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Abstract: We present symbolic algorithms for computing the g-asymptotes, or generalized asymptotes,
of a plane algebraic curve, C, implicitly or parametrically defined. The g-asymptotes generalize
the classical concept of asymptotes of a plane algebraic curve. Both notions have been previously
studied for analyzing the geometry and topology of a curve at infinity points, as well as to detect
the symmetries that can occur in coordinates far from the origin. Thus, based on this research,
and in order to solve practical problems in the fields of science and engineering, we present the
pseudocodes and implementations of algorithms based on the Puiseux series expansion to construct
the g-asymptotes of a plane algebraic curve, implicitly or parametrically defined. Additionally, we
propose some new symbolic methods and their corresponding implementations which improve
the efficiency of the preceding. These new methods are based on the computation of limits and
derivatives; they show higher computational performance, demanding fewer hardware resources
and system requirements, as well as reducing computer overload. Finally, as a novelty in this research
area, a comparative analysis for all the algorithms is carried out, considering the properties of the
input curves and their outcomes, to analyze their efficiency and to establish comparative criteria
between them.

Keywords: algebraic curves; infinity branches; convergent branches; approaching curves; generalized
asymptotes; algorithm performance; symbolic computation

1. Introduction

This paper presents symbolic algorithms for determining the behavior at infinity of a
plane algebraic curve, C, by determining the generalized asymptotes, or g-asymptotes, of its
branches at points with sufficiently large coordinates, i.e., at the infinity points. This concept
generalizes the classical concept of (line) asymptote and its calculation methods (see [1,2]).

Both notions, g-asymptotes and infinity branches, are essential tools that allow us to
analyze the geometry and topology of a curve at infinity points, as well as detect symmetries
that can occur in coordinates far from the origin, which is applicable to solving practical
problems in many fields of science and engineering. Thus, it should be noted that rational
algebraic curves have been an area of research [3–6] that appears in many fields, such as,
for example, ancient and modern architectural designs, in number theory problems [7,8],
in biological forms [9], in error correction codes [10–12] in route planning for robots [13],
and in cryptographic algorithms [7,14–17], among many other applications. In addition,
they have recently acquired additional practical importance in the area of Computer-Aided
Geometric Design for airplanes, automobiles, and household appliances, which would be
unthinkable without computational help and the development of effective methods for the
manipulation of algebraic curves and also surfaces [18–21]. The parameterizations of these
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entities also play an important role in other aspects, such as line integral, representation,
distribution of polynomial interpolation nodes [22], control theory [23], etc.

For this purpose, the pseudocodes of these algorithms are presented, as well as
the corresponding implementations and a comparative analysis. We use the algebra
software Maple.

To start with, Section 2 presents previous notions and explains the intuitive idea of
perfect curve and g-asymptote. That is, given a curve C, a new curve C̃ is said to be a g-
asymptote of C if C̃ is a curve of the smallest possible degree that approximates C at infinity
(see [24]).

Based on these preliminaries, Section 3 presents the algorithms and pseudocodes
which construct the generalized asymptotes from plane algebraic curves given by their
implicit and parametric equations, considering the infinity branches that converge to the
given curve. These pseudocodes are illustrated with examples that show the methods
developed in this work, as well as the implementation programmed with the algebra
system Maple, which are included in the Appendix C.

Thus, we present the pseudocodes and implementations of algorithms, based on
previous studies that use the Puiseux series expansion to construct the g-asymptotes of
a plane algebraic curve, implicitly or parametrically defined. Additionally, we propose
some new symbolic methods and their corresponding implementations which improve the
efficiency of the preceding research. These new methods are based on the computation of
limits and derivatives, they show higher computational performance, demanding fewer
hardware resources and system requirements, as well as reducing computer overload.

Accordingly, Section 4 presents, as a novelty in this research area, a comparative
analysis for all the algorithms presented in this work, considering the properties of the
input curves and their outcomes to analyze their efficiency and to establish comparative
criteria between the algorithms.

For this purpose, we study several cases to observe the system overload, when
Algorithm 1 or Algorithm 2 is executed (these two algorithms are based on the computation
of the Puiseux series). However, for the parametric case, Algorithms 3 and 4 dramatically
improve the efficiency of previous methods, since they are based on the computation of
limits and derivatives. They show higher computational performance, requiring fewer
hardware system resources available and a reduction in computer overload.

Algorithm 1 Computation of asymptotes of an implicit curve C
Require: C, plane algebraic curve defined by f (x, y) ∈ R[x, y]
Ensure: C̃i, i← 1, . . . , k /* Asymptotes of C */

1: F(x, y, z)⇐ ProjectiveCurve(C)
2: P1, . . . , Pm ⇐ In f inityPoints(F(x, y, 0))
3: g(y, z)⇐ F(1, y, z)
4: φ1(z), . . . , φk(z)⇐ PuiseuxSeries(g(y, z), z = 0, y)
5: for all φi of Pj do
6: ri(z)⇐ zφi(z−1)
7: Bi ⇐ {(z, ri(z)) ∈ C2 : z ∈ C, ‖z‖ > Mi} /* Definition 1 */
8: r̃i(z)⇐ miz + a1,iz1−n1,i/ni + · · ·+ aki ,jz

1−nki ,i/ni /* Equation (1) */
9: ni ⇐ deg(Bi)

10: P̃i(t)⇐ (tni , r̃i(tni )) ∈ C[t]2 /* Equation (2) */
11: end for
12: return C̃i ⇐ P̃i(t) ∈ C[t]2, i← 1, . . . , k
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Algorithm 2 Computation of asymptotes of a parametric curve C
Require: C, plane algebraic curve defined by
P(s)⇐ (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), /* Equation (3) */
gcd(pi1(s), pi2(s)) = 1, i← 1, 2

Ensure: C̃i, i← 1, . . . , k /* Asymptotes of C */
1: P∗(s)⇐ ProjectiveParametrization(P(s)) /* Equation (4) */
2: P1, . . . Pm ⇐ In f inityPoints(P∗(s))
3: `1(t), . . . , `k(t)⇐ PuiseuxSeries(p12(s)− tp11(s) = 0, t = 0, s)
4: for all `1(t) of Pj do
5: ri(z)⇐ p2(`i(z−1)) ∈ C� t�, z← t−1 /* Remark 1 */
6: Bi ⇐ {(z, ri(z)) ∈ C2 : z ∈ C, ‖z‖ > Mi} /* Definition 1 */
7: ni ⇐ degree(Bi)

8: r̃i(z)⇐ miz + a1,iz1−n1,i/ni + · · ·+ aki ,jz
1−nki ,i/ni /* Equation (1) */

9: P̃i(t)⇐ (tni , r̃i(tni )) ∈ C[t]2, i← 1, . . . , k /* Equation (2) */
10: end for
11: return C̃i ⇐ P̃i(t) ∈ C[t]2, i← 1, . . . , k

Algorithm 3 Computation of asymptotes of a parametric curve C with limits

Require: C, plane algebraic curve defined by
P(s)⇐ (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), /* Equation (3) */
gcd(pi1(s), pi2(s)) = 1, i← 1, 2, deg(pi1) ≤ deg(pi2), i = 1, 2.

