feature and, for historical reasons, the syntax of the

regular expressions is not the same as the syntax of UNIX [MEL02).

107

Chapter 4

4.6.1 Functional data languages

String manipulation is an area where functional data languages have always been

weak. Functional data languages is a term used to include research into three

uses of the functional approach:

• functional implementation languages

• functional query languages

• functional database programming languages.

Functional implementation languages (FlLs) are usually parallel languages used

to implement databases on a parallel machine. The main problem with them is to

implement efficiently non-destructive updates. Notwithstanding that, the main

projects-Hope+ on Flagship [ROB89] and Haskell on GRIP (Graph Reduction in

Parallel) [AKE93]-make no specific provision for text-intensive search

operations preferring to leave these as user-definable functions only.

Functional query languages (FQLs) are used to extract information from a

database but not to modify it. Most of them are included as part of a FDBPL, but

not all. Some are free-standing-such as the specific language called FQL

[BUN82]i some are based around a procedural language such as 02SQL used in

02 [BAN88]. Apart from the AGNA system (discussed in more detail in chapter

7) we cannot find examples of user functionality being passed down to the

storage level. For the specific task of string matching, we are not aware of any

other functional query language that supports the range of operations that we

propose.

Functional database programming languages (FDBPLs) are complete languages

for declaring and manipulating data. As stated above, they often incorporate a

functional query language. Whereas a functional query language is only

concerned with querying a database, a functional database programming

108

Chapter 4

language extends this by providing facilities for declaring objects (instances of

classes etc.) as well as inserting and updating values. Because update is so

difficult in a purely referentially transparent database, some language designers

compromise the functional rules by allowing assignment to be used under certain

circumstances. These are classed as impure functional database programming

languages; examples of such are FAD [BOR90j and Galileo [ALB91j. Our system

is based on a pure functional database programming language and thus

maintains the spirit of the functional approach. However, none of these systems

incorporate extensive string manipulating routines.

The omission of powerful string manipulation reflects a fundamental difference

in the two paradigms: functional languages are often perceived as an academic

tool devised by mathematicians with a narrow following for use as in-house

teaching aids involving recursion, formal methods and compiler writing.

Relational systems, on the other hand, have moved in a more commercial

direction since their initial, sound mathematical specification by Codd [COD70j.

4.6.2 Object-oriented database systems

The convergence and use of object-oriented (00) concepts and database systems

has not been straightforward. There has never been an agreed 00 model

underpinning the paradigm-as there is in the relational approach-and the

many and diverse uses of 00 technology has led to just as many 00 database

systems (OODBs). The claim-by Bancilhon [BAN88] among others-that

"OODBs would become the major database technology of the 1990s" did not

happen. In 1999 world-wide sales of OODB technology were less than $200

million representing a tiny percentage of the $8 billion of DBMS software sold in

the same year. Moreover, while the number of relational systems has doubled

since 1995, OODB systems have remained static over the same period and are in

fact now in decline [WILOO].

109

Chapter 4

However, although the focus of this thesis is not about the merits of OODBs, we

have to consider how OODBs fare with regard to relational and functional

systems. Because of the need to use methods and data encapsulation, retrieval of

data can be a complex task in OODBs. In some systems-02 for example-the

rules of encapsulation are violated to improve data retrieval. However we did

not find any string matching or manipulation functions of note although of

course, along with relational systems, OODBs often make extensive use of

complex index structures.

4.6.3 Convergence of the functional, object-oriented and relational

approaches to database systems

During this chapter we have made reference to the convergence of the functional

and relational paradigms. The functional model was developed after the

relational model and has not enjoyed the same commercial success. However,

following the arrival of OODBs-each with its own interpretation of what the 00

approach meant-the soundness of the functional model is seen by many as a

better way forward and can be used to underpin the 00 paradigm giving it a

stricter formalism. The evolution of SQL towards object SQL has shown this to

be the case with the latest standard, SQL:1999, incorporating many features from

the functional model in its attempt to synthesise the object and relational

paradigms.

In their paper on SQL:1999, Eisenberg and Melton [EIS99] are careful not to use

the word 'object' too early in the paper due to the many connotations that the

word conveys. However, many new features in the standard coincide with those

from the functional paradigm, some of which have been discussed in this thesis

as follows:

110

Chapter 4

• Character Large OBject (CLOB) that directly relates to our text type.

The SQL standard advocates using a surrogate in the record and

holding the text separately, as indeed we do

• Boolean type is extended to include unknown. This is already covered

by values for unknown and undefined in the TriStarp system and is

being extended to include maybe. Other types of unknown could easily

be included

• the row type of SQL which allows the storage of structured values in

single columns-effectively violating first normal form-is easily

accommodated by the functional data model where atomic values can

be clustered into records for a particular entity

• recursion is included in SQL to allow for things like bill-of-materials

processing. This is taken directly from the functional paradigm where

is has long been used to provide expressive power

• the richness and structure of additional user-defined types are now

possible in SQL. Again, these were a feature of many functional

languages from the outset

• methods in SQL have a loose analogy with our integrity constraints

• both functional and dot notation is provided in SQL. For example, the

expression: WHERE emp. salary> 10,000 has the functional equivalent

of WHERE salary (emp) > 10,000

• object identifiers (OID) are now part of the standard and bear a direct

relation to the entity identifiers used in our model.

111

Chapter 4

4.7 Summary

The main thrust of this chapter has been twofold:

• devolving string manipulating functionality in the current triple

store architecture, and

• taking strings out of the homogeneous triple store into new data

structures.

We now discuss the reasons for our choices in these areas.

4.7.1 Devolving string matching functionality

Because of the way functional languages are implemented, performance can be

unacceptable for their use in practical applications-especially those that require

high volumes of string manipulation with large data sets. We have shown that,

by tackling string matching at a lower level in the query evaluation process,

substantial performance gains are possible. Moreover, these gains come with

greatly enhanced options for string matching-options that are similar to those

found in traditional text retrieval systems.

As these functions are non-updating, they adhere to the basic principles of the

functional paradigm-referential transparency, freedom from side effect etc.

Furthermore, they can be arbitrarily nested in expressions like any other object

level function. (From an algebraic viewpoint they can be regarded as no different

from the '+' or '-' operators etc.) Therefore our approach can be applied to any

other comparable functional language.

A particular problem with the triple store architecture is the decomposition of

strings into sets of triples, each triple holding up to six characters only. This has

implications at the interface level, as the continual opening and closing of sets

and crossing the interface to retrieve string triples, delays string manipulating

112

Chapter 4

operations. We have argued the merits of doing this before leading to the

proposal to handle strings differently.

4.7.2 Handling strings differently

The rationale behind the choice of string duplication and the data structures

suggested in this chapter is as follows.

First, searches can now proceed from either end of the string, as the program

chooses the appropriate tables to scan depending on where any '%' wild card

characters are. The majority of search terms have either a known beginning or a

known ending-this fact has been exploited.

Second, the duplication of strings complements our proposal to use RAID

technology to improve data security and accessibility. The trade off is the

additional space required and the overhead for updates. The additional space

needed is a corollary of using RAID technology anyway and, from our design

specification in section 3.4.3, is not considered an inhibiting factor. This can be

achieved in the following way.

The two string tables are held in alphabetical order as described earlier. Any

additions to the tables are made to the end of the file and held in a pool area for

later update with the main tables. This is easily achieved using the standard

UNIX sort command off line when, say, the entries in the pool reach a critical

threshold. This means, of course, that real-time searches must also check the pool

area.

The aim of using the data structures and update strategy is that they are more

amenable to parallel processing and the use of a data filter. This is usually

113

Chapter 4

complemented by a coarse indexing structure. Data filters are best employed on

sub-applications that have the following characteristics [TAG85j:

1. any input mode can apply

2. output mode is user driven rather than data driven

3. volatility is low to medium

4. data sharing is in terms of multiple queries of the same data rather

than different views of the data, and

5. data structures are relatively simple.

We believe these criteria apply in our situation and justify our argument as

follows.

Data filters accelerate output rather than input so it is irrelevant whether input is

batch or TP (1). High volatility can detract from the benefits of using a data filter

and progressively upset the match between the logical and physical sequence of a

file. Once a large database has been loaded, data in the system has low volatility,

so the optimum solution is to maintain a master file-set supplemented by a

temporary file-set for inclusion into the main files off-line. A comparable system

would be that which was developed for the UK Inland Revenue ten years ago for

tracing addresses. This has 48 million records each 150 bytes in length ('" 7.2 GB

of space required.) The updates are around 5 percent per day of all records and

are easily accomplished overnight (3).

Individual users should be allowed to construct their own query expressions,

saving these in their own workspace where necessary in the form of macros. This

is not the same as creating different logical views, where sub-sets of the same

data are accessed by different indexing methods (4).

114

Chapter 4

Our string data structures are of simple complexity (5). We have shown that the

addition of the field identifiers to texts needed to aid scanning, is already used in

commercial implementations of computer systems that use data filters. The data

structures for documents are also based on well-known standards for document

structuring.

The additional type text has been proposed so that some distinction can be made

between 'short' strings used in attributes and 'long' strings used in documents.

Functions can be declared, and integrity constraints designed, that take

advantage of this difference-thus building extra robustness into the system.

115

Chapter 5

Chapter 5 Extending interface functionality

5.1 Introduction

In chapter 3 we identified that improvements to interface functionality are

needed that will permit more options for data storage and, at the same time,

provide the user with more control over what can be done. In chapter 4 we

introduced our object-level functions for string matching and showed how these

are an improvement on the existing user-defined functions required in the

current system. In this chapter we begin with an introduction to the three levels

of functionality that are part of the current TriStarp system and then go into more

detail on the enhancements provided [MAL98j. The three levels of functionality

available are as follows.

Language level-functions declared and defined by a user written in the code of

the model level language-e.g. functional. We refer to functions and

functionality at this level as user-defined.

Operator level-built-in to the system, such as '+' and substr, for use in query

expressions and user-defined functions and coded directly in 'C'. We refer to

functions at this level as object-level or built-in functions.

Storage level-offers direct access to the storage sub-system, such as

string_ta_token and fetch_another. We refer to functions at this level as storage

functions.

The first area is covered only briefly, as it does not form part of the main focus of

this thesis. The second area is introduced in this chapter but is covered in more

depth in chapter 7. The third area is then discussed in greater detail during the

rest of this chapter, which concludes with a discussion and summary.

116

ChapterS

5.2 Extending the language level functionality

At the language level user-defined functions are declared and defined during a

database session, plus the base-load functions that are loaded as part of the

database environment when a new database is created. Examples of user-defined

functions were given in chapter 4 and include functions like contains for

searching for one string in another. The functions included in base-load are

loaded via macro invocation. Base-load can include any user-defined function

but is usually reserved for meta level functions-which include tuple and list

constructors-as well as common logic and data manipulation functions. This

last category includes functions for and, or, not, head, tail, count, map and flatmap.

Printing and formatting functions are declared at this level as are schema

functions for populating a database that can be loaded using macros at database

creation.

Adding to this level of functionality is primarily a matter for the DBA responsible

for creating and maintaining each database and is not discussed to any great

depth in this thesis. However, there is a grey area of functionality that lies

between the language level and operator level. Display functions-although not

part of our area of work-could be enhanced if, for example, functions were

available to the user to display all attributes of an entity. Consider the following

expression used to return a list of all attributes of certain employees:

[{name x, ... , grade xlii x t- All_emp & height x > 2] (1)

With these attributes clustered on entity identifiers, an alternative expression that

takes advantage of this is

[All_attribs x 11 x t- All_emp & height x > 2] (2)

where AICattribs is a utility function which provides the same output in (2) as in

(1). This is similar to the SQL select * operator and could be coded as a user-

117

Chapter 5

defined function at the language level (perhaps the best option) or included as an

object-level function at the operator level (harder to do). If needed, screen

formatting could also be included in the function definition. However, these are

areas for further work.

5.3 Extending the operator level functionality

As well as string handling, there are other areas where functionality can be

devolved from user-level to object-level that might include:

• functions used for manipulating elements of tuples and lists such as max,

min, and member, plus functions to extract elements of tuples or lists such

as head and tail

• logic functions such as and, or, not, and if
• miscellaneous functions such as sum, count, average and id (the identity

function)

• print and formatting functions-discussed in the last section-such as

AICattribs

• inverse functions-discussed in chapter 7

• meta functions used for querying the meta data such as Types and

Functions, each of which begins with a capital letter (to distinguish them

from other functions) and returns the names of the current types and

functions in the database respectively.

We have in fact added to this last category by including an object-level function

Seconds that we used to time runs of other functions. This is easily achieved by

including multiple queries on one command line separated by the ';' character for

example

Seconds; count [scp x 11 x f-- All_crm & em3 scp x "KNI%"]; Seconds;

. 118

Chapter 5

would return the time in seconds before and after the result of the count

expression had been evaluated so that the time it took can be deduced, thus

937297794
1120
937297820 (= 26 seconds)

Further functions have not been coded, as the concept is one that clearly works

and can be applied at whatever level the individual DBA decides is needed for

each application. There is obviously more scope for inclusion of additional

functionality along these lines although this is not investigated further here. The

passing down of predicates, inverse functions and text functions is discussed in

more detail in chapter 7, where optimisations are considered as well.

5.4 Extending the storage level functionality

The remainder of the chapter concentrates on the third level-the storage level

and what needs to be done to harmonise this with any new architecture

proposals. During the remainder of this chapter the terms 'interface function',

'interface' and 'storage function' are used synonymously. In the following

discussion the words 'function' and 'relation' are also synonymous: function

tends to be used when describing declarations and definitions, and relation is

used when discussing the function graph model and how entities and attributes

are connected. The words entity and non-lexical are also synonymous.

5.4.1 Introduction

The storage level functions available to the language developers need to be

enhanced to take account of the diversity of information to be stored. This will

allow data storage to reflect data usage in a way that is not possible with the

homogeneous triple store for all data. The original interface functions were

grouped into three categories: update operators; retrieval operators and file

utility operators.

119

ChapterS

The enhancements to these operators are now discussed. They aim to synthesise

the original ideas from FDL [POU92) with the concepts of Hydra [KIN96b),

improving upon the current interface functions provided by the BTM [DER89).

In this chapter 'storage' refers to on-line storage for the additions, etc, made

during a database session. This should not be confused with the storage of data

in ordered, records etc, that is done as part of the database consolidation.

5.4.2 Update operators

The current implementation provides only for insertion or deletion of a single

triple, or deletion of a range of triples. However, a distinction can be drawn

between operations on schema data (or meta data), and operations on instance

data. The proposal for the handling of these two data types follows.

5.4.3 Schema data

Schema declarations will all fit into main memory for the duration of a session.

When a new declaration is made and parsed as syntactically correct, it is copied

into main memory and made persistent at the same time. It should be noted that

in all the following examples the type name or function name is shown in full.

The following describes how type synonyms, non-lexical types and function

declarations are passed to the storage sub-system.

TYPE DECLARATIONS

The declaration of a type or type synonym by the language level user will result

in the interface function inserCtypcdec(dec) being used to record the declaration.

Where dec is a pointer to the declaration; its storage is handled according to what

kind of type synonym it is. For lexical-type synonyms such as: salary == real, the

insertion of a single record such as

<'typeJlame" , 0001, 0100, timestamp>

120

Chapter 5

is done. Where "type_name" is the name of the new type to be used (in this case

salary); 0001 is a four-bit identifier for the record shown in Table 5.1 below:

label name description
0001 type type identifier
1001 prifunl primary function identifier
1010 prifun2 multi-valued primary function identifier
1011 secfun secondary function identifier
1100 confun constructor function identifier
1101 icfun inteority constraint identifier
1110 deprec dependency record identifier

Table 5.1. Record identifiers.

and 0100 is the identifier for type real shown in Table 5.2 below

label identifier label identifier label Identifier
0001 string 0101 list 1001 function
0010 integer 0110 non-lex 1010 tex1
0011 boolean 0111 product 1011 expression
0100 real 1000 sum 1100 BLOB'

Table 5.2. Type identifiers.

Timestamp refers to the time the type was created. This can be held as a 32-bit

number representing the seconds that have elapsed from a given start year (e.g.,

1900) and is used for temporal integrity. A 32-bit number could easily hold the

range of seconds that could be required, e.g., 60 (in a minute) X 60 (minutes in

hour) X 24 (hours in day) X 365 (days in year) X 100 (years) = 3,153,600,000

seconds in a lOO-year period. A 32-bit word size would allow for 4,294,967,296

seconds-sufficient for the above system.

For list-type synonyms like: cars == (list car), the following is inserted

<"cars" I 0001, 0101, "car", timestamp>

t BLOB = Binary Large Object-discussed in chapter 7.

121

Chapter 5

where the third field is the identifier for list and the type of the list-in this case

car which has already been identified as an entity in its own right-is held in the

fourth field.

Product-type synonyms such as: date == (integer •• integer •• integer) are held in

one record as

Function-type synonyms such as: age == (integer integer integer -> integer)

which could be used to calculate a person's age when given the year, month and

day of birth-are held as

Extensible sum type declarations such as: married_status::sum are held as

<"married_status", 0001, 1000, timestamp>

where-for example-type married_status is the sum of three constructors

(MARRIED_TO, SINGLE and OTHER) and the components of the sum type are

tagged by constructors-functions without reduction rules. These return objects

of type married_status when applied to arguments of the declared type. The

constructor functions that make up the sum type would have to be stored as they

are created or deleted. It would not be easy simply to append them to the

declaration above. So a declaration such as

MARRIED_TO: person -7 married_status,

122

Chapter 5

to add a person to sum type married_status, would result in the following

addition

via interface function: insert_confun_dec(dec). Where MARRIED_TO is a

constructor function with one argument which returns an object of type

married_status. Constructor functions are always declared in upper case by

convention.

If a facility were added to the language level so that sum types could be declared

in full as one instruction, then the following kind of instruction could be held in

one record as follows (where ++ means OR).

SINGLE:-7 married_status ++ MARRIED_TO: person -7 married_status

++ OTHER: string -7 married_status

However, as sum types are extensible, there must be provision for addition and

deletion of sum types during the current session. For this reason, it is probably

better to declare the constructor functions that make up a sum type as separate

instructions and store them as separate records.

DECLARATION OF NON-LEXICAL ENTITIES

A new non-lexical declaration, such as: employee::nonlex, results in the following

record being entered

< "employee n
, 0001, 0110, $e, timestamp>

by using the interface function: insert_nonlex_dec(dec). $e is the reserved integer

used as surrogate for non-lexical type employee in the 'is-a' triples that record

instances of employees.

123

Chapter 5

FUNCTION DECLARATIONS

From the experience gained with Hydra, it is desirable that functions be sub

divided into primary functions and secondary functions to reflect their many

differences. The main differences between these are set out in Table 5.3 below

prlmarv functions secondary functions
many definitions few definitions
stores data only used for manipulatina data
only atomic yalues held embedded structured allowed
only one parameter allowed any number of parameters allowed
do not use recursion can use recursion
able to be modified only add new functions
dynamic static
held in store held in memory
must conform to function not part of function graph model
araph model
could be loaded from loaded from batch file
several files via clustering
uses best-fit pattern- uses top to bottom pattern
matchina matchina

Table 5.3. Contrast between primary and secondary functions.

PRIMARY FUNCTION DECLARATIONS

As far as function declarations are concerned, there is no difference between the

two kinds of functions as they are both persistent. Function definitions can,

however, be handled differently and are discussed in the next sub-section.

Storage of primary function declarations is quite straightforward. A function

such as: age: person -7 integer, is stored as the record

< "age ll
, 1001, II person", 0110, "integer ll

, 0010, timestamp>

via interface function: insert-Pfun_dec(dec), where the second, fourth and sixth

fields are type identifiers for the first, third and fifth fields respectively. This aids

type checking in evaluation. Multi-valued declarations must also be catered for.

A function declaration like: drives: person -7 list (car)-where person and car

are entity types-is stored with the record

124

Chapter 5

< "drives", 1010, "person", 0110, "car ll
, 0110, timestamp>

where the second field denotes a primary function whose result is multi-valued.

SECONDARY FUNCTION DECLARATIONS

Storage of secondary function declarations can be more complex because there

can be more than one argument to the function and it can return a tuple as its

result. Some must also be heteromorphic in that they can be used to coerce

variables to conform to parameters-in or out-that can be used with several

types of argument. As an example the declaration of function map is as follows

map: (alpha1 7 alpha2) list(alpha1) -7 list(alpha2)

Function map is the application of a function fun to each element of a list

producing a new list in which each element has been transformed e.g.,

map fun [a, b, c] 7 [fn a, fn b, fn cl.

The alphal and alpha2 above are type variables, e.g., map add2 [1,2,3, 4] would

use the (already declared) function add2 to add the integer 2 to each of the

numbers in the list giving [3,4,5,6] as the result. We believe the best way to

store this is as it is actually set out, thus

< "map" , 1011, "(alpha1 -> alpha2)", 1001, "list (alpha1) " ,0101,

"list (alpha2) " , 0101 >

with interface function: inserCsfun_dec(dec). 1011 in the second field identifies a

secondary function. 1001 in the fourth field is the function identifier for the third

field and 0101 in fields six and eight indicates list type for fields five and seven.

Below are examples of how schema-level queries are handled where '?' means

'match all' and 'X' means 'don't care'.

125

Chapter 5

Types; /* searches for <"? n · , 0001, ... > */

Typdec "t_name'l; /* searches for < 11 t_name n , 0001, ... > */

Functions; /* searches for <"?II · , 10XX, .•• > */

Fundec "f_name" ; /* searches for <nf_name" , •.• > */

Confuns; /* searches for <"?" · , 1100, ••• > */

Confundec "e_name ll /* searches for < I' c~name 11 I 0100, ••• > */

les; /* searches for <"?" , 1000, .•• > */

To help with associational queries, a schema table is maintained which is

inspected when using primitives such as like. The schema table holds the

following information: Function name, Domain type, Range type, Multivalued?

Number of Intensional definitions. This is shown below.

function name domain range multivalued? Intenslonal
definitions

age person integer no 1
has child person person yes 0
wife name person person no 0
drives person car yes 0

Table 5.4. Schema table.

The count of intensional definitions provides a potentially fast way of handling

inverse graph traversal. This can be used when a function such as Alet is

executed over type t returning its extent. Included in the domain there may be

some instances of intensional definitions as well as the (many) extensional

definitions. This is discussed further in section 5.4.6. Examples of intensional

definitions include:

age Fred f- age Mary; and

age x f- 0;

Schema declarations are clustered around their first field and, within that, on

their second field. delete and modifY are handled via similar interface functions.

However, the need to maintain referential transparency means amendments

must be handled by a process of deletion and re-insertion. If a function requires

126

Chapter 5

modification, the current version must be retrieved and deleted as above, before

the amended information is inserted as new triples.

5.4.4 Instance data

Before describing how the storage of on-line instance data is accomplished, it is

important to emphasise the strategy regarding data storage. Under the current

system persistence for both instance data and meta data is provided by an

indexed storage structure based on the grid file. Meta data can be stored

separately from instance data as it does not have to conform to the function

graph model, nor is it needed for exhaustive searches for operations like graph

traversal. However, this still leaves the bulk of the data to be stored as instance

data, and this has to be stored so that the delay in responding to queries is

minimised at the expense of providing dynamic, on-line update facilities.

The storage of function definitions depends on whether the function is primary

or secondary. Primary functions can be further sub-divided into extensional and

intensional varieties. Extensional primary functions are the more easily handled

of the two because each definition has three components: <domain_name,

function_name, range_name> or, to use an analogy from English, <subject, verb,

object> as in: "Fred, reads, The Times". (Verb in this context is also used to

include other 'joining' words like prepositions.) The update operators for:

extensional primary functions, intensional primary functions, and secondary

functions are now discussed.

5.4.5 Extensional primary functions

The creation of an instance of a non-lexical entity with the language level create

command is handled as follows. Consider where a new instance of entity

employee is needed. The command is: create employee $x, for example-where $x

stands for a global variable that is allocated the next unique identifier available

127

Chapter 5

from the reserved area for non-lexical entities. This would result in the following

'is-a' triple being created via the interface function: inserCnon-lex_dej(employee).

«"is-an, "employee", $384, timestamp»

where 'is-a' is a reserved integer to identify 'is-a' triples, 'employee' represents the

unique identifier for non-lexical type employee and $384 is the 32-bit integer used

the represent the instance of this particular employee.

The storage of the attributes is effected by using the interface function:

insert-pfun_extdej(defJ (primary function extensional definition) where the triple

might contain information such as

«age, $384, 0110, 30, 0010, timestamp»

where the third and fifth fields represent the types of the second and fourth fields

respectively.

Deletion of a triple-whether for subsequent replacement by a modified triple, or

simply to remove it altogether-will result in the original triple being re-inserted

into the store and marked as deleted with a time stamp. The storage of multi

valued attributes, as in the expression: drives $x <= ["mini", "metro", "fiesta",

"ka"l, is effected using a record

< drives, $x, LIST, 0110,0101,4, "mini 11 I "metro" , "fiesta H
, "ka 11 I timestamp >

where the third and sixth fields are used to ascertain the type and length of the

subject component of the triple. If they did not already exist, tokens for the

various cars are added to the string data structures as outlined in chapter 4.

128

Chapter 5

The include command-for expressions like: drives $x <= include "cortina"

means the addition of a new element at the end of the record and the sixth field

being incremented. The interface function for this is: include-pfun_listdej(<subject,

f_name,object(s»).

This results in the current record being retrieved and marked as deleted and a

new record being added. The exclude command is handled in much the same

way with the consequences for retrieval being considered in the section on

retrieval operators.

5.4.6 Intensional primary functions

These are equations that involve an expression or variable (as opposed to an

atomic value) on either side of their definitions. For example cases (2) and (3)

below which show lexical intensional primary functions

age Bill <= 47; /* extensional function */ (1)

age Fred <= age Mary; /* intensional function */ (2)

age (x:person) <= 30; /* intensional function */ (3)

There are unlikely to be many intensional primary function definitions but these

forms of expressions must be catered for as they are part of the function graph

model. However, there can also be intensional primary functions between

entities that have the characteristics of the above three examples. For instance,

assume the existence of entities car and person and a multi-valued function drives

from person -7 car. Further assume the existence of person entities $pl.. .$p3 and

car entities $cl.. .$c4. Then the following function permutations are also possible

129

ChapterS

drives $p1 <= $c3; f* extensional function *f (4)

drives $p2 <= drives $p1; f* same form as (2) above *f (5)

drives x <= $c4; f* same form as (3) above *f (6)

drives $p3 <= set [$c1, $c21; f* multi-valued (5) *f (7)

drives x <= set [$c1, $c3, $c41 ; f * multi-valued (6) * f (8)

Bearing this in mind, the interface function to store an intensional primary

function definition would take the form: insert-pfun_intdefldefJ where de! would

constitute a record with such a format as

<age, "Fred", 0110, EXP, 1011, 2, "age" I "Mary", timestamp> (2)

where the fourth field indicates that an expression is the result of the function.

The third and fifth fields are type identifiers for "Fred" and EXP, and the sixth

field represents the number of space-delimited tokens that make up the function

definition. All fields are fixed length. Where the function definition has an

expression in the subject field the record format is

«age, EXP, 0110, 30, 0010, 1, " (x:person)", timestamp» (3)

with a reserved value now stored as the second-last field that represents the

default for this non-lexical entity class. Fields three and five are the type

identifiers for non-lex and integer respectively and the 1 in the sixth field is the

number of space-delimited tokens that make up the expression.

5.4.7 Secondary functions

These are not part of the function graph model so do not need to be traversed in

the same way that instance data does. The current method of storing these is to

use as many triples as required held as a set in memory. This means that a

function definition like map-discussed in section 5.4.3 on schema data

(secondary function dec1arations)-with format map f [xly) <= [(f x) I map

130

Chapter 5

(f) y] is broken down into a match tree and held in memory. A detailed

breakdown of how this is accomplished is beyond the scope of this thesis: good

examples can be found in [POU89].

5.4.8 Retrieval operators

Recall from chapter 2 that the current system includes the following retrieval

operators-where" indicates a pointer (call by reference) parameter:

open_set(triple,"seCid)-used to identify a set of triples which match
the template triple

!etch_another(seCid,"triple)-used to return a member of the set
identified by seUd

close_set(seCid)-used to close a particular set, and

present(triplel,"triple2)-used to determine whether there is at least
one triple matching the template triplel. If there is, it is returned
via "triple2.

The enhancement of these functions is also important so that language

developers understand what is available for them to use in their algorithms.

There will still be several sets of records or triples open at anyone time, so the

interface functions open_set and closcset are still required. However, with a new

storage architecture there must be a wider choice of retrieval functions to choose

from when satisfying a query. The concept of a triple still applies, but now they

are grouped together rather than stored separately.

As far as the language developers are concerned, they will now have a choice of

what to retrieve and the granularity of record retrieval will depend on how the

query expression is to be evaluated. Our hierarchy of retrieval functions is set

out below where 1\ before a parameter indicates call-by-reference:

: l!

131

Chapter 5

geCtriple(triplel,lItriple2)-at the lowest level the user can request a
single triple with this function. Triplel represents a template for
one of the seven simple associative forms (discussed in chapter 2)
allowable for triple look-up. If found, a triple is returned via triple2

geCattributes(entity,1I1ex_atts)-where, entity is a surrogate for a non
lexical entity and 1I1ex_atts is a pointer to a record that contains all
of the lexical attributes of entity as a list of relation-object pairs

geCEtriples(entity,lInon_lex_atts)-where, entity is a surrogate for a
non-lexical entity and IInon_lex_atts is a pointer to all the non
lexical attributes of entity as a list of relation-object pairs

geCall-from(entity,lIaICatts)-can be used to retrieve all facts about
an entity as a list of relation-object pairs. This combines the
previous two functions get_Etriples v get_attributes.

Entity-to-entity triples are used in associational features, whereas the entity-to

attribute connections are considered as 'dead ends' when performing

associational queries. A connection between a person aged 30 and another living

in house number 30 is usually meaningless.

ASSOCIA TIONAL FEATURES

Quite complex associational retrieval functions can be expressed in Hydra-see

[A YR95j for a full explanation. However the basic primitives provided for the

user are as follows:

from x-returns a list of all the primary functions whose domain is the
same as the type of the atomic value x

to x-returns a list of inverse primary functions with the same domain
as the type of the atomic value x

link n x y-returns a list of primary functions which connect the two
atomic values x and y in the database, with path lengths no longer
thann

trail n x y-the same as link but now returns a list of lists which set out
the entities in the chain as well as the functions

132

Chapter 5

like x-retrieves all stored entities or values with the same type as the
atomic value x.

The meta primitives from and to use the schema table to ascertain which entities

to check-using x as the range or domain name-and retrieval of functions can

then proceed. The interface functions to accomplish this are

geCall-funsJrom(entity, "funs)

get_all-funs_to(entity,"funs)

where "funs is a list of all functions with the given entity entity as their range.

Link is subsumed by trail and so an interface function for trail is required only. A

suitable function is

get.paths(n, el, e2, "path)

where the first three parameters correspond to n x y above, and "path is a list of

lists of relation-object pairs in the path. The use of like seems to have limited

value as it merely returns a list of objects that share the same type signature as

the parameter it receives.

5.4.9 File utility operators

The standard file utility operators are reqUired: ts_create-to create a new store

for a new database; ts_open-to open a store for use by the database and;

ts_close-to close a database. These three functions need augmenting to reflect

the new storage sub-system. So a set of functions is needed to permit the DBA to

re-organise the database. These could include sorting, merging and updating

indexes etc.

5.5 Discussion

Triple stores have been used in one form or another for several years now. The

most recent invocation being the 'quadruple' triple store underpinning the

133

ChapterS

Sentences system [WILOOj. However, less work has been done in the area of

interfaces to triple stores. The concept of a semantic-free triple store with limited

interface functionality has obvious advantages but the argument for their use is

not always clear cut.

The analysis of Martin [MAR84j and earlier authors, who compared semantic

free and semantic-embedding interfaces, concluded that if semantics were to be

added then the triple store would, by necessity, have to be linked to the data

model used. This would violate the main advantage that allows different models

to use the same triple store architecture.

Our argument in this chapter (and the next) is that using a triple store for some

data and a record structure for other data is perfectly pOSSible and would not

impose restricting conditions upon the model level language developers. At the

model level all data is still seen as triples in the logical sense. However, at the

storage level, data is physically regarded as records, triples or link files etc. The

way data is retrieved is merely a matter for the storage manager to organise and

is hidden from the language developer (cf. internal string triple functions

described in chapter 2). It is not necessary to know if data is stored as a triple,

record or in any other structure.

Furthermore, the decomposition of strings to internal triples is not one that has

been followed by any other research projects that we know of. The Sentences

system, mentioned above for example, uses a dual architecture comprising

lookup tables for lexemes together with fixed-length tokens for triples.

Moreover, the functionality of the triple store software already uses internal

functions for data placement, string breakdown, etc. that do not compromise its

semantic freedom. This is because they are not part of the set of visible interface

functions available for the model level language developer. What we propose is

134

Chapter 5

an extension of these that can provide for additional functionality and

optimisations at the higher level. With judicious use of semantics, a robust

interface can be maintained between the language level and the storage level.

5.6 Summary

The three areas of functionality discussed can be extended in different ways.

Extending the language level functionality is mainly a matter for the individual

model level language developer and, for this reason, was not commented upon in

any great depth. We did suggest, however, that there is room for enhancement at

this level in certain areas-for instance utility functions such as display could be

included.

We then discussed different ways (other than string manipulation) that the

operator level functionality could be extended. Such ways included logic and

numerical manipulators and meta functions. Finally, the main focus of this

chapter concerned extending the storage level functionality to complement a new

storage architecture which is discussed in the next chapter. These extensions do

not compromise the semantic freedom of the interface but enhance it. Omitted

from this chapter is the discussion on optimisations that are possible in passing

down predicates to the storage level. This is discussed in chapter 7.

135

Chapter 6

Chapter 6 An architecture to support parallel processing

6.1 Introduction

In this chapter we aim to show that, by combining mature technology with new

concepts, a robust architecture can be developed that is more suited to advanced

applications in our chosen domain. Achieving an architecture that permits

parallel processing, is one of our overall aims in this thesis, so we discuss the

NCR/Teradata DBC/1012 and the NCR/Teradata 3700 which have proven track

records in management information systems, to see how their architecture would

suit our purposes.

In section 6.3 we then detail our novel RAID technology that is a combination of

mirroring and parity and show how data placement complements this approach.

In section 6.4 we show that combining attribute records and entity triples is

possible in a way that synthesises the best of the relational model with the best of

the functional data model. Section 6.5 sets out our architecture giving an

example of a graph traversal operation. After search strategies are discussed, we

give the motivation for our choices and finish with a summary.

6.2 Using a proven parallel processing architecture design

The discussion in chapter 3 on parallel processing identified that, while there is

room for algorithmic decomposition, the current architecture is not well suited to

parallel implementation. In this section we consider how data can be better

organised so that partitioning across independent processors can be employed.

We want to spread (decluster) data across a number of disks so that a request for

triples or records can be multiplexed simultaneously to the disks without concern

for where the data might lie. The reasons we would want to do this are that the

simplicity of the interface can be maintained and data transfer between

processors and inter-process communication can be kept to a minimum.

136

Chapter 6

If each processor has its own allocation of triples and records on its own disk,

problems over data integrity and data sharing are minimised. This scheme is

usually referred to as a loosely coupled parallel architecture and a good example

of such an architecture is the NCR/Teradata DBC/1012 [PAG92]. Commonly

referred to as the 'Teradata database machine' or simply 'DBC/l012', this has a

proven track record in operational systems and led to the development of the

NCR 3700 database machine (discussed in section 6.2.2.). A brief summary of the

DBC/1012 and 3700 now follows before we show how it can be applied to our

situation. Readers familiar with this may wish to proceed to a later section of the

thesis.

6.2.1 The NCRlTeradata DBC/1012 database machine

The DBC/1012 is a dedicated relational database machine using a multiprocessor

MIMD (Multiple Instruction Multiple Data-stream) parallel architecture. It uses

standard microprocessor technology in a system that is not constrained by any

particular architecture or hardware limitations. The DBC/1012 requires at least

one 'host' system to connect to, and the job of the DBC/1012 is to 'off-load' from

the host all work associated with relational database management and access.

Figure 6.1 shows the basic components of the DBC/1012 architecture and these

are now explained.

Access Module Processor lAMP)

The AMP is the database engine and manages the rows of data held in its

associated disk storage units (DSU). The AMP handles all aspects of access,

searching and updates of the database.

Interface Processor IIFP)

The IFP manages the flow of requests and results between the DBC/1012 and its

host. The IFP accepts SQL requests from the host, chooses the appropriate

137

Chapter 6

sequence of actions, passes the actions to the AMPs to process, and finally returns

the results to the host.

Communications Processor (COP)

The COP has a similar function to an IFP but, instead, interfaces with a LAN

(local area network) to PCs, etc.

