92,654 research outputs found

    VINEA: a policy-based virtual network embedding architecture

    Full text link
    Network virtualization has enabled new business models by allowing infrastructure providers to lease or share their physical network. To concurrently run multiple customized virtual network services, such infrastructure providers need to run a virtual network embedding protocol. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto the physical network. We present the design and implementation of a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the (invariant) embedding mechanisms: resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding efficiency and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel policy configurations are compared over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities.National Science Foundation (CNS-0963974

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Shared versus distributed memory multiprocessors

    Get PDF
    The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure
    corecore