Ensure: C̃i, i← 1, . . . , k /* Asymptotes of C */
1: τ1 . . . τl ← Roots(p12(s)) ∈ C
2: n11 . . . n1l ←MultiplicityRoots(p12(s))
3: ρ1 . . . ρk ←Roots(p22(s)) ∈ C
4: n21 . . . n2k ←MultiplicityRoots(p22(s))
5: for all τi ∈ {τ1 . . . τl} do
6: if p22(τi) 6= 0 then
7: P̃i(t)← (t, p22(τi)) ∈ C[t]2 /* Horizontal Asymp. Corollary 1 */
8: else if n2i ≥ 1 then

9: fn2i (s)←
p2(s)

p1(s)n2i/n1i

10: an2i ← lims→τi fn2i (s)
11: for j← n2i − 1, . . . , 0 do
12: f j(s)← p1(s)1/n1i ( f j+1(s)− aj+1)
13: aj ← lims→τi f j(s) /* Coeff. of the output parametrization. Theorem 1 */
14: end for
15: P̃i(t)← (tn1i , an2i t

n2i + ajtj + . . . + a0t0) ∈ C[t]2
16: end if
17: end for
18: for all ρj ∈ {ρ1 . . . ρk} & ρj /∈ Roots(p12(s)) do
19: if ∃ ρj, p12(ρj) 6= 0 then
20: P̃i(t)← (p12(ρj), t) ∈ C[t]2
21: i← i + 1 /* Vertical Asymp. Corollary 1 */
22: end if
23: end for
24: return C̃i ⇐ P̃i(t) ∈ C[t]2, i← 1, . . . , k

In Section 5, a comparative analysis of the previous algorithms is carried out. For this
purpose, some properties of the input curves are considered, as well as their results when
constructing the respective g-asymptotes of the input curves. Then, the efficiency of each
algorithm is analyzed, and a comparative criteria regarding the time of use of the CPU
from the simplest curve to the curve with the highest complexity is established.



Symmetry 2023, 15, 69 4 of 33

Algorithm 4 Computation of asymptotes of a parametric curve C with derivatives

Require: C plane algebraic curve defined by
P(s)⇐ (p1(s), p2(s)) ∈ R(s)2, pi(s) = qi(s)/q(s), /* Equation (6) */
gcd(q1(s), q2(s), q(s)) = 1, i← 1, 2.

Ensure: C̃i, i← 1, . . . , k /* Asymptotes of C */
1: τ1 . . . τk ← Roots(q(s))∈ C
2: n1 . . . nk ←MultiplicityRoots(q(s))

3: σ(s)← q2(s)
q1(s)

/* Theorem 2 */

4: for all τi ∈ {τ1 . . . τk} do

5: qi(s)←
q(s)

(s− τi)ni

6: ρi(s)←
(

q1(s)
qi

) 1
ni

7: ani ← σ(τi)
8: for j← (ni − 1), . . . , 0 do

9: aj =
1

(nj − j)!
· ∂ni−1−jσ(s)

∂sni−1−j · ρ
(ni−j)
i (τi) /* Coeff. of the Parametrization */

10: end for
11: P̃i(t)← (tni , ani t

ni + . . . + a0t0) ∈ C[t]2
12: end for
13: return C̃i ⇐ P̃i(t) ∈ C[t]2, i← 1, . . . , k

Finally, the conclusions and lines of future work are presented. More precisely, we
propose to generalize the study to curves defined by a nonrational parametrization, as well
as to surfaces, and study the families of existing g-asymptotes. Moreover, we advance the
idea that these methods could be extended to improve fuzzy-based algorithms.

We should point out that the novelties concerning previous works are based on the
presentation of the symbolic algorithms and the pseudocode with the algebra system Maple
to construct the asymptotes of a plane algebraic curve.

2. Preliminaries and Terminology

This section starts by introducing the notions of infinity branches, convergent branches,
and approaching curves, derived from previous research (see [24,25]).

Let C be an irreducible plane algebraic curve defined in the affine space by an irre-
ducible polynomial f (x, y) ∈ R[x, y]. Due to practical implications, the curve is assumed to
be real and, therefore, the implicit polynomial is defined over R. Let C∗ be its corresponding
projective curve defined by the homogeneous polynomial

F(x, y, z) = fd(x, y) + z fd−1(x, y) + z2 fd−2(x, y) + . . . + zd f0(x, y) ∈ R[x, y, z],

with d := deg(C), and let (1 : m : 0), m ∈ C be the form of the points of infinity of C∗ (if
the point of infinity (0 : 1 : 0) exists, a linear change in coordinates must be applied).

Under these conditions, starting from the curve defined by the polynomial
g(y, z) = F(1 : y : z) and calculating the Puiseux series, ϕi, i = 1 . . . degy(g) from g(y, z) = 0
around z = 0, we obtain the branches of C (see [24]). In the following, we denote as

ϕ(t) = m + a1tN1/N + a2tN2/N + a3tN3/N + · · · , ai 6= 0, ∀i ∈ N,

with Ni ∈ N, i = 1, . . ., and 0 < N1 < N2 < · · · one of these series. Therefore,
g(ϕ(t), t) = 0 in a neighborhood of t = 0 where ϕ(t) converges.
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Definition 1. An infinity branch of a plane algebraic curve C, at the infinity point P = (1 : m : 0),
m ∈ C, is the set B = {(z, r(z)) ∈ C2 : z ∈ C, ‖z‖ > M}, where r(z) = zϕi(z−1) =
mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · · and M is some natural number.

Definition 2. Given two branches, B = {(z, r(z)) ∈ C2 : z ∈ C, ‖z‖ > M} and
B = {(z, r(z)) ∈ C2 : z ∈ C, ‖z‖ > M}, we say that they are convergent if limz→∞(r(z)−
r(z)) = 0.

Definition 3. Let C be a plane algebraic curve with an infinity branch B. We say that a curve
D approaches C at the branch B, if limz→∞ d((z, r(z)),D) = 0, i.e., d(p,D) = min{d(p, q) :
q ∈ D}.

In [24], we show that if C is a plane curve with an infinity branch B, then a plane
curve C approximates C into B, if and only if C has an infinity branch B such that B and B
are convergent.

From the previous concepts, the definitions of perfect curve and generalized asymptote
are obtained (see [24]).

Definition 4. A curve of degree d is a perfect curve if it cannot be approximated by any curve of
degree less than d.

Note that a curve that is not perfect can be approximated by other curves of a lesser degree.

Definition 5. Let C be a plane algebraic curve with an infinity branch B. A curve, C̃, is a
g-asymptote or generalized asymptote of C in B, if it is a perfect curve that approximates C in B.

Let C be a curve with a branch B = {(z, r(z)) ∈ C2 : z ∈ C, ‖z‖ > M}, where
r(z) = mz+ a1z1−N1/N + · · ·+ akz1−Nk/N + ak+1z1−Nk+1/N + · · · , with coefficients a1, a2, . . .
∈ C \ {0}, m ∈ C, N, N1, N2 . . . ∈ N, and 0 < N1 < N2 < · · · .

Suppose that Nk ≤ N < Nk+1, i.e., the terms ajz
1−Nj/N with j ≥ k + 1 have a negative

exponent. In the following, we write

r(z) = mz + a1z1−n1/n + · · ·+ akz1−nk/n + ak+1z1−Nk+1/N + · · ·

with gcd(N, N1, . . . , Nk) = b, Nj = njb, N = nb, j = 1, . . . , k. That is, we simplify the
exponents such that gcd(n, n1, . . . , nk) = 1. Note that 0 < n1 < n2 < · · · , nk ≤ n,
and N < nk+1, i.e., the terms ajz

1−Nj/N with j ≥ k + 1 have negative exponents. The terms
with non-negative exponent of r(z) are

r̃(z) = mz + a1z1−n1/n + · · ·+ akz1−nk/n. (1)

Applying the change z = tn, we obtain a proper parametrization of a curve C̃

P̃(t) = (tn, mtn + a1tn−n1 + · · ·+ aktn−nk ) ∈ C[t]2, (2)

where n, n1, . . . , nk ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk, which is an
asymptote of C (see [24]).