MAINFRAMES

YMS UNIX PC-DOS

MVS TPF VM

r----- -----,

I PSC/l012
I i.F.P. C.O.P. I
I I
I I
I Y~Net I
I I
I I
I I
I A.M.P. I
I I
I I
I I I D.S.U. I
I . I . I L ___________________________ ~

Figure 6.1. The Teradata DBC/1012 architecture.

In order that each query can be directed to each AMP, the DBC/1012 distributes

tables across AMPs via a hashing algorithm. This means each AMP receives an

equal number of the rows. The power of the DBC/1012 is thus directly

proportional to the number of AMPs it incorporates. The hashing algorithm

works on the primary index value for each row in each table and guarantees that,

for example, if there are 10 AMPs, each will hold 10% of each and every table. If

movement of data is reqUired for joins, etc, this is handled by the Y-Net. For

138

Chapter 6

simple record retrieval the IFP passes the SQL request through the distribution

algorithm that, in turn, directs the search to a single AMP.

In terms of locking, the DBC/1012 uses standard rules to permit locking at

database, table and row level. As each AMP is considered as an independent

computer system, multiprogramming of tasks can be easily accommodated. For

data security the DBC/1012 saved records twice using two hashing algorithms to

allocate rows to AMPS but recently incorporated a RAID system as standard.

(We discuss our RAID architecture in section 6.3.) The DBC/1012 includes

interface software for a variety of host systems-see [P AG92] for details. SQL

statements may be embedded in COBOL programs where they are picked up by

a pre-processor supplied by Teradata.

Software comes in two forms-DBC/1012 software and host resident software.

The first is supplied by Teradata and resides in the DBC/1012: either Teradata or

other vendors supply the second. (See [MAL88] for further details of this.) In

addition to the standard database software, the AMPs hold software for disk and

Y-Net interfaces and facilities for rollback and recovery, reorganisation and

logging. Each AMP has either one or two DSUs attached to it. Principal

operational use of the DBC/1012 has been for interactive management

information systems covering financial services and insurance, manufacturing,

federal government, telephony and retail consumer goods.

At a lower level, each AMP has a database manager (DBM) that holds two

indexes for the respective DSU(s) attached to it. The master index contains a used

cylinder descriptor list that specifies the cylinder number, table identifier and

row identifier for the first row stored in that cylinder. The index is stored in table

identifier order and, within that, row identifier order so that a binary search can

locate the cylinder where a specific row is stored. Each cylinder has a cylinder

139

Chapter 6

index containing data block descriptor lists. Each of these stores table identifiers

of the rows stored in a block, the row identifier of the first row in the block and

the disk address of the block. They are stored in table and then row identifier so

that a binary search can be used. Once the desired block is found, a sequential

search through it will identify the row required (for single row entries).

6.2.2 The NCR 3700 database machine

Following the success of the DBC/1012 range of database computers, Teradata

developed the NCR 3700 database machine [WIT93j. The NCR 3700 is scaled up

in many ways. Processor Module Assemblies (PMA) replace AMPs and logically

comprise six boards. The disk arrays use a modified RAID system and are

attached to the PMAs by SCSI-2 interface. The disk array matrix is six by five

disks at 1.6 GB/disk = 48 GByte of storage. Clustering of PMAs and DSU means

terabyte databases are easily achievable. Protocols are extended to include

Ethernet, FDDI, token ring, XNS and X2S. The BYnet interconnection bus

replaces the Y-net to accommodate the increases in needs. The indexing methods

are a little more complex in the NCR 3700 but are essentially the same as used in

the DBC/1012. There are improved joining techniques employed following the

experience gained with the DBC/1012.

6.2.3 Adopting this architecture to suit our needs

Despite the many benefits of the DBC/I012 and NCR 3700, there are some issues

that need to be discussed in our situation:

1. these systems only provide an interface for the relational language

SQL

2. because of 1, there are limited text-handling facilities

3. for complex expressions with a low hit rate, performance would be

poor

140

Chapter 6

4. neither the DBC/1012 nor the NCR 3700 has to our knowledge been

used in the domain of investigative systems

5. there would be difficulties in hashing records that do not have an

identifiable primary key-this situation is possible with the functional

data model that permits undefined or unknown information

6. entity triples do not, as such, have a 'record' identifier nor do they have

a meaningful surrogate. Meaningful surrogates were evaluated in the

experimental language Hydra [A YR95] but have since been deemed

unsatisfactory when considering object migration

7. inverse functions are an intrinsic aspect of functional languages that

may necessitate the storage of inverse triples in a functional database.

Although not a feature of the relational model, this is a highly

significant area of the functional data model.

For us to use the concepts from the DBC/1012 architecture, we need to consider

each of these points in turn.

The interface required

Our language has its own interface for creating well-formed expressions to query

the database based around the use of global variables, list comprehensions, let ...

in expressions etc. There are two alternatives in overcoming the differences

between relational and functional systems:

• provide a mapping from functional syntax to SQL syntax. For certain

list comprehension, this can be done easily using Object SQL for

example. However, functional syntax is· more general (and more

expressive) than SQL as it is based on functional programming. This

means mappings are not necessarily so easy to achieve

• create a task manager to allocate tasks to disks directly by a series of

transformations that map a user query to low-level parallel code.

141

Chapter 6

Although the first option sounds easier, one of the difficulties with mapping SQL

is that, because functional languages are computationally complete-they can

handle recursion for example-the specification of queries is less rigid than in

SQL and does not always map easily. In SQL query expressions use a small set of

constructs:

SELECT attributes
FROM relations
WHERE conditions
AND ... etc.

Variations on this include using the aggregate functions such as count, average,

group by, but these are merely 'wrapping' around the basic constructs above. In

SQL allocating tasks to processors is more easily achieved. Although the second

option involves a lengthier transformation process, it is possible to do this

without losing any expressive power. These transformations are discussed in the

next chapter.

Text handling

The nature of our domain application area means there is likely to be a great deal

of text searching to be done. Significant delays in this area cannot be tolerated as

a side effect of inter-process communication. Relational languages have

traditionally been weak in providing powerful text handling facilities.· To

counter this, we include a software facility for searching text at the processor

level together with enhanced functionality.

Complex expressions and low hit rates

These are other areas where a search engine can be used to assist result

compilation.

142

Chapter 6

Hashing where there is no unique primary key to use

The functional data model used by TriStarp allows for the creation of entities that

share the same attribute. This is permitted in situations where there is little

information available for a new record. Consider the situation where the

following details were entered-assume entity person and function name have

already been created.

Create person $pl;
Name $pl <= ,. fred" ;
Create person $p2;
Name $p2 <= nfred";

$p1 and $p2 are global variables and are for user convenience only: in reality they

refer to 32-bit sequentially allocated, unique object identifiers for instances of

entity person. A request for information about people with name "fred" in a list

comprehension might be handled as

[name x 11 x +- All-J;lerson & = name x "fred"j

This would produce a list like [$0, $1]. This is because temporary global variables

(starting at zero) are allocated for displaying entities. Other than the entity

identifier used for person there is no primary key in this example. This is in

contrast to SQL where the primary key attribute would most likely be a 'not null'

field-it would always require an entry.

The standard solution to this problem is to use the object identifier for hashing

the record-although with object migration this identifier might be changed at

some later point. However, because of referential transparency, the complete

record would require marking as deleted and a new record inserted. Therefore,

allowing object migration and identifier changing should not cause difficulties.

Deleting an object from one disk, and placing an amended and hashed version of

it on another disk, is acceptable.

143

Chapter 6

What to do with inverse functions

Inverse functions are an integral part of the functional data model marking it

apart from the simpler binary relational model. They form an important part of

query expressions and are frequently used for complex graph traversal

operations. At the moment, they are constructed from the triple store as inverse

functions but we believe that, with duplication, they can have a dual role adding

redundancy to the architecture to improve security. This is discussed next.

6.3 A new RAID level

The new storage architecture is designed to exploit parallel processing techniques

to boost performance, as well as incorporating RAID technology. RAID

controller hardware provides data redundancy to improve reliability, either with

a second, mirrored copy of the disk array-as in RAID 1 and RAID lO-or by

incorporating parity information and one extra disk-as in RAID 3 and RAID 5.

In addition, RAID improves performance by reducing disk bottlenecks and by

increasing disk transfer rates. However, in ICUs RAID 100 mirrored system

[HIL95], the redundant data is striped differently across the mirrored array. The

data disk is written from the outermost track working inwards: on the mirror it is

written from the innermost track working outwards. This reduces latency as

data can now be read from either disk. We take this concept further by saving

the entity triples in inverse function order on the mirror copy.

data disk mirror disk

Figure 6.2. RAID 100 disk layout.

144

Chapter 6

6.3.1 Our RAID approach

Our architecture will synthesise the two RAID formats to provide for even

greater data security by combining the data availability of RAID 1 with the

insurance of the extra disk and parity of RAID 5 as shown in Figure 6.3. RAID 5

is chosen over RAID 3 because the stripe sizes used in RAID 3 are too small. To

distinguish our inverse RAID system we shall refer to it as RAID 15 (RAID 1 +

RAIDS).

data disks

ggg
disk 1 disk 2 disk 3 disk 4 disk 5

gggg
mirror disks

Figure 6.3. RAID 15 configuration.

The concept of combining parity and mirrored RAID systems is not new. Several

authors have devised schemes that exploit the benefits of both forms of

redundancy and applied these, for example, to video servers-separating the

videos into 'hot' and 'cold' categories reflecting their usage [BIE97]. (We note

that, although all video data uses the parity scheme, only 'hot' data is mirrored.)

However, in our scheme the redundant array really is a mirror of the data array.

The performance vs. cost argument is frequently raised when considering RAID

architectures. Both RAID schemes have been the subject of previous analysis, but

it has often proved difficult to compare and contrast costs etc. between the two

schemes. This has in fact recently been done [QUA99] and the conclusion is that

neither of the two schemes can be considered as optimal in so far as performance

145

Chapter 6

and cost is concerned; the choice is very much application dependent. Our

reason for using a 'real' mirror of the disk array is that it will complement the

functional data model where the inverses of functions are frequently required for

graph traversal purposes. Function inverses can either be stored explicitly or

implicitly (deduced by software): we believe the former is the better option.

To illustrate this, we show an example below where the following notation holds.

Function names are shown by lower-case letters, entity classes are shown by

upper-case letters, and entity instances are shown by integers-the idea being

that these are arbitrarily allocated from the domain of 232 as actual surrogates

would be. A schema table (part of) and instance graph are shown below in Table

6.1 and Figure 6.4 respectively. Then a set of triples that match the schema is

used to illustrate our proposals.

relation domain range MV
p A B no
s A C no
t A C no
q B C no
r B A ves
u B D no

(Where MV denotes whether function is multi-valued or not.)

Table 6.1. Schema table for RAID example.

r

D
3916

Figure 6.4. Schema for RAID example.

146

Chapter 6

Initial triples sorted triples Inverse triples

<p,374,891> <p,374,891> <r, 374, 891 >
<r, 891, 1475> <8,374,52> <r, 1475,891>
<r, 891,374> <8, 1475, 52> <p,891,374>
<q, 891, 52> <1,374,52> <q,52,891>
<8,374,52> <I, 1475,52> <5,52,374>
<I, 1475, 52> <q,891,52> <5,52,1475>
<u,891,3916> <r, 891, 374> <1,52,374>
<1,374,52> <r, 891, 1475> <I, 52, 1475>
<5,1475,52> <u,891, 3916> <u,3916,891>

Table 6.2. RAID triples.

The first column in Table 6.2 represents triples as they might be stored in a

random or heap fashion. The second column sorts them using the following

simple algorithm:

1. sort triples into entity class order - e.g. (A and B from Figure 6.4)

(thicker horizontal line in Table 6.2)

2. within that sort into relation order - e.g. «p, s, t), (q, r, u»

3. within that sort on subject surrogate order - e.g. (374, 1475)

4. within that sort into object order - e.g. «r, 891, 374>, <r, 891, 1475».

Triples are stored on the first disk array in the above order. On the RAID array

they are stored after being sorted into inverse function order. This will result in

the ordering found in the third column. Therefore, the above algorithm will

exchange the sorts on subject and object (underlined above). This strategy

enhances graph traversal operations as any expression involving entity-to-entity

inverse functions, can now be targeted to the mirrored array.

Data availability is often measured in Mean Time Between Failure (MTBF) of an

individual disk. The manufacturers' quoted figure for MTBF for a typical disk is

500,000 hours-about 57 years. If a mirrored system is used that has, say, an

147

Chapter 6

array of four data disks and four mirror disks, the MTBF can be calculated as

below where 6 is the time in hours to replace a disk if the failure mechanisms are

random and the probability of failure is uniform over time.

57/8 x 500,000/6 = 593,750 years.

For RAID 15 the MTBF is

(57/5 x 500,000/(6 x 4» x (57/l0 x 500,000/6) = 34 billion years

6.3.2 Improved search times

The advantage of using a RAID 15 system is as follows. Let r be the relation that

both disks use to cluster triples (of order n) and let Sand 0 be subject and object

entity identifiers used in triples and search patterns. Searching for the S of one

triple when given rand 0 using the data disks, means that on average n/2 would

be inspected by linear search. Searching the <r, 0, S> triples for the S of one

triple held on the mirror disks given the same 0 and r, takes an average of /og2n

by using binary chop search.

Retrieving a range of objects, On .. .om, using the data disks triples again requires

that the whole of r be searched thus equal to n. The same range using the mirror

disk would mean inspecting an average of /og2n + IOn... Om I. The increase in

read efficiency is therefore the well known logarithmic improvement. However

the increase in reading triples must be set against the write penalty now that the

triples have to be written to two disks instead of one-although the twin disk

controllers of RAID systems can handle write instructions in even time. In Table

6.3, which shows comparative search times, we have used the "70/30" rule. This

estimates average throughput using the heuristic: "70% of all transfers are read

transfers and 30% are write transfers". The following example compares a RAID

15 configuration with a standard RAID 5 configuration when handling 1,000

148

Chapter 6

transactions (700 read: 300 write). 66 transactions per second. The searches

involve locating S components given a suitable rand O.

read ops @ 66 t.p.s. write ops @ 66 t.p.s. total

one array: 700 10.6 300 4.5 15.1
<r,S,O> seconds seconds seconds

two arrays: 1092700 .15 600/2 4.5 4.65
<r,S,O> and seconds seconds seconds
<r,O,S>

Table 6.3. Improved search times using RAID 15.

This shows that, using RAID 15, the same number of transactions can be handled

in around 31% of the time that it takes using RAID 3. However, there is a cost to

pay for the double redundancy of RAID 15. This is shown in the next table that

compares various RAID levels using the following assumptions: disk price £1,000

each; disk speed 7,200 r.p.m.; 10 milliseconds average seek time; 1

megabyte/second transfer rate; 66 transfers/second sustained throughput with 1

millisecond overhead for each transfer. Cost of RAID controller is negligible.

RAID No of MTBFln transfer read write average cost
level disks years rate t'put t'put t'put average

rea'd t'put
1 8 600,000 1 528 264 449 18
3 5 71,000 4' 66 66 66 76
5 5 71,000 1 330t 83j: 256 20

100 8 600,000 1 7871 264 630 13
15 10 34 billion 1 528 264 449 22

Table 6.4. Comparison of popuIar RAID levels.

Additional explanation:

• - throughput of a RAID 3 system (number of transfers per second) is

roughly equal to the throughput of a single disk because of the small

stripe size

149

Chapter 6

t - read throughput roughly equal to that for a single disk times the total

number of disks

:j: - write throughput roughly equal to that for a single disk times the total

number of disks divided by number of data disks

1 - 528 times 1.49 because the outermost tracks only are read from thus

reducing seek time from an average of 10 ms to around 5 ms. If

rotational latency is 4.2 ms and disk transfer time is 1 ms, the saving is

from 15.2 ms to 10.2 ms. The average throughput is arrived at by

taking 70% of read throughput plus 30% of write throughput-as

explained earlier.

RAID 15 compares reasonably well with RAID levels 1 and 5, which are the most

frequently used levels, but does not come close to RAID 100. However, with the

architecture used and the way triples are reversed, the concepts behind RAID 100

are inappropriate in our case. The advantages of RAID 15 are the big increase in

mean time between failure, the savings shown previously in Table 6.3 and how

the structure of RAID 15 complements the inverse functions that are an intrinsic

part of the data model.

6.4 Combining records and triples

The Associative Data Management System (ADMS) [CR082j, introduced in

chapter 3, is an example of an architecture that combines the benefits of records

and triples and shows how related attributes can be collected together in sets.

We want to adopt the principles from ADMS---without losing the benefits of the

functional data model used by TriStarp-into a more coherent, less homogeneous

architecture that will allow better use to be made of the data.

With the functional data model in mind, the following file structure is proposed.

Functions between an entity and its attributes are clustered on that entity

150

Chapter 6

instance for storage and display purposes and referred to as attribute records.

Functions from one entity to another entity are held as triples clustered on the

subject (domain) entity class and relation name and referred to as entity triples.

Meta data can be held as triples or records-as suggested in chapter 5-but is still

referred to here as meta triples. These include membership or 'is-a' triples.

<r, E" E2> entity triples

<E, r, A> attribute records

Figure 6.5. Outline of storage model.

6.4.1 Entity triples

Entity triples <r, El, E2> are held in duplicate for the forward and reverse

functions to which they relate. Entity triple composition was discussed in

chapter 5, although omitted from that discussion was the id-field used for triple

identification. For this field, eight bits keeps the field size as a multiple of eight

bits-the same as other fields-to assist the data filter scanning software,

although only four bits are required for the id-field:

Bit 1 dead=l;live=O
Bit2 bulk = 1; non-bulk = 0
Bit 3 default variable for LHS = 1; otherwise 0
Bit4 complex RHS = 1; otherwise 0

6.4.2 Attribute records

Attribute records <E, r, A> do not form such an important part of graph traversal

operations as entity triples. They are more likely to be needed at the beginning of

a search path-where a lexical value is specified-{)r at the end of a search path

151

Chapter 6

where a display is required. The records are grouped into domain sets for

storage on disk in entity order with a coarse index held in memory. The

structure for attribute records is as follows.

id_field: fixed length (8 bits) comprising: length of record, number of attributes

in record, and one bit to indicate if record 'live' or 'dead'

entity: fixed length, multiple of 8 bits for the surrogate for this entity

relations: fixed length, multiple of 8 bits comprising a set of relation-offset pairs

where relation is the surrogate for the relation name and offset is the start

position of the related attribute e.g.

attribute-length: fixed length, multiple of 8 bits to give the length of the whole of

an attribute plus a bit to indicate if this is an intensional definition

length-word: set of length-word pairs for each individual, space-delimited word

in the attribute. Length = fixed length; word = variable length. Intensional

definitions are held in full text format e.g.

{<4,Fred>,<3,Ann>}

timestamp: same format as for entity triples.

Attributes of type text are held as separate link files where the attribute value

held in the record is a token identifier from a sub-domain for type text and will

'point to' the appropriate text file. Examples of multi-valued attributes,

intensional definitions and default definitions are as follows.

152

Chapter 6

multi-valued: e.g. drives $d <= ["rolls", "alfa romeo"], would give the following

record

$d,<drives,offset>, ... ,<A,O,{{<5,rol1s>},{<4,alfa>,<5,rorneo>}}>

intensional definitions: e.g. age $p <= age Mary, would give the following

record$p,<age,offset>, ... ,<A,1,{<3,age>,<4,mary>}>

default definitions: e.g. age x <= 21, would give the following record

X, <age, offset>, ... ,<A,O,{<1,21>}>.

Where the default record is regarded as being the same as any other record.

6.5 Our architecture

Figure 6.6 shows our outline architecture. In the next sections we describe the

handling of data and computation, the search and index techniques used and

retrieval of data with an example.

Control
Processing

Element

InterconneC!i!1n:n:e:tw:o:rk:::=-====;l

Data
Processing

...... J::.I.~m!1.!J.!t. ... " ..
(inc. filter)

Storage Inverse
Disk Copy

•••
Data

ProceSSing

._ .. " .. !';!.!1.m.~"m"
(inc. filter)

Storage Inverse
Disk Copy

Figure 6.6. Outline of our architecture.

153

Chapter 6

6.5.1 Distribution of data

When a new entity class is created instances of it could either be clustered on the

same data processing element (DPE), or be spread across the disk array in several

ways-round-robin, hash, random for example. Because no semantics are

conveyed in the entity identifiers, we favour a scheme that uses the last two

digits of the randomly generated entity identifier to give a DPE on which to store

the record or triple. This is a simple mechanism that, when used with a large

enough database, will ensure a fairly uniform distribution of records and triples

across the disk array.

When a search over an entity extent is needed, it can be directed to all DPEs in

the disk array; when a particular record (or entity) is required the last two digits

give the DPE on which it will be found. Membership triples are distributed

likewise. Other meta data can be spread across the array but, as there will be

relatively little of this and it is always loaded straight into memory, its placement

on one disk would perhaps be better.

Lexical strings could also be randomly distributed across the disk array, where a

request for a named value lookup would be dispatched to all OPEs in the array.

However, if named values were mapped to OPEs via a hash value computed

from the name, then the lookup operation need search only one OPE-the one to

which a hash value of a name maps. Thus the lookup operation is better

supported by hash distribution than by the more random nature of the record

and triple placement. Hashing schemes are well documented and are not the

subject of this thesis. However a hash on the last two letters of a word would

generate a fairly even distribution across the array. Searches for strings with

missing start or end characters need to be directed to all disks in the array.

154

Chapter 6

One of the problems often put forward when discussing hashing schemes is

record-or more generally object-relocation. Under our scheme, if an object

changes its class this would not necessarily mean the object identifier would be

changed. Therefore the OPE on which the record is situated could remain the

same. The record or triple would, however, need moving from one entity class to

another-Le. person to driver class and these are stored separately on the disk.

6.5.2 Computation

Unlike some other parallel systems, we use a control processing element (CPE)

on which to control the passage of a transaction through its various phases.

Using a dedicated processor in this way, we can achieve locality of computation

and also transaction co-ordination. All of the parallel code functions, procedures

and manager macros, together with frame allocation and de-allocation (described

in the next chapter), are synchronised from the CPE. This simplifies the control

mechanisms needed and frees the data processing elements to handle the long

latency lookups and graph traversal operations that are the time consuming

components in evaluating an expression.

An important function of the CPE is the collation of lists from the OPEs in the

disk array. Using the non-strictness of the open list structures used in AGNA

[HEY91], the results of each sub-list created on the OPEs can be appended

together efficiently. The way this is done is by leaving the tail cell of each CONS

list empty allowing the tail of listl to be appended to the head of list2 using no

extra storage (no intermediate lists). Finally, a nil value is added to the last cell of

the last list. Note also that a reference must be maintained to both the first CONS

cell and the last CONS cell of each list. The open list structure is similar to that

for difference lists in logic programming and an example is shown below-where

v is the value

155

Chapter 6

List 1 qrp List 2 qrp
~ ~ '-----::! ~
v V V V V V

Figure 6.7. Structure of an open list.

The construction of such a list is done by using a let ... in block where any

number of lists can be triggered in parallel with the result of the let block being

the complete list. For example, if there were two DPEs, the following block that

uses global variables and the define instruction captures the setting up of

temporary lists to hold the result.

let Ll == mkvarlist 1 1 @;

L2 == mkvarlist 1 1 @;

x, == define t1 (Ll) L2;
x, == define tl (L2) nil

in Ll

L1 and L2 are dummy identifiers set up as lists of length 1 with the element

undefined. Xl and X2 are needed to construct extended sub-lists on the two DPEs

in parallel before the result is returned. Each of these has to be passed the link

values-L2 for the tail of L1 in the case of Xl and nil for the tail of L2 in the case

of X2-as shown in Figure 6.7 above. The function mkvarlist is passed three

parameters: the starting integer (always 1); the length of the list (in this case 1);

and the type of the element (@ = undefined). This function is part of base_load

and loaded with the schema and meta data. Its declaration and definition are as

follows.

mkvarlist : integer integer alpha -> (list alpha);

mkvarlist x y z <= if (> x y) [) [zlmkvarlist (+ x 1) y z);

where [zlrnkvarlist (+ x 1) y z) means construct a one-element list (type z)

and concatenate the result of applying rnkvarlist to the next integer in the series.

156

Chapter 6

So mkvarlist 1 4 @ would produce [@,@,@,@j. What actually happens in

practice is captured in the following code that uses the faZdr manipulation

function to construct the lists. The variable rest is used to indicate the tail of each

list.

let
pred = filter_cond (extent theta-condition)

in
let

L = foldr
(lambda (i rest) (APPLY DPE i extent pred) rest) (1)
nil (2)
dpes (3)

in
L

Recall that faZdr takes a binary combining function (I), an initial value (2) and a

list of values as arguments (3) and returns an accumulated value as its result. In

the above, (1) is applied to each OPE as shown in Figure 6.S. The local variable

pred is used to hold a predicate that is passed down in the faZdr function to each

OPE. The list dpes (3) is a list of all the OPEs in the array and nil (2) is the starting

condition. More will be said on these optirnisations in the next chapter.

I (foldr nil ...)
I ' I

I ,_, "'_",'"
".

,," / , ,
" , -- , 40" I / ,

"... l
/' I

, I
I I

: DPE 1 :

v v

\
\ , , , ,
I
I
I
I
I
I
I
I
I
I

v

DPE2

I
\
\
\
\
\
\
\
\
\
\
\
\
\ , ,

v

" ----------........
" " , , , , , ,

\ \
\ \
\ \ , \ , \ , \ , \ , \ , ' , DPEn \

\ I
\ I
\ I , I
\ I , I ,

I
, , , ,
~ ,

•••
v v

Figure 6.S. Construction of filtered lists.

157

Chapter 6

By using the foldr function, each DPE can construct a list of results satisfying the

predicate pred in parallel. This can be done on each DPE even though they may

not have the result of the rest parameter. Furthermore, each DPE i can return the

reference to the head of its particular list as soon as it is allocated. This reference

is passed on in the foldr function as the rest parameter in DPE i-I where it is

stored in the tail of the last CONS cell. Every DPE uses a local filter function (not

shown here for the sake of brevity) to achieve this. However, the list construction

is handled by expanding each local list in a similar way as was described

following Figure 6.7 above. The folding and appending of the individual lists in

this way means potential bottlenecks in the system, such as long latency look

ups, can be handled efficiently and safely in parallel.

6.5.3 The data processing elements (OPE)

The DPEs are used to store: the lexemes (strings) in lookup tables; the entity-to

entity triples in sets; attribute records in sets; membership triples in sets;

Character Large Objects (CLOBS or documents) and Binary Large Objects

(BLOBS) which are the larger attributes held in contiguous space evenly across

the array. The DPEs perform the following tasks by providing mappings

between:

1. lexemes (strings) and string tokens

2. string tokens and entity identifiers

3. is-a triples and entity identifiers

4. entity identifiers and attributes for display purposes.

They also handle the entity to entity graph traversal operations. The first case

involves passing a string pattern-which mayor may not include embedded

meta characters-to the DPEs, each of which constructs its set of string tokens.

After the confirmation to continue has been received from the user, the string

tokens are mapped to entity identifiers (the second case) .. In the fourth case a set

158

Chapter 6

of entity identifiers is passed to the DPEs together with the functions to be

displayed. For entity to entity graph traversal operations the set of triples is

passed down with, either a function application! or inverse function application

inv-f

The expected speed up in execution time in loosely-coupled, MIMD, shared

nothing parallel systems is often a function of the number of data processors

used to do the job. In such cases two elements are crucial in trying to achieve

this: a balanced data placement policy and the search strategies employed. Data

placement is discussed in chapter 8; search strategies are discussed in the rest of

this chapter.

For our example, consider the mini-schema below (broken arrows show the path

to be traversed) and the following (typical) query. Uppercase A, B, C and D

represent the entity classes. Lowercase a, b, c and d represent local variables used

to hold the sets of instances of the classes A, B, C and D respectively in the list

comprehension. Lowercase pto z are used for function names and the '&' at the

end of each line of code following Figure 6.9 means logical AND.

"",,~-..L!2!.!!~-'3> string

string

string

Figure 6.9. Graph traversal across DPEs

[(x c, ye, z cl 11 d ~ inv_name = 'Fred" &
b ~ inv_u d &
a ~ r b &
c ~ sal

159

Chapter 6

p 374 891 r 49 758
p 530 4372 r 265 758
p 769 891 r 374 891
p 769 906 r 476 414
p 1590 109 r 1475 891
s 374 52 r 5002 87
s 476 79 w 374 966
s 530 17 w 769 22
s 1475 52 w 1475 3100
I 374 52 p 109 1590
I 476 104 p 891 374
I 530 291 p 891 769
I 1475 52 p 906 769
q 240 98 p 4372 530
q 758 977 q 52 891
q 891 52 q 98 240
r 87 5002 Cl 977 758
r 414 476 s 17 530
r 758 49 s 52 374
r 758 265 s 52 1475
r 891 374 s 79 476
r 891 1475 I 52 374
u 240 3100 I 52 1475
U 414 334 t 104 476
u 758 8 I 291 530
u 891 3916 u 8 758
u 1272 848 u 334 414
v 57 1547 u 848 1272
v 321 42 u 3100 240
v 1827 3916 u 3916 891
v 8777 441 v 42 321
w 22 769 v 441 8777
w 966 374 v 1547 57
w 3100 1475 v 3916 1827

Table 6.5. Triples used in single processor example.

Using the triples shown in Table 6.5, the following sequence of events would

occur in a uni-processor architecture:

160

Chapter 6

1. suppose the inv_name function returned the following set of D

entities from the string tables - [8, 42, 334, 848, 1547, 3916]

2. the inv_u function returns the set of B entities - [414, 758, 891]

3. the r function returns the set of A entities - [49, 265, 374, 476, 1475]

4. The 5 function returns the set of C entities - [52, 79].

Finally, the selection of attributes for functions x, y and z is made from the

attribute records for entities 52 and 79. The results are passed back to the CPE.

6.5.4 The control processing element (CPE)

This element of the architecture handles the input from users-in the form of

query expressions-and the parsing, type checking, optirnisation and compiling

of the expression into parallel code. After that, the CPE handles any requests that

need sending to the user to confirm the continuation of a query if that query is

likely to take a long time to execute. The outline structure of the CPE is shown in

Figure 6.10 below.

USERS
Expressions Responses

CPE
Parsed optimized and compiled

t User requests
Parallel executable code

Figure 6.10. The Control Processing Element.

161

Chapter 6

During the compilation of a query, the various threads of parallel instructions are

concatenated to form a continuous executable code block. In the next chapter we

discuss this in more detail. However, the interpretation of the executable code in

which they are embedded is co-ordinated by an interpret manager and this is

discussed next.

The selection, execution and control of instructions is managed by the CPE via

the interpret manager which continually loops looking for an instruction to

execute selecting them from the pool of active instruction threads. Interpret then

examines the currently selected instruction and either executes it in situ or calls a

manager function to handle this. Tasks that can be performed in situ include

those that do not involve long latency access such as add, sub and fork. Long

latency functions include Lookup and StringLook. The parameters from the

program block are passed to a 'C' function corresponding to the manager name

after ascertaining on which DPE the string will be found (using the hashing

algorithm). Each DPE has a copy of these manager functions so searches can

proceed in parallel.

If execution of a manager function involves disk access, it is not desirable for the

whole process to block while waiting for this task to complete. The program can

then select another thread of code to execute while the disk transfer is in

progress. In such systems load, for example, is completed in two phases. The

first phase involves starting the load thread and then moving on to execute other

instructions; in the second phase the program is notified-by interrupt-that the

I/O is complete and the result can be extracted. Interpret is responsible for

scheduling the threads of code; those that are immediately executable from those

that use a manager function. Interpret initiates execution of instructions that

involve long latency by spawning and then enqueuing a manager request that

contains the operation to be performed and its arguments, etc.

162

Chapter 6

6.6 Search strategies

The point has already been made elsewhere in this thesis that our architecture

does not make extensive use of indexes. Instead, our approach uses a

combination of a coarse indexing structure and a search engine. A copy of the

index is held on each disk in the array. For the various kinds of data that are held

on the DPEs a different strategy is employed. These are now discussed.

6.6.1 Membership triples

These are spread evenly across the array so each disk will participate in the

matching of class to entity identifier. More will be said about data placement in

chapter 8. However, these triples are stored in their section of the disk-a section

reserved for 'is-a' triples-in class order and, within that, in entity identifier

order. So a triple will have the basic format as below (not all fields are shown)

6.6.2 Other meta data

There is very little other meta data. Meta data includes: schema information;

type declarations, definitions and synonyms; secondary function declarations

and definitions; etc. As stated in an earlier section, these will be loaded into main

memory at the start of a database session so searching for them will be relatively

fast. However, persistence must be provided by writing them to the disk array,

although it is unimportant exactly how this is done.

6.6,3 String tables

A simple hash function will target the search for a complete string to a particular

DPE. Because of the large volume of strings to store and the randomness of the

hash function a fairly even distribution can be expected. This means all DPEs

will participate when a search for a string contains the meta characters that can

163

Chapter 6

be part of the pattern. On each DPE the strings are held in alphabetical order

with a coarse index on the first letter of a string to provide the starting point for a

sequential search. The DPEs can therefore be considered as 'bottomless' buckets

that each takes only the strings that hash to their disk. Once a set of string tokens

has been collated by the CPE and the query is to continue, the next mapping is

from string tokens to entity identifiers using the string triples.

6.6.4 String triples

The string triples could also be spread across the disk array with the last two

digits of a string token used to decide on which disk the string triple is located.

However, once the set of string tokens has been assembled on each DPE, it would

save communication time if the next mapping were performed on the same disk.

Therefore, the string triples generated for each string token will reside on the disk

to which the original string was mapped. Again, the CPE collates the set of entity

identifiers that are then used in the graph traversal steps described earlier.

Examples of this are shown in the following two figures.

hash("fred") = 1

.----1--- -- -- -,--- -----

"fred" => #37945
#37945 => {entity ids}

,
...

Figure 6.11. Mapping whole string.

Where there is a whole string the hash function will identify a single DPE to

handle the lookup and mappings-shown in Figure 6.11 above. Where there are

meta characters in the string each DPE will search its string tables. In Figure 6.12

below the string "fred%" includes the "%" character as its last element. Recall

164

Chapter 6

from chapter 4 that "%" means "match zero or more characters to the end of the

string". So passing the search to all disks in the array means a search for strings

beginning "fred ... ". Step (1) in the figure shows that 'hits' are achieved on DPE-1

and DPE-4 where the #n represents the mapping from string to string identifier.

Step (2) involves assembling entity identifier sets (a, b and c) from the string

tokens. Finally, on DPE-l the union of the sets a and b is the result returned

step (3)-together with entity set c from DPE-4.

"fred%"

hits: 2 zero zero 1 zero • • (1) "fred" => #37945 (1) "frederick" => #599
(1) "freda" => #7933 (2) #599 => {entity set c)
(2) #7933 => {entity set a}
(2) #37945 => {entity set b)
(3) {a} u {b)

Figure 6.12. Mapping truncated string.

6.6.5 Triples and records

The last two digits of the randomly generated entity identifier will determine on

which disk the triples or records will be found. Within each DPE a coarse index

will identify the domain and relation name to use for a sequential search. Both

entity triples and attribute records are searched in this way.

6.7 Discussion

This chapter has discussed several technologies. Multiple instruction multiple

data stream machines (MIMD), redundant arrays of inexpensive disks (RAID),

165

Chapter 6

the associative data management system (ADMS) and the dataflow model. The

first three of these are now considered. Dataflow is discussed in the next chapter.

6.7.1 The choice of a MIMD architecture

Database computers have been in existence for over 25 years but have often been

confined to research applications. Of the five categories of architecture identified

in [SUSS], the most promising has proven to be multiprocessor database

computers. A consensus on parallel and distributed database systems has

emerged [DEW90] based on the shared-nothing hardware approach [STOS6].

Teradata is a proven performer in the domain of large-scale applications

therefore tailoring this architecture for use in the functional paradigm is a

persuasive argument. Moreover, a distributed instead of a shared model of

physical memory is easier to scale and allows the locality of persistent data to be

exploited by use of data filters.

Other parallel functional systems have been developed over the years. Of special

note must be the various parallel implementations of Haskell, a pure functional

language [ARGS7]. Glasgow Parallel Haskell uses the additional functions par

and seq in user algorithms to instruct the compiler when to employ parallel or

sequential execution. Evaluation strategies, as this approach was designated,

was discussed in the earlier section 3.6.2 as was Haskell on GRIP. The Flagship

project produced a parallel machine supporting declarative programming that

uses the Hope+ functional language. Unfortunately, the results proved

disappointing [ROBS9] and there were problems experienced with side effects.

However, modules proved much faster to write.

166

Chapter 6

6.7.2 Why RAID?

RAID is now considered as standard for the majority of new computer systems.

During recent years there has continued to be improvements and enhancements

in several areas. These include:

• faster drives - new 10,000 RPM drives provides improved

performance over 7,200 RPM drives by 37%

• smaller RAID arrays - desktop RAID systems are now becoming

commonplace

• more fibre channel - fibre channel with its 100-megabytes-a-second

data transfer rate eliminates SCSI bottlenecks

Moreover, the cost of disks continues to reduce in relative terms. In 1995 [HIL95]

the price-per-throughput of RAID 100 was the lowest of all RAID schemes.

