7 research outputs found

    NURBS based B-rep models for macromolecules and their properties

    Full text link

    Some New Symbolic Algorithms for the Computation of Generalized Asymptotes

    Get PDF
    We present symbolic algorithms for computing the g-asymptotes, or generalized asymptotes, of a plane algebraic curve, C, implicitly or parametrically defined. The g-asymptotes generalize the classical concept of asymptotes of a plane algebraic curve. Both notions have been previously studied for analyzing the geometry and topology of a curve at infinity points, as well as to detect the symmetries that can occur in coordinates far from the origin. Thus, based on this research, and in order to solve practical problems in the fields of science and engineering, we present the pseudocodes and implementations of algorithms based on the Puiseux series expansion to construct the g-asymptotes of a plane algebraic curve, implicitly or parametrically defined. Additionally, we propose some new symbolic methods and their corresponding implementations which improve the efficiency of the preceding. These new methods are based on the computation of limits and derivatives; they show higher computational performance, demanding fewer hardware resources and system requirements, as well as reducing computer overload. Finally, as a novelty in this research area, a comparative analysis for all the algorithms is carried out, considering the properties of the input curves and their outcomes, to analyze their efficiency and to establish comparative criteria between them.Agencia Estatal de Investigació

    Digital Alchemy: Matter and Metamorphosis in Contemporary Digital Animation and Interface Design

    Get PDF
    The recent proliferation of special effects in Hollywood film has ushered in an era of digital transformation. Among scholars, digital technology is hailed as a revolutionary moment in the history of communication and representation. Nevertheless, media scholars and cultural historians have difficulty finding a language adequate to theorizing digital artifacts because they are not just texts to be deciphered. Rather, digital media artifacts also invite critiques about the status of reality because they resurrect ancient problems of embodiment and transcendence.In contrast to scholarly approaches to digital technology, computer engineers, interface designers, and special effects producers have invented a robust set of terms and phrases to describe the practice of digital animation. In order to address this disconnect between producers of new media and scholars of new media, I argue that the process of digital animation borrows extensively from a set of preexisting terms describing materiality that were prominent for centuries prior to the scientific revolution. Specifically, digital animators and interface designers make use of the ancient science, art, and technological craft of alchemy. Both alchemy and digital animation share several fundamental elements: both boast the power of being able to transform one material, substance, or thing into a different material, substance, or thing. Both seek to transcend the body and materiality but in the process, find that this elusive goal (realism and gold) is forever receding onto the horizon.The introduction begins with a literature review of the field of digital media studies. It identifies a gap in the field concerning disparate arguments about new media technology. On the one hand, scholars argue that new technologies like cyberspace and digital technology enable radical new forms of engagement with media on individual, social, and economic levels. At the same time that media scholars assert that our current epoch is marked by a historical rupture, many other researchers claim that new media are increasingly characterized by ancient metaphysical problems like embodiment and transcendence. In subsequent chapters I investigate this disparity

    Geometric modeling, simulation, and visualization methods for plasmid DNA molecules

    Get PDF
    Plasmid DNA molecules are a special type of DNA molecules that are used, among other applications, in DNA vaccination and gene therapy. These molecules are characterized by, when in their natural state, presenting a closed-circular conformation and by being supercoiled. The production of plasmid DNA using bacteria as hosts implies a purification step where the plasmid DNA molecules are separated from the DNA of the host and other contaminants. This purification process, and all the physical and chemical variations involved, such as temperature changes, may affect the plasmid DNA molecules conformation by uncoiling or even by open them, which makes them useless for therapeutic applications. Because of that, researchers are always searching for new purification techniques that maximize the amount of supercoiled plasmid DNA that is produced. Computer simulations and 3D visualization of plasmid DNA can bring many advantages because they allow researchers to actually see what can happen to the molecules under certain conditions. In this sense, it was necessary to develop reliable and accurate geometric models specific for plasmid DNA simulations. This dissertation presents a new assembling algorithm for B-DNA specifically developed for plasmid DNA assembling. This new assembling algorithm is completely adaptive in the sense that it allows researchers to assemble any plasmid DNA base-pair sequence along any arbitrary conformation that fits the length of the plasmid DNA molecule. This is specially suitable for plasmid DNA simulations, where conformations are generated by simulation procedures and there is the need to assemble the given base-pair sequence over that conformation, what can not be done by conventional predictive DNA assembling methods. Unlike traditional molecular visualization methods that are based on the atomic structure, this new assembling algorithm uses color coded 3D molecular surfaces of the nucleotides as the building blocks for DNA assembling. This new approach, not only reduces the amount of graphical objects and, consequently, makes the rendering faster, but also makes it easier to visually identify the nucleotides in the DNA strands. The algorithm used to triangulate the molecular surfaces of the nucleotides building blocks is also a novelty presented as part of this dissertation. This new triangulation algorithm for Gaussian molecular surfaces introduces a new mechanism that divides the atomic structure of molecules into boxes and spheres. This new space division method is faster because it confines the local calculation of the molecular surface to a specific region of influence of the atomic structure, not taking into account atoms that do not influence the triangulation of the molecular surface in that region. This new method also guarantees the continuity of the molecular surface. Having in mind that the aim of this dissertation is to present a complete set of methods for plasmid DNA visualization and simulation, it is also proposed a new deformation algorithm to be used for plasmid DNA Monte Carlo simulations. This new deformation algorithm uses a 3D polyline to represent the plasmid DNA conformation and performs small deformations on that polyline, keeping the segments length and connectivity. Experiments have been performed in order to compare this new deformation method with deformation methods traditionally used by Monte Carlo plasmid DNA simulations These experiments shown that the new method is more efficient in the sense that its trial acceptance ratio is higher and it converges sooner and faster to the elastic energy equilibrium state of the plasmid DNA molecule. In sum, this dissertation successfully presents an end-to-end set of models and algorithms for plasmid DNA geometric modelling, visualization and simulation