3. Symbolic Algorithms for the Computation of Generalized Asymptotes

In this section, we describe four algorithms that construct the parametrizations of
the generalized asymptotes of the infinity branches of a curve C, all of them are described
by corresponding pseudocode. Furthermore, we study the behavior and execution of
the algorithms.

The next Subsection introduces Algorithm 1 which computes the g-asymptotes of a
curve given by its implicit expression. Section 3.2, Algorithm 2 is applied to a parametrically
given curve. Finally, the last two subsections show the improvement of Algorithm 2,



Symmetry 2023, 15, 69 6 of 33

with two new algorithms, Algorithms 3 and 4, that dramatically improve the previous
results for the parametric case.

3.1. Algorithm for Curves Implicitly Defined

The following algorithm computes the parametrizations of the asymptotes of the
infinity branches of the curve C, which is implicitly defined. It should be noted that the below
algorithm was implemented with the mathematical software Maple (see Appendix C).

Example 1. Let C be a curve of degree d = 6, defined by the irreducible polynomial f (x, y) =
y6 + 2y5x+ 3x2 + 4xy ∈ R[x, y]. The points of infinity are P1 = (1 : 0 : 0) and P2 = (1 : −2 : 0).

Iteration 1: Let P1 = (1 : 0 : 0).

We have the branch B1 = {(z, r1(z)) ∈ C2 : z ∈ C, ‖z‖ > M1}, with

r1(z) = −
481/5

2
z− −721/5

12
z−3 +

1081/5

18
z−7 − −1621/513

432
z−11 + . . . .

(a) r̃1(z) = −
481/5

2
z. (b) P̃1(t) =

(
t5,−481/5

2
t

)
.

Iteration 2: Let P2 = (1 : −2 : 0).

We have the branch B2 = {(z, r2(z)) ∈ C2 : z ∈ C, ‖z‖ > M2} with

r2(z) = −2z− 5
32

z−3 + . . . .

(a) r̃2(z) = −2z. (b) P̃2(t) = (t,−2t).

Figure 1 represents the curve C and its generalized asymptotes C̃1 and C̃2, defined by the
parametrizations P̃1(t) and P̃2(t), respectively.

Figure 1. Infinity asymptotes C̃1 (beige) and C̃2 (pink) of the curve C.

3.2. Algorithm for Curves Parametrically Defined

Throughout this paper so far, we have dealt with algebraic plane curves implicitly
defined. Now, we present a method to compute infinity branches and g-asymptotes of a
plane curve from their parametric representation, without implicitizing. This method also
involves the computation of Puiseux series and infinity branches (see [26]).

Let C be a plane curve defined by the parametrization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1, pi2) = 1, i = 1, 2. (3)
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If C∗ represents the projective curve associated to C, we have that a parametrization of
C∗ is given by P∗(s) = (p1(s) : p2(s) : 1) or, equivalently,

P∗(s) = (1 : p2(s)/p1(s) : 1/p1(s)). (4)

We assume that we prepared the input curve C through a suitable linear change in
coordinates (if necessary), such that (0 : 1 : 0) is not a point at infinity of C∗.

In order to compute the g-asymptotes of C, first we need to determine the infinity
branches of C. That is, the sets

B = {(z, r(z)) ∈ C2 : z ∈ C, ‖z‖ > M}, where r(z) = zϕ(z−1).

Taking into account Definition 1, we have that f (z, r(z)) = F(1 : ϕ(z−1) : z−1) =
F(1 : ϕ(t) : t) = 0 around t = 0, where t = z−1 and F is the polynomial defining implicitly
C∗. Observe that, in this section, we are given the parametrization P∗(s) of C∗ and then,
F(P∗(s)) = F(1 : p2(s)/p1(s) : 1/p1(s)) = 0. Thus, intuitively speaking, in order to compute
the infinity branches of C, and in particular the series ϕ, one needs to rewrite the parametrization
P∗(s) in the form (1 : ϕ(t) : t) around t = 0. For this purpose, the idea is to look for a value
of the parameter s, say `(t) ∈ C� t�, such that P∗(`(t)) = (1 : ϕ(t) : t) around t = 0.

Hence, from the above reasoning, we deduce that, first, we have to consider the
equation 1/p1(s) = t, or equivalently p12(s)− tp11(s) = 0, and we solve it in the variable s
around t = 0.

From Puiseux’s Theorem, there exist solutions `1(t), `2(t), . . . , `k(t) ∈ C� t� such
that, p12(`i(t))− tp11(`i(t)) = 0, i ∈ {1, . . . , k}, in a neighborhood of t = 0.

Thus, for each i ∈ {1, . . . , k}, there exists Mi ∈ R+ such that the points (1 : ϕi(t) : t)
or equivalently, the points (t−1 : t−1 ϕi(t) : 1), where

ϕi(t) = p2(`i(t))/p1(`i(t)), (5)

are in C∗ for ‖t‖ < Mi (note that P∗(`(t)) ∈ C∗, since P∗(`(t)) is a parametrization of
C∗). Observe that ϕi(t) is a Puiseux series, since p2(`i(t)) and p1(`i(t)) can be written as
Puiseux series and C� t� is a field.

Finally, we set z = t−1. Then, we have that the points (z, ri(z)), where ri(z) = zϕi(z−1)
are in C for ‖z‖ > M−1

i . Hence, the infinity branches of C are the sets Bi, such that
Bi = {(z, ri(z)) ∈ C3 : z ∈ C, ‖z‖ > M−1

i }, i ∈ {1, . . . , k}.

Remark 1. Note that the series `i(t) satisfies that p1 (`i(t)) t = 1, for i ∈ {1, . . . , k}. Then,
from equality (5), we have that ϕi(t) = p2(`i(t))

p1(`i(t))
= p2(`i(t))t, and ri(z) = zϕi(z−1) =

p2(`i(z−1)).

Once we have the infinity branches, we can compute a g-asymptote for each of them
by simply removing the terms with negative exponent from ri(z).

The following algorithm computes the infinity branches of a given parametric curve
and provides a g-asymptote for each of them. We also illustrate the algorithm with an
example. The algorithm is implemented in Maple (see Appendix C).

Example 2. Let C be the plane curve defined by

P(s) =
(

s2 + 5
s(s− 1)(s− 2)2 ,

s2 + 3s + 1
s(s− 2)

)
∈ R(s)2.

We apply Algorithm 2 to compute the asymptotes of C. We start by computing the Puiseux solutions
of the equation p12(s)− tp11(s) = 0 around t = 0. We obtain:

`1(t) = −
3475
256

t3 +
25
8

t2 − 5
4

t + . . . .
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`2(t) =
375800710285

√
2

254803968
t7/2 − 233069

512
t3 +

32580935
√

2
442368

t5/2 − 409
16

t2

+
1909
√

2
384

t3/2 − 19
8

t + . . . .

`3(t) = 924t3 + 48t2 + 6t + 1 + . . . .