RAID 15 can be viewed similarly. The philosophy behind adopting RAID 15 can

be summed up in the following argument. Having decided to incorporate a

RAID system, why not put it to better use by making it complement the storage

architecture to take advantage of the underlying data model used.

6.7.3 The storage model

The ADMS model [CR082] and the idea of grouping like data into sets was our

motivation for dividing instance data into entity triples and attribute records.

More is said about the ADMS model in the next sub-section. However, we

believe our architecture combines the best of the two models used-the relational

data model (RDM) and the functional data model (FDM). The strengths and

weaknesses of these models have been referred to in earlier chapters but the

ways in which they can complement each other can be summarised as follows.

167

Chapter 6

The RDM is good for grouping attributes of a named instance together, which is

useful for display purposes. It does so in a 'flat' or tabular way but requires the

use of complex, inverted indexing methods to achieve rapid access of attribute

sets. Moreover, the joining of relations for what are in fact graph traversal

operations, is complex and costly. The FDM, as originally designed, does not

easily group attributes of an entity. There is duplication of entity identifiers and

triples are clustered on the relation (or function) name, not on the entity itself.

Thus, to display attributes of a common entity, the RDM is to be favoured.

However, the strengths of the FDM include the ability to model nested objects, to

cater for a hierarchical structure of data incorporating aggregation and

generalisation when needed. Entities can be migrated to higher or lower levels in

the hierarchy without necessarily altering the attributes. This would be difficult

to achieve using the RDM alone. The object-relational model falls somewhere

between the RDM and FDM and is often viewed as the RDM with a few

'addons'.

6.7.4 The ADMS model

Using collections of like data was part of the Associative Data Management

System (ADMS) model [CR082j. However, this model does not easily translate

to the FDM so cannot benefit from the advantages the FDM has to offer. The

shortcomings in the ADMS model that are alleviated by our combined model are

as follows. The ADMS model does not permit more than one relationship

between entities-this is of course possible and indeed desirable so real-world

situations can be accurately mapped using it. To cope with this, the ADMS

model has to introduce transformations of relations into dummy entity sets thus

forcing the user into a particular schema design where entities exist that may not

actually be required.

168

Chapter 6

Integrity constraints, although included in the ADMS model, do not go as far as

the integrity provision possible with our system. In ADMS this is a function of

the arcs between entities and incorporates labels attached to each entity. In the

FDM, the arcs represent the function (relation name) between entities and

attributes. Moreover, a relationship between an entity and itself is not intuitive

to model in ADMS; again, a transformation is used to introduce a dummy entity

set. This is not necessary in the FDM where, for example, an entity person can

have a married_to relation that refers back to person by simply naming a relation

married_to that goes from person -7 person. In the ADMS model, for the implicit

navigation algorithm to work successfully, the graph model should have the

property that any two or more nodes have at least one common meeting point or

upper bound. Where this is not the case, a dummy entity set is created to form a

link between the two sub-entities. This is not necessary in the FDM.

For the reasons given above, we believe that our architecture-based on the FDM

and incorporating ideas from ADMS-provides a more realistic way to model

and then store data. Moreover, our scheme combines the benefits of the

relational model (for attribute records) with those of the functional model (for

entity traversal), and goes some way to achieving the four goals in the extended

relational model [COD79]. In this Codd suggests that a data model should aim to

have four 'personalities':

• tabular - for display and updating purposes

• set-theoretic - using relational algebra for search

• predicate calculus - for inferencing techniques, and

• graph-theoretic - to aid understanding for users and designers.

Moreover, the benefits of combining the FDM with functional programming have

not been compromised. The ability to declare and store extensional and

intensional function definitions is maintained. The defining of unknown and

undefined values is catered for, as these can appear in any part of the database.

169

Chapter 6

We have also shown how bulk data (multi-valued) attributes are handled-in

both functional directions-at the entity-attribute level and for entity-entity

functions. Finally, because of the semantic freedom using entity identifiers,

object migration can be accommodated in our architecture. An example of this is

given and discussed in chapter 8.

6.7.5 The associative model of data

A recent claim to be a radical new database model merits attention. This is the

Associative Model of Data [WILOOj. This is the name given to the set of concepts,

structures and techniques underpinning the Sentences database management

system. The associative model of data builds on academic research into triple

stores, semantic networks, binary-relational storage structures and entity

relationship modelling. The model is based around the concept of entities and

associations (links). The associations are, essentially, the function names of the

FDM. Schema are constructed incrementally-as in our model-and many of the

disadvantages of the RDM are obviated using this model. Views of data are

handled via permissions set in individual user profiles. These are like integrity

constraints and can be defined at a low level of granularity-a single relationship

(or link) is given as an example.

Chapters (rules) may be added to, or deleted from, a user's profile at any time.

Individual entities and links exist in peer networks in individual chapters. When

chapters are collected together into a profile, the terms and links in each chapter

simply form a wider peer network and chapters become transparent. Deletions

are not physically made. Instead, a 'stop' link is introduced which asserts a

deleted link. Thus the association may appear to be either deleted or not

according to whether the chapter containing the stop link is part of the user's

profile. Re-naming is handled in a similar way.

170

Chapter 6

The storage architecture underpinning Sentences is not clear but the indexing

structure is based on the R-tree [GUT84j. Version 2 was released in October 2001

with the intention to include improved indexing techniques and a better internet

interface. From the literature available it seems clear that the graphic

representation of the model is not intuitive. As well as entities and links

(functions in our model) there are small circles that represent 'links between

links' or 'associations'. An example of a bookseller problem taken from their

literature is shown below.

lives
in

customer of

from the
date of

Figure 6.13. The associative model of data.

sells

The best way of thinking about the small circles is to see them as embedded

associations. The first association in the above schema would be the triple

<person, customer-of. legal-entity>. This fact is stored by their system as

for example-identifier 231. This is then used in the association from the first

171

Chapter 6

circle to form the association <231, orders, book>. This can be viewed as a

sentence with parenthesis around the sub-clauses thus: «person is a customer of

a legal entity) orders books). The database is stored in two tables: one that links

identifiers with names and one that holds triples as 4-tuples-where the first field

holds the identifier of the triple itself-231 in the above example. This is very

similar to the FACT database system [MAG80j and obviates one of the

weaknesses of binary relational models, namely, repetition of identifiers. We

believe our combined model of triples and records does the same thing, is more

intuitive, and retains the attributes as a record while avoiding the profusion of

foreign keys found in the RDM.

It is not immediately clear how inverse functions are handled in Sentences. They

make the point that inverses are (sometimes) important and these can be

explicitly defined in the schema. However, they also use a method of implicit

inverse functions where verbs (function names) such as "has" are replaced by "of"

in, e.g., "has customer" becomes "customer of "-shown below.

Figure 6.14. Sentences inverse functions.

Again, it is not clear how the storage of such inverses is effected. Bulk data types

(multi-valued functions) are also handled obscurely. There are choices-zero or

one, one only, one or more and any number-for mappings from domain to

range. However, several customers use Sentences as a commercial product. Its

share of the market will surely increase as people look for tried-and-tested

commercial products-rather than academic projects-to replace the

shortCOmings of the RDM.

172

Chapter 6

6.7.6 The Universal data model

This is another recent commercial product marketed by Universal Data Models

LLC [SIL01]. It is SQL-based and provides 'off the shelf' data models (schema)

solutions for a variety of business organisations. These include: health care,

telecommunications, manufacturing, financial securities, insurance, service

industries, travel industries and e-commerce enterprises. However, there is not a

model that covers investigative systems. Moreover, as the model is aimed at

relational database systems, it would seem inappropriate in our case.

6.8 Summary

In this chapter we have set out to describe and justify three elements of our

architecture: using an industry proven MIMD machine configuration;

harmonising the two RAID levels-mirroring and parity-to complement the

inverse functions used in our model; and a physical storage architecture and data

placement strategy that unifies the best of the functional data model (triples) with

the best of the relational data model (records). The final element of our

architecture concerns the use of dataflow graphs to distribute computation and

long-latency requests between processors. This is discussed in the next chapter

that deals with parallel execution and optirnisation.

173

Chapter 7

Chapter 7 Transformation, optimisation and translation

7.1 Introduction

In section 1.3, the background to the thesis outlined the areas of research to be

investigated and the motivation behind these choices. Of the research topics

discussed, parallel processing has been the least developed in the remaining

chapters. This is partly because our work has added little to the existing

technologies of dataflow and MIMD, and partly because no overall system has

been developed on which to run accurate experiments.

However, what this chapter sets out to achieve is to show how our proposals for

string handling and enhanced functionality-discussed in earlier chapters-can

synthesise with a parallel data flow architecture. In particular, in discussing

parallel code, we concentrate on describing the code for our interface functions

and string optirnisation functions. When evaluating performance gains in section

7.6, we compare our potential improvements with the AGNA dataflow system

since this motivated our decisions to choose dataflow and MIMD-and INGRES,

as comparisons can be directly made between these. The sub-sections of this

chapter are now introduced.

To allow for the parallel execution of expressions, transformations and

optimisations have to be made on initial user expressions. The transformation

stage involves using a sub-set of the language to introduce local bindings so that

sub-expressions can be executed in parallel. User expressions can often be

optimised-particularly where they involve list comprehensions. We describe

how standard techniques can be applied to our architecture and how to extend

these to complement our text handling facilities.

After local bindings are introduced, sub-expressions are marked for reduction

before the reduction process takes place. We describe the rules for the reduction

174

Chapter 7

process and the data structures involved. Dataflow graphs (DFGs) are then

introduced and shown to fit into our architecture. These include optimisations,

transformations and how DFGs are mapped to parallel code. Performance

improvements are described (as outlined above) before our discussion of why we

made the choices we did and, importantly, how this relates to earlier work.

7.2 Transformation to the sub-language

In order to make expressions easier to optimise and execute in parallel, the

following transformations on the full language to a sub-set of the language are

needed. Features that make programs easier to write but add no new expressive

power to the language are removed. Also included in this stage are

optimisations on list comprehensions, inverse mappings and other operations

that will be performed on persistent objects in the database.

Ephemeral objects, unlike persistent objects, only exist for the duration of a

transaction or database session. A user expression can be considered as a lel .. in

block. The mappings are now shown where x indicates a new, local binding that

is unique. The right arrow (~) shows the transformed expression and == means

'takes the value of'. Note that the following steps describe the process of

translating user expressions to the sub-language for the purpose of potential

parallel processing. They do not represent graph reduction. Graph reduction

transformations are described specifically in section 7.4.1.

function : exp ~ x == (declare function exp)

e.g. (name: employee -> string) ~ x == (declare name (employee~string»

function exp, <= exp, ~ x == (define function exp, exp,)

Used to insert information into the database e.g.,

(name $n <= "Mary") ~ x == (define name $n "Mary")

175

Chapter 7

where $n is a previously allocated global variable with an entity surrogate for a

person whose name is to be defined as Mary. Also used for manipulation

functions such as map/filter and fold.

$9 == exp 7 $9 == (exp)

This case can be carried straight across although (exp) may of course need further

reducing.

type :: nonlex 7 x == (type nonlex)

type:: exp 7 x == (type exp)

The first case is for defining a new entity type type. The second case is to create a

constructor function.

x == type 7 x == (type)

To create type synonyms such as: money -- real. . Again/ type could be a

constructed type.

if exp, exp, exp, 7 let x == exp, in (if x exp, exp,)

Conditional expressions like this have to be transformed into a let block because

expl must always be evaluated before exp2 or exp3.

All_type 7 x == (All type)

Simply returns the current extent of type type to binding x that is a list.

inv_function op exp 7 x == (inverse function op exp)

Inverse functions can be optirnised to handle other relational operators-not just

equality. This is discussed in a later section. The expression exp has to be

evaluated to give either a constant value or a non-lexical identifier before the

application of this function.

176

Chapter 7

function exp -7 x == (function exp)

function -7 x == (function)

Applying a function function to a given expression (the first case) or, where there

are functions with zero arity (the second case).

create type $g -7 $g == (create type)

Creating an instance of a non-lexical type can be carried across using the given

global variable ($g in this case).

delete $g -7 x == (delete $g)

Here x indicates the success or failure of the transaction.

op exp, exp, -7 x == (built-in op exp, exp,)

Primitive function applications-like +, div and matches-can be passed across

using the sub-language function built-in.

List comprehensions are transformed into a combination offlatmap, if-then-else, or

cons and nil structures according to standard rules as in [PEY87bj for example.

These functions are themselves defined in terms of other functions such as

append, cons, head and tail. During the transformations, any nested functions are

lifted out to the top level of the block by a process known as lambda lifting. This

involves adding to its parameter list all free variables, lifting the function to a

local binding with a new unique name and replacing all uses of the function by

an application of it to its free variables.

7.3 Optimisations

There are well known transformations that can be applied to list

comprehensions-see [TRI89j for example. The usual way this is done is by

algebraic and implementation-based techniques. Algebraic transformations

involve promoting filters in the expression so that they appear immediately after

177

Chapter 7

the generator with which they are used. This is especially advantageous in

comprehensions that involve filtering of base extents. As an example consider

the expression

[a 11 (a.b)~ AB & (c.d)~ CD & b = c & d = 99]

which, after transformation, becomes

[a 11 (c.d)~ CD & d = 99 & (a.b)~ AB & b = c]

The CD generator and filter is promoted before the AB generator and filter

because the CD bound filter includes a constant and the equality operator.

Implementation-based techniques involve knowledge about the data such as

indexes available and the size of the various extents to be searched. We do not

make use of complex indexes in this way. Instead we use processor-based data

filtration complemented by a coarse index structure. The size of the extent is

maintained in the schema table so promotion of extents is possible. A little time

spent pre-processing a comprehension has long been known to prove worthwhile

in reducing execution time.

Another optimisation involves combining unary operators so that only one pass

over an extent is needed. This produces an intermediary list for the selection

function to use. The query

[sname x 11 x ~ All_student & grade x >= 7]

would first proceed by having a list constructed by filtering the extent (using the

predicate) at the same time as the extent is traversed.

It is also possible to combine selection and filtering operations. For instance, in

the above example there would be no intermediate list constructed of entity

178

Chapter 7

identifiers that satisfy grade >= 7. Instead what happens is that, once an entity

identifier is selected it is immediately passed to the selection function to display

the sname while the filtration over the rest of the extent is handled in parallel.

This is possible because of non-strictness and the use of open lists. Each time an

entity identifier is selected the result list is extended by one more CONS cell to

accommodate the new identifier to have its sname displayed. The concept of

open lists was discussed in the previous chapter.

In AGNA [HEY91], when an expression is evaluated, pre-processing of filters can

identify if there are any that map over the same extent. This gives the case of

multiple access paths and, if these exist, an algorithm selects the optimum route

to the data based on simple heuristics and the extensive use of indexes. In our

architecture, such expressions can be passed to the storage sub-system for

assembling a list of entity identifiers that satisfy all filters over the same extent.

Again, in the AGNA system it is possible to pass down to the storage sub-system:

the extent to be used, the filter condition and the select conditions if they are over

the same extent. However, this would not always be possible due to the depth of

functionality that can be (and often is) applied to list comprehensions. More

complex expressions often appear in the 'select' part of a comprehension-to the

left of the 11 bar-also the qualifiers themselves can take more complex

expressions. However, the concept of 'passing down' an extent generator and

any filters over it is more easily controlled and is discussed next.

7.3.1 Passing down filters and generators

A scan of the expression list reveals any generators where there are filters that

share the same variable. These can be 'wrapped' into a predicate condition that

we call restrict

x == (restrict extent num-of-preds {function-name operator EXP))

179

Chapter 7

where the sub-language function restrict is followed by the number of predicates

then by an extent name--e.g. student-and then a number of relation-operator

expression triplets (where the expression evaluates to a constant) that are to be

used in the filtering operation when list x is constructed. For the sub-expression

x f- All_student & sname x matches "SIrLth%" & grade x > 7

the first transformation would give

x == (restrict student 2 (sname matches "Sm_th%". grade> 7))

then the procedure would be:

1. search integer triples matching pattern <grade, 7, ?> (or greater
than 7) to generate a set of entity identifiers. Call this set I-set

2. search string tables for string identifiers matching pattern
"Sm_th%". Call this set 5-ids

3. search string triples for matching pattern <sname, 5-ids, ?> to
generate a set of entity identifiers. Call this 5-set

4. x == I-set n S-set.

The generated set x would then be used in any further expressions such as

selection of records to display. However, there is another way of passing down

generators for low-level assembly of the list required that involves inverse

functions.

7.3.2 Inverse functions

Currently, inverse functions can only be applied using implied equality. The

generator x f- inv_fname "Fred" implies "the list x will hold all entity identifiers

where the condition fname = "Fred" holds. This, of course, works perfectly well

for other types such as x f- inv_grade 7. However, if we want to use other e
conditions, we are forced into using a generator and filter combination. To print

the sname (surname) of all students who have a grade> 6, the expression would

have to be:

180

Chapter 7

[sname x 11 x f- All_student & grade x > 6]

Therefore with equality conditions both methods can be used. The following two

comprehensions were compared using the same data set taken from the crime

database. (See appendices Al and A2 for the crime database schema and triple

breakdown.)

count [cat x x f- All_itm & cat x = "VIDEO"] (1)

count [cat x x f- inv_cat "VIDEO"] (2)

Where (2) out-performed (1) by around two orders of magnitude. This is because

(2) is evaluated at the storage sub-system level. (1) involves the generation of a

list and then filtering it with the two operations controlled from the language

level. The inverses of functions are not held explicitly, they are derived in the

following way through software. For any first-order single-argument function

f:t7s, where t is a non-lexical type and s is a non-list type, the derived function

invJs7(list t) is also available. The equation defining inv_f can be considered to

exist as follows

inv_f s <= [y 11 y f- All_t & (f y) = s]

A similar function is used where s is a list type. What happens is that a set of

triples is opened with the pattern <f, ?, s> and the entity identifiers (y) are

retrieved lazily. Because inverse functions perform so· much faster than the

combination of generators and filters, it would be advantageous to make more

use of them. In the current system a search through triples for the third

component s-where s could have any e condition as well as = attached to it

would usually mean searching the entire extent because of the ordering of the

triples.

181

Chapter 7

To improve the choices available for inverse function applications, care has to be

taken in matching the operator to the type of the attribute from which the inverse

is taken. For instance, if the operators ">", "<" and "<>" (not equals) were allowed

for strings the implications might be too severe. Whereas string operators like

contains or begins could more realistically be used to select strings that contain or

begin with a certain pattern. Additionally, for integer attributes the a operators

above could be acceptable but for real types they might not be. The format of the

inverse function is

x == (inverse function-name operator EXP)

where EXP is a sub-expression that evaluates to a constant.

We handle inverse functions in two ways. If the function maps from an entity to

a lexical attribute (E ~ A), the lexical triples provide the inverse function

mapping. For integers involving range queries, a scan of the integer set will give

the entity identifiers to be returned. For strings, the string tables identify the

string tokens that are in turn used in the string triples. If the inverse mapping is

from an entity to another entity (El ~ E2), the mirror array provides the

mapping.

7.3.3 Selection functions

Another area where a sub-language function can be used to good effect is for

selecting fields of an entity that need to be displayed. Although comprehensions

can have complex expressions, often involving graph traversal to the left of the 11

bar, there are circumstances where a simplified instruction can be used for

selecting attributes. If a comprehension has the form

[{function, x, function, xlllx f- All_entity & ••• J

182

Chapter 7

where all the selection functions are over the same variable, a select sub-function

can be used to locate the attributes for display. Like other low-level functions

that pass down expressions to the storage sub-system, a combination of the type

extent plus the set of attribute functions is 'wrapped' into the sub-function select

as follows

X! == (select entity x (function-name!, function-name2, ... , function-namen })

The bound variable x is the relevant entity identifier (which could be a list). The

local variable x! will become the list of attributes to display using the standard

print function. The select function will be expanded upon in a later section that

discusses the mapping of sub-language functions to code for parallel

implementation.

7.3.4 High hit rates for lexical values

A fundamental part of our architecture is the ability to provide better text

searching facilities. A new optimisation makes it possible for users to decide

whether or not to continue with a search that is likely to have a high hit rate and

therefore take a long time to execute. This is possible by checking for constant

patterns to be evaluated from the string tables to identify any that will give rise to

a large result set of entity identifiers.

If the user is to be given a choice of whether to continue with a search or abort it

based on the number of hits found, a function· must be used to obtain that

information. When the total hits exceed some 6 condition, the function must pass

the number of hits to the user and await their instruction to proceed. The point at

which this request is made has to be between the searching of the string tables

and searching for string triples. This is because the string tables have a 'number

of occurrences' field and it is this information that has to be passed back to the

183

Chapter 7

user. The pseudo code for this is shown below where dpes is the number of data

processing elements available.

BEGIN
dpes

occs = L occurrences (string_look_up (string-pat))i
i=l

IF (occs > 9) (

)

ok = ask_user (occs)
IF (NOT ok)

abort transaction

get string triples
END

The two kinds of expression that contain patterns are function applications and

inverse function applications. After the creation of local bindings, these· two

functions will be of the form:

x == (function EXP) and

x == (inverse function-name operator EXP)

where EXP evaluates to a constant and operator was discussed in section 7.3.2. In

these cases the local variable x can therefore take the 'abort' command as well as

lists of results in the normal way.

7.3.5 Text searching functions

A class of functions not discussed yet are those that operate solely on texts.

Recall that attributes of type text are held contiguously across the disk array in a

format decided upon at database set-up. The functions that operate on them can

also be passed directly to the storage sub-system in the way described above, so a

list of entity identifiers that satisfy the conditions can be constructed. A sub

language function, text-fun, initiates a search of the text attributes and has the

form

x == (text-function {function-name operator EXP))

184

Chapter 7

and is handled the same way as built-in function restrict. For example, one of the

built-in functions introduced in chapter 4 was order _str. This takes two strings

pat and text-to see if pat is embedded in text and can have the meta character "<"

in between sub-patterns of pat. This function is appropriate for use on large texts

and, from the list comprehension, the mapping to the sub-language would give

the binding for example

x == (text-function report order_str "flick<knife")

which would return all entity identifiers where the attribute called report of type

text had the word "flick" somewhere before the word "knife". Note that these text

functions are in addition to the string matching functions (previously described)

that can be equally applied to text searching.

7.4 The abstract reduction machine

The preceding discussion shows how user expressions can be transformed into

the sub-language and the various optirnisations that can be applied. The

identification of sub-expressions to be reduced is considered next. In this section

we give the rules for these with an example to show how reduction can proceed

and how this affects the data structures. The reduction process begins with the

following starting components:

• the expression to be evaluated: EXP

• the current extent of the database: DBcurr and

• an update table to hold changes: T.

The new database extent can be defined as:

DBnew == evaluate (EXP, DBcurr, T)

The current extent of the database consists of a top-level environment that maps

names to values in persistent store or memory, and a heap that maps identifiers

185

Chapter 7

to values. The heap maps ephemeral identifiers to values (those that last for the

duration of a session) and temporary identifiers used for the duration of an

expression evaluation only. These identifiers are allocated by the system as and

when needed and are not usually visible or meaningful to users-although they

can be declared as such. So, to follow previous notation, we show these as $n

values. Both data structures have space for new values that will be used to

update the extent if the transaction is successful. Also included in these structures

are references to integrity constraints.

The update data structure records changes to type extents (insertions and

deletions) and attribute values (insertion and deletion) and is used to keep track

of alterations that will affect persistent objects such as integrity and meta triples.

7.4.1 The reduction process

The expression to be evaluated starts off as an initial block of expressions after

type checking and bindings have been created as just described. After which the

following sequence of transformations occurs. At each stage of the re-write

process the next expression to be evaluated is marked for reduction with symbol

:R. So the initial state of an expression is: :R(let ((Xl,Sl), •.• (Xn,Sn)) in 5). Where each

x and s pair represents a uniquely bound sub-expression from the original

expression. Reduction of an expression proceeds from this state until no further

re-write rules can be applied. In the final state of a successful transaction, all

expressions in the top-level block are reduced to values ... The reductions are as

follows

186

Declaration reductions

~(type nonlex) 7 type nonlex

~(x == type) 7 x == type

~(create $g) 7 create $g

~(delete $g) 7 delete $g

Chapter 7

No further reduction is possible when declaring, creating or deleting non-lexical

types or a type synonym. These rules do, however, entail alterations to the

schema information and update tables.

~(type exp) 7 type ~(exp)

Constructed types may include sub-expressions that require evaluation.

~(declare function exp) 7 declare function ~(exp)

Where exp can refer to simple type signatures such as: sname ~ string or more

complex signatures like: (alpha1 alpha2 ~ list (alpha1)) ~ list (alpha2) that need

looking up in the top-level environment.

Definition reductions

~(define function expl exp2) 7 define function ~(expl) ~(exp2)

Both expressions can be marked for potential parallel execution. EXPl is the input

parameter(s) and exp2 the output parameter(s) as described in section 7.2 earlier

in this chapter.

~($g == exp) 7 $g == ~(exp)
The marker is propagated to the expressions whose ultimate value will be passed

to $g.

187

Application reductions

~(All type) -7 All type

~(fun) -7 fun

Chapter 7

In each case no further reductions are possible.

~(function exp) -7 function ~(exp)

~(inverse function op exp) -7 inverse function op ~(exp)

For a function application (or inverse) that consists of an expression, the marker

is moved to that expression.

~(built-in op expl exp2) -7 built-in op ~(expl) ~(exp2)

~(restrict extent exp) -7 restrict extent ~(exp)

~(text-function exp) -7 text-function ~(exp)

Primitive function applications-such as + and div plus restrict and text-fun--can

have the marker moved to any sub-expressions they contain. Arguments may

then execute in parallel. All other arithmetic, logic and relational functions have

similar reduction rules.

~C-7 c

A constant requires no further reduction

~(if expl exp2 exp3) -7 if ~(expl) exp2 exp3

-7 ~(if true exp2 exp3) -7 ~exp2

-7 ~(if false exp2 exp3) -7 ~exp3

For conditionals the above rules ensure the first expression is evaluated and

reduced to a Boolean value before the second or third expressions are reduced.

188

Chapter 7

The outline pseudo code for the reduction algorithm can be considered as

follows:

input (expression_list)

var count = 0
var next[MAX_STRl

BEGIN

END

WHILE expression_list NOT empty

next = expression_list[countl
if (reducible(next)) mark_for_reduction

increment count

END-WHILE

where the procedure reducible uses the given rules. The expression list is the user

expression after it has been reduced to the sub-language, described in section 7.2,

and optimisations have taken place.

7.4.2 A reduction example

Finally in this section we give an example of how a transaction would proceed.

The following three expressions-to locate a person called Fred and change the

name to Freda as well as define the age as 21-are transformed as follows. (Note

the propagation of the marker :R, is shown from a visual perspective and in

parallel. This saves time and space but is not necessarily how it would actually

occur.)

$n == inv_fname = "Fred";

age $n <= 21;
fname $n <= "Freda";

After type checking, this is transformed to a let ... in block with local bindings

naming Xl, X2 and result and the reduction marker showing there are reductions

to be done.

189

Chapter 7

3t (let $n == inverse fname = "Fred";

x, == define age $n 21;

x 2 =;:; define fname $n "Freda";

result == x, A x,)
in result

Next the 3t marker is propagated to the three sub-expressions that have now been

bound to local identifiers.

3t(let $n == 3t(inverse fname = "Fred');

X, == 3t(define age $n 21);

x, == 3t(define fname $n "Freda');

resul t == 3t (x, A x,))
in result

The next stage propagates the 3t to all sub-expressions of these three expressions:

3t (let $n == 3t (inverse 3tfname = 3t" Fred') ;

x, == 3t (define 3tage 3t$n 3t21) ;

x, == 3t(define 3tfname 3t$n 3t"Freda");

resul t == 3t (3tx, A 3tx,))
in result

At this point there are no further reductions possible. So the next step is to map

top-level names to tokens. Note we have assumed for this example that the name

"Fred" is unique. The first step involves replacing constants with the tokens that

represent them. This gives:

3t(1et $n == 3t(inverse 3tfname = T-Fred);

X, == 3t(define 3tage 3t$n T-21);

x, == 3t(define 3tfname 3t$n T-Freda);

resul t == 3t (3tx, A 3tx,))
in result

(1)

where T-... indicates a token mapping. Top-level function names can now be

converted to tokens giving:

190

Chapter 7

!R (let $n == !R (inverse T-fname = T-Fred);

x, == !R(define T-age !R$n T-21);

x, == !R(define T-fname !R$n T-Freda);

result == !R (!Rx, A !Rx,))
in result

(2)

We now have to evaluate the first expression to obtain a token for $n before the

second and third expressions can continue:

!R(let $n;

X, == !R(define T-age !R$n T-21);

x, == !R(define T-fname !R$n T-Freda);

result == !R (!Rx, A !Rx,))
in result

(3)

This now allows us to bind $n in expressions two and three with the newly

allocated token giving:

!R (let $n); (4)

X, == !R (define T-age $n T-21);

x, == :R, (define T-fname $n T-Freda);

result == !R (3{x, A !Rx,l)
in result

Finally the two remaining expressions can be reduced to tokens and the result

can be returned. Although in this example there is no visible output to the user

screen, the binding of the user-defined global variable $n to the token has been

successfully completed.

This transaction also changes the top level environment in the following ways.

Assuming a simple environment for the moment, the changes are:

name token name token
fname T-fname fname T-fname
age T-age age T-age
Fred T-Fred <Fred> <T-Fred>
... Freda T-Freda

191

Chapter 7

Note that lexical names are taken from the lexical tables and are only discarded

when there are no other bindings for them. The integer 21 does not need an

explicit mapping: integer tokens are inferred by simple bit manipulation. In this

case we have assumed the name "Fred" does not occur elsewhere in the database

so can be deleted (shown as <Fred> above). The heap would have a mapping for

the user-defined global variable $n to link it to the entity identifier that has fname

function mapping it to Fred (now Freda). The two intermediate variables, Xl and

X2, would not be stored as they were not requested by the user. Their only

purpose is to hold the results of sub-expressions that are evaluated along the way

to the ultimate result. After that, any resources they required are freed back on to

the heap. The triples to be inserted and deleted are:

triple time Insert/delete
<T·fname, $n, T-Fred> <32-bits> delete
<T-fname, $n, T·Freda> <32-bits> insert
<T-age, $n, T-21 > <32-bits> insert

Note that not all information held in triples is shown in the above table and that

the $n only represents the token for the entity identifier that is used in persistent

store. At this stage integrity constraints are checked before binding new names

to identifiers and printing out any results. Only then can the transaction be

closed. Committing updates, which can be done at any time by the user, causes

updates to become persistent.

During the transformation process there are several places where parallel

execution of expressions could take place. In (1) and (2) above, both the looking

up of top-level names and the mapping of constants to identifiers could be done

in parallel. As soon as $n is defined, occurrences of it in other sub-expressions

could also be defined (3). Lastly, the two defining functions in (4) could be

performed in parallel. After all sub-expressions have been marked for reduction,

192

Chapter 7

the next step is to transform the various sub-expressions into dataflow graphs for

possible parallel execution.

7.S Translation into dataflow graphs

This section begins with an introduction to dataflow graphs. Readers familiar

with the basic concepts involved may wish to proceed to section 7.5.1 where

optimisations are discussed.

Instead of using a simple graph reduction process, data can be thought of as

dynamic, flowing through a collection of passive transformers (the operators).

Each operator performs some task on the data, as they become available on input

arcs and passes the result to other operators via output arcs. This computational

model is defined in terms of dataflow rather than control flow or graph reduction

and programs are thus represented as dataflow graphs (DFGs). DFGs have some

advantages over the other models; one of which is that DFGs are acyclic. This

means that, once an operator has consumed input on its input arcs and passed on

the results via its output arcs, the resources it used can be discarded. This greatly

simplifies garbage collection. Once DFGs have been constructed, there is scope

for parallel execution of sub-expression within the overall query. The basic

dataflow machine can thus be said to be data driven, implementing eager

evaluation using the call-by-value computational rule.

DFGs are particularly appealing for use in declarative languages because they do

not require complicated dependency analysis. Traditional languages are usually

tied to an imperative model where partitioning of instructions into fine-grain

threads for parallel execution makes control far more complex. It has been

shown [ARV88] that compilers for declarative languages can extract orders of

magnitude more parallelism than is possible with traditional languages. It is

possible to modify the DFGs to a demand-driven version that permits lazy

193

Chapter 7

evaluation using the call-by-need computation rule. However, this makes control

mechanisms significantly more complicated.

The various constructs of a programming language can be represented

graphically by DFGs where the nodes represent operators and the arcs represent

data dependencies. Data driven means nodes 'fire' when their required input

arcs are available. Parallel implementation is easily achievable using this model

with a referentially transparent functional language.

After the initial transformations to the sub-language, an expression will have all

its functions named-via lambda lifting-and defined at the top level with local

bindings. The basic operators used in DFGs are: primitive junction, copy, value,

fork, merge and (the most complex) apply-see [FlESS] for full descriptions of

these. As a simple example of a DFG, the expression (x + y) * (x - y) might have

the graph

x y

Figure 7.1. Arithmetic DFG.

The graph consists of three instructions each with an opcode, two input arcs and

one output arc. Data values are carried on tokens that flow from the output arc

of one instruction to the input arc of another instruction. Instructions only

execute when their 'firing rule' is satisfied. The firing rule for strict operators,

such as + above, states that the instruction may fire only when both inputs are

present.

194

Chapter 7

Execution of an instruction consumes input-sometimes producing side effects

such as creating a new persistent value-and creates output. DFGs capture all

the fine-grain parallelism of the source language and make explicit any data

dependencies and multiple use of a variable. The + and - operations may

execute serially or in parallel-it makes no difference. However, the * operator

depends on the + and - operators and so cannot fire until both its input arcs have

tokens placed on them.

Some instructions, such as constant, have no normal input values. But, without

input values there is no way to give a firing rule. To resolve this, trigger tokens

are added to the DFG. These carry no meaningful value but are used to initiate

execution of an instruction. For such instructions the rule states that the

operation should execute when its trigger input token is available-plus any

inputs that are needed.

A related problem is what to do with outputs of operations that are not actually

required for the result. These include triple additions and deletions that are

made as a side effect of an expression but not actually consumed in any way by

other instructions. While such outputs do not contribute directly to the result of

the expression, it would be useful to know when they have completed and are

available if required. The answer is to collect such outputs together into a

'complete' instruction which issues a completed signal token when its inputs are

all fired.

Although signal tokens carry no meaningful value, once they are fired (along

with the result return output) they enable all computation in a DFG to terminate

successfully. In our system the DFG in Figure 7.2 shows how triggers and signals

fit into the overall DFG deSign. The expression

195

Chapter 7

$n == inv_fname :::: "Fred n i

age $n <= 21;

fnarne $n <;:::: "Freda n i

would first be transformed to

let $n == inverse fname = "Fredni
x, == define age $n 21;

x 2 == define fname $n "Freda ll
)

resul t == x, 11 x,
in result

then the DFG

trigger

terminate
signal

to calling
procedure

Figure 7.2. Example of a DFG procedure.

This graph shows what happens to the signal and result tokens. The result can be

returned to the calling procedure as soon as it is available: the signal token is

issued when all other activity in the graph is complete., The finished operator

196

Chapter 7

collects the signal and result outputs and passes a terminate signal to the caller.

Resources can then be freed by the callee.

The above graph can be considered as a lambda (nameless) function or procedure

for the purposes of controlling a sequence of transactions. The lambda

instruction is connected to the graph in which it is embedded via the trigger and

terminate signals. The firing rule is: when the trigger is activated, the procedure is

created on the heap and a token carrying a reference to it is placed on the result

output. In the graph, define and inverse are built-in operators that directly

accesses the storage sub-system once their arguments have been provided. Note

that in our architecture a function is applied to all of its arguments (full

application) not a partial (or curried) application. Conditional expressions, such

as if-then-else, are a special case and are handled using the following DFG.

'---,..--' ~;:::::J-r:::::::. to calling
procedure

terminate
signal

Figure 7.3. Conditional DFG.

When the result of expl is known either the then or the else path is selected. When

either of these has successfully completed, the signal and result outputs are

197

Chapter 7

activated accordingly. However, in this case similar outputs from both branches

are joined using the merge operator before becoming the inputs to the complete

and result operators. This ensures that either branch can fire the complete and

return triggers thus embracing the semantics of conditional operators. Any

expression or part of an expression that requires sequential execution is ordered

in a sequential manner so that execution does not proceed in parallel.

7.5.1 Optimisations to DFGs

function arguments

Figure 7.4. DFG for apply.

The most complex DFG operator is apply. This is needed for user functions and is

shown above. Each invocation of a user function forces the creation of a new

apply operator with its own function name and argument inputs. Application of

user functions are embedded in the apply operator where the non-strictness of

applications is embodied in the firing rule. Because of non-strictness, a CONS

cell can be returned before the evaluation of the arguments. This is in keeping

with dataflow schemes, so we can immediately pass back the CONS cell while

the rest of the list is being assembled. After each apply completes, the result is

returned back to the caller apply and, ultimately, the initial starting expression

block. Even using tail-recursion, the final result has to pass back along the chain

of applies before a result can be returned.