    Similarités dans des Modèles BRep Paramétriques : Détection et Applications

    Get PDF
    Dans cette thèse, nous identifions et exploitons des similarités partielles dans des objets 3D pour répondre à des besoins courants du domaine de la Conception Assistée par Ordinateur (CAO). De nouvelles méthodes sont introduites, d'une part pour détecter les similarités partielles, d'autre part pour utiliser ces similarités dans des applications spécifiques telles que l'édition de forme, la compression et l'indexation d'objets 3D. Grâce au développement des applications de la modélisation géométrique, ces modèles sont de plus en plus nombreux et sont disponibles à travers plusieurs modalités. Pour augmenter la productivité dans la création de tels objets virtuels, la réutilisation et l'adaptation des modèles existants est un choix prioritaire. Cela exige donc des méthodes facilitant le stockage, la recherche et l'exploitation de ces modèles. Heureusement, les similarités dans des objets 3D est un phénomène fréquent. De nombreux objets sont composés de parties similaires à une rotation, à une translation ou à une symétrie près. De ce fait, la détection des similarités partielles dans ces modèles est capable de répondre aux problématiques courantes : la taille du stockage est réduite en conservant seulement une partie au lieu de toutes les parties répétées d'un modèle; l'indexation des modèles 3D requiert a priori l'orientation canonique des modèles. Or, la symétrie dans un objet 3D est toujours une référence d'orientation cohérente avec la perception humaine. Nous utilisons donc la symétrie partielle pour aligner ces modèles et ainsi renforcer la robustesse des méthodes d'indexation. Dans un premier temps, nous introduisons une approche similaire à la Transformée de Hough pour détecter des similarités partielles dans des modèles BRep-NURBS. Cette approche identifie non seulement les parties similaires mais aussi les transformations qui les lient. À travers la classification des isométries dans l'analyse des transformations, notre approche peut distinguer la nature de transformation liant des parties similaires d'un modèle, c'est-à-dire, les parties similaires à une rotation, à une translation ou à une symétrie près. Dans le deuxième temps, nous proposons deux applications héritées directement des résultats obtenus par la détection. Tout d'abord, pour la compression, un modèle se transforme en un graphe de similarités d'où les faces principales à conserver sont sélectionnées dans la structure compressée. Ensuite, pour l'orientation, le plan de la symétrie dominante et la projection orthographique d'un modèle autour de ce plan permettent de définir un repère canonique pour aligner ce modèle. ABSTRACT : In this thesis, we identify and exploit the partial similarities within 3D objects to answer the current needs of the Computer Aided Design field (CAD). Novel methods are introduced, on the one hand to detect the partial similarities, on the other hand to use these similarities for specific applications such as shape editing, compression and indexation of 3D objects. Because of the development of geometric modeling applications, 3D models are getting more numerous and available through many channels. To increase the productivity in creating such 3D virtual objects, the reuse and the adaptation of existing models becomes a prior choice. Thus, it requires methods easing the storage, the searching and the exploitation of these models. Fortunately, similarities within the 3D objects is a popular phenomenon. Many objects are composed of similar patches up to an approximated rotation, translation or symmetry. Hence, detecting the partial similarities within NURBSBRep models is able to solve the current issues : the storage size is reduced by coding a single patch instead of repeated patches of a model ; 3D model indexation requires a canonical orientation of these models. Furthermore, the symmetry within a 3D object is a good orientation reference, coherent with the human perception. Accordingly, we use the partial symmetries to align 3D models and so reinforce the robustness of indexation methods. In a first phase, we introduce an orginal approach similar to the Hough Transform to detect partial similarities within NURBS-BRep models. This approach identifies not only similar patches but also identifies the corresponding transformations that connect them. Additionally, through the classification of isometries in transformations analysis, our approach can distinguish the nature of transformations of similar patches of a model, that is, the patches similar up to an approximated rotation, translation or symmetry. This classification is advantageous for further applications : the similar patches of other transformation natures are considered in compressing ; the symmetric patches are used to normalize 3D models aim at a robust indexation. In the second phase, we propose two applications inherited directly from the obtained results of the detection. Firstly, for the compression, a model is transformed into a similarity graph where the principal faces to be coded are selected to form the compressed structure. Secondly, for the orientation, the plane of the dominant symmetry and the orthographic projection of a model around this plane generate a canonical frame to align this model
    corecore