Iteration 1: Let `1(t) = −
3475
256

t3 +
25
8

t2 − 5
4

t + . . . .

r1(z) =
2
5

z− 3
4
− 1

8
z−1 − 5335

256
z−2 + . . .

(a) r̃1(z) =
2
5

z− 3
4

. (b) P̃1(t) =
(

t,
2
5

t− 3
4

)
.

Iteration 2:

Let `2(t) = −
233069

512
t3 +

32580935
√

2
442368

t5/2 − 409
16

t2 +
1909
√

2
384

t3/2 − 19
8

t + . . . .

r2(z) =
11
√

2
√

z
6

+
263
72
− 12409

√
2

3456
√

z
+

241
16z
− 155680499

√
2

3981312z3/2 +
116201
512z2 + . . .

(a) r̃2(z) =
11
√

2
√

z
6

+
263
72

. (b) P̃2(t) =

(
t2,

11
√

2t
6

+
263
72

)
.

Iteration 3: Let `3(t) = 924t3 + 48t2 + 6t + 1 + . . . .

r3(z) = −5− 30z−1 − 456z−2 − 9156z−3 − . . . .

(a) r̃3(z) = −5. (b) P̃3(t) = (t, −5).

The obtained asymptotes are the curves C̃1, C̃2, and C̃3 defined by the proper parametrizations,
P̃1(t), P̃2(t) and P̃3(t) (see Figure 2).

Figure 2. Infinity asymptotes C̃1 (beige), C̃2 (pink), and C̃3 (gray) of the curve C.

3.3. Algorithm with Limits for Curves Parametrically Defined

As described previously, generalized asymptotes are a fundamental tool to analyze
the behavior of a curve at infinity. In the two previous sections, two algorithmic solutions
were presented, one for the case of implicitly defined planar algebraic curves and another
for the case of parametric curves.

In both cases, the calculation of the g-asymptotes was carried out from the calculation
of the infinity branches of the given curves by means of Puiseux series. Algorithm 1
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calculates the g-asymptotes of an implicitly defined curve, while Algorithm 2 constructs
these generalized asymptotes from the equation of the curve expressed in parametric way.

This subsection presents a method that improves the results of the previously mentioned
algorithms, providing a more efficient computational solution, which can be applied to the
case of plane algebraic curves expressed parametrically (see Algorithm 3). Furthermore,
although this solution is developed for the case of plane algebraic curves, it can be trivially
generalized to the case of rational curves defined in n-dimensional space. The idea of this
generalization can be extended in more detail to the case of not necessarily rational curves.

For this purpose, we consider a plane rational curve, C, defined by a parameterization
according to Equation (7):

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1(s), pi2(s)) = 1, i = 1, 2.

In the following, it is assumed without loss of generality that deg(pi1(s)) ≤ deg(pi2(s)),
deg(pi2(s)) = di, i = 1, 2 (otherwise, a linear change in variables is applied). With this,
lims→∞ pi(s) 6= ∞, i = 1, 2, and the infinity branches of C will be represented when the
variable s moves around the different roots of the denominators p12(s) and p22(s).

The following theorem shows how to obtain a g-asymptote for each of these infinity
branches, by calculating the simple limits of rational functions built from P(s).

Theorem 1. Let C be a curve defined by a parameterization (see Equation (7))

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1(s), pi2(s)) = 1, i = 1, 2,

where deg(pi1(s)) ≤ deg(pi2(s)) = di, i = 1.2. Let τ ∈ C be such that pi2(s) = (s− τ)ni pi2(s)
where pi2(τ) 6= 0, i = 1.2, and ni ≥ 1, and let B be the corresponding infinity branch. A
g-asymptote of the curve C on the branch B is defined by the parameterization

P̃(t) = (tn1 , an2 tn2 + an2−1tn2−1 + . . . + a0),

where

an2 = lims→τi fn2(s), fn2(s) =
p2(s)

p1(s)n2/n1

an2−1 = lims→τi fn2−1(s), fn2−1(s) = p1(s)1/n1( fn2(s)− an2)
...

...
an2−i = lims→τi fn2−i(s), fn2−i(s) = p1(s)1/n1( fn2−i+1(s)− an2−i+1)

...
...

a0 = lims→τi f0(s), f0(s) = p1(s)1/n1( f1(s)− a1)

Remark 2. From Theorem 1 we obtain the parameterization

P̃(t) = (tn1 , an2 tn2 + an2−1tn2−1 + . . . + a0) and n1 ≥ n2

(otherwise, (0 : 1 : 0) would be an infinity point on the input curve).
Note that the degree of the resulting curve is not necessarily n1, since P̃(t) could be an improper

parameterization, which is equivalent to gcd(n1, n2, . . . , n2− j) 6= 0 for each j = 0, . . . , n2 − 1, such
that an2−j 6= 0. Under these conditions, let gcd(n1, n2, . . . , n2 − j) = β for each j = 0, . . . , n2 − 1,
such that an2−j 6= 0. So, if n := n1/β, then

M(t) = P̃(t1/β) = (tn, an2 tn2/β + an2−1t(n2−1)/β + . . . + a0) ∈ K[t]2,

a proper reparametrization of P̃(t) (see ([27] Section 3)).

The following corollary discusses the special case of vertical and horizontal g-asymptotes,
that is, lines of the form x− a or y− b, where a, b ∈ C. More precisely, it is proved that
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these asymptotes are obtained from the noncommon roots of the denominators of a given
parameterization. It should be noted that, in practical engineering design and application
modeling, rational curves are normally represented by numerical coefficients and, in gen-
eral, P(s) satisfies that gcd(p12(s), p22(s)) = 1, which implies that the mentioned case
usually arises in practical problems.

Corollary 1. Let C be a curve defined by a parameterization (see Equation (7))

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1(s), pi2(s)) = 1,

where deg(pi1(s)) ≤ deg(pi2(s)), i = 1.2.

1. Let τ ∈ C be such that p12(t) = (t− τ)n1 p12(t) where p22(τ)p12(τ) 6= 0 and n1 ≥ 1.
An asymptote of C, corresponding to the point of infinity (1 : 0 : 0), is the horizontal line
y− p2(τ) = 0 defined by the parameterization P̃(t) = (t, p2(τ)).

2. Let τ ∈ C be such that p22(t) = (t− τ)n2 p22(t) where p12(τ)p22(τ) 6= 0 and n2 ≥ 1.
An asymptote of C, corresponding to the point of infinity (0 : 1 : 0), is the vertical line
x− p1(τ) = 0 defined by the parameterization P̃(t) = (p1(τ), t).

As stated previously, Algorithm 3 improves the results of the methods described above,
especially with regard to Algorithm 2, showing a clear improvement in efficiency and
reducing the amount of hardware resources required of the computer when constructing
the asymptotes of a parametric curve using limits (instead of using the Puiseux series
expansion). Algorithm 3 is implemented in Maple (see Appendix C).

Example 3. Let C be the plane algebraic curve defined by the parameterization

P(s) =
(

4(s2 + 1)
s2(s− 2)3 ,

2s2 + 2s− 1
s2(s− 2)2

)
∈ R(s)2.

We apply Algorithm 3. Then, we compute the roots of p12(s) which are τ1 = 0 and τ2 = 2,
with multiplicities n11 = 2 and n12 = 3, respectively. The multiplicities of these roots in p22(s) are
n21 = 2 and n22 = 2.