One of the optimisations employed in AGNA involved altering the apply

construct to handle tail recursion better. This was achieved by propagating both

the result and termination signal of each nested function call forward to the next

198

Chapter 7

iterative apply instead of back to the calling apply. A new signal input is added to

each call to ensure that a call invoked via tail-apply does not complete and send a

termination signal prior to its caller completing.

DFGs used in our system are enhanced by the inclusion of operators to

complement our architecture; define and inverse were mentioned above. The

standard DFG operator lookup is used to map a bound variable or constant name

to a token. For names that are part of the meta data-function names, types, and

global variables-this is easily achieved using the schema tables held in memory.

Mapping non-string types to tokens is trivial too: simple bit manipulation turns

an integer or real into a token. However, mapping strings to tokens is more

complex because of the number of strings used and the possible use of meta

characters embedded in them, and can give rise to large token sets. We also want

to give users the choice of aborting a query if there is a high hit rate. To facilitate

these features, a new DFG operator is introduced to complement the standard

lookup operator. We call this operator string-map to reflect its use.

When it has been fired, string-map searches the string tables to accumulate a set of

string tokens that match the pattern. When this has been done, a count is made

of the total occurrences there are of words matching the given pattern in the

database. This total is passed to the user if it exceeds a threshold asking for

confirmation to continue with the query. If the query is to proceed, the set of

string tokens is used to accumulate a set of entity tokens for the inverse function

mapping. This new operator was used in the earlier DFG.

How do we know when to use string-map and when to use lookup? Lookup is

used for non-string cases-meta data names, relations etc: the string-map operator

is used for string constants including those with embedded meta characters. This

implies there may be more than one instance of the pattern that would generate a

199

Chapter 7

list of string tokens. In the DFG shown in Figure 7.2, the two string constants

"Fred" and "Freda" are handled by the string-map operator as they are strings and

might, in other circumstances but not in this, generate a list of results.

Built-in functions

Recall from the introduction to DFGs that there is a primitive function operator.

This is used for built-in functions such as +, -, div etc which often come at a level

beneath user functions. This category could also cover our range of built-in

string matching functions discussed in chapter 4. However, as outlined in the

previous discussion, the patterns involved in handling strings can be such that a

large set of string tokens is assembled for the mapping process. For built-in

functions that do not operate on strings the operation proceeds as follows.

Consider the simple predicate age x > 21. The DFG for this would be

. list of filtered X's

Figure 7.5. DFG for built-in function.

The above shows how the apply function generates a list of triples matching the

template <age, ?, x> for the third component to be used in the comparison with

21. For straightforward string expressions (including those with embedded meta

characters) the situation is different. We use a function contains that essentially

means the pattern "must be contained in" the attribute. So the predicate,

fname x contains "Fred%", used with the following DFG, uses set intersection to

200

Chapter 7

obtain a list of string identifiers, then entity identifiers, before the contains

comparison is made.

list of filtered Xs

Figure 7.6. DFG for string lookups.

Here the apply operator is used to generate a set of XS that may have already been

reduced by an earlier function application. Therefore the contains operator will

ensure only those entity identifiers that are relevant will get through.

Furthermore, note the string-map operator also embodies the apply operator. This

is discussed in the next section on translation to parallel code. However, there is

often a better way to handle such functions. Where generators and filters range

over the same extent, the restrict operator may be more applicable.

The sub-language function restrict is used to handle generators and filters bound

to the same variable and passes them to the storage sub-system for the creation of

the result list. The format of this function is

x == (restrict extent num-preds {function-name, operator, EXP})

where EXP evaluates to a constant. Once this has been done, the restrict function

can be applied. Thus, for example, the outline DFG for the expression:

restrict student 2 fname contains "Fred%" age> 21, is shown below.

201

Chapter 7

trigger
student 2
fname contains "Fred%"
age> 21

list of Xs

Figure 7.7. DFG for restrict.

Note that the low-level functions restrict, inverse and text-map do not use apply to

evaluate. Nor do they use lookup and string-map in the same way as user

functions do. Instead their list of arguments is passed directly to the storage sub

system to compile a result list once any embedded expressions in their graph

have been evaluated. The looking up of strings is handled differently because of

the need to pass conditions directly to the disk array to arrive at a filtered list of

entity identifiers. The "abort" condition can also be returned from here if the user

does not wish to continue with the query.

Finally, the select function is used to select attributes of an entity for display

purposes. The DFG for this function is similar to those for restrict etc, in that the

inputs are the trigger and the condition list and the output is a list of items to

display using a standard print instruction. The next stage involves transforming

DFGs into machine level instructions and organisation of parallel threads of code.

7.5.2 Translation to parallel code

In this section we discuss our parallel abstract machine proposals. In the

following three pages we give a brief outline of this topic setting out the standard

code. We pay particular attention to the novel areas that are specific to our

architecture. The fine-grained threads that underpin the parallelism are allocated

and managed by a parallel machine. The parallel machine consists of a pool of

active thread descriptors and separate memories for frames and the heap. Each

202

Chapter 7

thread consists of an instruction pointer (IP) and a frame pointer (FP). IP points

to the current instruction residing in the code of a heap-based procedure call; FP

points to a frame.

Frames are allocated and de-allocated as part of procedure call and return, and

provide local storage for arguments and computation. Organised into a tree,

there is a frame for each procedure call. Multiple frames can be active

simultaneously and each frame can have many active threads. The parallel

machine proceeds by extracting an active thread, executing its current instruction

and adding to the thread pool any necessary descriptors. The execution order for

threads is not specified and multiple threads may execute concurrently.

(a)

IffI
O£l
IffI
[IfJ

(b)

(c)

(a) Thread descriptors, (b) Frame memory, and (c) Heap memory.

Figure 7.8. Organisation of the parallel machine.

Memory is divided into persistent store-storage held in the disk array-and

heap memory. The heap is used for persistent objects-triples, records, meta

data-that are added to the database extent after successful termination of a

transaction, and transient objects-variables, lists, etc-used for the duration of a

database session or duration of a transaction.

The semantics of parallel instructions are in terms of state transitions on frame

memory, heap memory (including persistent store) and the pool of thread

descriptors denoted (FP, IP). The instructions required for the parallel machine

203

Chapter 7

include the standard operators for reduction machines which are found, for

example, in [HEY91). (In all cases r, ri and rj refer to offsets.)

Control flow
• jmp L - add descriptor (FP, L)

• jmc r L - if frame[FP+r) = 0 add descriptor (FP, L)

else add descriptor (FP, IP+l)

• fork L - add descriptors (FP, L) and (FP, IP+l)

• die - add no descriptor

• join r bn - if bit n of frame [FP+r) set
add descriptor (FP, IP+l)

else add none

toggle bit n of frame [FP+r]

Join is used to combine and synchronise parallel threads creating a successor

descriptor only if the join bit is set to one. For example, in the code below threads

Tl and T2 are combined and synchronised by the join instruction at Ll:

Tl: rl f- x

jmp Ll

T2: r2 f- y

Ll: join r3 bO - wait for x and y

add r4 rl r2

Tl and T2 place x and y into frame slots rl and r2 and transfer control to Ll. Tl

transfers control via jmp, whereas T2 just "falls through" where the join bit is

initially set to zero. When join is first executed (by Tl) the bit is set to one and no

new successor descriptor is added-the thread is terminated. When T2 executes

join, the bit is set back to zero and the thread continues with the addition.

Arithmetic, logic and relational operators
• binop rl r2 r3 - frame [FP+rl] = frame [FP+r2] binop frame[FP+r3]

• unop rl r2 - frame[FP+rl) = unop frame [FP+r2]

• loadc rl c - frame [FP+rl] = c :where c is a constant

In each case a new descriptor, (FP, IP+l), is added.

204

Chapter 7

Heap access
• load rl r2 - frame [FP+rl] = heap[frame[FP+r2]]

• store rl r2 - heap[frame[FP+rl]] = frame [FP+r2]

In each case a new descriptor, (FP, IP+l), is added.

Inter-frame transfers - call and return
• f call rl r2 - caller frame initiates callee frame

let FP' == frame [FP+rl]

let lP' == frame [FP+r2]
add descriptors (FP, IP+l) and (FP', IP')

• fret rl r2 r3 r4 - callee frame transfers result to caller

let FP' -- frame [FP+rl]

let lP' -- frame [FP+r2]

let r == frame[FP+r3]

let v == frame[FP+r4]
frame[FP'+r] = v

add descriptors (FP, IP+l) and (FP', IP')

In addition to these standard instructions, there are several longer, macro-style

instructions for frequent database operations. These include the following.

• AllocObj ect ri rj - allocate & initialise new object on heap

let type -- frame [FP+ri]

let size -- frame [FP+ri+l]
let addr = allocate block of heap memory for size

frame [FP+rj] = addr

add descriptor (FP, IP+l)

• AllocFrame ri rj - allocate and initialise new frame

let CFP -- frame [FP+ri]

let RIP -- frame [FP+ri+l]

let SIP -- frame[FP+ri+2]

let Res -- frame[FP+ri+3]
let slots == frame[FP+ri+4]

:CFP = caller's FP

:RIP = result IP

:SIP = signal IP

:Res = where result stored

:number of slots required

let FP' == new frame & set slots to zero

FP' = (CFP,RIP,SIP,Res)
frame [FP+rj] = FP'

add descriptor (FP, IP+l)

• MakePersist ri rj - move object from heap to persistent store

let obj == frame [FP+ri]

frame [FP+rj] = obj

205

frame[FP+rj+lj = false

if volatile(obj)

if alreadymoved(obj)

Chapter 7

frame[FP+rjj = lookupPerAdd(obj)
else

let A == address in persistent store
copy (obj ,A)

frame[FP+rjj = A

frame [FP+rj+lj = true

add descriptor (FP, IP+l)

• DeAllocate ri - frees heap storage held at address

let obj == frame[FP+rij
addtofreelist('obj, length(obj))

add descriptor (FP, IP+l)

Then there are macros pertinent to our architecture. These include

• InsertNonlexDec - insert non-lexical declaration into update table T

• DeleteNonlexDec - mark the above as deleted

• InsertPriFunDec - insert primary function declaration into update table T

where table T is part of the heap. These match the interface functions introduced

in chapter 5. As an example, consider the third macro InsertPriFunDec used to

add the triple

< 11 age" I 0010 I "person 11 I 0110, 11 integer l1
I 0010, times tamp >

to the table T. In this triple, the second field identifies the type of the triple

(primary function definition), the fourth and sixth fields are the types for the

third and fifth fields. The macro to add this is

206

InsertPriFunDec ri rj

Chapter 7

let reI -- frame [FP+ri}

let tty -- frame [FP+ri+1}

let sub -- frame [FP+ri+2}

let sty -- frame [FP+ri+3}

let obj -- frame [FP+ri+4}

let oty -- frame [FP+ri+S}

let sec -- frame [FP+ri+6}

if (ok)

frame [FP+rj} = ()

:relation name

:triple type

:subject name

:subject type

:object name

:object type

:timestamp

add (rel,tty,sub,sty,obj,oty,sec) to T

add (FP,IP+l) to thread pool

else return error

The other procedures relevant to our architecture are those that deal with passing

down generators and filters, inverse functions and selection. These require new

loader instructions to set up the frame memory.

loadr rl exp - to load restrict expressions

loadi rl exp - to load inverse expressions

loads rl exp - to load selection expressions

The loadr instruction sets up the required frame offsets to store the extent name,

the number of predicates and the predicates themselves. The loadi function sets

up the required frame offsets for the extent-inferred from the function name

the function name, the operator and the value. The loads function sets up the

frame memory with the extent, list of entity identifiers and list of functions to use

for retrieving attribute values. As an example loadr is handled as follows

Loadr ri exp
frame [FP+ri} = exp[l}

frame [FP+ri+1} = exp[2}

for (j = 1; exp[2} x 3; j += 3)
frame[FP+ri+l+j} = exp[2+j}

frame[FP+ri+1+j+l} = exp[2+j+l}

frame[FP+ri+l+j+2} = exp[2+j+2}

: extent
:num preds

: function
:op

:value

207

Chapter 7

This uses the number of predicates held in the expression to control how many

offset places are needed to hold the three elements of each predicate. The Laakup

procedure is set out below.

Lookup ri rj

let name == frame[FP+ri]

let token == get token for name from meta triples

if (found)

frame[rj] = token
add descriptor (FP, IP+l)

else return error

This uses the meta triples to establish and return a token bound to the top-level

name. The procedure for string-map is more complex and uses the manipulation

functionfaldr: this is discussed below.

String-map ri rj

let name == frame [FP+ri]

let fun == frame [FP+ri+l]

let (occ,stoks) == foldr (k rest) APPLY dpe k string-match name
(0, nil)

in

dpes

if (occ > 6) AND (NOT ok=ask_usr(occ»

frame[rj] = abort

else let eids == foldr (m rest) APPLY dpe m open-s fun stoks

nil

dpes

in

frame[rj] = eids
add descriptor (FP, IP+l)

This procedure begins by extracting the name pattern and searching for the set of

string tokens that fit this pattern across all DPEs using the faldr function. At the

same time, the number of cumulative occurrences of this pattern is stored into the

variable ace. If ace is greater than some e threshold, the user is asked if the query

is to proceed. If the response is yes or ace is under the threshold, the function

apen-s and the function name fun plus the list of string tokens stoics are used to

208

Chapter 7

construct a list of entity identifiers eids to which a reference is added to the frame

memory.

Foldr is used for both searching operations so that the list is constructed in

parallel. Each use ofJoldr would, of course, generate a separate graph so parallel

execution could proceed. This is not shown explicitly in this example for the sake

of brevity. However, the ability to do this is the essence of where functional

programming and parallel processing techniques combine to allow the fine-grain

parallelism that is required.

The ability to pass down generators and filters bound to the same variable, is

captured in the next example procedure for Restrict. This function has a similar

appearance to string-map but now has to cope with all types-not just strings

and closes the procedure by making an intersection of each set of entity

identifiers created for each predicate in the filter. In this procedure

fun, op and val are the function name, operator and value of each predicate and

ext is the entity class extent used in the search. Vtype holds the type of the value

var and, once again, occ is used to hold the cumulative total.

209

Chapter 7

Restrict ri rj

let ext == frame [FP+ri]

let npreds -- frame [FP+ri+1]

for (i = 1, j = 1; i <= npreds; i++, j =+ 3)

let fun == frame[FP+ri+j+1]

let op == frame[FP+ri+j+2]
let va1 == frame [FP+ri+j+3]

let vtype == the type of val

let ftok == get fun token from meta triples

if (vtype == string)

else

let (occ,vtok) ==

in

foldr (k rest) APPLY dpe k string-match val
(0, nil)

dpes

if (occ > 9) AND NOT (ok=ask_usr(occ»

frame [rj] = abort

else

hd(vtok)

let vtok == transform(val)

in
let eids[i] == foldr (m rest) APPLY dpe m open-s fun vtok

nil

in

dpes

npreds
frame[rj] = rI eids[i]

i=l

add descriptor (FP, IP+1)

The invert procedure handles inverse function mappings of the form

(inv_fun, op, value) and is similar to restrict. The values are mapped to

tokens, asking the user if the query should continue where applicable, before

assembling a set of entity identifiers as the result. Lastly in this section, we show

the select function used to locate attributes for a given entity identifier or list of

identifiers for printing purposes.

210

Chapter 7

Select ri rj

let ext == frame [FP+ri]

let atts == frame [FP+ri+l]

let eids == frame [FP+ri+2]

let (rtoks,vals) == foldr

in

(k rest) APPLY dpe k get-recs ext atts eids
(nil ,nil)

dpes

frame[rj] = hd(rtoks,vals)

add descriptor (FP, IP+l)

This procedure passes down the extent to be searched, a list of entity identifiers

and a list of relation tokens that are used to retrieve the attribute values. The

storage sub-system function geCrecs accumulates the results to be displayed and

in turn uses function geCattributes (discussed in chapter 5) to extract the required

attributes. Using joldr, each disk in the array retrieves its list of relation

token! attribute-value pairs (rtoks,vals) to construct its list in parallel. These

would then be used for any display and print options.

7.5.3 Graph analysis

A simple heuristic developed by Iannucci [IAN88j called the Method of

Dependence Sets (MDS) is used to decide which graphs are worth reducing in

parallel and which are more concisely performed sequentially. As a simple

example consider the two ways of reducing the following graph (shown in

prefix) (* (+ x y) (- x y».

211

Chapter 7

x: rlO f- x x: rlO f- x
fork Tl jmp T
jmp T2 y: rll f-y

y: rll f- y T: join r9 bO
fork Tl add rl2 rlO rll
jmp T2 sub rl3 rlO rll

Tl: join r9 bO mul rl4 rl2 rl3
add rl2 rlO rlI
jmp T3

T2: join r9 bI
sub rl3 rll rl2

T3: join r9 b2
mul rl4 rl2 r13

With full parallelism With partial parallelism

Note the offsets, rn above, have been chosen so as not to clash with control offsets

etc. as described in section 7.5.4. With full parallelism, synchronisation occurs for

inputs x and y and also for the join instructions. In the partially parallel version

the only synchronisation is for values x and y. After that, all three arithmetic

operations are performed in sequence. With around 50% less instructions in the

partial version, it makes sense in this instance to use sequential execution and

forgo the possibility of executing the arithmetic operations in parallel. The basic

idea behind MDS is that parallelism is preserved between long-latency

operations while sequential code is used for connected sub-graphs that do not

include such operations.

We include MDS in our architecture because it is well understood, provably

deadlock free and the latency-directed approach is appropriate for long-latency

persistent parallel systems. Comparing it to other approaches is not part of this

thesis. As with list comprehensions, the rationale is that a little pre-processing

can prove advantageous in the final outcome. MDS analyses and partitions the

DFGs into parallel and sequential 'blocks' of instructions. A simple example is

shown below

212

Chapter 7

Signal

(

I
I
\

~Fr==~

Trigger

'I
I

I
)

(a)

(b)

(c)

Figure 7.9. Methods of dependence sets.

.•

In this graph the long latency sub-graph-partition (a)-is made parallel. This is

because any operation that involves the lookup operator could mean access to the

storage sub-system is required. The arithmetic sub-graph-partition (b)-is

sequential, executing as + then - then " as shown in the parallel code on the

previous page. While partition (c) is again parallel. This is because (b) depends

on (a)'s outputs and (c) depends on (b)'s output plus the initial signal token. The

partitioning is performed on the graph in the body of each procedure

definition-the instructions encapsulated by each lambda. Iannucci's algorithm

for determining dependency sets is as follows:

1. topologically sort the instructions in each lambda block

2. uniquely name each long-latency output in the graph

3. for each instruction j in the block calculate the dependency set (DS).

DS(i) = <UDS(J) U (0 10 EO i\ long _latency(o) }
jeJ

213

Chapter 7

Where J is the set of instructions from which i receives input and 0 is the set of

output arcs that connect instructions J to i.

7.5.4 Allocation of frame slots

Here the temporary storage implicit in the DFG's is mapped to frame slots that

hold the synchronisation and values required. Each transaction has one control

frame to hold details of the transaction, plus any number of procedure frames

where one frame maps to each user-defined procedure-shown in Figure 7.8. All

frames consist of lineally addressed memory. The control frame merely consists

of a slot for frequently used constant 0, a slot for a self-pointer (self FP) and as

many other dynamic slots as are required. Procedure frames are more complex

and are shown and described below.

o
1

2

3

4

5

6

,

constant 0

self FP
caller FP
result IP

signallP

resu~

first argument

last argument

first dynamic

"
last dynamic

Figure 7.10. Procedure frame.

After staring constant 0, self FP, caller FP, result lP and signal lP, the result slot

refers to the slot in the caller's frame where the result is held. Then there are slots

for the procedure's arguments followed by dynamic slots. The algorithm for

mapping graph storage to frame slots, traverses the graph and, for each

instruction, slot bits for synchronisation, internal use and outgoing, value-

214

Chapter 7

carrying arcs are added. Static analysis determines when a slot is no longer in

use and can therefore be considered for re-use quite safely.

Because the execution of instructions may be unspecified, static allocation may

not always be enough to guarantee the safe re-use of dynamic slots. For example,

if a slot ri holds the result of a procedure application, it is only after all the

following users of the result have consumed its value that it can be safely re

used; this may not be determinable at run-time. The rule used to determine safe

re-use is summarised as follows. If there is only one consumer, slot ri can be

safely marked for re-use. If all consumers reside in the same partition and are

executed sequentially, the slot ri can be safely re-used after the last one has been

fired with its value.

Two sets of free slots are maintained. One set free-slots contain those that are

immediately available. The other set pending contain slots that will become free

after the current level of graph instructions are complete. Free slots cannot

simply be carried forward to the next node in the graph because of the above

discussion on allocation. There has to be a one-node delay before a slot can be

considered safe to re-use.

7.5.5 Mapping DFGs to parallel code

In this section we show how the DFG operators introduced earlier are mapped to

the parallel code just discussed. Parallel code for the transaction consists of the

expanded code of the body followed by frame de-allocation, using the

DeAllocate instruction, and thread termination, using the die instruction. The

die instruction ensures that when the partitions are appended, there can be no

'dropping through' the code of one section to the code of the next section. The

final transaction code consists of a header, the frame size, base address, the

parallel code and a static data area where strings are, stored. It is not in the

215

Chapter 7

interests of efficiency to copy or even simply move strings around in memory, so

the static data area is where they are kept.

Constants are mapped with the lookup operator using the loadc instruction

followed by the Lookup procedure.

loadc r7 sname
Lookup r7 r8

Figure 7.11. The lookup operator.

This simply places the constant value into an offset of frame memory for the

Lookup procedure to handle the mapping to a token. Meta string constants would

not be moved from the static data area; a pOinter to them is passed into the offset

of frame memory. For string patterns, the string-map operator translates to the

procedure String-map, again after the patterns have been placed into frame slots

beforehand.

loadc r7 11 Fred%"
String-map r7 re

Figure 7.12. The string-map operator.

The standard primitive function operators easily map across to parallel code. For

example, the subtract function is as follows

r~_ rS --loo..
-,. sub r9 r8 r7

r9

Figure 7.13. The subtract operator.

216

Chapter 7

Included in this group are our built-in functions that operate by passing down

filters and inverses directly to the storage sub-system. The procedure restrict

translates as follows

r7

restrict("student 2 {grade >= 7, age = 36}")

rB

loadr r7 "student 2 {grade >= 7 age = 36}·
Restrict r7 r8

Figure 7.14. The restrict operator.

The procedures for inverse and select are similar. Finally, the basic idea behind

the encapsulating lambda procedures is summarised. Recall that these are used

for user-defined functions. Expansion of these functions recursively expands the

body of procedure code. The procedure code is placed in the static data area for

the overall transaction and a reference to it (the result) is placed in the result slot

via loadc. Result-return and signal-return translate to the instructions:

start! r2 r3 r5 rlO and startO r2 r4 respectively.

The general translation scheme for user applications is this. First,

synchronisation is provided for procedure input (if required) and a new frame of

the appropriate size is allocated. When the frame is available, threads in the

procedure body receiving the trigger, signal and all arguments not requiring

synchronisation are started. Arguments requiring synchronisation are started

when both the argument value and new frame pointer are available. Lastly,

threads are set up to dispatch the result and termination signal.

217

Chapter 7

7.6 Performance improvements

As explained in the introduction to this chapter, performance gains are more

speculative regarding the provision of a parallel implementation. For this reason,

and because our dataflow approach is motivated by the AGNA system, we first

give their improvements and then describe how our projected improvements are

possible given our enhancements described in earlier chapters.

From the empirical results of AGNA using a 50,OOO-record database at 202 bytes

per record, the following improvements apply [HEY91j. With a single processor

and no index, improvements are as follows. Using low-level filtering-where the

result list is constructed and filtered in the storage sub-system rather than on the

heap-query evaluation times reduce from 148 seconds to 34 seconds (a 75%

saving). There is a slight increase in additional time spent in the storage sub

system using low-level filtering-from 8 seconds to 12 seconds. However, the

largest saving is in the reduced time taken to check the predicate-from 114

seconds down to 4 seconds. Applying indexes reduces response times

considerably.

For a single processor using indexes, the initial search figure of 34 seconds comes

down to 1.1 second. The AGNA system uses an extensive assortment of indexes

and quotes a total transfer rate of 0.56 megabytes per second. Our architecture

incorporates a data filter capable of a transfer rate of 12 megabytes per second on

each processor coupled with a much coarser indexing structure. Their quoted

figure of 1.1 second using a B-tree comes down to 0.84 of a second using a data

filter and a full scan of the 50,000 records. However, the average number of

records to be scanned could reduce to around half that-thus taking 0.42 of a

second. In both cases time taken to construct the result list is negligible at 0.04 of

a second.

218

Chapter 7

When the same query was run using an INGRES database the execution time was

0.3 of a second. Therefore, potential response times using our approach would

come somewhere between the B-tree-indexed, persistent object system (AGNA)

and the commercial database product (lNGRES). Furthermore, processing

queries in parallel enhances performance rates still further.

Speedup is linear for non-indexed access, whereas for indexed records the

optimum number of processing elements-called DPEs in our architecture-is

frequently quoted as eight [CHA96]. However, we suggest using ten DPEs for

the RAID system proposed and feel this is a reasonable compromise. Scale-up

where the database extent is increased in proportion to the number of processing

elements-shows response times are constant where there is no index. Where an

index is used there is a gradual increase in response time in relation to the

number of machines used. This is due to the increase in communications

overhead.

The above figures all assume an even distribution of record placement across the

processing elements. We showed this is possible and indeed far more likely for

large data sets by generating random numbers to simulate entity identifiers and

checking the standard deviation was within acceptable parameters.

Further comparisons between our approach and INGRES, when parallel

evaluation of queries is taken into consideration, show the following. Relational

databases, such as INGRES, have weaknesses when used for graph traversal

operations because of the 'flatness' of the relational data model. Furthermore, in

languages such as INGRES, complex operations have to be embedded in a host

language that gives rise to impedance mismatch problems and the difficulty of

allowing the compiler to optimise expressions. Additionally, there is a lack of

expressive power and semantics in relational languages, which is only now being

219

Chapter 7

addressed in standards such as SQL:1999. But, while these are still in their

infancy, functional languages have used such features for many years.

Finally, the concept of using the RAID copy directly for inverse function steps in

graph traversal operations means traversal times are reduced. From the

empirical comparisons between AGNA and INGRES cited earlier, reverse

traversals were between 1.9 and 2.6 times slower than forward traversals. This

disparity is not applicable in our system.

7.7 Discussion

Following on from chapter 6, we have introduced further concepts in this chapter

that also form part of our architecture. These are: transformations to a core sub

languagei the use of optimisation techniquesi the use of an abstract reduction

machinei and translation of sub-expressions to parallel code using dataflow

graphs. The aim is to produce fine-grained threads of code for parallel execution.

These choices are now discussed.

7.7.1 Using a core sub-language

Using a core sub-language taken from the query language is a standard way of

reducing a query language to a more manageable sub-set for the compiler to

work with. The sub-language has eliminated from it all features of the query

language that make programs easier to write, which at the same time add no new

expressive power. The smaller set of instructions can then be used with the

reduction machine to reduce expressions in a more controlled way.

Using a reduction machine also complements the functional paradigm more

naturally. Moreover, if an expression can be optimised by passing down

generator/filter combinations directly to the sub-system, the user need not be

220

Chapter 7

aware of this. So functions like restrict can be used safely as they are brought

into use by the compiler, not the user.

7.7.2 Optimlsations

The optirnisations introduced in this chapter fall into three categories. Firstly,

there are the traditional algorithrnic- and implementation-based optirnisations

that have been around for some time. Secondly, there are the optirnisations first

introduced by AGNA that pass down selections and projections (generators and

filters) to the storage level for evaluation using open lists. Lastly, there are our

optirnisations that pass down string and text functions to the storage level and

those that improve the treatment of inverse functions.

The functions that operate on strings and texts are an enhancement of the AGNA

work as they have the capacity to offer far more powerful searching operations to

the user. Inverse functions are handled by adding an operator to the expression

and passing this down too. For entity-entity traversal, the storage sub-system

can then use the inverse triples and the operator to produce a set more quickly

than by using a generator-filter combination and inferring inverses by software

alone. Again, this is not obvious to the user.

7.7.3 Why use dataflow?

The central theme in this chapter has been the strategy of using a dataflow model

supporting a MIMD parallel architecture to exploit the inherent parallelism in

functional languages. Our model uses fine-grain parallelism with data-driven

execution-both for computation and for long latency disk input/output. Earlier

research into dataflow architectures has clearly shown this is an efficient way to

mask the long latencies inherent in a parallel computer [MOR99] [NAJ99]. As a

model of computation, dataflow has a long history. It has demonstrated its

flexibility and efficiency in representing computation by the wide variety of areas

221

Chapter 7

in which it has been used but is particularly suited to the functional paradigm

UUL97].

7.7.4 Comparison with AGNA

AGNA was developed as a persistent object system using the functional

paradigm and list comprehensions built around a lisp-like syntax. Coupled with

a MIMD parallel processing model and dataflow graphs, AGNA showed how

subordinating tasks to a lower level can vastly improve upon one of the most

serious shortcomings of functional languages: performance.

However, in AGNA the user has to formulate queries in such a way as to make

predicates for passing to the storage sub-system explicit to the compiler. We do

not take this view, instead preferring the use of optimising techniques applied to

queries supplied directly by the user in their raw form. This is easily achieved as

it merely involves collecting together similar variables with their functions which

are bound to the same entity class.

Examination of the schema information during the optimisation process

identifies functions that range over the same domain thus enabling grouping of

predicates to be done safely. One way to do this is to move sub-expressions

around within the expression list that the user supplies in their query. This is the

way many list optimisations are handled. Again, the strategy is that a little more

time spent in the pre-processing stage can pay dividends in later query

evaluation-especially when handling large data sets.

AGNA made extensive use of indexes on all object fields. This has obvious

implications for update routines but was in keeping with the thinking behind

relational languages that use similar strategies. Using a coarse index-sequential

structure and an on-processor data filter, our architecture is more suited to set

222

Chapter 7

collation of triples and records. Moreover, because of the way strings are held

in look-up tables-searches for incomplete strings can be multi-cast to all disks in

the array, in the same way as triple requests are handled.

7.7.5 Parallel Haskell

Included in the proposals for Haskell 98, is the ability to call 'C' operating

systems functions directly using the primitive ecaU. The syntax of this is: ccall

proc e, '" e.. Here proe is the name of a 'C' procedure and el ... en are the

parameters to be passed to it. This is used in their monads system for

input/output [PEY93j.

The ecaU operator is, in fact, a constructor-not a function-that allows stricter

control of its use and reduces type-checking constraints. However, it is not clear

if the use of this operator can be embedded in a nested expression of arbitrary

complexity as our string manipulating functions permit. Moreover, as our string

manipulating functions are part of the language, they can be called directly and

do not require an explicit call through the operating system. An example of eeaU

in a monad for 'putting' a character to the screen translates to the expression:

putcIO a = ccall putchar a

7.8 Summary

This chapter has examined three crucial areas in our architecture: transformation,

optimisation and translation. Transformation involves converting a user query in

the model language into a sub-language to make the work of the compiler easier.

This is shown together with examples. Optimisation can sometimes be

performed on a given user query-particularly when the query involves using a

list comprehension. Earlier work in this field is summarised as an introduction to

our particular optimisations that involve inverse functions, text searching

functions and selection functions.

223

Chapter 7

We adopted a scheme that uses dataflow graphs (DFGs) to show the translation

of queries into sections of code that can be executed in parallel. DFGs were

chosen because they are well understood and complement functional languages

nicely. Again, we highlighted the general concepts before introducing our

enhancements in the areas of text searching, inverse functions and low-level

filtering of extents where examples are given to show how the concepts are

applied. A brief description of graph analysis-using method of dependence

sets-shows it has been proven that comprehensive parallel processing of queries

is not always advantageous. The process of mapping DFGs to parallel code is

covered showing how our functions fit into the overall scheme.

Finally, the performance gains possible are described. In particular, how our

approach compares with AGNA and INGRES databases, and how our timings

come between these two systems. When taking into account parallel processing

and redundancy, improvements are greater. Using our RAID scheme for inverse

graph traversal operations removes the disparity of execution times between

forward and reverse searches in AGNA.

224

Chapter 8

Chapter 8 Database creation, population and maintenance

8.1 Introduction

Up to this point in this thesis we have discussed a database architecture based on

the triple store for all data and identified areas where there are weaknesses due

to the homogeneous nature of this approach. Our answer to this is a new

architecture that combines the benefits of the functional data model with those of

the relational data model in such a way that parallel processing of graph traversal

operations is more easily accomplished. Part of this architecture involves storing

lexemes separately from entity triples and attribute records so they can be

searched more easily. In this chapter we show how the standard operations such

as database creation, population and maintenance are achieved and discuss

integrity and security issues.

Throughout the rest of this chapter we frequently refer to two running example

databases. The North Yorks crime database, with 2,501 crimes used for training

purposes, and a larger database with 500,000 crimes. This is done to show how

our architecture scales-up with a realistically sized database for timings and

space requirements. The schema and triple breakdown for the North Yorks

crime database are shown in appendices Al and A2. In section 8.4 we introduce

another, smaller crime database that is used in examples. This is to show

instances of all data types and the outline structure of data in records.

8.2 Creating a new database

Creating a database often involves an experimental and development stage

before the final database schema and other meta data is agreed upon. It is only

then that full population of the database can proceed. In this chapter we use the

term population to mean adding bulk data to the database to put it in a position

where it can be used effectively. However, as part of the database set-up

procedure various parameters and constant values need agreeing before

225

ChapterS

population can begin. These include page and buffer sizes, reserved integers for

the undefined (@) and unknown (?) null values that are supported, the MIN and

MAX values for each of the type domains, and the reserved integers to be used

for default entity values, plus any other reserved values. We note that the range

of built-in types will be extended to include the type text, introduced in chapter 4,

and the type binary large object (BLOB). BLOB types are used for non-textual

attributes such as fingerprints and photographs and are deemed essential to

provide for the richer type structure required in our application domain. The

token space for each type is drawn from the domain of 32 bits and allocated as

shown in Table 8.1. (This means, of course, that a 64-bit architecture can easily be

catered for too.)

type ratio range type label
Siring 4 00000000 to 3FFFFFFF OOXX
Text 2 40000000 to 5FFFFFFF o 1 0 X
BLOB 2 60000000 to 7FFFFFFF o 1 1 X
Non-lex 1 BOOOOOOO to BFFFFFFF 1 0 0 0
System 1 90000000 to 9FFFFFFF 1 0 0 1
Integer 2 AOOOOOOO to BFFFFFFF 1 o 1 X
Real 4 COOOOOOO to FFFFFFFF 1 1 X X

(Where X indicates "don't care".)

Table 8.1. New type labels.

The justification for the intervals is largely based on what is in place in the

current system (see chapter 2 table 2.1). The only difference being that a sub

domain for internal strings is no longer needed so this has been merged with that

for strings. Recall that strings are now held delimited toward level, so a larger

domain will be required for them. The range above allows for 1 billion

instances-more than adequate in our case. The sub-domains for text and BLOB

types are just arbitrary: 500,000,000 should be adequate for each. The sub

domain for text is used for document identifiers and the sub-domain for type

BLOB is used for BLOB identifiers.

226

Chapter 8

In addition to the above, the following data structures are also required. The

schema table held in main memory (introduced in chapter 5) and the string tables

and lexical triples both held on disk (discussed in chapter 4). The meta data is

held in triples, as is the case now and can easily be accommodated in main

memory-membership triples excepted. The meta data for the North Yorks

crime database, whose schema is shown in appendix A1, needed 6,170 triples (9

pages) for storage and this figure is unchanging (it does not increase in relation to

the volume of instance data). The meta data to be stored includes the 'base_load'

files that TriStarp uses to hold base types, constructors and string functions as

well as the standard manipulation functions, such as head, tail and map used in

user-level functions. The addition of meta data is handled with the functions

introduced in chapter 5, which are: insert_typcdec(dec), inserCconfun_dec(dec),

inserCnonlex_dec(dec), insert-Jlfun_dec(dec) and insert_sfun_dec(dec). The ordering

is on the record identifiers shown in Table 5.1.

8.3 Populating a new database

Populating a new database is achieved using macros that can handle the bulk

creation of membership triples and instance data in the form of entity-entity

triples and entity-attribute records. In this section, we describe the handling of

membership triples and outline the procedure for instance data. The treatment of

instance data is then explained in later sections.

8.3.1 Inserting membership triples

The number of 'is-a' or membership triples broadly reflects the sum of the entity

instances. In the North Yorks crime database there were approximately 10 times

more membership triples than crime records. (26,500:2,500). Membership triples

cannot be wholly accommodated in main memory, so need spreading across the

disk array. After the schema information has been loaded as part of the database

227

Chapter 8

set up stage, there are unique identifiers for the various non-lexical types to be

added-employer, person, etc.