Root τ1 = 0: It is obtained that:

• There is no horizontal asymptote.
• The parameterization coefficients, considering the multiplicities n11 = 2 and n21 = 2, are:

a2 = lims→0 f2(s) =
1
2

, f2(s) =
p2(s)
p1(s)

.

a1 = lims→0 f1(s) =
5
√

2 i
8

, f1(s) = p1(s)
1/2( f2(s)− a2).

a0 = lims→0 f0(s) =
31
32

, f0(s) = p1(s)
1/2( f1(s)− a1).

• The parameterization P̃1(t) =

(
t2,

1
2

t2 +
5
√

2 i
8

t +
31
32

)
is proper (see Remark 2).

Root τ2 = 2: It is obtained that:

• There is no horizontal asymptote.
• The coefficients of the proper parameterization, considering the multiplicities n12 = 3

and n22 = 2, are:

a2 = lims→2 f2(s) =
11 51/3

20
, f2(s) =

p2(s)

p1(s)
2/3 .

a1 = lims→2 f1(s) =
7 52/3

300
, f1(s) = p1(s)

1/3( f2(s)− a2).

a0 = lims→2 f0(s) =
77

400
, f0(s) = p1(s)

1/3( f1(s)− a1).
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• The parameterization P̃2(t) =

(
t3,

11 51/3

20
t2 +

7 52/3

300
t +

77
400

)
is proper (see

Remark 2).

Finally, we observe that there are no vertical asymptotes. Consequently, the asymptotes are the
curves C̃1 and C̃2 defined by the proper parameterizations:

P̃1(t) =

(
t2,

1
2

t2 +
5
√

2 i
8

t +
31
32

)
, P̃2(t) =

(
t3,

11 51/3

20
t2 +

7 52/3

300
t +

77
400

)
.

Figure 3 plots the curve C and the asymptotes C̃1 and C̃2.

-80 -60 -40

Asymptote 1 

y 

20 

-20

-30

-40

-50

Asymptote 2 

40 60 80 

Curve C 

Figure 3. Asymptotes C̃1 and C̃2 of the curve C calculated with limits.

3.4. Algorithm with Derivatives for Curves Parametrically Defined

In this subsection, a method is developed that allows calculating all the g-asymptotes
and branches of a plane algebraic curve defined by a parameterization by determining some
derivatives of univariate functions constructed from the input parameterization. For this
purpose, we consider the plane algebraic curve, C, defined by the parameterization,

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = qi(s)/q(s), gcd(q1(s), q2(s), q(s)) = 1, i = 1, 2. (6)

It is assumed that all roots of the denominators can be written as τ ∈ C, such that
q(s) = (s− τ)n q(s), where q(τ)q1(τ) 6= 0 and n ≥ 1. Otherwise, it would be considered a
linear change in coordinates, which would have to be undone later.

Theorem 2. Let C be a curve defined by the parameterization

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = qi(s)/q(s), gcd(q1(s), q2(s), q(s)) = 1, i = 1, 2.

Let τ ∈ C be such that q(s) = (s− τ)n q(s), where q(τ)q1(τ) 6= 0 and n ≥ 1. Let

σ(s) :=
q2(s)
q1(s)

y ρ(s) :=
(

q1(s)
q(s)

)1/n
.

Let B be the corresponding infinity branch. A g-asymptote of B is defined by the parameterization

P̃(t) = (tn, antn + an−1tn−1 + · · ·+ a0),

where an = σ(τ)

and for 0 ≤ i ≤ n− 1, ai =
1

(n−i)! ·
∂n−1−i

∂sn−1−i

(
∂σ
∂s (s) · ρ(s)

(n−i)
)
(τ)
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Remark 3. From Theorem 2, we obtain the parameterization

P̃(t) = (tn, antn + an−1tn−1 + · · ·+ a0),

where an = σ(τ) and for 0 ≤ i ≤ n− 1,

ai =
1

(n− i)!
· ∂n−1−i

∂sn−1−i

(
∂σ

∂s
(s) · ρ(s)(n−i)

)
(τ).

Note that the degree of the resulting curve is not necessarily n, since P̃(t) could be an improper
parameterization, which is equivalent to gcd(n, . . . , n− j) 6= 0 for each j = 0, . . . , n, such that an 6= 0.

Therefore, we have that gcd(n, . . . , n− j) = β for each j = 0, . . . , n such that an−j 6= 0. We
have thatM(t) = P̃(t1/β) is a proper reparameterization of P̃(t) (see ([27] Section 3)).

Next, Algorithm 4 is introduced. It performs the calculation of the asymptotes of a
plane algebraic curve, expressed in parametric form, applying the results of the Theorem 2.
This algorithm is implemented in Maple (see Appendix C).

Example 4. Let C be the plane curve defined by the parameterization

P(s) =
(

s4 − s3 + 5s2 + 2s + 1
s4(s− 1)(s− 2)

,
2s4 − 3s3 − 2s2 − 26s− 18

s4(s− 1)(s− 2)

)
∈ R(s)2.

We compute the asymptotes of C using Algorithm 4. For this purpose, it is first observed that p(s)
has the roots τ1 = 0, τ2 = 1, τ3 = 2, with multiplicities n1 = 4 n2 = 1 and n3 = 1. Let

σ(s) =
2s4 − 3s3 − 2s2 − 26s− 18

s4 − s3 + 5s2 + 2s + 1
.

Root τ1 = 0: We have ρ1(s) =
((s4 − s3 + 5s2 + 2s + 1)(s− 2)3(s− 1)3)1/4

(s− 2)(s− 1)
.

• The parameterization coefficients are calculated, knowing that the multiplicity of τ1 is
n1 = 4.

a4 = σ(0) = −18.

a3 =
∂σ

∂s
(0) · ρ1(0) = 5 · 81/4.

a2 =
1
2!
· ∂

∂s

(
∂σ

∂s
(s) · ρ1(s)2

)
(0) =

307
√

2
8

.

a1 =
1
3!
· ∂2

∂s2

(
∂σ

∂s
(s) · ρ1(s)3

)
(0) = −4317 · 83/4

512
.

a0 =
1
4!
· ∂3

∂s3

(
∂σ

∂s
(s) · ρ1(s)4

)
(0) = −1251

32
.

• Parameterization P̃1(t) =

(
t4,−18t4 + 5 · 81/4t3 +

307
√

2
8

t2 − 4317 · 83/4

512
t− 1251

32

)
is proper (see Remark 3).

Roots τ2 = 1: We have that ρ2(s) =
s4 − s3 + 5s2 + 2s + 1

s4(s− 2)
.

• The parameterization coefficients are calculated, knowing that the multiplicity of τ2 is
n2 = 1.

a1 = σ(1) = −47
8

.

a0 =
∂σ

∂s
(1) · ρ2(1) = −

363
8

.
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• The parameterization P̃2(t) =
(

t, −47
8

t− 363
8

)
is proper (see Remark 3).

Root τ3 = 2: We have that ρ3(s) =
s4 − s3 + 5s2 + 2s + 1

27s4(s− 1)
.

• The parameterization coefficients are calculated, knowing that the multiplicity of τ3 is
n3 = 1.

a1 = σ(2) = −70
33

.

a0 =
∂σ

∂s
(2) · ρ2(2) =

457
2376

.

• The parameterization P̃3(t) =
(

t, −70
33

t +
457
2376

)
is proper (see Remark 3).

Then, the asymptotes C̃1, C̃2 and C̃3 are defined by the proper parametrizations:

P̃1(t) =

(
t4,−18t4 + 5 · 81/4t3 +

307
√

2
8

t2 − 4317 · 83/4

512
t− 1251

32

)
,

P̃2(t) =
(

t, −47
8

t− 363
8

)
, P̃3(t) =

(
t, −70

33
t +

457
2376

)
.

Figure 4 plots the curve C and the asymptotes C̃1, C̃2, and C̃3. Furthermore, it illustrates in
detail the behavior of each asymptote.
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Figure 4. Asymptotes C̃1, C̃2 and C̃3 of the curve C calculated with derivatives.
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To finish this section, we note that Theorem 2 can be adapted to calculate the associated
coefficients to terms with a negative exponent. In this way, in addition to the asymptotes,
the branches of a plane algebraic curve can be calculated. One may reason analogously
with the case of limits.

4. Analysis of the Computational Performance

This section discusses the performance of the previous algorithms, which construct the
g-asymptotes from an irreducible plane algebraic curve. We recall that the first algorithm
calculates the g-asymptotes of a curve from its implicit expression, considering the infinity
branches that converge to the given curve. The other three methods deal with the case
of parametrically defined curves. Note that the first two algorithms are based on the
computation of the Puiseux series.

For this purpose, fourteen study cases were randomly selected with different char-
acterizations (see Appendix B). All these curves constitute the study cases to analyze the
computational performance of the algorithms presented in Section 3, which were pro-
grammed with the algebra system Maple, according to the implementation presented in
Appendix C for implicit and parametric input expressions.

Under these conditions, an analysis of the computational performance of each one
of the algorithms presented was carried out (based on the outlines of [28–31] to validate
the performance of algorithms). The hardware overload degree of the machine resources
(CPU and memory) was computed, estimating the time of use of the microprocessor and
the amount of memory used for the execution of each one of the procedures defined in
Appendix C. In addition, the value of real time invested by the machine was calculated for
the methods presented in Section 3.

To quantify these results, it is necessary to use the tools provided by the CodeTools
package of Maple. Thus, it is important to clarify that the command CodeTools:-Usage
differentiates between the CPU time and the execution real time of a process. Thus, CPU
time is the amount of time used to execute a procedure. On the other hand, the real
execution time calculates the period during which the process remains in the system,
from the time it is launched until it is finished, that is, the entire amount of time in which it
is using the hardware resources of the system: CPU, memory, input/output, and so on.

Note that on monoprocessor systems, the total CPU usage time will always be less
than the real execution time. However, on multiprocessor systems, threads could be spread
across multiple cores or CPUs. In this case, the sum of all the usage times of the multiple
cores, or processors, is considered as the total CPU usage time, and thus can account for
the case that it is greater than the real execution time of the process.

To calculate a precise overload degree, each algorithm under analysis was iterated one
hundred times for each one of the study curves. Consequently, it was possible to record
reliable results on the system requirements, which are necessary to calculate the asymptotes
of a given curve. The comparative criteria are based on the different properties of the
input curves, such as the degree and the number of terms, as well as the following results
obtained after each execution: number of infinity branches, highest degree of the analyzed
asymptotes, number of real asymptotes, and number of complex asymptotes.

It is important to underline that Algorithm 1 and Algorithm 2 compute the in-
finity branches of the input curve by Puiseux series expansion, using the command
algcurves:-puiseux from the algebra software Maple, with the desired accuracy fixed to
ten for the calculation of the Puiseux series expansions.

From a hardware point of view, the processes were executed by a 2018 Mac Book Pro,
with an Intel Core i5 processor, with four cores 2.3 GHz, 16 GiB of 2133 MHz LPDDR3
memory, Intel Iris graphics card Plus 1536 MiB Graphics 655, and 500 GiB SSD. The com-
puter algebra software Maple 2021.1 was run on the operating system macOS Monterrey,
version 12.3.1.

The following subsections present the analysis of the results obtained after the appli-
cation of the methods developed for the calculation of the asymptotes of plane algebraic
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curves, each of them with a different characterization. Finally, in Section 5 a comparative
analysis of the algorithms is carried out.

4.1. Computation of Asymptotes of Implicitly Algebraic Curves

This subsection presents the results of running Algorithm 1 one hundred times, with ac-
curacy equal to ten for the Puiseux series expansion, on the fourteen curves presented in
Appendix B. We compute the implicit polynomial of a parametric curve using resultants
(see [32]).

Table 1 shows the properties for the input curves and their asymptotes. The curve
with the highest degree and the highest number of terms is C3. In this case, one may check
that the asymptotes have degrees 1 and 3, much lower than the degree of C3, which is 17.

We observe that the curve C4 is the only one with the lowest degree and the fewest
number of terms. This curve has two infinity branches and the highest degree of the
asymptote is 2.

Table 2 shows that the curve C3 requires the longest execution time and generates
the highest overhead in the microprocessor and memory when Algorithm 1 is run. Note
that the highest consumption of hardware resources corresponds to the running of the
algorithm with this curve, which is the one with the highest degree and the highest number
of terms. In this case, the execution consumes 283.47 ms of real time in the system and
requires 362.72 ms of CPU usage and 10.55 MiB of memory.

Table 1. Properties of the implicit curves and their asymptotes.

Id Degree # Terms # Branch Max. Deg. # Real Asymp # Complex Asymp

C1 7 21 5 2 3 2
C2 7 21 3 3 3 -
C3 17 114 5 3 1 4
C4 3 8 2 2 2 -
C5 6 25 3 4 3 -
C6 4 11 3 2 3 -
C7 4 12 2 3 2 -
C8 5 13 2 3 2 -
C9 5 15 2 2 2 -
C10 7 19 3 3 1 2
C11 15 58 4 5 2 2
C12 13 31 7 2 1 6
C13 9 22 5 2 3 2
C14 5 15 2 2 2 -

Table 2. Hardware resources required by Algorithm 1 for the case of implicit curves.

Id CPU Time Real Time Memory Used

C1 26.17 ms 25.06 ms 1978.84 KiB
C2 66.13 ms 31.56 ms 1386.33 KiB
C3 362.72 ms 283.47 ms 10,806.75 KiB
C4 14.86 ms 16.88 ms 810.67 KiB
C5 168.47 ms 124.77 ms 3758.74 KiB
C6 8.78 ms 8.09 ms 695.43 KiB
C7 27.70 ms 39.57 ms 1495.48 KiB
C8 76.90 ms 40.75 ms 1924.63 KiB
C9 86.23 ms 45.01 ms 1755.44 KiB
C10 75.12 ms 51.87 ms 1333.29 KiB
C11 119.21 ms 82.42 ms 3706.32 KiB
C12 8.65 ms 7.93 ms 782.95 KiB
C13 7.13 ms 6.88 ms 602.33 KiB
C14 76.67 ms 52.47 ms 1875.11 KiB
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It is convenient to highlight the results concerning the curves C12 and C13 of degrees
13 and 9, respectively. Algorithm 1 presented the highest performance, and the obtained
asymptotes has a degree of 2. In particular, the curve C12 has six complex asymptotes and
one real linear asymptote.

In a direct method, in order to compute the complex asymptotes, one would introduce
algebraic numbers during the computations. However, for these cases, we collect the points
whose coordinates depend algebraically on all the conjugate roots of a same irreducible
polynomial, m(t) ∈ R[t]. This method is based on the notion of family of conjugate points
(see e.g., [32]). This concept allows us to determine the asymptotes of a curve without
directly introducing algebraic numbers in the computations.