In the North Yorks crime database there are 2,501 records and 8 non-lexical entity

types. This combination generated 26,500 membership triples. With a 16k-page

size and 24-byte triples, this means page capacity is 682 triples-thus

necessitating around 40 pages. The larger database, with 500,000 records, might

generate 5 million membership triples requiring around 7,400 pages-too many

to fit into primary storage. These need spreading evenly across the OPEs.

Membership triples are inserted with the interface function inserCnon-lex_defldeJ>.

The format a membership triple takes is as follows:

<id_bits, "is-a", " employee 11 , Se, NULL, tirnestamp>

where "is-a" and "employee" are reserved integers from the system domain and

$e represents the randomly generated, 28-bit identifier for this particular instance

of an employee. The "id_bits" and "timestamp" fields were discussed in earlier

chapters. The fifth field is unused. Because of object migration no semantic can

be attached to the entity identifier in field four.

Membership triples are ordered on their 'is-a' tag and, within that, on the field

three type. The data placement algorithm uses the system-generated entity

identifier (which is guaranteed to be unique) to decide which OPE will hold the

triple. If ten OPEs are used-as suggested in section 7.6-then the placement

algorithm needs to inspect the least significant digit (base 10) of field four where

the range of 0 .. 9 will determine on which disk the triple will be placed. This will

ensure all membership triples are spread across all participating disks in the

array.

228

Chapter 8

Using as an example the larger database, the figure for membership triples is as

follows. If 5 million membership triples are to be stored across ten DPEs, there

will be around 500,000 to each disk. At 24 bytes per triple, this represents around

12 MB of storage required per disk. With 5 million randomly generated

identifiers used for (say) 10 entity types across 10 disks, the probability of a fairly

even distribution is quite likely. In fact randomly generating 5 million integers

and distributing them in this way gave a mean of 500,000 and a standard

deviation of 508.

To search 12 MB of storage with a search accelerator takes around 1 second. With

the membership triples ordered on type, a coarse index (held in memory) enables

an indexed sequential search method to be used to reduce search times further.

8.3.2 Inserting instance data

Populating a new database with raw data is done with the aid of macros. The

use of macros has already proved successful with builders of TriStarp databases

and a full description is given in the TriStarp manual [DOT96j. After macro

creation (by the DBA), first the attribute records and then the entity triples are

loaded, linked and inserted into the homogeneous triple store. However, in our

situation there are some notable differences that reflect the alternative approach

to storage that we adopt. First, there are different arrangements for storing entity

attributes and entity-to-entity links. Second, inverse copies have to be created as

part of our redundancy scheme. Third, we use different data structures for

lexemes to provide the mapping to entity identifiers.

So the additions to these data structures are an important part of populating a

database. The next sections show how additions of the various forms of instance

data are handled using examples where appropriate.

229

Chapter 8

8.4 Attribute records

One of the crime databases used for training purposes that we examined had

entities person and report. We use these in the following pages with

embellishments to show examples of all types used. The schema is shown in

Figure 8.1 below.

Figure 8.1. Raw data schema.

The raw data is held in records (usually one per line) grouped on a variable

identifier for the entity class name-e.g., per for entity person. The data is entered

using a typical higher-level graphical interface that controls the format of data

entries. This is the standard way for data entry as used (for example) in

INDEPOL [SOU97]. The attribute links in Figure 8.1 might be set out as follows:

per (pers_no, sex, race, colour, details,

finger-print, age, height, previous, keywords)

and an example of the mapping to instance data is shown in Table 8.2:

230

ChapterS

per Instance data
pers no ~ "42015"
sex ~ I'M"
race ~ ?
colour ~ @

details ~ TEXT01 -link to file personal-42015.doc
finqer _prints ~ BLOB01 -link to file finqer-print-42015.pic
age ~ 36
heiqht ~ 3.74
previous ~ TRUE
keywords ~ ("GBH","ABH")

Table S.2. Example of attribute data values.

The field descriptions are as follows:

field description

I'string- quotes indicate string type (N.B. - a single
character such as "M" is counted as a string.

? reserved for unknown value
@ reserved for undefined value

TEXT01 references the document that follows

BLOB01 references the binary large object that follows

36 integer

3.74 real

TRUE Boolean

{ ... , ... , ... } used for list of attributes

Table S.3. Description of record fields.

As mentioned above, it is important to stress that entering raw data into the

system (not the database yet) is done using a strict format. This enables

continuity to be maintained. Other constraints on data entry- such as how the

text is entered and delirniters to be used-are not discussed here, suffice to say

that there is a common 'look and feel' to all aspects of data entry. Entering an

attribute record proceeds as follows. A new entity identifier-guaranteed to be

unique-is generated from the sub-domain of non-lexical types (Table S.l. refers).

The attribute record is written to the DPE indicated by the last digit (base 10) in

231

Chapter 8

the entity identifier. In chapter 6, section 6.4.2, we introduced attribute records

and the fields they comprise which have the following structure

«id_field,entity, (relations},{attributes},timestamp»

These are now discussed.

8.4.1 Id_field

This is a fixed length field holding the following information. The length of the

record, the number of attributes in the record and one bit to indicate whether the

record is 'live' or 'dead'-Le. current or superseded.

8.4.2 Entity field

This is the fixed length, randomly allocated surrogate to be used as a guaranteed

unique identifier for every instance of all entities.

8.4.3 Relations field

The (relations} fields-shown in braces to indicate the storage of a set-comprises

ordered pairs of fixed-length relation identifiers (4 bytes) and offsets (4 bytes)

into the record. So for the example in Figure 8.1 this field might contain

{<#pers_no,'offset>,<#sex,'offset>, .;., <#keywords,'offset> }

where each #x refers to the relation identifier and Aoffset refers to its starting

position later in the record.

8.4.4 Attributes

For (attributes} fields, when a record in raw data format is read the order of the

fields is set out in the code of the macro created. Each field is comma-separated.

232

Chapter 8

As such, the type of each attribute can be inferred from the schema data so that

lexemes are mapped in the correct way for their respective type signature. This

means attributes of type string (indicated by" " around a value) require

storing in the string table as space delimited words. For example, if a single

valued attribute had the value "bogus gas-man", there would be two entries in

the string tables-one for "bogus" and another for "gas-man".

8.4.5 Timestamp

This is simply the 32-bit times tamp for time of insertion.

Unknown (?) and undefined (@) values are reserved 32-bit integers. This leaves

the treatment of text types, BLOB types, multi-valued attributes and default

attribute values to be discussed.

8.4.6 Text type

The way text documents are created is governed by the particular format for that

class of document. Documents can have field identifiers, sections and sub

sections and, unlike straightforward string attributes, they are searchable. The

reason they can be made searchable is that the type text can carry with it a whole

range of functions to perform specific searches aimed at certain fields of a

document. For example proximity searches-where it is required that word x be

no further than y words apart from word z-are applicable to documents but not

strings.

Moreover, document searches can seek words in particular sections of a

document, such as in the abstract or not as the case may be. These searches

cannot be done easily using the string triples alone. A discussion on this was

presented in chapter 4.

233

Chapter 8

When a database is populated each word in a document (stop words excepted)

has to be added to the string tables. This is a similar process as happens with

strings and, once done, the address of the document is added to the appropriate

part of the attribute record. This is used if the document needs to be displayed.

If it is desired, creating a set of document triples could provide an inverse

mapping from document to entity (as with other classes of lexemes). Note that

the type text is similar to the type CLOB (Character Large OBject) that is included

in the proposals for what is now designated SQL:1999 [MEL02].

8.4.7 BLOB type

The entry in an attribute record that refers to a BLOB is merely the address of the

object on disk. BLOB types are not searchable in the same way that text types

are, but they might be in the future. Again, as with text types, the constraints for

the type class will allow certain functions only to access BLOBs so the control is

maintained at a type check level. We note that BLOB type is to be part of the

SQL:1999 standard [MEL02].

8.4.8 Multi-valued attributes

Included in the attributes there may be some multi-valued relations (sometimes

referred to as bulk data or l:N relationships). We note from the foregoing

discussion that these will be identifiable from the schema data (that checks the

type signature) and the actual raw data where any multi-valued relations will be

enclosed in braces I } in comma-separated format. The layout for the attribute

field of a record is

{ <attribute-length, value>, ... , <attribute-length', value> }

with examples (where the attribute-length value refers to bytes used)

234

Chapter 8

{<5,"4201S">, <l,nMn>, <4,?>, <4,@>, <4, "TEXT01>, <4, "BLOB01>, <4,36>,

<4,3.74>, <4, TRUE>, <{<3,"GBH">, <3, "ABH">}>, <4,timestamp» (1)

8.4.9 Default values and intensional values

Recall from chapter 5 section 5.4.6 that default values for an entity attribute

(lexical or non-lexical) are possible, as are intensional definitions. These are a

fundamental part of the data model and must not be compromised. Examples of

these are

age (x:person) <= 30;

age Fred <= age MarYi

/* default function definition */

/* intensional function definition */

There can be only one default function definition for each function in the

database and there will be very few intensional function definitions. The schema

table identifies which functions have intensional definitions and they are held in

main memory as part of the schema data. In the attribute records (or entity

triples), a reserved integer-EXP-associates the particular attribute with an

intensional definition which is then looked up.

8.5 Storage requirements and placement on disk

Storage requirements and the placement of data on disk, is now considered for

the following data types: attributes, string tables and lexical triples, entity triples

and documents.

8.5.1 Attributes

Once an attribute record has been prepared and all the relevant entity mappings

have been created in the lexical data structures, the record is written to disk. As

with other data, the last digit (base 10) of the entity identifier determines on

which disk the record should be placed.

235

ChapterS

Following the discussion on attribute layout, the total storage needs for attributes

are as follows. From the above example (1) the requirement for the person record

would be 56 bytes-per-record-not forgetting a byte for each attribute to hold the

length. To this must be added the id_field, the entity identifier, the set of

relation-offset pairs and the time the record was entered. The general rule for the

storage requirement for attribute records for a database is summarised by the

equation

where C = number of entity classes, I = instances of each class then, for each

instance: n = number of attributes, s = id_field size, e = entity identifier field size,

r = relation field size, 0 = offset field size, a = attribute size and t = timestamp

field size. However, in the North Yorks crime database the above equation is not

so easy to implement. Unfortunately, we do not have access to the raw data: it is

still considered sensitive and thus classified. However, using the triple store, it is

possible to extrapolate the data and this is shown in appendix A2. Some of this is

reproduced in Figure 8.2 and used in the following sections which show the

storage requirements using our new architecture and data structures.

The information in Figure S.2 comprises four triple types. The membership triples

map easily to our new ~rchitecture and are not the main focus of discussion here.

The entity -7 entity triples are likewise straightforward to map across and are

discussed in the later section S.5.4. The other two triples types, showing the

breakdown of string triples and non-string triples, are required in several data

structures-namely attribute records, string tables, lexical triples and documents.

In all cases, the format a -7 b indicates a mapping from entity a to attribute b

where b could be another entity or a lexical value etc.

236

Chapter 8

Numbers of membership triples for each entity type
erm 2,501 itm 8,598 pit 5,002
soe 2,501 gtn 2,501 mop 2,501
day 2.770 bet 147 Total 26,521

Numbers of entity-entity triples (A ~ B) - relation name omitted
gtn ~ itm 8,598 erm ~ gtn 2,501
erm ~ mop 2,501 erm ~ soe 2,501
erm ~ pit 5,002 soe ~ bet 2,501
pit ~ day 5,002 Total 28,606

Numbers of string triples - Including Internal string triples
erm ~ tag' 2,501 itm ~ eat' 8,700

• ~ eir ,!l~,OOO .. " " ~ des 118,000

" ,2,501.1 • '''t'''':'P'~ """1
+ + ~ .. !l,.59.8i

" ~ sep 314,000 mop ~ hfe' 2,700 ,,.,,,. ", . ",.-;
• + . 2,501 : • ~ mud' 4,400

" ~ cno* 5,002 • ~ poe' 9,800

" ~ oir* 2,501 soe ~ pat' 6,800
• ~ ofn' 4,400 • ~ ped' 2,501

gtn ~ prt' 2,501 • ~ add 4,000

" ~ get' 6,700 " + ~,'501J
bet ~ bed' 147 day ~ dywk' 2,700

Total = 592,000

The remaining non-string triples
erm ~ hoe 2,501 itm ~ val 8,598
gtn ~ ant 2,501 mop ~ glv 2,501
" ~ ear 2,501 • ~ Igt 2,501

" ~ eye 2,501 " ~ fen 2,501

" ~ emp 2,501 • ~ ied 2,501
day ~ dno 2,770 bet ~ pph 147

" ~ mno 2,770
,

~ osb 294

" ~ yno 2,770 soe ~ irl 2,501
• ~ dnwy 2,770 • ~ gqd 2,501

Total 47,630

Figure 8.2. North Yorks crime database - Triple allocation (part of).

In the section for string triples there are four (shaded t:"C) that have an extra 2,501

(or 8,598) triples included in the figures. The string totals for these four are

sufficiently large to require that each of the entity classes will need the string

identifier triples as well as the totals for the (now broken down) string triples.

237

Chapter 8

Examination of the data in appendix A2 shows there are over 639,000 lexical

triples of which some 592,000 refer to string attributes. Comparing the number of

triples required in this database, to the size of attribute records held in our

structure is difficult to do. From the breakdown of triples it is reasonable to

assume that the scp (definitely) and cir (probably) attributes would now be held

as documents of type text. Whereas add and des would most likely stay as strings.

This is because a sample inspection of add and des attributes showed strings are

spread more evenly across their triples.

The 47,630 non-string triples all hold a value that fits into 4 bytes. To this must

be added the 8 bytes for the relation-offset pairs and 1 byte for the attribute

length per string. The large attributes that relate to scp and cir-now treated as

text documents-have 383,000 triples between them (314,000 + 69,000). The

count of words in the scp attribute gives a total of 315,OOO-very close to the triple

total of 314,000. This is not surprising as each triple holds six characters of a

string and the average length of a word in the English language is around six

characters.

Applying this to the two text attributes gives 383,000 words or around 2.3 million

characters to be stored which, at 1 byte each, equates to 2.3 MB for the document

storage. In each record there will be 4 bytes for the link field, 8 bytes for the

relation-offset pairs and 1 byte for the length (total 13 bytes). As there are 2,501

for each of the two text types, this translates to 5,002 documents sharing the

383,000 triples.

The remaining string triples total of 209,000 averages across 39,000 instances.

This figure is arrived at by adding the entity identifier count for the string triples

minus the text triples-the relevant attributes are marked (*) in Figure 8.2. This

gives around 6 words (bytes) per record (209,000/39,000) to which must be

238

Chapter 8

added the 9 bytes above. Putting all this information together and scaling up for

the larger database example, the storage requirements for attribute records are as

are as follows.

non-string triples 47,630 x (4 + 9) 619,190
string triples (exe. documents) 39,000 x (6 + 9) 585,000
document values 5,002 x 13 65,026
actual documents 383,000 x 6 2.3MB
record_length(2) + id_field (1) + entity surrogate (4) +
second of entry (4) = 11 x 26,521 291,731

TOTAL 3.9 MB
x 200 for larger database = 773 MB

Table 8.4. Attribute record storage requirements (in bytes).

With an allocation of 10 DPEs, the above data is stored at around 77 MB per disk.

In addition to the lexical values held in the attribute records, the requirements for

the string tables and lexical triples have to be calculated .

. 8.5.2 String tables and lexical triples

The duplication of strings might at first seem wasteful. But, this is mitigated by

the benefits of greater search opportunities (discussed in chapter 4), together with

the redundancy value of duplicating the string table in reverse order. Moreover,

because of the nature of our application domain (investigative systems) there is

likely to be a recurring vocabulary in strings and texts following the initial

loading of a few records.

By first eliminating 'stop words' the dictionary of the domain quickly becomes

clear; an inspection of the North Yorks crime database confirmed that there is

much duplication of short strings across records, and of individual words in long

strings. In the current system, using the triple store, the first occurrence of a

string generates a set of triples to hold the full string. Thereafter subsequent

239

Chapter 8

instances of the same string merely result in one triple being added to the store.

In our case each new word added requires a new row in both string tables;

repeats of a word only require the occurrences field to be incremented.

The size of the string tables is a function of the number of unique values to be

stored. A standard dictionary might have 0(68,000) separate references that we

use as an example case in this section. The composition of a table row is as

follows

word token length occurrences
averages (say) 7 bytes 4 bytes 1 byte 2 bytes

so a reasonable estimate of the size might be 68,000 x 14 bytes = around 1 MB of

storage required, although this is highly variable. This table is duplicated under

the RAID architecture where the second copy is in reverse string order. The

storage requirements for the lexical triples are more complex to calculate. In our

example for the North Yorks crime database, there are 36 lexical attributes of

which 18 are for non-string types. For these attributes each value is capable of

being held in four bytes, so the triple total of 47,630 is the same.

For the 18 string attributes, the two large, text attributes for cir and scp are

discussed below. The other 16 attributes are either one word attributes or

represent multi-valued attributes. Even the attribute total for des (118,000) is not

excessive bearing in mind the 8,598 instances of itrn in the database. Moreover,

examination of the des attributes showed there is very little word duplication.

This translates into a triple-far-triple measurement. Therefore there would be

around 209,000 string triples for these 16 attributes.

8.5.3 Text attributes

For the remaining two text attributes (scp and cir with 314,000 and 69,000 triples

respectively) simply mapping their total triples of 383,000 to words is not

240

Chapter 8

accurate enough. It does not take into consideration word duplication that can

occur in the same document. To reach a figure for the scp attribute we counted

the number of words that re-occurred in the first 10 records. These first 10

records contain 1,113 separate, space-delimited words of which only 631 are

unique, representing 56%. If this is applied to all the words that comprise the

two text attributes-and this does not seem an unreasonable assumption-their

combined word total of 383,000 @ 56% equates to around 215,000 unique words

that require storage as string triples.

We note that there is also much duplication of strings across records, so the

215,000 unique words correspond to the number of string triples needed but not

rows in the string tables. This is because every occurrence of a unique word in

every attribute requires an entry in the string triples data structure. Putting the

foregoing figures together we can arrive at a lexical triple store requirement as

shown in Table 8.5 where a scaling up factor of 200 gives similar figures for the

larger database of 500,000 records.

number of string triples non·strlng text attributes totals
records triples ..

2,501 209,000 47,630 215,000 471,630

500,000 41,800,000 9,500,000 43,000,000 94,300,000

Table 8.5. Lexical triple store requirements.

A summary of the storage requirements for all structures is discussed in

section 8.5.6. Next we consider the addition and storage of entity triples.

8.5.4 Entity triples

In the current system the raw data is inserted into the database in the following

order. First the lexical attributes are loaded using predefined macros that match

241

Chapter 8

the ordering of the raw data, then the entity triples (or links) are created using a

unique key from the attributes. Again, this is done using macros and local

variables to obtain the inverse (A-7E) of a function (E-7A) that gives the entity

identifier to be used in the link. Using our example from Figure 8.1, we could

imagine a link called link from person -7 report where we want to connect a person

with pers_no "123" to a report with rep_no "789". (In this case the linking attributes

are guaranteed to be unique and, as such, act like the primary keys in a relational

database.) To do this, inverse functions are used on the two attributes to obtain

the required person and report identifiers and the link is then set up. Instructions

to do this as part of the macro are:

$p ;::;: head inv....,pers_no "123 11 i

$r == head inv_rep_no 11789";

link $p <= include $r;

As inverse functions are not physically stored in the current system, the above

sequence can involve considerable effort in collecting the required triples to map

to the inverse. The result is always a list-hence the need to use head to extract

the desired element. With our data structures we can use the string table to

ascertain the entity identifier-given the lexeme and relation-without an

exhaustive search of the records themselves.

Once the two global variables-$p and $r-hold the two entity identifiers for

person and report, the triple can be written to disk. In the case of the above

example, the following triple is constructed (where all fields are of fixed length).

~id_field, link, person, report, NULL, timestamp;>

This is stored on the disk that shares the last digit of the person identifier. In the

case of multi-valued entity -7 entity relationships, for example, the mapping

person -7 crime via relation commits in Figure 8.1, the process is as follows. First

242

Chapter 8

each given key attribute value for the range (crime) is used to generate a range of

entity identifiers, i.e. a set of crime identifiers in our case. Then the domain

identifier person is obtained, as described above for inverse functions, before

being mapped to each crime identifier in the set. This results in the following

triple assignment-the existence of entity identifiers $p for person and $c1, $c2

and $c3 for crime is assumed.

«id_field, relation, $p, $cl, NULL, timestamp»

«id_field, relation, $p, $c2, NULL, timestamp»

«id_field, relation, $p, $c3, NULL, timestamp»

The storage on disk is such that triples are grouped into entity classes first and

then ordered on relation field, domain field and (if needed) range field. Storage

requirements are as follows. From the triple summary in Figure 8.2, we note that

the North Yorks crime database has seven entity -7 entity relations that use 28,606

triples which, at 24 bytes per triple, amounts to a storage requirement of 686,000

bytes. For the larger database of 500,000 records there would be 5,721,200 triples

needing 137,308,800 bytes of storage. When these are spread across 10 OPEs and

duplicated for RAID and inverse function use, there are around 27 MB on each

OPE.

8.5.5 Documents

Finally, in this section, we must consider the additional storage requirements for

the field delimiters in the actual documents themselves. Recall that the 383,000

triples equate to 2.3 million characters (bytes) at 6 bytes per triple. Also recall

that the number of triples relates closely to the number of words. So, with

383,000 words split into an educated guess of 14 words per sentence, there would

be around 27,300 sentences. Each of these needs a start and stop byte giving

55,000 bytes of storage.

243

ChapterS

To this must be added some bytes for section and paragraph delirniters although

there will be fewer of these. It's not easy to arrive at an accurate figure for the

number of sections or paragraphs, as each document will differ greatly.

However, using the statistics from this chapter for example, we can estimate that

there could be around 1,000 sections and 4,000 paragraphs in the documents that

total 383,000 words. This would result in another 5,000 start and stop bytes

needed totalling 10,000 bytes.

The final analysis of individual documents could vary greatly but, using our

assumptions, the revised amount of space required for the documents is now

shown below.

database document bytes plus plus section total storage
size word size required sentence and paragraph requirement

delimiters delimlters In bytes

2,500 383,000 2,298,000 55,000 10,000 2.36 MB

500,000 76,600,000 459,600,000 11,000,000 2,000,000 472MB

Table 8.6. Total document storage requirements.

8.5.6 Total storage requirements

To summarise this section, we give figures for typical storage requirements with

the running examples used. In some areas the figures are fairly arbitrary but give

an indication of how the architecture scales up. The figures also include an

amount for a temporal index: this is discussed in the next section.

244

Chapter 8

2,500 record crime 500,000 record
database database

triples or storage required triples or storage required
records (in bytes) records (in bytes)

schema triples 6,170 148.000 6.170 148.000

membership triples 26.521 636.000 5.304.000 120.000,000

entity triples 28.606 2 x 686.000 5.720.000 2 x 137,300.000

attribute records 26.521 I.S61,OOOt 5,304.000 312,200,000

documents - 2.360.000 - 472.000.000

string tables - 2 x 1.000.000 - 2 x 1.000.000

lexical triples 471.000 5.652.000 94.300.000 1.131.600,000

temporal index - negligible - 880.000,000

TOTALS around 13.7 MB around 3.2 GB

Table 8.7. Total storage requirements.

For a comparison with the current storage requirements of the Birkbeck Triple

Machine (BTM) the following is noted. Of the triples shown in appendix A2, the

crime pattern analysis triples are not applicable; they were added to the software

for a specific purpose and are not included in our calculations in this chapter.

The remaining 710,095 triples are packed 382 triples-per-page with a page size of

16,384 bytes. Comparison with the figure of 13.7 MB in Table 8.7, however, has

to be made assuming a full page capacity of 682 triples (as we have done above).

Therefore a fairer measure of the storage requirement for the BTM is as follows.

710,095 x 16,384 17
--'----'-- '" MB

682

The 13.7 MB above provides a space saving of 3.3 MB or '" 19% on the BTM.

In our system, the placement of data on to a disk in the array is shown in Figure

8.3 where each section has a pool area for additions.

t Taken from Table 8.4 minus the actual documents themselves.

245

!

8.6 Indexing

Chapter 8

system triples (schema)
membership triples (is-a)

entity triples
attribute records

documents
temporal index

string tables
lexical triples

Figure 8.3. Storage architecture.

One of the features of this architecture is that indexing is kept simple and at a

coarse level. This complements the use of a search engine. There is little to be

gained-indeed time can be added-in maintaining a complex indexing structure

to give a more precise entry point into the disk arrays [MAL79]. Often such

complex indexes cannot fully reside in main memory and overheads can

accumulate as sectors are retrieved to follow a potentially lengthy trail of

pointers to the data. Maintaining the integrity of complex indexes is also costly.

However, index provision is an essential part of a storage system, so the

proposals for our architecture are set out in the following sections.

8.6.1 Schema triples

There are only 6,000 or so of these which, at 24 bytes each means storage of

148,000 bytes. This is sufficiently small and can be accommodated wholly into

main memory occupying around 12 pages using a 75% occupancy rate. Indexing

is therefore not an issue.

246

Chapter 8

8.6.2 Membership triples

With around 12 MB per disk this gives a complete search time of around 1.2

seconds using sequential scan (n = 12 MB and search rate = 10 MB/sec). If each

disk had a local index for entity class boundaries within its allocation of

membership triples, this would give an indexed-sequential entry point for each

class of entity on each disk to be used if required. This could bring scan rates

down to an average of .6 of a second.

8.6.3 Entity triples

At 24 bytes per triple and duplicated in inverse function order, these require

around 275 MB of disk space spread over 10 disks. Again, a simple index on

entity class boundaries provides an indexed sequential method of access to

reduce the 27+ MB to be searched on each disk. Note that each disk needs two

indexes-one for the normal function mapping and one for the inverse that

doubles as a RAID copy.

8.6.4 Attribute records and documents

After the lexical triples and temporal index structure, this set represents the

largest to be stored on the disk array. Inspection of the storage requirements for

the attribute records and documents in Table 8.4 reveals the following. Of the 3.9

MB total storage for the North Yorks crime database, around 2.3 MB refers to

documents pointed to from their respective record via a document identifier.

Scaling these figures up by 200 means that, for the larger database, there is

around 300 MB relating to attribute records and around 470 MB relating to the

documents themselves. Therefore searching the index for attribute records is

confined to the 300 MB held in class order on each disk at 30 MB per disk and,

within that, in relation and entity identifier order. As before, using indexed

sequential access and a search accelerator, the required records can be identified

on each disk in parallel for return to the controlling processor.

247

Chapter 8

The documents themselves are searchable and have structure (sub-sections)

within them and are indexed indirectly via string identifiers and entity

identifiers. Documents also have their own set of search functions applicable to

text type attributes only-as described in chapter 4. The start and stop section

markers can be used as a (very) coarse index to specific points within a document

from where a sequential scan can begin.

8.6.5 String tables

The strings are duplicated in reverse order (the RAID copy) and, although the

size of these tables is very dependent on the particular vocabulary for the

application, the indexing will always be fairly coarse. In our earlier examples we

quoted 68,000 unique strings giving around 1 MB of storage for each table.

However, this figure could vary considerably.

In our experimental programs, where we searched through 5.5 million strings,

we used an index based on the 26 letters of the alphabet. This proved sufficient

to locate a starting pOint for sequential scanning of a sub-set of the strings.

Following the collation of a set of string tokens, the next stage is to map these to

entity identifiers via the lexical triples. The size of these is considerably larger

and is discussed next.

8.6.6 Lexical triples

As there are in excess of 1 GB of lexical triples to store, the index for these triples

represents one of the largest to be maintained in the system. Recall that the

lexical triples are ordered on each disk as follows:

1. sort into entity class order

2. within that sort into relation order

3. within that sort into lexical token order

248

Chapter 8

4. within that sort into entity identifier order.

Table 4.10 in chapter 4 gives a small example of the structure for storing string

triples. Following our earlier example of a 500,000 record database, the 94.3

million lexical triples require indexing as follows.

Non-string triples

From Table 8.5 there are 9.5 million of these. They provide the mapping from

non-lexical types-such as integer and Boolean-to entity identifiers. Ordered as

above, they are spread across the disk array by a hash value taken from the

lexical value. For example, a triple with the pattern:

<relation, 23135", entity_id>

would be placed on disk 5 because 5 is the last digit of the lexical token. On each

disk indexed sequential access follows a coarse index on the relation.

String and text triples

These form the bulk of the lexical triples-over 84 million in our example (41.8

million string + 43 million text)-and are ordered as above. As they are created,

loaded and sorted at the time the database is populated, a standard way to index

such large numbers is via a B-tree. However, if we wish to maintain consistency

with a coarse granularity indexing structure, an indexed sequential method is

used on each disk to search around 8.4 million triples which, at 12 bytes-per

triple, gives around 100 MB to search at around 10 MB on each disk.

8.6.7 Temporal indexing

A feature recognised as missing from the original TriStarp proposals, was the

ability to make searches of the triples in historical context. The tag field used to

store the date of insertion was not easily searchable as it was not specified as a

249

Chapter 8

secondary key. This situation can be remedied by building a secondary index on

the times tamp field. This is done on database set-up and updated on database

re-organisation. As the ordering of these triples is a sequential set, an

appropriate data structure is a B+-tree [KNU73]. The salient features of which

are:

• an integer M controls the maximum children allowable for each node

• all nodes, except the root node and terminal nodes, have at least M/2
children and not more than M children

• all terminal nodes are at the same level, and thus the same distance
from the root node

• a non-terminal node with k children contains k - 1 keys

• terminal nodes represent the sequence set of the data file.

In our case we are using the structure in a static way, so the level of bushiness, M,

can be determined by how much information can be accommodated on a page in

memory. If a page in memory is taken as 16,384 bytes, then the following needs

to be held in it. A number of index keys-in this case representing the 4-byte

timestamp fields-and a set of pointers to children (other pages in the tree) that

are accessible from this node. We have chosen 4 bytes for the tree pointers (232

giving ample range) although 3 bytes could equally have been used.

The timestamp field need not be held in its entirety as the key. Some of the high

order bits in the times tamp field are identical-and therefore could be factored

out of the index key. However, if we were to use a 10-year slot as the critical time

slice, we would still require 29 bits in the index key; this number of bits is needed

to store 315 million+ seconds that appear in 10 years. It is just as easy to store the

full 32 bits of the times tamp field as the index key and therefore keep the field

modulo8.

250

Chapter 8

The terminal node level does not need tree pointers but instead needs

record/triple addresses that are also 4 bytes long. For the non-terminal nodes,

there must be one more tree pOinter than there are index keys. So, if the tree

pointer is 4 bytes long, this means a 16 Kbyte page for non-terminal nodes can

best accommodate 2,047 index keys and 2,048 tree pointers (2,047 x 4) + (2,048 x

4) = 16,380 bytes. There are then 4 bytes free in which to store the current

number of index records in the page. M is therefore 2,048. From Table 8.7, the

depth of the B+-tree for 5.7 million E-7E triples, 5.3 million E-7A records, 5.3

million 'is-a' triples and 94.3 million lexical triples is: flog204S110,OOO,ooo 1= 3.

To accommodate all of the non-terminal index nodes in memory for 110 million

triples and records could require 20482 or 4 miIlion+ pages. This is looking at the

maximum pages required. If the root level (1 page) and the second level (2,048

pages) were held in memory, 2,049 pages (33.5 MB) are required. Then there is

one disk access needed to get the terminal node information from the last level of

the non-terminal index nodes before the terminal node level itself can be accessed

as a sequential set. Finally the triples/records themselves need retrieving.

However, this is a rather expensive approach as shown in the following table.

level pages contents storage needs

1 1 2,048 keys & pointers 16 KB in memory

2 2,048 4+ million keys & pointers 33 MB on disks

3 4+ million max 8 billion keys & pointers ? on disks

then retrieve triples/records from disk

Table 8.8. Storage requirements for temporal index.

A better scheme takes the storage requirements from the bottom up. For

maximum efficiency, we need to determine the total storage needed for the

terminal node pages and work up allocating non-terminal node pages as

251

Chapter 8

necessary. The terminal node pages require 110 million 4-byte keys and 4-byte

triple/record pointers plus a pointer to the next page in the sequence.

index keys (2,047 x 4) = 8,188 bytes
triple/record pointers (2,047 x 4) = 8,188 bytes
sequence pointer 8 bytes

16,384 bytes

So 110,000,000/2047 gives 53,738 pages to hold the terminal indexing

information. At 16 Kbytes per page, this gives a storage requirement of 880 MB

to be held on disk. The higher levels can then be held in main memory as shown

in the following table.

level pages contents storage needs

1 1 27 keys & pointers 28 pages and 460

2 27 53,738 keys & pointers Kby1es in memory

3 53,738 110 million keys & pointers 880 MS on disks

then retrieve tripleslrecords from disks

Table 8.9. Optimised temporal index requirements.

This shows the allocation of pages optimised for placing the non-terminal levels

into memory. Now just one disk access is needed to get the terminal index node

information.

The terminal node level of the index can be held in a different data structure, as it

is a sequential set. The 880 MB of storage required is spread evenly across the

disk array-giving around 88 MB to search on each disk in a lO-disk array. In

order to involve each disk in a temporal search and spread the load evenly, the

same placement algorithm used for entity triples can be applied here. In other

words, the least significant digit (base 10) of the index key is used to determine

which disk a 'key/disk address pointer' combination goes on to. Searches now

252

ChapterS

proceed by multiplexing the range of seconds and collating the results. On each

disk, an indexed-sequential search is again used.

Note that the structure in Table S.9 has flexibility built into it. Storage at the first

and second level could be raised to 1 MB-for example-using around 62 pages.

These pages would provide for at least 129,000 terminal node level pages which,

in turn, could hold up to 264 MB of 'key/disk pointer' pairs.

8.7 Adding and deleting data

One of the benefits of functional programming languages is referential

transparency, which means the value of any expression is immutable. Therefore

functional programming languages enjoy ease of reasoning, freedom from

detailed execution order and, freedom from side effects. However, the price to

pay for these advantages is that assignment, or updates-in-place, are not allowed.

Because updates in a purely referentially transparent database are so difficult,

many languages-often referred to as impure languages-compromise and use

assignment. The consequences of this can be severe.

A detailed evaluation of different update methods is beyond the scope of this

thesis. However, some examples of different approaches are as follows. McNally

et al [MCN90] use response/request streams. These incorporate lazily evaluated

lists but are hard to write and understand. The scoped referential transparency

scheme of Meredith and King [MER9S] permits updates by functions with side

effects. To counteract these side effects, an effects checker is used. In parallel

Haskell [ARG87] a tree structure is used to underpin the database. Each time an

update occurs, only the nodes in the path from the root to the new value are

replicated.

253

ChapterS

FDL was developed as a pure language where updates can only occur at the 'top

level' by using let .. in constructs. This means that it is not possible to perform a

group of assertions atomically in a concurrent program. The way this is handled

is by marking the triple to be amended as deleted and then inserting a 'new'

triple with the amended value. The old triple is then archived at a later date and

replaced by the new one. In our case, we are now dealing with records and

triples but there is still scope for the 'deletion and insertion' method as above plus

a temporal dimension as previously described.

Recall from chapter 4 that in our application domain databases are primarily

used for browsing and searching. Data entry tends to be done in batch entry

mode with the database being updated and optimised off line. In chapter 3 we

identified that only 5% of the UK Inland Revenue files required alteration (on a

daily basis) and that this could easily be done overnight. From the earlier

discussion in this chapter, it is clear that our treatment of adding bulk data is that

this is done statically. This means it can be optimised for such tasks as indexing

and searching. However, any working system must cater for the dynamic

dimension with new data being available to browsers immediately. So, additions

and deletions of the various types of data are as follows.

8.7.1 Membership triples

As these are spread across the disk array ordered on their last digit, new triples

can be directed to the appropriate disk for addition to a pool area at the end of

the sub-section of that disk. A re-ordering of the triples can be done when a

suitable threshold is reached on each disk in the array independent of other

disks. Examination of the id_field of any triple identifies whether the triple is

'current' or 'deleted', although deleted triples are not removed at the time of

deletion. The new triple added to the pool area supersedes the old one and is

used in any operations that involve its entity class. In our example database, 5%

254

Chapter 8

of 5,300,000 triples gives an average of around 265,000 updates each day which,

at 24 bytes per triple, equates to 6.3 MB.

8.7.2 Attribute records and documents

Attribute records are updated in the same way-by marking a record 'deleted' in

the id_field and adding another to the pool area in the sub-section of the disk

reserved for attribute records. The only difference being that the average length

of an attribute record is 150 bytes compared to the 24 or 12 bytes for other triples.

5% of 5,300,000 attribute records would give an average daily update of 265,000

records-around 40 MB of data to be updated. Document additions/deletions

are treated similarly. However, when a document is deleted, the words in it also

need deleting from the string triples and the string tables occurrences field is

reduced accordingly.