Finally, results for the curve C13 of degree 9 show three real linear asymptotes and
two complex asymptotes. Similarly, as in the previous curve, we have to collect the points
whose coordinates depend algebraically on all the conjugate roots of a same irreducible
polynomial m(t) ∈ R[t].

Thus, regarding the use of resources, Table 2 shows that curve C3 requires the highest
resources from the system, and it produces the most overload on the microprocessor and
memory, while curves C12 and C13 require the least amount of system resources.

Finally, it is convenient to highlight the particularities of the curves C12 and C13. Note
that, in both cases, the algorithm used the least amount of time to calculate the respective
asymptotes of both curves. Furthermore, the highest degree of the asymptotes constructed
with Algorithm 1 is 2, much lower than the 13 and 9 degrees of the input curves C12 and
C13, respectively.

4.2. Computation of Asymptotes of Parametric Algebraic Curves

This subsection presents the results obtained by executing the methods described in
Appendix C, with an accuracy equal to ten for the Puiseux series expansion. We consider
the parametric curves defined in Appendix B, given according to Equation (7):

P(s) = (p1(s), p2(s)) ∈ R(s)2, pi(s) = pi1(s)/pi2(s), gcd(pi1(s), pi2(s)) = 1, i = 1, 2. (7)

Table 3 shows the same results as the implicit case, except for the # Terms row.

Table 3. Properties of the implicit curves and their asymptotes.

Id Degree # Terms # Branch Max. Deg. # Real Asymp # Complex Asymp

C1 7 5 5 2 3 2
C2 7 3 3 3 3 -
C3 17 5 5 3 1 4
C4 3 3 2 2 2 -
C5 6 5 3 4 3 -
C6 4 3 3 2 3 -
C7 4 3 2 3 2 -
C8 5 3 2 3 2 -
C9 5 3 2 2 2 -
C10 7 3 3 3 1 2
C11 15 4 4 5 2 2
C12 13 3 7 2 1 6
C13 9 2 5 2 3 2
C14 5 2 2 2 2 -

Table 4 shows that, for the case of curves expressed in parametric form, Algorithm 2
presents a lower efficiency than Algorithm 1. In most cases, this algorithm produces a
higher system overhead and requires more hardware resources. Thus, it can be seen that
Algorithm 2 generates the highest real execution times, requiring a greater time of use of
the microprocessor and a bigger memory capacity for all the study cases.
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Table 4. Hardware resources used by Algorithm 2 for the case of parametric curves.

Id CPU Time Real Time Memory Used

C1 16.13 ms 20.38 ms 2014.46 KiB
C2 131.45 ms 117.78 ms 17,305.41 KiB
C3 >108 ms >108 ms >108 KiB
C4 3.98 ms 3.60 ms 276.03 KiB
C5 114.12 ms 63.74 ms 10,630.93 KiB
C6 2.57 ms 2.69 ms 288.92 KiB
C7 25.10 ms 26.58 ms 3193.96 KiB
C8 102.26 ms 72.53 ms 8634.75 KiB
C9 47.83 ms 25.44 ms 2832.28 KiB
C10 18,496.00 ms 16,028.00 ms 1,795,206.41 KiB
C11 >108 ms >108 ms >108 KiB
C12 21,726.00 ms 18,961.00 ms 2,720,673.58 KiB
C13 22,877.00 ms 17,054.00 ms 2,667,242.91 KiB
C14 24.00 ms 24.00 ms 3668.91 KiB

The greatest hardware resource requirements correspond to the calculation of the
asymptotes of the curves C3 and C11, where the algorithm needed more than 24 h of CPU
usage and more than 100 GiB of memory.

Moreover, the execution of the algorithm with the input curve C13 requires 17 s of real
time, 23 s of microprocessor usage time, and 2.55 GiB of memory; which contrasts sharply
with applying Algorithm 1 to the implicit curve C13, with a real execution time of 6.88 ms,
7.13 ms of CPU usage and 602.33 KiB of memory.

On the other hand, it is interesting to note that the application of Algorithm 2 for the
calculation of the asymptotes of the curve C4 presents the least degree of overload, even
compared with the application of Algorithm 1 to the case of the implicit curve C4.

However, if these results are compared with those of Table 2, it is observed that as the
complexity of the curve increases, the CPU usage time, the real execution time, and the
memory needs increase exponentially.

4.3. Computation of Asymptotes of Parametric Algebraic Curves with Limits

Table 5 shows the results of executing Algorithm 3 to construct the asymptotes of the
curves in Appendix B, from the parametric expressions. Note that this result is the same as
the one in Table 3.

Table 5. Properties of parametric curves and their asymptotes.

Input Curve Output Asymptotes
Id Deg. N.Terms N.Branches Max. Deg. N.Real Asymp N.Complex Asymp

C1 7 5 5 2 3 2
C2 7 3 3 3 3 0
C3 17 5 5 3 1 4
C4 3 3 2 2 2 0
C5 6 5 3 4 3 0
C6 4 3 3 2 3 0
C7 4 3 2 3 2 0
C8 5 3 2 3 2 0
C9 5 3 2 1 2 0
C10 7 3 3 3 1 2
C11 15 4 4 5 2 2
C12 13 3 7 2 1 6
C13 9 2 5 2 3 2
C14 5 2 2 2 2 0

Table 6 allows us to review the degree of overload that this algorithm produces in
the system.
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Table 6. Hardware resources required by Algorithm 3 for parametric curves.

Id t. CPU t. Stay Actual Memory Used

C1 41.74 ms 44.93 ms 4815.36 KiB
C2 11.99 ms 13.44 ms 1241.23 KiB
C3 59.25 ms 62.82 ms 5910.91 KiB
C4 7.77 ms 11.40 ms 587.45 KiB
C5 23.00 ms 18.78 ms 1836.80 KiB
C6 20.78 ms 11.31 ms 832.64 KiB
C7 9.76 ms 10.73 ms 871.49 KiB
C8 11.10 ms 11.56 ms 973.96 KiB
C9 5.92 ms 6.48 ms 527.17 KiB
C10 15.30 ms 16.50 ms 1302.70 KiB
C11 42.77 ms 31.43 ms 2796.50 KiB
C12 48.13 ms 34.53 ms 3242.84 KiB
C13 22.06 ms 17.93 ms 1390.01 KiB
C14 8.32 ms 8.49 ms 636.6 KiB

Table 6 shows a greater general efficiency in managing the computer’s memory than
Algorithms 1 and 2. Improvements are also observed in the times of CPU usage and real
stay in the system, highlighting the behavior of the curves C3 and C9.

The first case, the curve C3, corresponds to the curve for which Algorithm 3 required
the greatest real time and generated the greatest overload in the microprocessor with the
greatest need for memory. However, in this case, the resource usage is much lower than the
previous results of Tables 2 and 4, with only 62.82 ms residence time in the system, 59.25 ms
of CPU usage, and 1.21 MiB of memory.

In the second case, the curve C9, the lowest overhead was obtained with only 6.48 ms
of real time in the system, 5.92 ms of CPU usage, and 0.5 MiB of memory. Thus, this
curve, of degree five, shows the least degree of overload when constructing its two real
asymptotes with Algorithm 3.