8.7.3 Entity triples

With 5.7 million that need duplicating, there will be a total of around 11 million+

triples, where perhaps 500,000 need updating each day. Again, the id_field will

identify the status of a triple in situ. Furthermore, for this type of data-where

there is always a fixed length-better placement of data can be achieved.

8.7.4 Lexical triples and string tables

Each time a new word is added a check is made to see if the word already exists

in the string tables. If it does, the only action is to increment the occurrences field

and then insert the required lexical triples. If the word does not already exist, a

new record entry is created in the string tables with a new and unique string

identifier allocated for the new word. Any lexical triples are then added as

necessary. Deletion of a word from the string tables can only be permitted when

there are no other uses of that word in the database. Provision can also be made

to archive unused words.

255

Chapter 8

8.7.5 Schema data

From the information obtained from the North Yorks crime database, schema

triples amount to only 6,170 representing 148 Kbytes. This figure is largely

invariant and can be accommodated quite easily in memory. However, any

major changes to the database schema can involve altering large amounts of

instance data (records and triples) and membership triples-although, because

semantic-free identifiers are used, there should be no need to alter lexical triples.

For example, object migration might mean an entity, E, is split into two entities,

El and E2, where some of the attributes are carried over to El and others to E2.

This is shown in the next simple example where we assume two instances of

entity person whose identifiers are 1234 and 5678 respectively.

Al A2

Figure 8.4. Schema changes.

The triples accompanying the person entity and how they need changing to reflect

the new entities man and woman are shown below followed by an explanation of

what data is affected.

With person entity With man/woman entities

1 <is-a, person, 1234> <is-a, man, 1234>

2 <is-a, person, 5678> <is-a, woman, 5678>

3 <married_Io, person, person> <married_Io, man, woman>

4 <1234, (rl, All, (r2, @l,l> <1234, (rl, All, I>

5 <5678, (rl, @l, (r2, A2l, I> <5678, (r2, A2l, I>

6 <married 10, 1234, 5678> <married 10, 1234, 5678>

Table 8.10. Triples and records for schema changes.

256

Chapter 8

The is-a triples (lines 1 and 2) merely need altering to reflect that the entity has

changed from person -7 man or person -7 woman. As the is-a triples are spread

across the disk array, the changes and any re-ordering can be handled on each

disk. The schema triple (line 3) is held in memory and is a simple change. The

entity triple (line 6) requires no alteration. However, the biggest changes are

required for the attribute records (lines 4 and 5). Each attribute record needs

splitting so that the correct attribute(s) are saved with the respective entity

identifier. This means deleting the original attribute and entering the two new

ones. As with other data types, the last digit signifies which disk the attribute

records are on and this will remain the same for all such cases. Note that such

changes do not affect the string tables or lexical triples.

Generalisation-combining two or more entities into a single entity class-can

also be achieved. In the example above, for instance, we might want to merge

man and woman into person. The reverse of the actions described above would

therefore be required. For more complex changes, it is more likely that a new

schema would be described and the database re-created from the raw data

[GUE92J.

B.B Other DBMS related issues

In this section we briefly mention other important areas that must be considered

by the database designers-integrity, concurrency and security-and show how

they can be adequately accommodated within our architecture; although these

areas are not a main focus of this thesis.

8.8.1 Data integrity

These are aspects of database systems that have been well documented over the

years. In our case, integrity constraints are considered as schema data (and held

as schema triples) and are adequately catered for via the integrity constraints in

257

Chapter 8

list comprehensions discussed in [POU89]. An example follows where the

existence of entity person and relation name_of is assumed. The integrity

constraint is designed to ensure that there is no person with an unknown '7' or

undefined '@' name. Integrity constraints are Boolean-valued functions with zero

arity and must always evaluate to true-the empty list. They are used when data

is being entered at population time or when later data is added to a working

system.

must_have_name : ~ Boo1;

must_have_name <= [x 11 x ~ A11-person &

(name_of x = @) or (name_of x = ?)] = [];

It is customary for standard systems to maintain transaction logs for day-to-day

usage. If a system crash occurs inspection of the logs enables data to be

recovered. In our system, copies of entity triples and string tables as part of our

RAID mirroring scheme provide security, particularly in the case of corruption of

a whole disk. There are also the additional parity RAID disks that can be used to

re-constitute any of the other disks in the array to get the database back to a

correct state.

8.8.2 Concurrent access

In today's large-scale multi-user systems, it is standard practice to use a

combination of object locking and timestamping to maintain data conSistency.

Our situation is no different. However, this only applies to the work of data

entry personnel, it should not be allowed to affect browsing of data. The effects

of data entry can be minimised by updates to sections of the files so that locking

is applied at a record level rather than at a database level.

258

Chapter 8

8.8.3 Security

Users require that their data be protected against unauthorised access and

update. The 'value' of data varies between different systems: by value we mean

the costs involved if data is disclosed or destroyed against the wishes of its

owner. These considerations will have more bearing for some systems than

others. In the domain of investigative systems, the personnel browsing the

system will be trained officers and expected to seek connections between various

items of data. Moreover, the phenomenon sometimes applicable to statistical

databases-whereby unauthorised access to sensitive information is gained by

counting records using set and Boolean operators and negation-does not apply

in our case. The information is there to be manipulated using any number of

hypotheses to arrive at various conclusions. However, protection must be

provided against improper deletion of data-which can be built into integrity

constraints.

8.9 Summary

In this chapter we have used two running example databases to show how

database creation, population and maintenance are handled. The North Yorks

crime database is built around real-life data used for training purposes by the

North Yorks police force. It gives a good idea of the types of data used in our

domain and how entities and attributes relate. We scale up the data in the crime

database to arrive at a much larger and more realistic database.

Because we do not have access to the raw data from the crime database, we are

unable to obtain an accurate estimate of the size of a larger database built using

our architecture. Therefore we obtained the required information by

extrapolation from the triples that constitute the crime database and create the

records and triples that would exist if this data were stored using the new

architecture. It is then possible to calculate the storage requirements and how

259

Chapter 8

they map to disks in the array. An important aspect of the development of our

system is that object migration-generalisation, specialisation etc-must be

searnlessly catered for. We show that using a combination of triples and records

does not compromise object migration because the semantic freedom of object

identifiers is maintained in our architecture. We also discuss an index scheme to

add a temporal dimension, although there are many other ways to go about

achieving this.

260

Chapter 9

Chapter 9 Summary, conclusions and further work

9.1 Introduction

This chapter draws together all aspects of this thesis into a summary that

contains the statement of the problem, alternative solutions considered, the

solutions chosen with reasons, evidence to support the solutions and conclusions.

Finally further areas of work in relation to this thesis are suggested.

9.2 Statement of the problem

The Triple Store Applications Research Project (TriStarp) was started in 1984 and

led by Professor Peter King at Birkbeck College, University of London. The

objective was to explore and develop the functional view of the binary relational

approach as a database formalism and combine this with functional

programming. The results were successful and the project has undergone several

enhancements since then. In 1994 Professor Victor Maller joined Professor King

in a collaborative project of which this thesis is a part. The storage sub-system

underpinning the project since its inception has been a software triple store

discussed in detail in chapter 2. We highlight below areas where we believe

there are important omissions from, or weaknesses in, the TriStarp proposals that

this thesis aims to tackle.

An intrinsic belief from the outset of the TriStarp work has been the strict

adherence to a triple store for all data. Clearly some data is best considered as

triples and the concept nicely complements the functional model with its three

element data structure <subject, relation, object>. However, other data does

not fit as easily into this structure. Strings are the main example and were

discussed at length in chapter 4, but other data types-such as binary large

objects-would be just as unwieldy broken down into a triple structure. We

believe this distinction between the logical level of data and the physical level of

data was an important area overlooked. Although the simplicity of a semantic-

261

Chapter 9

free interface is persuasive, we believe it is too rigid to permit the enhancements

necessary to make the software a more attractive commercial prospect. We are

not aware of any comparable system that uses triples for all data in the way

described in chapter 2.

Another feature of the original proposals that was not given enough

consideration was the functionality available for string handling. This is an area

of data manipulation where functional languages have traditionally been

somewhat weak. There are two distinct problems here. Firstly, the way strings

are manipulated in functional languages-usually using list construction, head

and tail etc-is often a slow and resource-consuming exercise. Secondly, the way

strings are decomposed into triples as part of the homogeneous triple store

makes them more difficult to work with. The constant re-construction of strings

for comparison with search patterns, together with continually crossing the

interface between levels 1 and 0, seriously impedes performance. Moreover, the

significant number of tokens created for the comparisons, are otherwise useless

and deplete the token space available for strings-sometimes to exhaustion

thus compromising data integrity.

Since the binary relational storage structure was first proposed by Frost as a

means of underpinning Shipman's functional data model, there has not been

agreement on the optimal way to store data. However, there seems to be a

consensus that a balance needs to be struck between the degree of duplication

desirable for rapid access of triples set against the increased costs of maintaining

this duplication. Additionally, the way graph traversal operations are handled

necessitates the sequential processing of each step for the 'start' (initial filter

attributes) and 'stop' (display attributes) in a series of graph traversal steps.

262

Chapter 9

Another significant topic for discussion is the applicability of a parallel

implementation. This must be considered if the software is to handle large data

sets and therefore be of realistic value with the potential of being used as the

basis for a commercial product. The current architecture could be made parallel

in a number of ways: these are assessed in chapter 3.

The more general topic of enhancing interface functionality is another area that

requires investigation. The reduced set of semantic-free storage level interface

functions provides a simpler interface for the model level language developer,

but means there is less flexibility. This was in keeping with the triple store

concept discussed above. However, functionality for handling data types

particularly strings-is a separate issue. There are possibilities to introduce

functionality at a lower level in the query evaluation process.

Note there are other issues from the original proposals that may be alluded to but

not discussed at length in this thesis. These include: providing richer data types,

improving the user interface, improving the treatment of range queries, scoping

of updates, handling unknown information and extracting schema information

from partially structured data. These areas have been, or will be, the subject of

other research.

9.3 The solution

Our solutions to the problems identified above and the alternatives considered

are as follows.

A main theme of this thesis is that an alternative storage architecture is needed.

One that combines the advantages of the triple store-best suited to storing

binary relational data-with the benefits of holding data as collections of records,

which underpins the still-popular relational data model. Chapter 3 considers

263

Chapter 9

alternatives to triple stores and their inherent indexing structures and concludes

that a combination of the two alternative approaches is possible. We base our

architecture on the ADMS data model. This makes it possible to store attribute

data as record sets while leaving the entity-to-entity relationships and meta data

as triples. Included as part of this scheme is the removal from records of

attributes for some data types that are then stored separately. Text type and

binary large object type are examples.

Coupled with the storage model for data is the use of a MIMD, dataflow model to

permit parallel processing. MIMD was chosen because it has emerged as the de

facto standard for distribution of instructions and data using a loosely coupled

processor/memory configuration. Our scheme is based on that used by the

Teradata Corporation-a proven leader in this field. Parallel MIMD machines

are dominated by asynchronous events and these are more effectively handled by

an interrupt-driven model rather than a model that uses polling. An interrupt is

an example of data-driven scheduling which naturally complements the use of a

dataflow model for computation and long latency operations.

Because of the referential transparency of functional languages, there are many

ways in which they can be made parallel. We consider these before deciding

upon dataflow, which naturally complements the functional approach and can

extract orders of magnitude more parallelism from a functional language than

from an imperative language. Moreover, dataflow used with a functional

language obviates many of the control and communication overheads that exist

in imperative languages.

The improvement in string manipulation is effected in two ways. Firstly, within

the confines of the current architecture, we enhanced the functionality for string

handling. This meant making available more functions to manipulate strings,

264

Chapter 9

which involved allowing search patterns to contain missing characters and/or

left- and right-handed truncation. These functions do not compromise the

benefits of using a functional approach as they are evaluated at the storage sub

system level and can thus be considered as built-in or object-level operators.

However, this does not address the difficulty of how strings and search patterns

are broken down into triples for storage and comparison.

Secondly, and in keeping with our strategy that not all data is best stored as

triples, we discuss different data structures for strings. There are advantages and

disadvantages in using a tokenised scheme. The merits of this are presented

before describing our data structures for strings. By storing strings in a look up

table more powerful functions can be provided to manipulate them. We describe

some of these and generalise the argument for providing functionality in this

way.

Improvements to general functionality are also possible. In chapter 7 we examine

the work done with AGNA and extend it to support our string and text types in

particular. With judicious optimisation of user queries and list comprehensions,

it is possible to collect similar predicates into a generator/filter operation that can

be pas~ed down to the storage sub-system. This can be done safely so as not to

compromise referential integrity or any other advantages of the functional

paradigm.

As part of our architecture proposals, we discuss redundancy and show how this

can be used effectively for our system. We introduce a novel RAID configuration

that uses a combination of parity and mirroring. In each case the mirror disk is

not a direct copy of the data disk but a combination of different data placement

strategies for different data. For attribute records, meta data and lexical triples, it

is an exact mirror. But for entity-to-entity (E-7 E) triples and string tables the data

265

Chapter 9

is duplicated in reverse order. This is explained in chapter 6. These alternative

approaches to holding data complement the functional data model as well as

functional languages. In both cases it is often necessary to traverse the graph

model from range to domain-the inverse function. For E~E triples this can

mean using the inv-f of the function f. For attribute data this can mean using a

similar function or just using the function as a filter condition. For E~ E triples,

the alternative disks can be used to evaluate more quickly the application of a

function. For string searches where the pattern has an unknown left-hand end

and a known right-hand end, the inverse string tables can be used.

Finally, we compared using inverse function with conditions other than equality.

At the moment equality is implied in inverse functions that map a constant to an

entity identifier or set of entity identifiers. By making it necessary to include the

operator (theta condition) as part of the expression, greater flexibility can be

provided for inverse function operations.

9.4 Proof of solution

The choices made above and how they synthesise with our architecture are now

discussed.

Combining records and triples

Our solution for holding a combination of triples and records for instance data is

shown to work with no loss of information for the following reasons. Each

attribute is ordered in a look up table for its type. Each attribute is safely

mapped to the entity identifier. The record collections also hold the actual

attribute values that can then be used for printing and display purposes. Bulk

data, default information and missing information are an important part of the

data modeli chapter 6 shows how these are handled without compromising any

information. Moreover, some data types-such as documents and binary large

266

Chapter 9

objects-are best kept in unfragmented format and are large enough to be held

separately from the records with a link to maintain the connection.

The semantic freedom of entity identifiers is important to maintain. This is so

object migration-Le. generalisation and specialisation-can be accommodated

seamlessly into the data (and storage) model. Chapter 8 shows this is still

possible with our combined data model.

Because we do not have access to the raw data for the crime database, we had to

extrapolate from the data as best we could. This was done to show how a

standard database would be loaded, sorted and indexed for our architecture. In

chapter 8 we use the crime database statistics to show how triples from this

database would be held as records with all necessary identifier information

added. As the crime database uses a rather small data set, we multiplied the

extrapolated information by a factor of 200. This allowed us to demonstrate the

triple/record allocation for a more realistic database.

String enhancements and data structures

The first stage involved adding string manipulating functionality within the

confines of the triple store architecture. Chapter 4 sets out the experimental

function that we developed. From these functions a more meaningful sub-set

was produced for use in the crime pattern analysis work that is another area of

research within the TriStarp project. The improvements of some orders of

magnitude are not surprising as, using the new string functions, there is no need

to cross the interface boundary so frequently. Moreover, there is no longer any

need to create a mass of sub-strings-and concomitant tokens-that are only

required for comparison with the search pattern. Because the functions are non

updating and can be regarded as object-level primitives, such as + and -, they can

267

Chapter 9

be safely included in user expressions and nested to the same depth without

compromising integrity.

Using alternative data structures, where strings are no longer stored as triples,

experimental programs were run against a larger data set of over 5 million

records. Where the search pattern has a known beginning and/or ending, the

search can take around 3 to 5 seconds with a search engine. Exhaustive searches

of the strings, or where neither the beginning nor end of the search pattern is

known, can take around 30 seconds with a search engine. These are basic figures

for a uni-processor architecture only. As has been shown in this thesis, a parallel

architecture reduces the search times accordingly.

Comparisons with SQL are difficult to make and not necessarily fair. This is

because SQL uses far more comprehensive indexing techniques-often using

complete names to provide very rapid entry into a database. The main

advantage of our data structures is that the software can now handle far more

powerful searching functions within the computationally more comprehensive

functional paradigm.

Redundancy and inverse functions

Chapter 6 gives an example of how redundancy is used in our architecture.

Using examples we show how triples are allocated to the data disk and the

mirror disk. The search path used in the example has both normal and inverse

function applications to show that no information is lost when executing a query.

Bulk data and missing or unknown information are also catered for so the data

model is not compromised. The data placement algorithm ensures there is an

even distribution of triples across the array.

268

Chapter 9

The combination of RAID technologies-mirroring and parity-substantially

improves the mean time between failure (in theory to 34 billion years!). The

throughput handled by a RAID 3 system can be dealt with in 60% of the time

using our RAID 15 system. The price of average throughput for RAID 15

compares favourably with RAID levels 1 and 5; is significantly better than RAID

3 but is well below RAID 100. However using RAID lOO-where data is written

to the mirror disk in reverse placement order to that stored on the data disk

would not suit our architecture or data structures so well.

Inverse functions now require the test condition to be added to the expression.

Chapter 7 gives an example of how this was used in the crime database and that

an improvement of two orders of magnitude is possible in the case of equality.

For other theta conditions, care must be taken to restrict the set of conditions

available for each specific type used in the database. This has to be checked as

part of the type system but, once done, these expressions can be passed directly

to the storage sub-system for evaluation. This is discussed next.

MIMD and dataflow

Our use of a MIMD parallel machine configuration and dataflow model sensibly

follows on from earlier research in these areas which has already proved

successful commercially. Moreover, the concept of reducing functionality to a

lower level in the query evaluation process was included in the AGNA project.

We extend this to include additional functionality for string and text

manipulation, inverse function applications and optimisations to complement

our architecture. Our coarse-indexed access method does not severely

compromise the advantages of non-indexed access, and at the same time does not

add much to communications overheads. This is because of our use of set

collation and open lists and is explained in chapter 6.

269

Chapter 9

9.5 Conclusions

This thesis set out to investigate two specific areas of the continuing TriStarp

project. String manipulation and graph traversal. Additionally, our

investigation identified other areas of weakness in the functionality, plus

constrictions imposed by the data model used. This led to the development of

string manipulating functions based on well-known algorithms for inclusion in

the current architecture. This proved highly successful but the addition of more

powerful string manipulating functionality was still limited by the triple store

architecture.

The next step was to show how strings could be taken out of the homogeneous

triple store without compromising the functional paradigm. This was

incorporated into a new architecture that combines the best of the functional data

model with the best of the relational data model.

The architecture draws a distinction between the logical view of data as triples

and the physical view of data as entity sets and attribute records. Again, this

does not compromise the fundamental strengths of the data model. Included in

this is a novel RAID configuration that complements the inverse functions and

reverse graph traversal steps that are frequently used in functional programming

and the functional data model respectively.

The final part of our strategy for a new architecture is the inclusion of parallel

processing techniques to boost performance further. We adopt two tried and

tested areas in this field-MIMD and dataflow-and show how our physical

model and enhanced functionality can be easily accommodated by these

techniques. The concept of devolving functionality is taken from earlier research

work and enhanced. Timings are given that show the improvements achievable.

270

Chapter 9

The conclusion of this thesis is that enhanced string manipulation and general

functionality are possible without compromising the strengths of the data model

and functional programming. Moreover, our storage model and use of

redundancy combines the strengths of the functional and relational models with

those of functional programming in a novel way. These are the areas of

contribution in this thesis.

9.6 Further work

We are pleased with the findings from the areas of work investigated in this

thesis. However, there are several areas that suggest further work.

9.6.1 Build complete system

An obvious step would be to build a complete system incorporating all the ideas

introduced in this thesis. However, the best way to do this is not immediately

clear. The current TriStarp model level languages are not written with dataflow

or even parallelism in mind. This would mean a complete re-write of the

compiler and parser would be needed, and this is a major undertaking.

However, some concepts could be incorporated into the current software more

easily than others.

The string manipulating functions, providing a much broader set of search

options, were incorporated in the software as explained in chapter 4. A richer

type system for text would allow further functionality to be added that could be

targeted to the larger strings that are more loosely connected. For instance, a

function that would "find string a and string b in cases where they are no more

than n words apart and return the sentence(s) in which they appear" could be

meaningful and practical for text objects.

271

Chapter 9

Incorporation of function inverse facilities would be more complex to implement

and would have implications for the parser. This is because the application of

each specific operator-equals, not equals etc-needs careful checking and

constraining so that predicates involving inverses for certain types only permit

certain operators allowable for that type. For example, not equals when used

with a string predicate might result in an unacceptably high hit-rate-although

this would, of course, be conveyed to the user for confirmation to continue. But it

might be decided beforehand to disallow this operation for strings.

9.6.2 Partially structured data

In chapter 4 we highlighted the growing need to differentiate between short

strings that tend to form a close semantic unit and long strings that have looser

semantics. As was made clear, this is a sensible thing to do and merely follows

current database technology where free-text objects are increasingly used.

However, in addition to a richer type system mentioned above, we believe more

can be done in this area. In particular, concerning data that is partially formatted.

Partially formatted data is a combination of structured data-based around a

pre-defined schema-and unstructured data held in its raw state. The term

partially structured data seems a good description of such a combination and is

used in the TriStarp work, although it should not be confused with the term

semi-structured data which is taken to mean 'self-describing' data as found in

[ABIOOj for example. A police officer's scene of crime report, which may already

be a field in the database, is an example of unstructured data-although to the

police officer it might be considered as structured data. Such data is used in

keyword searches and may be displayed or printed for human consumption but

is not otherwise processed in the sense that nothing new is added to the database

schema. We believe that it could be used to add semantics to the database and

that this is an area for further investigation.

272

Chapter 9

Applications that might benefit from this approach are those where alterations to

both type and instance data are viewed as equally important. The database

schema should be capable of evolving as increased semantics are drawn from the

raw data although, in most cases, it is envisaged that the raw data remain

unchanged by any schema alterations. For domains such as ours it is quite likely

that a significant amount of initial information may be of a free-text form. By

applying proven techniques from natural language processing and

computational linguistics to the free-text, new types and instances would evolve

and could be added to the database.

9.6.3 Optimisation, transformation and searches

In chapter 4 section 4.2.2 we gave comparisons between conjunctive and

disjunctive searches in the context of using our multi-match functions and user

defined functions. The inference was that further work could be done in this area

in relation to optimisations in functional languages.

Passing down expressions directly to the storage sub-system has already been

discussed in relation to our work and the work of others. However, the passing

down of different search terms embedded in the same search pattern has not, to

our knowledge, been investigated before and could prove an interesting area for

further research. There could be different ways of providing users with complex

and powerful search strategies, perhaps in the form of regular expressions

similar to those used in the UNIX operating system. Moreover, searching for

several search terms in a text could be combined at a lower level in the evaluation

process thus reducing search times further.

List comprehensions have, for several years, been the subject of various

optimisation techniques. These frequently involve moving sub-expressions

around in the overall expression to promote certain operations that-for

273

Chapter 9

example-reduce the search space more quickly. Our improved functionality

and grouping of expressions with like terms follow this approach. However,

when the database is used merely as a functional programming language and

persistent data is not consulted, there seems to be little point in creating string

tokens which are then added to the database string triples, when they are not

ultimately part of the instance data.

A detection mechanism needs to be incorporated so that, if the database is used

for non-updating computation, e.g. 337 + 989, or simple string comparisons, e.g.

contains "trivia%" "this is a trivial sentence", these operations can be

evaluated immediately. This would mean the database is not consulted and thus

obviate the time-consuming lexeme -7 token mappings etc. A first step might be to

scan the initial expression to see if any functions are used that form part of the

database schema. If there are not, then an alternative evaluation should proceed.

Differentiating between expressions in this way has been achieved in the Prolog

Functional Data Model language P /FDM [GRA92j which incorporates function

methods and action methods. Function methods are used when there is no side

effect: action methods are used where there are side effects.

9.6.4 Hybrid RAID systems

Our combination of parity and mirroring RAID system is novel in that the

placement of triples is reversed on the mirror copy. However, there have been

other combinations of parity and mirroring RAID systems developed in recent

years [MAS97j. Some of these use virtual disks of either, striped and then

mirrored or mirrored and then striped arrays. The consensus is that striping of

mirrored arrays is the preferable option. The discussion in chapter 6 made it

clear that we suggest using both mirroring and parity in the physical sense-as

opposed to the virtual sense-to provide extra protection etc. However, what is

274

Chapter 9

not clear is which of the schemes to implement first-mirroring or parity. From

the foregoing, it would appear that writing to the mirror array followed by the

striping across (each) array is the better option. However, as our use of the

mirror is unique for our architecture, further work is required to ascertain the

best approach to adopt in our case.

275

References

References

[ABIOO] S. Abiteboul, P. Buneman and D. Suciu.
Data on the web.
Morgan Kaufmann publishers, 2000.

[AKE93] G. Akerhold et al.
Processing transactions in a parallel functional language.
Proceedings of PARLE, Munich Germany 1993.

[ALB9l] A. Albano et al.
A relationship mechanism for a strongly typed object-oriented
database programming language.
Proc. 17th VLDB conference 1991, pp 565-575.

[ALP97] A. Alpkocak and E. Ozkarahan.
A spatial grid file for multimedia data representation.
4th International Conference on Parallel Computing Technologies,
1997 pp 156-167.

[ARG87] G. Argo et al.
Implementing functional databases.
Proc. Workshop on Database Languages, 1987, pp 87-103.

[ARV88] D. E. Arvind et al.
Assessing the benefits of fine-grained parallelism in dataflow
programs.
Int. Journal of Supercomputer Applications, 2(3), 1988.

[AYR95] R. Ayres.
Enhancing the semantic power of functional database languages.
PhD Thesis, Birkbeck College, University of London, 1995.

[BAB79] E. Babb.
Implementing a relational database by means of specialized
hardware.
ACM Transactions on Database Systems, vol. 4(1) 1979, pp 1-29.

[BAN88] F. Bancilhon.
Object-oriented database systems.
ACM symposium on principles of database systems, New York 1988,
pp 152-162.

276

References

[BIE97] E.W. Biersack and C. Bernhardt.
A fault tolerant video server using combined RAID 5 and mirroring.
Proceedings of SPIE, vol. 3020 1997, pp 106-117.

[BOR90] H. Boral et al.
Prototyping Bubba, a highly parallel database system.
IEEE Transactions on Knowledge and Data Engineering, vol. 2(1)
1990, pp 4-24.

[BOY77] R. S. Boyer and J. S. Moore.
A fast string searching algorithm.
Communications of the ACM, vol. 20(10) 1977, pp 762-772.

[BUN82] P. Buneman et al.
An implementation technique for database query languages.
ACM Transactions on Database Systems 7(2) 1982, pp 164-87.

[CAF85] ICL Technical Journal, vol. 4(4) 1985.

[CAT94] R. G. G. Cattell.
The object database standard-ODMG-93.
Morgan Kaufmann publishers, 1994.

[CHA96] A. Chambers and J. Tidmus.
Practical parallel processing.
International Thomson, London, 1996

[CHU89] S. H. Chun et al.
A partitioning method for grid file directories.
Computer Software and Applications, 1989.

[COC98] W.P. Cockshott et al.
Data compression in database systems.
International Database Engineering and Applications Symposium,
Cardiff 1998, pp 111-120.

[COD70] E. F. Codd.
A relational model for large shared data banks.
Communications of the ACM, vol. 13(6), 1970.

[COD79] E. F. Codd.
Extending the relational database model to capture more meaning.
ACM Transactions on Database Systems, vol. 4(4),1979.

277

References

[CRA75] B. Cranston and R. Thomas.
A simplified recombination scheme for the Fibonacci buddy system.
Communications of the ACM, vo!. 18(6), 1975.

[CR092] 1. E. Crockford and A. Drahota.
RIBA - A support environment for distributed processing.
ICL Technical Journal, vo!. 8(2) 1992, pp 284-30l.

[CR082] 1. E. Crockford.
Associative data management system.
ICL Technical Journal, vo!. 3(1) 1982, pp 82-96.

[DER85] M. Derakhshan.
A hierarchical B+-tree approach to the implementation of a semantic
free triple store.
Internal report of the TriStarp Group, MD IOCT 11985.

[DER89] M. Derakhshan.
A development of the grid file for the storage of
binary relations.
PhD Thesis, Birkbeck College, University of London, 1989.

[DEW90] D. J. DeWitt and J Gray.
Parallel database systems: The future of database processing or a
passing fad?
ACM SIGMOD Record, vo!. 9(4) 1990, pp 104-112.

[DEW90a] D. J. DeWitt et al.
The gamma database machine project.
IEEE Transactions of Knowledge and Data Engineering, vo!. 2(1)
1990, pp 44-62.

[DOT96] F. Dotsika and P. J. H. King.
The TriStarp common software manua!.
Available from TriStarp Group, Birkbeck College, University of
London, Malet Street, London, WC1E 7HX.

[EIS99] A. Eisenberg and J. Melton.
SQL:1999, formally known as SQL3.
ACM SIGMOD Record, vo!. 28(1) 1999, pp 131-138.

278

References

[FEL69] J. A. Feldman and P. D. Rovner.
An ALGOL-bases associative language.
Communications of the ACM, vo!. 1969, pp 439-449.

[FIE88] A. J. Field and P. G. Harrison.
Functional Programming.
Addison Wesley, 1988.

[FL Y72] M. J. Flynn.
Some computer organisations and their effectiveness.
IEEE Transactions on Computers, vo!. 21 (9) 1972, pp 948-960.

[FRE87] M. Freeston.
The BANG file: A new kind of grid file.
Proc. ACM SIGMOD conference, 1987.

[FRE89] M. Freeston.
Advances in the design of the BANG file.
Foundations of Data Organization and Algorithms.
Proc. 3rd International Conference, Paris, June 1989, pp 322-338.

[FRI96] M. Friedman.
RAID keeps going and going.
IEEE Spectrum, 1996.

[FR082] R. A. Frost.
Binary relational storage structures.
The Computer Journal, vo!. 25(3) 1982, pp 358-367.

[GAR92] H. Garcia-Molina and K. Salem.
Main memory database systems: An overview.
IEEE Transactions on Knowledge and Data Engineering, vo!. 4(6)
1992, pp 509-516.

[GOL90] c. F. Goldfarb.
The SGML handbook.
Oxford: Clarendon Press, 1990.

[GRA92] P. D. Gray et al.
Object-oriented databases: A semantic data model approach.
Prentice Hall Series in Computer Science, 1992.

279

References

[GRUOO] M. Gruber.
SQL Instant Reference (2nd Ed.).
Sybex, 2000.

[GUE92] R. Guest and P. J. H. King
Notes on specialisation, generalisation and inheritance in FDL.
TriStarp, Birkbeck College, University of London, 1991/92.

[GUT84] A. Guttrnan.
R-Trees: A dynamic index structure for spatial searching.
SIGMOD Record, vol. 14(2) 1984, pp 47-57.

[HEL78] G. D. Held and M. R. Stonebraker.
B-trees re-examined.
Communications of the ACM, vol. 21(2) 1978, pp 139-143.

[HEY91] M. L. Hey tens and R. S. Nikhil.
List comprehensions in AGNA, a parallel persistent object system.
FPCA '91, Berlin, pp 569-591, 1991.

[HIL95] S. Hilditch.
RAID.
Ingenuity, vol. 10(1) 1995, pp 134-147.

[HIL1891] D. Hilbert.
Uber die stegie Abbildung einer Linie auf Flachenstuck.
Math. Ann. 38 1891, pp 459-460.

[HIN85] K. H. Hinrichs.
Implementation of the grid file: Design concepts and experience.
BIT, vol25, 1985.

[HOR80] R. N. Horspool.
Practical fast searching in strings.
Software - Practice and experience, vol. 10, 1980, pp 501-506.

[HOS92] N. Hosur et al.
Dynamic addition and removal of attributes in BANG files.
Proc, ACM SIGAPP Symposium 1992, pp 210-216.

[IAN88] R. A. Iannucci.
A dataflow /Von Neumann hybrid architecture.
PhD Thesis, MIT, 1988.

280

References

[ILL96] R. Illman.
Re-engineering the hardware of CAFS.
ICL Systems Journal, vol. 11(1) 1996 pp 71-83.

UUL97] J. Julliand and B. Markhoff.
Functional programming on MIMD multicomputers.
Int. Journal of Computers and Applications, vol. 19(3) 1997 pp 150-
154.

[KAY85] M. H. Kay.
Textmaster - A document retrieval system using CAFS-ISP.
ICL Technical Journal, vol. 4(4) 1985, pp 455-467.

[KIM95] Sang-Wook Kim et al.
A new algorithm for processing joins using the
multilvevel grid file.
Database Systems for Advanced Applications, 4th International
Conference 1995, pp 115-123.

[KIM97] Sang-Wook Kim et al.
Linearity in directory growth of the multilevel grid file.
Information and Software Technology, vol. 39(13) 1997,
pp 897-908.

[KIM98] Sang-Wook Kim et al.
Performance characteristics of the multilevel grid file.
Journal of KISS (Software and Applications), vol. 25(2) 1998,
pp 239-252.

[KlN90] P. J. H. King et al.
TriStarp - an investigation into the implementation and exploitation
of binary relational storage structures.
Proc. 8th BNCOD, York, 1990. .

[KIN92] P. J. H. King and D. R. Sutton.
Fudal: A functional database language based on modal logic.
Actes du Congres INFORSID '92, 1992.

[KIN96a] P. J. H. King and V. A. J. Maller.
Evaluating functional database concepts in advanced
application environments.
Final report EPSRC research grants GR/K17736 and
GR/K18313, 1996.

281

References

[KIN96b] P. J. H. King and R. Ayres.
Querying graph databases using a functional language extended
with second order facilities.
Proc. 14th BNCOD, Edinburgh, 1996.

[KNU73] D. E. Knuth.
The art of computer programming: Vol. 3: Sorting and searching.
Reading Mass., Addison Wesley, 1973.

[KOC94] T. R. Kochtanek.
Standards for full text document storage.
Proc. 15th National Online Meeting, New York 1992, pp 301-307.

[LAV84] s. H. Lavington and C. Wang.
A lexical token converter for the IFS.
Internal report IFS/5/84, University of Manchester, 1984.

[LA V88] S. H. Lavington.
Technical overview of the Intelligent File Store.
Knowledge-Based Systems, vol1, no 3, 1988.

[LAWOO] J. Lawder.
An exploration of the application of space filling and other curves in
multi-attribute indexing data.
PhD Thesis, Birkbeck College, University of London, 2000.

[LEE98] C. Lee and T-M. Tseng.
Temporal grid file: a file structure for interval data.
Data and Knowledge Engineering vol. 26(1998), pp 71-97.

[LEV67j R. E. Levien and M. E. Maron.
A computer system for inference execution and retrieval.
Communications of the ACM vol. 1967, pp 715-721.

[LIN96] R. D. Lins.
Functional programming and parallel processing.
Vector and Parallel Processing, 2nd International Conference, Porto
1996, pp 429-457.

[LOI97] H-W. Loidl and P. W. Trinder.
Engineering large functional parallel programs.
Implementation of Functional Languages, 9th Workshop 1997, pp
178-197.

282

References

[MAG80] D. R. McGregor and J. R. Malone.
The fact database: A system based on inferential methods.
Proc. of the Symposium on research and development in information
retrieval, 1980, pp 203-217.

[MAG82] D. R. McGregor and J. R. Malone.
The fact database: A system using generic associative networks.
Information Technology: Research and Development, 1982,
pp 55-72.

[MAL98] V. A. J. Maner and S. N. Sheldrake.
Storage sub-systems to support large functional databases.
International Database Engineering and Applications Symposium,
Cardiff 1998, pp 52-53.

[MAL96] V. A. J. Maner.
Criminal investigation systems:
The growing dependence on advanced computer systems.
lEE Computing and Control Engineering Journal, vol. 7(2) 1996, pp
93-100.

[MAL88] V. A. J. Maner.
Outline description of the Teradata DBCj1012 database machine.
Used in lecture notes for database courses at Loughborough.

[MAL79] V. A. J. Maner.
The Content Addressable File Store.
ICL Technical Journal, voI.1(3) 1979, pp 265-279.

[MAR84] N. J. Martin.
The construction of interfaces to triple based databases.
Proc. 3rd BNCOD, Leeds, 1984.

[MAR92] J. A. Mariani.
Oggetto: An object-oriented database based on a triple store.
The Computer Journal, vol. 35(2) 1992, pp 108-118.

[MAS97] P. Massiglia.
The RAID book: A storage system technology handbook.
Published by the RAID Advisory Board Inc., 1997.

283

References

[MCK92] R. L. McKee and J. Rodgers.
N-ary verses binary data modelling: A matter of perspective.
Data Resource Management, vo!. 3(4) 1992, pp 22-32.

[MCN90] D. J. McNally et al.
Persistent functional programming.
Proc, 4th International Workshop on Persistent Object Systems, pp
59-90,1990.

[MEA92] C. T. Meadow.
Text information retrieval systems.
Academic Press Inc., 1992.

[MEL02] J. Melton and A. R. Simon.
SQL:1999 - Understanding Relational Language Components.
Morgan Kaufrnann publishers 2002.

[MER98] P. F. Meredith and P. J. H. King.
Scoped referential transparency in a functional database language
with updates.
Proc. 16th BNCOD, Cardiff, 1998.

[MIT76] R. W. Mitchell.
Content Addressable Filestore.
Pro. Online Database Technology Conference, London, 1976.

[MOR99] J. Morris.
Parallel efficiency: The dataflow advantage.
4th Int. Symposium on Parallel Architectures 1999,
pp 356-361.

[MUN78] P. Munz.
The WELL system: A multi-user database system based on binary
relationships and graph pattern matching.
Information Systems, vo!. 31978, pp 99-115.

[NAJ99] W. A. Najjar et a!.
Advances in the dataflow computational mode!.
Parallel Computing, vo!. 251999, pp 1907-1929.

[NIE84] J. Nievergelt, H. Hinterberger and K. C. Sevcik.
The grid file: An adaptive, symmetric multikey file structure.
ACM Transactions on Database Systems, vo!. 9(1) 1984, pp 38-71.

284

References

[OUK85] M. Ouksel.
The interpolation based grid file.
Proc. 3rd ACM SIGACT-SIGMOD Symposium on
principles of database systems, 1985.

[OUK92] M. Ouksel et al.
Concurrency control in the interpolation-based grid file.
Proc. DEXA conference 1992, pp 237-243.

[OUK94] M. Ouksel et al.
Management of concurrency in interpolation-based grid file
organization and its performance.
Information Sciences, vol. 781994, pp 129-158.

[OZA96] K. Ozaki and Y. Yano.
The 3-tuple data modeling.
Proceeding of the IEEE International Conference on Systems,
Management and Cybernetics, vol. 3 1996, pp 2149-2154.

[OZK85] E. A. Ozkarahan and M. Ouksel.
Dynamic and order preserving data partitioning
for database machines.
Proc, 11th VLDB conference, Stockholm, 1985.

[PAG92] J. Page.
A study of a parallel database machine and its performance:
The NCR/Teradata DBC/1012.
Proc. 10th BNCOD, Aberdeen 1992, pp 115-137.

[P AP95] A. Papantonakis and P. J. H. King.
Syntax and semantics of Gql, a graphical query language.
Journal of Visual Languages and Computing vol. 6, 1995,
pp 3-25.

[P AT88] D. Patterson et al.
A case for redundant arrays of inexpensive disks (RAID).
Proceedings of 1988 ACM SIGMOD, June 1988.

[PEY87a] S. 1. Peyton Jones et al.
GRIP - A high performance architecture for parallel graph reduction.
In 'FPCA' 87, 1987, pp 98-112.

285

References

[PEY87b] S. 1. Peyton J ones.
The implementation of functional programming languages.
Prentice Hall International, 1987.

[PEY89] S. 1. Peyton Jones.
Parallel implementations of functional programming languages.
The Computer Journal, vo!. 32(2) 1989, pp 175-186.

[PEY93] S. 1. PeytonJones and P. Wadler.
Imperative functional programming.
ACM Symposium on Principles of Programming Languages,
Charleston, 1993, pp 71-84.

[PEY96] S. 1. Peyton Jones et al.
Concurrent Haskell.
Proc. 23rd ACM Symposium on Principles of Programming
Languages, Florida, 1996.

[POU89] A. Poulovassilis.
The design and implementation of FDL, a functional database
language.
PhD Thesis, Birkbeck College, University of London, 1989.

[POU92] A. Poulovassilis.
The implementation of FDL, a functional database language.
The Computer Journal, vo!. 35(2) 1992, pp 119-128.

[PR098] B. J. Procter.
The enterprise datacentre-ICL's 'millennium' programme.
ICL Systems Journal, vo!. 13(1) 1998, pp 17-34.

[QUA99] F. Quaglia and B. Ciciani.
Performance vs. cost of redundant arrays of inexpensive disks.
Simulation Practice and Theory, vo!. 7(2) 1999, pp 153-170.

[ROB89] 1. B. Robertson.

Hope+ on Flagship.
Proc. of the Glasgow workshop on functional programming,
Glasgow 1989, pp 296-307.

[SAG94] H. Sagan.
Space-filling curves.
Sprinter-Verlag, 1994.

286

References

[SHA88] G. C. H. Sharman and N. Winterbottom.
The universal triple machine:
A reduced instruction set repository manager.
Proc. 6th BNCOD, Cardiff, 1988.

[SHA78] G. c. H. Sharman and N. Winterbottom ..
The data directory facilities of NDB.
Proc. 4th VLDB Conference, Berlin, 1978.

[SHI81] D. W. Shipman.
The functional data model and the data language DAPLEX.
ACM Transactions on Database Systems, vol6, no 1, 1981.

[SILOl] L. Silvers ton.
The data model resource book, vols. 1 and 2.
Wiley Computer Publishing, 2001.

[SMA88] C. Small.

[SMI87]

Guarded default databases: A prototype implementation.
Prolog and databases: Implementations and new directions, 1988.

P. D. Smith and G. M. Barnes.
Files and databases: An introduction.
Addison Wesley, 1987.

[SOU97] S. B. Southerden.
INDEPOL Client-A 'facelift' for mature software.
ICL Systems Journal, vol. 12(2) 1997, pp 315-329.

[ST086] M. Stonebraker.

[SU88]

The case for shared nothing.
IEEE Data Engineering, vol. 9(1) 1986, pp 4-9.

S.Y.W.Su.
Database computers, principles, architectures and techniques.
McGraw-Hill International, 1988.

[TAG85] R. M. Tagg.
CAF5-ISP: issues for the application designer.
ICL Technical Journal, vol. 4(4) 1985, pp 402-418.

287

[TIT74]

[TRI89]

[TRI96]

[TRI98]

[TRIOO]

References

P. Titman.
An experimental database system using binary relations.
Proc. IFIP TC-2 working conference, Amsterdam, 1974.

P. W. Trinder and P. L. Wadler.
Improving list comprehension database queries.
Proc. TENCON, 4th IEEE Conference, Bombay, pp 186-192, 1989.

P. W. Trinder et al.
GUM: A portable parallel implementation of Haskell.
Proc. Programming Language Design and Implementation,
Philadelphia, pp 79-88, 1996.

P. W. Trinder et al.
Algorithm + strategy = parallelism.
Journal of Functional Programming vol. 8(1), 1998, pp 23-60.

P. W. Trinder et al.
The multi-architecture performance of the parallel functional
language GpH Glasgow Parallel Haskell.
Euro-Par 2000 6th International Conference, 2000, pp 739-743.

[WHA85] K. Whang and R. Krishnamurthy.
Multilever grid files.
IBM research report RC11516 (#51719), 1985.

[WHA91] K. Whang and R. Krishnamurthy.
The multilevel grid file-
A dynamic hierarchical multidimensional file structure.
Database Systems for Advanced Applications, 1991.

[WILOO] S. Williams.
The associative model of data.
Published by Lazy Software Limited, 2000.

[WIL96] R. Wilhelm et al.
Parallel implementation of functional languages.
Analysis and Verification of Multiple-agent Languages,
Stockholm 1996, pp 279-295.

[WIL85] P.R. Wiles.
Using secondary indexes for large CAFS databases.
ICL Technical Journal, vol. 4(4) 1985, pp 419-440.

288

References

[WIN79] N. Winterbottom and G. C. H. Sharman.
NDB: Non-programmer data base facility.
IBM UK Laboratories Ltd, Technical Report TR.12.179, 1979.

[WIT93] A. Witkowski et al.
NCR 3700 - The next-generation industrial database computer.
Proc. 19th VLDB Conference, Dublin, 1993 pp 230-243.

289

'l> l>
..... "C

"C
Z CD
0 ::l
:l Co --:::T ><
-<
0 ...
~
0
~-
3
CD
Co
11) -11)
e-
ll)

~ III
CD '"d
I '"d

(t)

III & 0
:::T ~.

CD
x

3
11)

Appendix

A.2 North Yorks crime database - triple allocation

After creating the database and adding all schema details 6,170

Membership triples
crm 2,501 itm 8,598 pit 5,002
soc 2,501 gtn 2,501 mop 2,501
day 2,770 bet 147 26,521

Entity-Entity Triples
gtn -7 itm 8,598 crm -7 gtn 2,501
crm -7 mop 2,501 crm -7 soc 2,501
crm -7 pit 5,002 soc -7 bet 2,501
pit -7 day 5,002 28,606

Directory Pages - 26 pages @ 382 triples per page 9,168

String Triples
crm -7 tag 2,501 itrn -7 cat 8,700

-7 cir 69,000 -7 des 118,000
+ 2,501 + 8,598

-7 scp 314,000 mop -7 hfe 2,700
+ 2,501 -7 mud 4,400

-7 eno 5,002 -7 poe 9,800
-7 oir 2,501 soc -7 pat 6,800
-7 ofn 4,400 -7 pcd· 2,501

gtn -7 prt 2,500 -7 add 14,000
-7 gct 6,700 + 2,501

bet -7 bed 147 day -7 dywk 2,700
around 592,000

Non-String Triples
crm -7 hoc 2,501 itrn -7 val 8,598
gtn -7 ant 2,501 mop -7 glv 2,501

-7 car 2,501 -7 fgt 2,501
-7 eye 2,501 -7 fen 2,501
-7 cmp 2,501 -7 icd 2,501

day -7 dno 2,770 bet -7 pph 147
-7 mno 2,770 -7 osb 294
-7 yno 2,770 soc -7 irl 2,501
-7 dnwy 2,770 -7 gqd 2,501

47,630
Crime Pattern Analysis Triples

pat_bools 2,502 x 18 mud_bools 2,502 x 22
hfe_bools 2,502 x 16 poe_bools 2,502 x 24
gtn_bools 2,502 x 24 260,208

291

Appendix

A.3 Presented at IDEAS '98 Conference, Cardiff UK, July 1998

Storage Sub-systems to Support Large Functional Databases

V.AJ. Maller and S.N. Sheldrake
Department of Computer Studies, Loughborough University, Loughborough, UK

email: [v.a.j.mallerls.n.sheldrakel@lboro.ac.uk

Abstract

Earlier work by V.A.J. Maller, and P.J.H. King
eva'luated the suitability of a functional database
language (FDL) being used to support large
applications in the field of investigative systems [1].
This is a growing generic application area covering
criminal and military intelligence and characterised by:
significant data complexity; large data sets; and the
needfor high performance, interactive use [2J.

The evaluation confirmed the soundness of FDL but,
heavy use in a practical context, showed improvements
were needed to areas like string matching and graph
traversal. Also, an implementation on multiprocessor,
parallel architectures would help meet the performance
requirements arising from existing and projected
database sizes in this application area.

This paper discusses some of the proposed changes
to the interfaces in the software architecture for a future
system that should meet both the requirements of
extendedfunctionality and potential parallelisation.

1. Background

The functional database language (FDL) [3] was
developed as part of the TriStarp (Triple Store
application research project) at Birkbeck College,
University of London. The objective was to explore and
develop the binary relational approach as a common
framework - from the storage level, through the data
model level, to the user level. A uniform set of
functions provides the interfaces between the three
levels.

Frost [4] reviewed the binary relational approach
and devised the Binary Relational Storage Structure
(BRSS). A BRSS holds data in three fields with the
format: <subject, relation, object> termed a
triple. A triple can hold simple facts like: "Fred reads
The-Times", or be used for structures like binary trees.
In this case, a set of triples with the format:
<node I left-subtree, right-subtree> is used.

There were several developments of the BRSS
concept and the Birkbeck Triple Machine (BTM) is one
such implementation [5]. The BTM underpins the
storage level of the TriStarp work and provides
persistence for all data.

2. The current position

The BTM comprises two components: a software
triple store and a lexical token converter (LTC). The
triple store provides the storage mechanism via the
following sets of interface functions: file utility
operators - create_db, open_db and close_db; update
operators - insertjriple and delete_triple; and retrieval
operators - open_set, closejet, fetch_another and
present.

The LTC handles the mapping between elements of
a triple - strings, integers, etc. termed lexemes - and
their unique, fixed-length (32-bit) token identifiers used
to represent them in the triple store. Entities - termed
non-lexicals - are represented by unique surrogates and
are not directly visible to the user.

Using tokens saves duplicating strings (which form
the bulk of the lexemes) and ensures compact storage in
memory. However, most strings need decomposing into
a set of triples because one triple can accommodate only
six characters. Therefore reconstruction of strings into
their full representation adds significantly to response
time - particularly when handling large data sets.

Metadata and manipulation functions, like map, are
stored in binary tree triples and clustered around unique
identifiers where possible. However, triple retrieval and
function reconstruction can add further overheads to
response time.

As no semantics are attached to triples, the BTM is
used effectively by both functional and logical
databases. The decision to use a semantic-free triple
store was in keeping with other research at the time; it
was a deliberate attempt to keep the storage mechanism
simple by providing a small set of interface functions.
This means the majority of core database tasks like
select and join have to be programmed at level I which
can make them slow and difficult to optimise.

292

Appendix

3. Research activities

The following are being undertaken:

• enhancing the interface functions,
• restructuring the physical model for data storage,
• incorporating additional hardware, and
• structuring changes to allow for parallel processing.

To improve string matching and graph traversal
operations, the homogeneous triple store needs
reworking so that data storage complements data usage.
This will aid devolved functionality - for example,
metadata would be bulk loaded into memory at the start
of each session. The language Hydra [6], developed to
evaluate associational features, highlighted two types of
function definition: primary functions that hold instance
data, and secondary functions - like map or Jold - that
manipulate instance data. These can be stored using
different physical models.

Primary functions can be further subdivided into
extensional and intensional varieties. The former are for
simple <subject, relation, obj eet> triples and are
many in number; the latter are for equations involving
expressions or variables on either side of their definition
(such as default values) and are few in number, e.g.:

age Bill <= 47
age loe <= age Eve
age x <= 30

extensional definition
intensional definition
default intensional definition

Surrogate tokens will be used for entity instances
and relation names only: strings will be held in full.
Although this results in some duplicated data, there are
benefits where string matching is concerned.

The update operators insert_triple and delete_triple
need semantics so the store manager will know where to
store or locate them. We propose a richer set of
interface functions for update operations, e.g.:

insert-Pfun_extdeJ
insert-Pfun_intdeJ
insert_sfun_deJ

extensional primary function
intensional primary function
secondary function

The retrieval operators would be enhanced by
providing different levels of retrieval and associational
functions. We plan to store triples with format:
<enti ty, relation, attribute> in cliques grouped
around the common entity. Parallel processing and data
filtering techniques can then be used to boost
performance levels. The entity triples with format:
<entity, relation, entity> will remain, as these
are used for graph traversal operations. So the retrieval
choices proposed are:

geuriple
gecattributes
gecEtriples
gecallJrom
gecalCto
get-paths

for one <E, r, Po> triple
for <E, r, (A]> triples
for <E, r, {E}> triples
for <E, r, {E}> + <E, r, {A}>
the inverse of the gecallJrom
retrieves paths from En to Em

Restructuring the physical data model is now
underway.

4. Conclusions

We believe these improvements will: provide a
more coherent software architecture; improve
performance levels and; support devolved functionality
via a parallel processing array or a mature search engine
such as ICL's CAFS [7]. After completion of this study
phase, an operational system will be built which,
together with an enhanced language FDL2, will be
evaluated in an operational environment.

Acknowledgements

[I] had the support of EPSRC, ICL and the North
Yorkshire Police Force.

Bibliography

[1] PJ.H. King and V.AJ. Maller, "Evaluating functional
database concepts in advanced application environments",
Final Report EPSRC Research Grants GRlK17736 and
GRlK183J3, 1996.

[2] V.AJ. Maller, "Criminal investigation systems: The
growing dependence on advanced computer systems",
lEE Computing and Control Engineering Journal,
vol. 7(2) 1996, pp 93-100.

[3] A. Poulovassilis, "The implementation of FDL, a
functional database language",
The Computer Journal, vol. 35(2) 1992, pp 119·128.

[4] R.A. Frost, "Binary relational storage structures",
The Computer Journal. vol. 25(3) 1982, pp 358·367.

[5] M. Derakhshan, "A development of the grid file for the
storage of binary relations",
PhD Thesis, Birkbeck College, 1989.

[6] R. Ayres and P.J.H. King, "Querying graph databases
using a functional language extended with second order
facilities",
14th BNCOD, Edinburgh 1996, pp 189-203.

[7] V.AJ. Maller, ''The Content addressab1e file store",
1CL Technical Journal, vol. 1(3) 1979, pp 265-279.

293

Appendix

A.4 Presented at BNCOD, Exeter UK, July 2000

Using Functional Databases to Support Large,
Text-Intensive Applications

Simon N. Sheldrake and Victor A. J. Maller

Department of Computer Science,
Loughborough University.

Loughborough. LE!! 3TU. UK
S.N.Sheldrake@lboro.ac.uk
V.A.J.Maller@lboro.ac.uk

Abstract. Functional languages. despite their many advantages. are not always
seen as a first choice for database applications involving extensive string matching.
One reason for this is their relatively poor performance in this area. This paper
shows a way to resolve this without compromising the advantages of the functional
paradigm

Background

Earlier research evaluated a functional database. built over the functional data model.
in the domain of investigative systems. This is a growing generic application domain
covering areas such as criminal and military intelligence. which is characterised by
significant data complexity, large text-intensive data sets and the need for high
performance interactive use (Mal96). The evaluation confirmed the soundness of the
functional approach but heavy use in a practical context showed weaknesses in crucial
areas. particularly in string manipulation and graph traversa!. This paper tackles the
first of these.

The functional database language FDL (Pou92) was developed as part of
the TriStarp project (Kin90) which set out to explore and develop the binary
relational approach as a common framework for database design. FDL has as
its model the functional view of the binary relational model, usually known as
the functional data model or entity-function mode!. Such models view the
world as consisting of non-lexical (abstract) entities-person, crime, etc.-and
lexical (scalar) attributes-integer, string, etc.-used to describe the entities.
Advantages of entity-function models include:

• intuitive and incremental schema evolution
• the ability to underpin other models-including the object-oriented (Ban90)
• ease of use provided by a graphical query language
• graphical representation of objects which may be viewed at various levels of

abstraction.

294

Appendix

The benefits of functional programming include:

• the ability to define complex data structures and recursive functions over them
• freedom from side effects because of referential transparency
• freedom of execution order facilitating parallel processing.

FDL extended these to include:

• persistence for all data
• the ability to define extensional and intensional definitions over the same function
• improved handling of null and undefined values-thus enabling database closure.

Persistence for all data is provided via a software triple store where all data is mapped
to 32-bit tokens. This aids query evaluation and for most cases is very efficient.
However, with strings, there are overheads imposed that may be tolerable in small
scale databases but are unacceptable for practical applications. The particular
problems in our context are:

• recursion makes string functions slow to execute
• comparing strings has to be done using their tokens
• superfluous tokens are created during searches-sometimes to the point of

exhaustion which compromises data integrity
• allowing for missing or unknown characters in the search pattern is non-trivial.

The aim is to improve string manipulation without losing the aforementioned benefits
of a functional language-simply using another language would clearly compromise
these benefits. The next section shows how improved string manipulation within the
current architecture was achieved. Then, with different data structures for strings, it is
shown how more can be done to provide users with the kind of facilities found in
systems more traditionally associated with string handling.

Improvements to the Current System

String manipulation was accomplished by declaring functions in the language itself
at the user-level. Such functions, however, only had three built-in functions available
for use in their algorithms-concat, length and substr. As user-level functions are
recursive, each function call resulted in additions to the query evaluation tree and the
creation of more tokens at each stage of the search. Built-in functions, on the other
hand, merely 'drop out' of the evaluation tree, execute and return a single result. To
resolve this, new built-in functions have been added that are fully compatible with a
functional language. These functions search for space-delimited words and permit
missing characters, left-hand or right-hand truncation of a search pattern and multiple
search patterns. The new built-in function, matches, was compared to the FDL user
defined function, contains, and run against a trial database holding test data derived
from real-world events. The results are shown below.

295

Appendix

Triple store Improvements

Seconds

10000

1000

100

10

User-defined
function

"contafns"

function
"matches"

0.1L-~ ________________ -.

1 10 100 1000 10000

Records .. avg 3 kbyteslrecord

Alternative Data Structures

Although the above represents a substantial improvement, it is still difficult to provide
users with comprehensive searching facilities. It is proposed, therefore, to take strings
out of the homogeneous triple store so they can be more easily manipulated. Holding
entity attributes (including strings) in their full format and clustered on their common
entity, provides a physical storage structure combining the advantages of the
relational model with those of the entity-function model. With strings delimited to
word level and held in a look-up table, the important inverse mapping from attribute
to entity can be made. Examples of these structures are: (where # indicates a uniquely
generated word token.)

The occurrences field allows the user to ascertain quickly whether or not they wish to
continue with the current search. With all attributes clustered on their common entity,
the token-ta-string mapping is unnecessary. Moreover, these structures are more
amenable to search acceleration using a search engine such as CAFS (MaI79). From
the above table the string triples might be: (where $ indicates an entity surrogate.)

token relation entity
. #49 has.:..skills_as $343218

#49 I job_title $923432
#3741 has skills_as $123456'
#3741 has skills as $128332

296

Appendix

The ability to include missing characters was built into the search algorithm with the
wildcards !I_I! _ match anyone character and. "%" - match zero or more characters.
An example program demonstrated the speed-up that is possible: the results are shown
below.

Improvements with clustered structures

Seconds

10000

1000
With se ch engine

lOO (sca tel0Mb/sec)

References

10

1~1---10--~1-0-0--1-0~00~~10~0~0-0--·
Records (millions)· avg 13 bytes/record

Ban90 Bancilhon, F. et al.
The O2 query language syntax and semantics.
Technical Report, Altair Paris, 1990.

Kin90 King, P. J. H. et al.
TriStarp - An investigation into the implementation and exploitation of
binary relational storage structures.
Proc. 8th BNCOD, 1990.

Mal96 Maller, V. A. J.
Criminal investigation systems: The growing dependence on advanced
computer systems.
Computing and Control Engineering Journal, vo!. 7(2) 1996.

Mal79 Maller, V. A. J.
The content addressable filestore.
[CL Technical Journal, vo!. 1(3) 1979.

Pou92 Poulovassilis, A.
The implementation of FDL, a functional database language.
The Computer Journal, 35(2) 1992.

297

Appendix

A.S 'C' program files for text searching based on using records

1* File name : headers.h *1
1* Files which use this are: main.c pat.c load.c search.c *1

#define MAXSTRING 30 1* max length of any string *1
#define MAXLENGTH
#define BIGLOOP

2000
0

1*
1*

max number of entries in table *1
used for stats purposes *1

#define LOOPMAX 4000 1* used for stats purposes *1

typedef unsigned char uchari
typedef unsigned short ushorti

1* function prototypes *1

int get"'pattern (uchar *pattern, ushort *patlen) ;
int load (uchar *index_char, char *file_name) i

void reverse-pat (uchar *8) ;
void fold_index (void) ;
void fixed (uchar *pat, ushort plen) ;
void front (uchar *pat, ushort plen, ushort search_type);
void mid (uchar *pat, ushort plen, short wild) ;
void midlast (uchar *pat, ushort plen, short wild,

ushort search_type);
void bothends (uchar *pat, ushort plen) ;
void midmid (uchar *pat, ushort plen, short wl, short w2) ;
int exact (uchar *p, uchar *t, short i) ;

int elastic (uchar *p, uchar *t, ushort patlen);

/***/
1* enumeration used to classify search patterns, thus: with: *1
1* * I
1* NONE =

, ... L = " %'1 M , . . .% •• " F first *1
1* ML = , .. .% • • • %" F = "% •• .. . " FL = n%. . . • %1' L = last *1
1* FM n % •• • %. " .. MM = " .% • • • % • • I. M = mid *1
/***/

enum pattern_type {NONE, L, M, ML, F, FL, FM, MM};

struct record { 1* used for each entry in the table *1
ushort length; 1* string length *1
uchar *stringi 1* actual string *1
unsigned token; 1* id for the string *1
ushort occurrences; 1* how many triples it appears in *1

} entry[MAXLENGTH];

short wild [3] ; 1* place holders for any '%' wildcards in pattern *1

298

/* File name: main.c */

#include "stdio.h"
#include "time.hl!
#include "headers.hl!

Appendix

int alpha_index (27) ; {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

MAXLENGTH} ;

unsigned long hits;

void main (void)
(

uchar pattern [MAXSTRING), *p;
ushort patIen, in_index;
enum pattern_type search-pat;

#if BIGLOOP
time_t start, end;
unsigned ii

/* these are used for */
/* stats purposes */

#endif

search-pat ; get-pattern(pattern, &patlen);

switch (search-pat) (

}

case 0: case 1: case 2: case 3: case 7:
in_index; load(&pattern[O),"forward.txt");
if (! in_index) {

printf ("Not in table\n");
exit(1);

}
fold_index();
break;

case 4: case 6:
in_index; load(&pattern[patlen-l),"reverse.txt");
if (!in_index) {

printf ("Not in table\n");
exit(1);

}
reverse-pat(pattern);
fold_index();
break;

case 5:
load(NULL,"forward.txtll)i
break;

p ; pattern;
while(*p) *p++ ; toupper(*p};

hits; 0;

#if BIGLOOP
start; time(NULL);
for(i;O; i<LOOPMAX; i++) {

#endif
/* do search x times for effect */

299

Appendix

switch (search-pat) (

}

case 0: fixed (pattern, patlen);
break;

case 1: front (pattern, patlen-1, 1);
break;

case 2: mid (pattern, patlen-1, wild[O]);
break;

case 3: midlast(pattern, patlen-2, wild[O], 3);
break;

case 4: front (pattern, pat1en-1, 4);
break;

case 5: bothends(pattern, pat1en-2);
break;

case 6: midlast(pattern, pat1en-2, pat1en - 1 - wild[1] , 6);
break;

case 7: midmid(pattern, pat1en-2, wi1d[0], wi1d[1]);
break;

#if BIGLOOP
)

end = time(NULL);
printf(" The table took %d second(s) to search\n",

(int) difftime(end, start»;
#endif

if (hits) printf(" %d matches found\n", hits);
else printf(" Pattern not in tab1e\n");

}

void reverse-pat
(uchar *s)

(
uchar c, i = 0, j = strlen(s) - 1;

for (; i<j; i++, j--) {
c=s[i];
sri] = s[j];
s[j] = c;

}

void fold_index
(void) /* if any index entries are still -1 they */

/* need changing to reflect the start of */
short i = 25; /* the next letter. */

for (; i >= 0; i--)
if (a1pha_index[i] -- -1) alpha_index[i] = a1pha_index[i+1];

}

300

/* File name: pat.c */

#include 'stdio.h'
#include 'headers.h'

int get-pattern

Appendix

(uchar *pattern, ushort *patlen)
/* Gets pattern> 3 characters long with */
/* 0, 1 or 2 wildcards in it. Returns to */

uchar i, total;
uchar ok = 0;
uchar C, *Wi

/* "patlen n
, and the enumerated integer

/* for the search strategy to be used.
*/
*/

do { /* continue until we have a pattern which is ok */
w = pattern;
printf ("enter pattern length 4 or greater ");
while (isspace(c=getchar(»)

/* skip leading while space */
*w++ = Ci

while « *w getchar(» != '\n') /* now get pattern until eR hit */
W++i

w = NULL; / append null byte */
patlen = strlen(pattern); / and get length */
if (*patlen < 4) printf (' too small - re-enter\n");
else {

wild[O] = wild[l] = wild[2] = -1;/* holds positions of wildcards*/
for (i=O, total=O; total<3 && pattern[i]; i++)

if (pattern[i] == '%') wild[total++] = i;
switch (total) { /* total now = number of wildcards in pattern */

case 0: return NONE;
case 1: ok = 1;

break;
case 2: if (wild[l] - wild[O] == 1)

/* adjacent %s + pattern short*/
if (*patlen == 4)

printf ("short pattern - re-enter\n 11) ;
else { /* remove one of the wildcards */

}
}

)

for (i=wild[l]; pattern[i]; i++)
pattern[i] = pattern[i+1];

(*patlen)--;
wild[l] = -1;
ok = 1;

else ok = 1;
break;

case 3: printf (" too many wildcards - try again \n") ;
break;

} while (!ok); /* pattern has zero, one or two wildcards only in it */

if (wild[l] == -1) {
if (wild[O] == *patlen-1)
if (wild[O] > 0) return M;
else return F;

}

else
if (wild[l] *patlen-1)

/* ie, only one wildcard in pattern */
return Li

/* two wildcards in pattern *1

301

Appendix

if (wild[O] > 0) return ML;
else return FL;

else if (wild[O] == 0) return FM;
else return MM;

/* File name: load.c */

#include 11 stdio. h"
#include "headers.h"
#include "stdlib.h"

extern int alpha_index[];
unsigned count = 0;

int load

{
(uchar * index_char , char * file_name)

FILE *fp;
uchar str[100], temp[20], last_char = '@', this_char;
unsigned j, ki

if ((fp = fopen(fileJlame,"r"))==NULL) {
printf ("cannot open in file\n");
exit(l) ;

}

count = 0;

while (!feof(fp)) (
fgets(str, 100, fp);
if (!feof(fp)) {

j = k = 0;
while (str[k] != '-') temp[j++] = str[k++];
temp [j] = NULL;
entry[count] . length = (short) atoi(temp);
k++i
j = 0;

entry[count].string = malloc(entry[count].length+1);
if (!entry[count] .string) {

}

printf ("memory allocation failure\n") i

exit(l) ;

while (str[k] != '-') entry [count] .string[j++] = str[k++];
entry [count] .string[j] = NULL;
k++i
j = 0;

while (str[k] != '-') temp[j++] = str[k++];
temp[j] = NULL;
entry[count].token = (unsigned) atoi(temp);
k++i
j = 0;

302

Appendix

while (str[k] !; '-') temp[j++] ; str[k++];
temp[j] ; NULL;
entry[count].occurrences; (short) atoi(temp);

if (index_char) /* see if new index entry needed */
if ((this_char;toupper(entry[count] .string[O]» > last_char)

alpha_index[this_char - 'A'] ; count;
last_char ; this_char;

}

count++i

fclose (fp) ;

if (!index_char) 1* ie, no index created for "% %" patterns */

}

return 1;
else

if «(alpha_index[toupper(*index_char)-'A']) ;; -1)
return 0; /* no entries beginning with first letter of pat */

else
return 1; 1* there is, so search can proceed */

/* File name : search.c */

#include "stdio.h"
#include "headers.h"

extern int alpha_index[];
extern int hits;
extern unsigned count;

uchar found, offset;
unsigned start, stop;

void fixed /* for patterns with no wildcards in them */

(
(uchar *pat, ushort plen)

if (isalpha(pat[O]» {
offset; pat[O]-'A';

}

start ; alpha_index[offset];
stop ; alpha_index[offset+1];

else { /* first char in pat is _ character */
start; 0;
stop = count;

}

for (; start<stopi start++)
if (plen ;; entry[start].length) (

found; exact(pat, entry[start] .string, plen);
if (found) (

#if ! BIGLOOP
printf("%s\n", entry[start].string);

#endif

303

Appendix

hits++;

}
}

void front /* for patterns like: "abcde%" or lI%abcde" */
(uchar 'pat, ushort plen, ushort search_type)

(
uchar rev-pat[MAXSTRING];

if (isalpha(pat[O])) {
offset = pat[O]-'A';

}

start = alpha_index[offset];
stop = alpha_index[offset+l];

else {

}

start = 0;
stop = count;

for (; start<stop; start++)
if (plen <= entry[start] . length) (

found = exact(pat, entry[start].string, plen);
if (found) {

if (search_type==4) (
strcpy(rev-pat, entry[start] .string);
reverse-pat(rev-pat);

#if ! BIGLOOP
printf (I'%s\n", rev-pat);

#endif
}

else (
#if ! BIGLOOP

printf("%s\n", entry[start].string);
#endif

hits++;

}

void mid /. for patterns like: "abc%def" • /

{
(uchar 'pat, ushort plen, short wild)

ushort
uchar

len;
*current;

if (isalpha(pat[O])) {
offset
start
stop

}
else {

start
stop

}

=
=

pat[O]-'A';
= alpha_index[offset];
= alpha_index[offset+l];

0;
count;

for (; start<stop; start++)

304

Appendix

if (plen <= entry[start].length) (
current = entry[start].string;
found = exact(pat, current, wild);
if (found) (

len = entry[start] .length;
found = exact (pat+wild+l, current+(len-(plen-wild», plen-wild);
if (found) (

#if ! BIGLOOP
printf("%s\n", entry[start] .string);

#endif
hits++;

}

}
}

void midlast /* for patterns like: "abc%def%l1 & 11 %abc%def 11 */
(uchar *pat, ushort plen, short wild, ushort search_type)

{
uchar temp-pat[MAXSTRING], rev-pat[MAXSTRING];

if (isalpha(pat[O]» {
offset = pat[O]-'A';
start = alpha_index[offset];
stop = alpha_index[offset+l];

}

else {

}

start 0 i
stop = count;

strcpy(temp-pat, pat);
temp-pat[plen+l] = NULL;

for (; start<stop; start++)

/* drop last % from pattern */

if (plen <= entry[start] . length) (
found = exact (temp-pat, entry[start] .string, wild);
if (found) (

found = elastic(temp-pat+wild+l, entry[start] .string+wild,
plen-wild) ;

if (found) {
if (search_type==6) (

strcpy(rev-pat, entry[start] .string);
reverse-pat(rev-pat);

#if ! BIGLOOP
printf("%s\n", rev-pat);

#endif

else
#if ! BIGLOOP

#endif

}

}
}

printf("%s\n", entry[start] .string);

hits++i

305

Appendix

void bothends / * for patterns like: "%abcde%" * /
(uchar *pat, ushort plen)

uchar temp-pat[MAXSTRING];
unsigned start, found;

strcpy(temp-pat, pat);
temp-pat[plen+1] = NULL; /* drop last '%' from pattern */

for (start = 0; entry[start] .string; start++)
if (plen <= entry[start] . length) (

found = elastic (temp-pat+1, entry [start] . string, plen);
if (found) (

#if ! BIGLOOP
printf("%s\n", entry [start] . string) ;

#endif
hits++i

}
}

}

void midmid /* for patterns like: "abc%def%xyz" */
(uchar *pat, ushort plen, short w1, short w2)

uchar
ushort

temp, temp-pat[MAXSTRING], *current;
nu1lpos;

if (isalpha(pat[O]» {
offset = pat[O]-'A';
start = alpha_index[offset];
stop = alpha_index[offset+1];

else {

}

start = 0;
stop = count;

strcpy(temp-pat, pat);

for (; start<stop; start++)
if (plen <= entry[start].length) (

current = entry[start].string;
found = exact (temp-pat, current, wl);
if (found) (/* "match% % " */

nullpos = entry [start] . length - (plen-w2) - 1;
found = exact (temp-pat+w2+l, current+nullpos, plen-w2+1);
if (found) (/* " % %match" */

temp = current [nullpos] ; /* save char where */
current [nullpos] = NULL; /* null to go. */
temp-pat[w2] = NULL; /* stop pat at 2nd % */
found = elastic(temp-pat+w1+1, current+w1, w2-w1-1);
current [nullpos] = temp; /* and replace char */
if (found) (

#if ! BIGLOOP
printf('%s\n", entry[start] . string) ;

#endif
hits++;

}

306

Appendix

}
}

}

int elastic /* looks for p to appear anywhere in t */

(

}

(uchar *p, uchar *t, ushort patlen)

short textlen = strlen(t), i = patlen, j = patlen, k;

while (j > 0 && i <= textlen) {
k = ii

}

while (j > 0 && p[j-1J == toupper(t[k-1J) 11 p[j-1J -- '_') {
k--;
j--;

}
if (j > 0) {

i++;
j = patlen;

}
else return 1;

return 0;

int exact /* looks for exact match * /

}

(uchar *p, uchar *t, short i)

while (i > 0 && p[i-1J == toupper(t[i-1J) 11 p[i-1J -- '_') i--;
return !i ? 1 : 0;

307

Appendix

A.S 'C' program files for text searching using 5.5 million records

1* File name: headers.h *1
1* Files which use this are: main.c pat.c load.c search.c *1

#define MAXSTRING 30 1* max length of any string *1
#define MAXLENGTH 5800000 1* max number of entries in table *1

typedef unsigned char uchar;
typedef unsigned short ushort;

1* function prototypes *1

int get""pattern (uchar *pattern, ushort *patlen) ;
int load (uchar *index_char, char *file_name) i

void reverse-pat (uchar *8) ;
void fold_index (void) ;
void fixed (uchar *pat, ushort plen) ;
void front (uchar *pat, ushort plen, ushort search_type) ;
void mid (uchar *pat, ushort plen, short wild);
void midlast (uchar *pat, ushort plen, short wild,

ushort search_type) ;
void bothends (uchar *pat, ushort plen) ;
void midmid (uchar *pat, ushort plen, short wl, short w2) ;
int exact (uchar *p, uchar *t, short i) i
int elastic (uchar *p, uchar *t, ushort patlen);

1*** ****************/
1* enumeration used to classify search patterns, thus: I with: *1
I * I * I
/* NONE = " L = " %" M = 11 •••• % IF = first */
/* ML = 11 •••• % ••• %" F = ut •••••••• " FL = n% .•..... %" I L = last */
/ * FM = 11 % ••• % •••• 11 MM = 11 •• % ••• % •• It I M = mid * /
1*** ****************/

enum pattern_type (NONE, L, M, ML, F, FL, FM, MM);

struct record { 1* used for each entry in the table *1
ushort length; 1* string length *1
uchar *string; 1* actual string *1
unsigned token: 1* id for the string *1
ushort occurrences; 1* how many triples it appears in *1
entry[MAXLENGTH];

short wild[3]; 1* place holders for any '%' wildcards in pattern *1

308

/* File name: main.c */

#include "stdio.h"
#include "time.h"
#include "head.h"

Appendix

int alpha_index[27] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, MAXLENGTH};

unsigned long hits;

void main (void)
(

uchar
ushort
enum pattern_type

pattern [MAXSTRING], *p;
patlen, in_index;
search-pat:

search-pat = get-pattern(pattern, &patlen);

printf (" %ld\n" ,time (NULL)) ;

switch (search-pat) (
case 0: case 1: case 2: case 3: case 7:

in_index = load(&pattern[O],"forward.txt");
if (! in_index) {

printf ("Not in table\n");
exit(l);

}
fold_index () ;
break:

case 4: case 6:
in_index = load(&pattern[patlen-1] ,"reverse.txt");
if (!in_index) {

printf ("Not in table\n");
exit (1);

}
reverse-pat(pattern);
fold_index();
break:

case 5:
load(NULL,"forward.txt");
break:

p = pattern;
while (*p) *p++

hits = 0;

toupper (*p) ;

/* printf("%ld\n" ,time (NULL)); */

switch (search-pat) (
case 0: fixed(pattern, patlen);

break;
case 1: front (pattern, patlen-1, 1);

break;
case 2: mid (pattern, patlen-1, wild[O]);

break:

309

}

}

Appendix

case 3: midlast(pattern, patlen-2, wild[O], 3);
break;

case 4: front (pattern, patlen-1, 4);
break;

case 5: bothends(pattern, patlen-2);
break;

case 6: midlast(pattern, patlen-2, patlen - 1 - wild[l], 6);
break;

case 7: midmid(pattern, patlen-2, wild[O], wild[l]);
break;

printf (" %ld\n" ,time (NULL)) ;

if (hits) printf(" %d matches found\n", hits);
else printf(" Pattern not in table\n");

void reverse-pat
(uchar *s)

(

}

uchar c, i = 0, j = strlen(s) - 1;

for (; i<j; i++, j--) {
c=s[i];
s[i] = s[j];
s[j] = c;

void fold index
(void) /* if any index entries are still -1 they */

/* need changing to reflect the start of */ {
short i = 25; /* the next letter. */

for (; i >= 0; i--)
if (alpha_index[i] -- -1) alpha_index[i] = alpha_index[i+1];

/* File name: pat.c */

#include "stdio.h"
#include "head.hl!

int get-pattern
(uchar *pattern, ushort *patlen)

/* Gets pattern> 3 characters long with */
/* 0, 1 or 2 wildcards in it. Returns to */

uchar i, total;
uchar ok = 0;
uchar c, *Wi

/* "patlen", and the enumerated integer
/* for the search strategy to be used.

*/
*/

do (/* continue until we have a pattern which is ok */
w = pattern;
printf("enter pattern length 4 or greater: ");
while (isspace(c=getchar(»)

310

Appendix

1* skip leading while space *1
*w++ = Ci

while ((*w = getchar()) != '\n') 1* now get pattern until eR hit *1
W++i

*w = NULL; I * append null byte * I
patlen = strlen(pattern); 1 and get length *1
if (*patlen < 4) printf("too small - re-enter\n");
else {

wild[O] = wild[l] = wild[2] = -1;1* holds positions of wildcards*1
for (i=O, total=O; total<3 && pattern[i]; i++)

if (pattern[i] == '%') wild[total++] = i;
switch (total) { 1* total now = number of wildcards in pattern *1

case 0: return NONE;

}

case 1: ok = 1;
break;

case 2: if (wild[l] - wild[O] == 1)
1* adjacent %s + pattern short*1

if (*patlen == 4)
printf (" short pattern - re-enter\n 11) ;

else { 1* remove one of the wildcards */
for (i=wild[I]; pattern[i]; i++)

pattern[i] = pattern[i+l];
(*patlen) --;
wild[l] = -1;
ok = 1;

else ok = 1;
break;

case 3: printf("too many wildcards - try again\n");
break;

} while (!ok); 1* pattern has zero, one or two wildcards only in it *1

if (wild[l] == -1) { 1* ie, only one wildcard in pattern *1
if (wild[O] == *patlen-l) return L;
if (wild[O] > 0) return M;
else return Fi

}
else

if (wild[l] == *patlen-l)
if (wild[O] > 0) return ML;
else return FLi

else if (wild[O] == 0) return FM;
else return MM;

1* two wildcards in pattern *1

311

Appendix

/* File name: load.c */

#include "stdio.h"
#include "head.hlt
#inc1ude "stdlib.h"

extern int a1pha_index[];
unsigned count = 0;

int load

{
(uchar * index_char , char *fi1e_name)

FILE *fp;
char str[lOO], temp[20];
uchar last_char = I@I, this_char;
unsigned j, ki

if «fp = fopen(file_name, "r"»==NULL) {
printf (" cannot open in file\n ") ;
exit(l) ;

}

count = 0;

while (! feof (fp» (
fgets(str, 100, fp);
if (!feof(fp» {

j = k = 0;
while (str[k] != '-') temp [j++] = str[k++];
temp[j] = NULL;
entry [count] . length = (short) atoi(temp);
k++i
j = 0;

entry[count] .string = ma11oc(entry[count] .1ength+l);
if (!entry[count] . string) {

printf ("memory allocation failure\n");
exit(l) ;

while (str[k] != '-') entry[count] .string[j++] = str[k++];
entry[count].string[j] = NULL;
k++;
j = 0;

while (str[k] != '-') temp[j++] = str[k++];
temp[j] = NULL;
entry [count] . token = (unsigned) atoi(temp);
k++i
j = 0;

while (str[k] != '-') temp[j++] = str[k++];
temp[j] = NULL;
entry[count].occurrences = (short) atoi(temp);

312

}
}

Appendix

if (index_char) '* see if new index entry needed *'
if «this_char=toupper(entry[count] .string[O]» > last_char)

alpha_index[this_char - 'A'] = count;
last_char = this_char;

}
CDunt++j

fclose (fp) ;

if (!index_char) /* ie, no index created for "% %11 patterns */

}

return 1;
else

if «alpha_index[toupper(*index_char)-'A']) == -1)
return 0; '* no entries beginning with first letter of pat *'

else
return 1; /* there is, so search can proceed */

/* File name: search.c */

'include "stdio.h"
#include I'head.hll

extern int alpha_index[];
extern int hits;
extern unsigned count;

uchar found, offset;
unsigned start, stop;

void fixed '* for patterns with no wildcards in them *'

}

(uchar *pat, ushort plen)

if (isalpha(pat[O]» {
offset = pat[O]-'A';
start = alpha_index[offset];
stop alpha_index[offset+1];

else { '* first char in pat is _ character *'
start = OJ
stop = count;

for (; start<stop; start++)
if (plen == entry[start].length) (

}

found = exact(pat, entry[start] .string, plen);
if (found) hits++;

void front /* for patterns like: "abcde%" or "%abcde n */
(uchar *pat, ushort plen, ushort search_type)

{
uchar rev-pat[MAXSTRING];

313

Appendix

if (isalpha(pat[O») (
offset = pat[O)-'A';
start alpha_index[offset);
stop = alpha_index[offset+l);

}
else {

}

start = 0;
stop = count;

for (; start<stop; start++)
if (plen <= entry[start) ,length) (

}

found = exact (pat, entry[start) ,string, plen);
if (found) {

}

if (search_type==4) (

}

strcpy(rev-pat, entry[start) ,string);
reverse-pat(rev-pat);

hits++;

void mid /* for patterns like: 11 abc%def 11 */

{
(uchar 'pat, ushort plen, short wild)

ushort
uchar

1en;
*current;

if (isalpha(pat[O») (
offset pat[O)-'A';

}

start = alpha_index[offset);
stop = alpha_index[offset+l);

else {
start = 0;
stop count;

for (; start<stop; start++)
if (plen <= entry[start) ,length) (

current = entry[start) ,string;
found = exact(pat, current, wild);
if (found) (

len = entry[start) ,length;
found = exact (pat+wild+l, current+(len-(plen-wild», plen-wild);
if (found) hits++;

}
}

}

void midlast /* for patterns like: "abc%def%" & "%abc%def" */
(uchar 'pat, ushort plen, short wild, ushort search_type)

(
uchar temp-pat[MAXSTRING), rev-pat[MAXSTRING);

if (isalpha(pat[O») {
offset = pat[O)-'A';

314

)

)

Appendix

start ~ alpha_index[offset];
stop ~ alpha_index[offset+l];

else (

)

start ~ 0;
stop = count:

strcpy{temp-pat, pat);
temp-pat[plen+l] ~ NULL; /* drop last % from pattern */

for (; start<stop; start++)
if (plen <~ entry[start] . length)

found ~ exact (temp-pat, entry[start] .string, wild);
if (found) (

)

found ~ elastic(temp-pat+wild+l, entry[start] .string+wild,
plen-wild) ;

if (found) {

)

if (search_type~~6) (
strcpy(rev-pat, entry[start].string);
reverse-pat(rev-pat);

else hits++i

void both ends /* for patterns like: "%abcde%" */

(

)

(uchar *pat, ushort plen)

uchar temp-pat[MAXSTRING];
unsigned start, found;

strcpy(temp-pat, pat);
temp-pat[plen+l] ~ NULL; /* drop last '%' from pattern */

for (start ~ 0; entry[start] .string; start++)
if (plen <~ entry [start] . length) (

)

found ~ elastic(temp-pat+l, entry [start] .string, plen);
if (found) hits++;

void midmid /* for patterns like: "abc%def%xyz" */

{
(uchar *pat, ushort plen, short wl, short w2)

uchar
ushort

temp, temp-pat[MAXSTRING], *current;
nullpos;

if (isalpha(pat[O])) (
offset ~ pat[O]-'A';

)

start ~ alpha_index[offset];
stop ~ alpha_index[offset+l];

else {
start 0;
stop = count;

315

}

Appendix

}

strcpy(temp-pat, pat);

for (; start<stop; start++)
if (plen <= entry[start] . length) (

current = entry[start] .string;
found = exact (temp-pat, current, w1);
if (found) (/* "match% % " */

nullpos = entry[start] . length - (plen-w2) - 1;
found = exact (temp-pat+w2+1, current+nullpos, plen-w2+1);
if (found) (/* " % %match" */

temp = current[nullpos]; /* save char where */
current [nullpos] = NULL; /* null to go. */
temp-pat[w2] = NULL; /* stop pat at 2nd % */
found = elastic (temp-pat+wl+1, current+wl, w2-w1-l);
current [nullpos] = temp; /* and replace char */
if (found) hits++;

}
}

}

int elastic 1* looks for p to appear anywhere in t */

(
(uchar *p, uchar *t, ushort patlen)

short textlen = strlen(t), i = patlen, j = patlen, k;

while (j > 0 && i <= textlen) {
k = i;
while (j > 0 && p[j-1] == toupper(t[k-l]) 11 p[j-1] -- '_') {

k--;
j -- i

}

if (j > 0) {
i++;
j = patlen;

}

else return 1;

return 0;

int exact / * looks for exact match * /

{

}

(uchar *p, uchar *t, short i)

while (i > 0 && p[i-1] == toupper(t[i-1]) 11 p[i-1] -- '_') i--;
return !i ? 1 : 0;

316

Appendix

A.7 Initial functions used for experimental searches

/*********************************/
/* Program new_strings.c */
/* includes object functions for */
/* string matching. */
/* written by S. Sheldrake 1999 */
/*********************************1
#include <stdio.h>
#include <setjmp.h>
#include 'deLh"

#define ALPHA_SIZE 256
#define DELIMITER " "

char text[MAXSTRLEN];
char pat[MAXSTRLEN];
char subpat[MAXSTRLEN];
char word[MAXSTRLEN] ;

int em1(char *t, char *p, int s_type)
/* searches for pat in text using a one-at-a-time move strategy */
/* looks for exact word matches only using #define DELIMITER */
(

}

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat (pat,p);
strcat(text,DELIMITER);
strcat(pat,DELIMITER);

if (s_type == 0)

/* Add delimiter */
/* to font and */
/* back of text */
/* and pattern */

return exact(text,pat,strlen(text» >= 0 ? (OK)
else

return shift(text,pat,strlen(text» >= 0 ? (OK)

int em2(char *t, char *p)
/* searches for pat in text using a one-at-a-time */
/* strategy and permits missing characters in pat */
/* looks for delimited, exact word matches only */
(

int i, j, k, I_text, patlen;

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat (pat, p) ;
strcat(text,DELIMITER);
strcat(pat,DELIMITER);

i = j = patlen = strlen(pat);
l_text = strlen(text);

while (j > 0 && i <= l_text) (
k = i:

(FAIL) ;

(FAIL) ;

while (j > 0 && pat[j-l] == text[k-1] 11 pat[j-1] -- '_') {

317

}

}

}

j--i
k--;

if (j > 0) {
i++i
j = patlen;

}
else return (OK);

return (FAIL);

Appendix

int em21 (char *t, char *p)
/* searches for pat in text using a shift
/* table and permits missing characters in
/* looks for delimited, exact word matches
(

*/
pat */
only * /

int i, j, k, l_text, patlen, shift, table[ALPHA_SIZE];
char *ptrj

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat (pat,p) ;
strcat(text,DELIMITER);
strcat(pat,DELIMITER);

patlen = strlen(pat);
ptr = pat;

/* Add DELIMITER */
/* to front and */
/* back of text */
/* and pattern */

for (i=patlen -1, shift = -1; i > -1 && shift < 0; i--)
if (pat[i] == '_') shift = patlen - i - 1;

if (shift == 0) shift++;
if (shift == -1) shift = patlen;
for (i=O; i<ALPHA_SIZE; i++) table[i] = shift;
for (i=1; i<patlen; i++, ptr++) table[*ptr] = patlen - i;

}

i = j = patlen;
I_text = strlen(text);

while (j > 0 && i <= I_text) {
k = ij
while (j > 0 && pat[j-l] == text[k-1] 11 pat[j-1] -- '_') {

j--;

}

k--j
}
if (j > 0) {

}

i += table[text[i-1]] < shift? table[text[i-1]]
j = patlen;

else return (OK);

return (FAIL);

shift;

int em3(char *t, char *p)
/* searches for pat in text using a one-at-a-time move strategy */
/* copes with right-hand truncation by discarding wildcard char */

318

Appendix

/* looks for exact word matches only using #define DELIMITER */
(

int i, j, k, I_text, patlen;

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat(pat,p) ;

/* Add DELIMITER to front and end of */
/* text and to front of pattern. */

patlen = strlen(pat);
patlen--;
pat[patlenj=NULL;
l_text = strlen(text);
i = j = 0;

/* gets rid of wild card character
/* and null terminate pat.

/* this time search is from front

while (j < patlen && i <= l_text)
k = i;

}

while (j < patlen && pat[jj == text[kj) {
j++;
k++:

if (j < patlen) {
i++:
j = 0;

else return (OK);

return (FAIL);

*/
*/

*/

int em4(char *t, char *p, int s_type)
/* searches for pat in text using a one-at-a-time move strategy */
/* or using a shift table depending on value of s_type. */
/* Copes with left-hand truncation by discarding wildcard char */
/* looks for exact word matches only using #define DELIMITER */
(

}

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcpy(pat,p+l);
strcat(pat,DELIMITER);

if (s_type == 0)

/* Add DELIMITER to front and end of */
/* text and to end only of pattern. */
/* when copying p to pat, make sure */
/* to dump the wildcard character */

return exact(text,pat,strlen(text» >= 0 ? (OK) (FAIL);
else

return shift(text,pat,strlen{text» >= 0 ? (OK) (FAIL);

int em5(char *t, char *p)
/* searches for pat in text using a one-at-a-time move strategy */
/* copes with wildcard char anywhere in middle of search pat */
/* looks for exact word matches only using #define DELIMITER */
(

int i, j, k, I_text, patlen, subpatlen:

strcpy(text,DELIMITER);

319

Appendix

strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat(pat,p);
strcat(pat,DELIMITER);

/* Add DELIMITER to front and end of */
/* text and pattern. */

patlen = strlen(pat);
patlen--; /* gets rid of wildcard to be ignored */
i = j = patlen;
I_text = strlen(text);

while (j > 0 && i <= I_text) {
k = i;
while (j > 0 && text[k] == pat[j]) {

j--;
k--;

}

/* find RH end first */

if (pat[j] == '%') (/* set things up to look from LH end */
strcpy(subpat,pat); /* first make copy of pat */
subpat[j]=NULL; /* and shorten it to LH end bit only */
while (text[k] != ' ') k--; /* line up k to be at */
subpatlen = j; /* beginning of word */
j = 0; /* store length of sub pat and set j to 0 */
while (j < subpatlen && pat[j] == text[k]) {

j++; /* now do search from LH end to either */
k++i /* mismatch or success for sub pat */

}
if (j < subpatlen)

i++i
j = patlen;

}
else return (OK);

} /* endif pat[j] == '%' */
else {

}

if (j > 0) {
i++i
j = patlen;

else return (OK);

} /* while */
return (FAIL);

int em6(char *text, char *pat, int s_type)
/* takes pat, which now has an elastic meta character at each */
/* end, lops off the meta characters and does one-at-a-time */
/* search or using shift table (depends on s_type passed in.) */
{

}

pat++;
pat[strlen(pat)-l] = NULL;

/* lose first % character
/* lose last % character

if (s_type == 0)
return exact(text,pat,strlen(text)) >= 0 ? (OK) (FAIL) ;

else
return shift(text,pat,strlen(text)) >= 0 ? (OK) (FAIL) ;

*/
*/

320

Appendix

int mml(char *t, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* 1 (bang) character, and searches for the sub-patterns - any of */
/* which will result in success being returned. Exact words only. */
(

char *ptrj
int match, l_text;

strcpy(text,DELIMITER);
strcpy(subpat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
I_text = strlen(text);

/* adds the DELIMITER to either */

while (pat) (
ptr = subpat;
ptr++j

/* end of the textsstring

while ((*ptr++ = *pat++) != 'I' && *pat != NULL)

*/

if (*(ptr-l) == 'I') *--ptr = "; /* these lines add */
else *ptr = ' '; /* on the final DELIMITER and */
++ptr = NULL; / the NULL byte */
match = exact(text,subpat,l_text);
if (match>=O) return (OK); /* found match - so return ok */
if (*pat -- 'I ') pat++;
if (*pat == NULL) return (FAIL);

}
}

int mm2(char *t, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* & (ampersand) character, and searches for the sub-patterns - all */
/* of which must be in text for success. Exact words only. */
(

char *ptrj
int match, I_text;

strcpy(text,DELIMITER);
strcpy(subpat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
I_text = strlen(text);

/* adds the DELIMITER to either */
/* end of the texts string */

while (pat) (
ptr = subpat;
ptr++i

/* there's still a subpat to process */
/* use ptr to move thru' subpat */
/ * skip leading DELIMITER * /

while ((*ptr++ *pat++) != '&' && *pat != NULL)

if (*(ptr-l) == '&') *--ptr = ' , . , /* these lines
final DELIMITER

/* the NULL

add */
else *ptr = ' I;

*++ptr = NULL;
/* on the and */

byte */
match = exact(text,subpat,l_text);
if (match<O) return (FAIL);
if (*pat -- '&') pat++;

/* if any supbats not in text */
/* return fail */

if (*pat == NULL) return (OK);

321

Appendix

int mm3(char *t, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* < (less than) character, and searches for the sub-patterns - all */
/* of which must be in text and in ascending order. Exact word only */
(

char *ptri
int match, last_match = 0, I_text;

strcpy(text,DELIMITER);
strcpy(subpat,DELIMITER) ;
strcat(text,t);
strcat(text,DELIMITER);
l_text = strlen(text);

/* adds the DELIMITER to either */
/* end of the text string */

while (pat) {
ptr = subpa t;
ptr++;

/* there's still a subpat to process */
/* use ptr to move thru' subpat */
/ * skip leading DELIMITER * /

}

while ((*ptr++ = *pat++) != '<' && *pat != NULL)

if (*(ptr-l) == '<') *--ptr = ' ';
/* on the

/* these lines add
final DELIMITER and

*/
*/ else *ptr = I r;

++ptr = NULL: / the NULL byte */
match = exact(text,subpat,l_text);
if (match < 0 I I match < last_match) return (FAIL);
last_match = match; /* make sure matches are found */
if (*pat -- '<I) pat++: /* in the correct ordering */
if (*pat == NULL) return (OK);

int exact(char *text, char *pat, int l_text)
/* uses one-at-a-time shift to find match */
(

)

int i, j, k, patlen = strlen(pat);

i = j = patlenj

while (j > 0 && i <= I_text) {
k = ii
while (j > 0 && text[k-l] == pat[j-l]){

j--;
k--:

)
if (j > 0) (

i++:
j = patlen;

)

else return k;

return -1:

int shift(char *text, char *pat, int l_text)
/* uses shift table to find exact match */
(

int i, j, k, patlen = strlen(pat) , table[ALPHA_SIZE];
char *ptr = pat;

322

Appendix

for (i=O; i<ALPHA_SIZE; i++) table[i] = patlen;
for (i=l; i<patlen; i++, ptr++) table [*ptr] = pat1en-i;

i = j = patlen;

while (j > 0 && i <= I_text) {
k = i;
while (j > 0 && text[k-1] == pat[j-1]){

j --;
k--:

if (j > 0) (
i += table[text[i-1]];
j = patlen;

else return k:

return -1:

int ssl(char *t, char *p)
/* searches for pat in text using on-at-a-time moves */
/* returns the number of times pat appears in text */
(

}

int I_text, patlent i, j, k, count = 0;

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat(pat,p) ;
strcat(pat,DELIMITER);

I_text = strlen(text);
patlen = strlen(pat);

i = j = patlen:

while (i <= I_text) {
k = i:

}

while (j > 0 && text[k-1] -- pat[j-1]) {
k--;
j--;

}
if (j < 1) count++;
i++:
j = patlen;

return count:

int ss2(char *t, char *p)
/* searches for pat in text using shift table and */
/* returns the number of times pat appears in text */
(

char *ptr:
int I_text, patlen, table [ALPHA_SIZE] , i, j, k, count = 0;

strcpy(text,DELIMITER);

323

}

strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat (pat,p);
strcat(pat,DELIMITER);
I_text = strlen(text);
patlen = strlen(pat);
ptr = pat;

Appendix

for (i = 0; i < ALPHA_SIZE; i++) table(i] = patlen;
for (i = 1; i < patlen; i++, ptr++) table(*ptr] = patlen i;

i = j = patlen;

while (i <= I_text)
k :::: ii

}

while (j > 0 && text(k-1] -- pat(j-1]) {
k--;
j --;

}
if (j < 1) count++;
i += table(text(i-1]];
j = patlen;

return count i

char *mm11(char *t, char *p)
/* searches for pat in text using a one-at-a-time move strategy */
/* looks for exact word matches only using #define DELIMITER */
/* returns string found or empty string if not found */
(

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t) ;
strcat(pat,p) ;
strcat(text,DELIMITER);
strcat(pat,DELIMITER);

/* Add DELIMITER */
/* to front and */
/* back of text */
/* and pattern */

return exact(text,pat,strlen(text» >= 0 ? (p) : ('''');
}

char *mm22(char *t, char *p)
/* searches for pat in text using a one-at-a-time */
/* strategy and permits missing characters in pat */
/* looks for delimited, exact word matches only */
/* returns the word from the text that caused match */
(

int i, j, k, I_text, patleni

strcpy(text,DELIMITER) ;
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(pat,p);
strcat(text,DELIMITER);
strcat(pat,DELIMITER);

i = j = patlen = strlen(pat);

/* Add DELIMITER */
/* to front and */
/* back of text */
/* and pattern */

324

Appendix

I_text = strlen(text);

while (j > 0 && i <= I_text) {
k = i;

}

while (j > 0 && pat[j-l] == text[k-l] 11 pat[j-l] -- '_') {
j--;
k--;

if (j > 0) {

i++:
j = patlen;

}

else (

}

strncpy(word, text+k+l, i-k-l);
word[i-k-2] = NULL;
return word:

return " " . ,

char *mm33(char *t, char *p)
/* searches for pat in text using a one-at-a-time move strategy */
/* copes with right-hand truncation by discarding wildcard char */
/* looks for exact word matches only using #define DELIMITER */
/* returns the word in the text that made the match */
(

int i, j, k, I_text, rn, patlen;

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat (pat,p);

/* Add DELIMITER to front and end of */
/* text and to front of pattern. */

patlen = strlen(pat);
patlen--;
pat [patlen] =NULL;
I_text = strlen(text);
i = j = 0:

/* gets rid of wild card character
/* and null terminate pat.

/* this time search is from front

while (j < patlen && i <= l_text)
k = ii
while (j < patlen && pat[j] == text[k])

j ++;
k++;

}

if (j < patlen)
i++;
j = 0;

else {
m = 0; /* to step through word */
i++i /* move i past first space char in text */
while «word[m++] = text[i++]) != ' .)

word[m] = NULL;
return word;

*/
*/

*/

325

}
}
return

}

1111 • ,

Appendix

char *mm44(char *t, char *p)
/* searches for pat in text using a one-at-a-tirne move strategy */
/* Copes with left-hand truncation by discarding wildcard char */
/* looks for exact word matches only using #define DELIMITER */
/* returns the word in the text that made the match */
(

int n, ID :;:; 0;

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcpy(pat,p+l);
strcat(pat,DELIMITER);

/* Add DELIMITER to front and end of */
/* text and to end only of pattern. */
/* when copying p to pat, make sure */
/* to dump the wildcard character */

n = exact(text,pat,strlen(text»;
if (n >=0) {

while (text[n] != ' ') n--; /* gets n to beginning of match word */
while «word[m++] = text[++n])!= ')

}

word[m] = NULL;
return word;

else return 1111. ,

char *mm55(char *t, char *p)
/* searches for pat in text using a one-at-a-time move strategy */
/* copes with wildcard char anywhere in middle of search pat */
/* looks for exact word matches only using #define DELIMITER */
/* returns the word in text that made the match */
(

int i, j, k, I_text, patIen, subpatlen, m :;:; 0, ni

strcpy(text,DELIMITER);
strcpy(pat,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcat (pat,p) ;
strcat(pat,DELIMITER);

patlen = strlen(pat);
patlen--;
i = j = patlen;
l_text = strlen(text);

while (j > 0 && i <= l_text)
n :;:; k = i;

/* Add DELIMITER to front and end of */
/* text and pattern. */

/* gets rid of wildcard to be ignored */

while (j > 0 && text[k] == pat[j])
j--;

/* find RH end first */

k--;
}
if (pat[j] -- '%') { /* set things up to look from LH end */

326

}

Appendix

strcpy(subpat,pat); /* first make copy of pat */
subpat[j]=NULL; /* and shorten it to LH end bit only */
while (text[k]!= ') k--; /* line up k to be at */
subpatlen = j; /* beginning of word */
j = 0; /* store length of sub pat and set j to 0 */
while (j < subpatlen && pat[j] == text[k]) (

j++; /* now do search from LH end to either */
k++; /* mismatch or success for sub pat */

)

if (j < subpatlen) {
i++;
j = patlen;

}

else {

}

n--j
while (text [n] ! = ')

n--; /* gets n to beginning of match word */
while {(word [m++] = text [++nJ) ! = ' ')

word [m] = NULL;
return word;

/* endif pat[j] -- '%' */
else {

}

if (j > 0) {
i++i
j = patlen;

}
else {

}

n--;
while (text[n] != ' ')

n--; /* gets n to beginning of match word */
while ((word [m++] = text [++n]) ! = ' ')

word [m] = NULL;
return word;

} /* while *1
return nil. ,

char *mm66(char *t, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* I (bang) character, and searches for the sub-patterns - any of */
/* which will result in success being returned. Exact words only. */
/* the word in the text that makes the match is returned. *1
(

char *ptrj
int match, I_text;

strcpy(text,DELIMITER);
strcat(text,t);
strcat(text,DELIMITER);
strcpy(subpat,DELIMITER);
l_text = strlen(text);

/* adds the DELIMITER to either */
/* end of the textsstring */

327

while (pat) {
ptr = subpat;
ptr++;

Appendix

while «*ptr++ = *pat++) != 'I' && *pat != NULL)

}

;

if (* (ptr-l) == 'I') *--ptr = ' ';
else *ptr = I I; /* on the
*++ptr = NULL;
match = exact(text,subpat,l_text);
if (match>=O) {

subpat[strlen(subpat)-lJ = NULL;
return subpat+l;

'f (*pat ' I ') t -- pa ++ i
if (*pat -- NULL) return " , . ,

/* these lines add */
final DELIMITER and */

/* the NULL byte */

328

Appendix

A.S Final search functions used in software

1*********************************/
/* Program new_strings.c */
/* includes object functions for */
/* string matching. */
/* written by S. Sheldrake 2000 */
1*********************************/
#include <stdio.h>
#include <setjmp.h>
#include "def.h"

#define DELIMITER '

char *word(), *wild(), *embed();
char curr_word[MAXSTRLEN];
char curr-pat[MAXSTRLEN];

char *matches(char *text, char *pat)
/* examines pat to see how many wild cards in it. If there */
/* are zero, one or two, it passes pat & text to appropriate *l
/* function - either word(), wild() or embed() */
(

}

int i, total, len = strlen(pat);

for (i = 0, total = 0; total<2 && pat[i]; i++)
if (pat[i] == '%') total.+;

switch (total) (
case 0 return word(text,pat);
case 1 return wild(text,pat);
case 2 if (pat [a] -- '% ' && pat [len-l] --

return embed(text,pat) ;
else

I % I)

default
return "incorrect position of wild cards";

return "too many wild cards used"i

char *word(char *text, char *pat)
/* searches for pat in text using a one-at-a-time move */
/* allowing for I in pat meaning anyone character. */
/* returns first word that matches. */
(

int i, j = 0, x, plen = strlen(pat);

while (text[j]) {
i = 0; /* used as count through each word */
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL)

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

x = strlen(curr_word);
if (plen == x) {

while (x > 0 && pat[x-l]
X--j

curr_word[x-I] 11 pat [x-I] I_I)

329

}

if (Ix) return curr_wordi
}

return Ill! • ,

Appendix

char *wild(char *text, char *pat)
/* Searches for pat in text. Allows for one '%' character */
/* at either end of pat or in middle. Also allows for' , */
/* anywhere in pat. Returns first word that matches */
{

int i, j = 0, X, W = 0, plen = strlen(pat)-l, wlenj
char *p, *t;

while (pat [w] 1= '%' && pat [w] I = NULL) w++;

.while (text[j]) {
i = 0; /* used as count through each word */
while «curr_word[i++] = text[j++]) 1= DELIMITER && text[j] 1= NULL)

}

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

wlen = strlen(curr_word);
if (plen <= wlen) {

x = W; /* look for back bit of pat in curr_word */
while (x > 0 && pat[x-l] == curr_word[x-l] 11 pat[x-l] -- '_'I

X--j

if (Ix) (/* if found, set up and look for front bit */

}

return

x = plen - Wj

P = pat+w+l;
t = curr_word+(wlen-(plen-w));
while (x > 0 && p[x-l] == t[x-l] 11 p[x-l] -- '_') x--;
if (Ix) return curr_word;

It " • ,

char *embed(char *text, char *pat)
1* takes pat, which now has form I%XXXX%I

/* and returns first word that matches */
(

int i, j = 0, X, y, z, plen, wlen;

pat++;
pat[strlen(pat)-l] = NULL;
plen = strlen(pat);

while (text [j]) {

/* lose first % character
/* lose last % character

i = 0; /* used as count through each word */

*/
*/

while «curr_word[i++] = text[j++]) 1= DELIMITER && text[j] 1= NULL)

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

wlen = strlen(curr_word);

330

if (plen <= wlen)
x = y = plen;

Appendix

while (y > 0 && x <= wlen) {
Z = Xi

while (y> 0 && pat[y-l] -- curr_word[z-l] 11 pat [y-l] -- '_') {
z--;

}
}

return
}

y--;

if (y > 0) {

X++i
y = plen;

}
else return curr_word;

"" . ,

char *rest(char *text, char *pat)
/* searches for pat in text using a one-at-a-time move */
/* returns the rest of the text after the match. */
{

int i, j = 0;

while (text [j]) {
i = 0; /* used as count through each word */
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL)

}

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

if (!strcmp(curr_word,pat» return text+j;

return 1111. ,

char *or_str(char *text, char *pat)
/* takes pat, which is a mUltiple pattern of patterns separated by */
/* 1 (bang) character, and searches for the sub-patterns - any of */
/* which will result in that word being returned. */
{

int i, j, y = 0 i

while (pat [y]) {
i = 0; /* used as count through each bit of pat */
while «curr-pat[i++] = pat[y++]) != 'I' && pat[y] != NULL)

if (pat[y-l] == 'I ') curr-pat[i-l] = NULL;
else curr-pat[i] = NULL;

j = 0;
while (text[j]) (

i = 0; /* used as count through each word */
while «curr_word[i++]=text[j++])!= DELIMITER && text[j] != NULL)

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

331

}

Appendix

if (!strcrnp(curr-pat,curr_word» return curr_word;
}

if (pat [y]
if (pat [y]

-- 'I') y++;
-- NULL) return 11 n • ,

int and_str(char *text, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* & (ampersand) character, and searches for the sub-patterns - all */
/* of which must be in text for success. Exact words only. */
{

int i, j, y = 0, found;

while (pat [y]) {
i = 0;
while «curr-pat[i++] = pat[y++]) != '&' && pat[y] != NULL)

if (pat[y-1] == '&') curr-pat[i-1] = NULL;
else curr-pat[i] = NULL;

found = 0;
j = 0; /* used as count through text */

while (text[j] && !found) (
i = 0; /* used as count through each word */
while «curr_word[i++]=text[j++]) != DELIMITER && text[j] != NULL)

}

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

if (!strcmp(curr_word,curr-pat» found = 1;

if (text[j] == NULL && !found) return (FAIL);
if (pat[y] -- '&') y++;
if (pat[y] == NULL) return (OK);

int order_str(char *text, char *pat)
/* takes pat, which is a multiple pattern of patterns separated by */
/* < (less than) character, and searches for the sub-patterns - all */
/* of which must be in text and in ascending order. Exact word only *1
{

int i, j = 0, y = 0, found;

while (pat[y]) {
i = 0; /* used as count through bits of pat */
while «curr-pat[i++] = pat[y++]) != '<' && pat[y] != NULL)

if (pat[y-l] == '<') curr-pat[i-1] = NULL;
else curr-pat[i] = NULL;

found = 0;
while (text[j] && !found) (

i = 0; /* used as count through each word */
while «curr_word[i++]=text[j++]) != DELIMITER && text[j] != NULL)

332

}
}

}

Appendix

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

if (!strcmp(curr-pat,curr_word)) found = 1;

if (!found) return (FAIL);
if (text[j] == NULL && pat[y] != NULL) return (FAIL);
if (pat[y] -- '<'I y++;
if (pat[y] == NULL) return (OK);

int count_str(char *text, char *pat)
/* returns the number of times pat appears in text */
(

int i, j = 0, count = 0;

while (text[j]) (
i = 0; /* used as count through each word */
while «curr_word[i++] = text[j++]) != DELIMITER && text[j] != NULL)

}

if (text[j-l] == DELIMITER) curr_word[i-l] = NULL;
else curr_word[i] = NULL;

if (!strcmp(curr_word,pat)) count++;

return count;

int count_words(char *text, char *pat)
/* returns the number of words in a text */
(

}

int j = 0, count = 0;

if (text[j]==NULL) return count;

while (text [j]) (
while (text[j++] != DELIMITER && text[j] != NULL)

if (text[j-l] -- DELIMITER && text[j] != NULL) count++;
if (text[j-2] -- '\\') count--;

return ++cQuntj

int exact(char *text, char *pat, int I_text)
/* uses one-at-a-time shift to find match */
(

int i, j, k, patlen = strlen(pat);

i = j = patlen;

while (j > 0 && i <= I_text) {
k = i;
while (j > 0 && text[k-l] == pat[j-l]){

j --;
k--;

333

}

)

if (j > 0) (
i++;
j = patlen;

else return k;

return -1;

Appendix

334

· I