4.4. Computation of Asymptotes of Parametric Algebraic Curves with Derivatives

Table 7 shows the results of executing Algorithm 4 to construct the curve asymptotes
of Appendix B, using some derivatives of univariate functions. Note that this result is
consistent with that of Tables 3 and 5.

Table 7. Properties of parametric curves and their asymptotes.

Input Curve Output Asymptotes
Id Deg. N.Terms N.Branches Max. Deg. N.Real Asymp N.Complex Asymp

C1 7 5 5 2 3 2
C2 7 3 3 3 3 0
C3 17 5 5 3 1 4
C4 3 3 2 2 2 0
C5 6 5 3 4 3 0
C6 4 3 3 2 3 0
C7 4 3 2 3 2 0
C8 5 3 2 3 2 0
C9 5 3 2 1 2 0
C10 7 3 3 3 1 2
C11 15 4 4 5 2 2
C12 13 3 7 2 1 6
C13 9 2 5 2 3 2
C14 5 2 2 2 2 0

Table 8 shows the degree of overload that this algorithm produces in the system.
In this case, a very significant improvement is presented with respect to the previous cases,
Algorithms 1–3.
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Table 8. Hardware resources required by Algorithm 4 for parametric curves.

Id t. CPU t. Stay Actual Memory Used

C1 10.18 ms 11.13 ms 803.07 KiB
C2 4.16 ms 5.61 ms 347.86 KiB
C3 40.48 ms 35.30 ms 5155.88 KiB
C4 2.55 ms 2.68 ms 223.10 KiB
C5 4.17 ms 5.11 ms 331.83 KiB
C6 3.42 ms 3.38 ms 284.55 KiB
C7 3.37 ms 3.42 ms 266.60 KiB
C8 3.31 ms 3.26 ms 268.50 KiB
C9 3.07 ms 3.18 ms 263.64 KiB
C10 5.38 ms 6.58 ms 421.00 KiB
C11 50.00 ms 48.29 ms 7446.49 KiB
C12 13.13 ms 14.51 ms 1234.98 KiB
C13 8.83 ms 9.14 ms 715.44 KiB
C14 3.26 ms 3.23 ms 265.36 KiB

In almost all the input curves, except for the case of C11, the use of hardware resources,
time of use of the microprocessor, time of real stay in the system, and memory capacity,
show the highest efficiency.

The exception occurs for the case of the construction of the asymptotes of the curve
C11, which requires more memory, more CPU time, and stays longer in the system than for
the case of Algorithm 3.

Note that the best performance is obtained by constructing the curve asymptotes of
the simplest curve, C4, with only 2.55 ms processor usage, 2.68 ms of permanence in the
system, and 223.10 KiB of memory capacity. The curve that generates the greatest overload
is C11, which requires 50 ms of CPU, with a real time of 48.29 ms and 7.27 MiB of memory.

We briefly analyze the particular case of the asymptotes obtained for the curve C11.
This curve has a complex asymptote of degree five and two real asymptotes of degrees
three and two. Similarly as above, in this case, we need to introduce conjugate points, that
is, we collect the points whose coordinates depend algebraically on all the conjugate roots
of a same irreducible polynomial, m(t) ∈ R[t]. Note that working with the conjugate points
of the complex asymptote introduces the greatest degree of overhead.

5. Results and Discussion

In this section, a comparative analysis of Algorithms 1–4 is presented. For this purpose,
some properties of the input curves are considered, as well as the results obtained when
constructing the respective asymptotes (see Appendix B).

Table 9 allows to review the efficiency of each algorithm and establishes comparative
criteria regarding the time of use of the CPU from the simplest curve that is, the one with
the lowest degree and the fewest number of terms, C4, with respect to the curve of greater
complexity, C3.

Table 9 compares the CPU usage times after the execution of each of the four algo-
rithms used for the construction of asymptotes of the curves C1–C14. The worst results
are highlighted in red, and the five best CPU usage times are highlighted in green, given
mainly when Algorithm 4 constructs the asymptotes of the curves C4, C8, C9, and C14.

Figure 5 represents the behavior of each of the algorithms, depending on the degree
of the input curve (axis x), with respect to the CPU usage time (axis y) expressed in
milliseconds. Note that this is a linear–logarithmic plot, based on 10, in which the trend
lines are exponential.

Analyzing Algorithm 4, the highest efficiency is observed, since it requires the least
amount of CPU usage time. Likewise, it is also shown that, for all algorithms, the degree of
the curve determines the microprocessor time needed to build the asymptotes.
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Table 9. Properties of the input curve and microprocessor time needed to execute Algorithms 1–4.

Number of Terms Asymptotes CPU Time (ms)

Id Deg. Implicit Parametric Deg. Max. N.Asymp N.Real
Asymp N.Complex Asymp Alg.3.1 Alg.3.2 Alg.3.3 Alg.3.4

C1 7 21 5 2 5 3 2 26.17 16.13 41.74 10.18
C2 7 21 3 3 3 3 0 66.13 131.45 11.99 4.16
C3 17 114 5 3 5 1 4 362.72 >108 59.25 40.48
C4 3 8 3 2 2 2 0 14.86 3.98 7.77 2.55
C5 6 25 5 4 3 3 0 168.47 114.12 23.00 4.17
C6 4 11 3 2 3 3 0 8.78 2.57 20.78 3.42
C7 4 12 3 3 2 2 0 27.70 25.10 9.76 3.37
C8 5 13 3 3 2 2 0 76.90 102.26 11.10 3.31
C9 5 15 3 1 2 2 0 86.23 47.83 5.92 3.07
C10 7 19 3 3 3 1 2 75.12 18,496.00 15.30 5.38
C11 15 58 4 5 4 2 2 119.21 >108 42.77 50.00
C12 13 31 3 2 7 1 6 8.65 21,726.00 48.13 13.13
C13 9 22 2 2 5 3 2 7.13 22,877.00 22.06 8.83
C14 5 15 2 2 2 2 0 76.67 24.00 8.32 3.26
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On the other hand, it is noteworthy that although Algorithm 2 behaves well with
simple curves (see curve C6 in Table 9), CPU usage time increases exponentially as the
degree of the input curve increases (see curves C3 and C11 in Table 9).
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Figure 5. Microprocessor usage time (ms) depending on the degree.

Figure 6 shows how as the number of terms of the input curve increases the CPU time
needed to execute Algorithm 3. However, the density of the input curve seems to affect the
efficiency of the rest of the algorithms analyzed to a lesser extent. Note that, in this case,
Algorithm 1 is not evaluated. This is due to the fact that the implicit case does not allow
establishing a comparative criterion with the rest of the algorithms in what refers to the
density of the input curve.
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Figure 6. Microprocessor usage time (ms) depending on the number of terms.

On the other hand, the same thing happens in Figure 7. Algorithm 2 requires more
CPU time in cases where a high number of branches is observed (remember that trend lines
are exponential). However, it does not seem that the number of branches determines the
time of use of the microprocessor in the case of the other algorithms represented.
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Figure 7. Microprocessor usage time (ms) depending on the number of branches.

Figure 8 shows the CPU time required by each algorithm, as a function of the highest
degree of the asymptotes, of each of the input curves. It can be seen that Algorithm 4 is the one
that, in general, presents the highest efficiency, since it requires the least amount of CPU time.

Likewise, it is also shown that Algorithm 2 has a quite disparate behavior, since it does
not seem that the degree of the asymptotes affects the CPU usage time for this algorithm.
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Figure 8. Microprocessor usage time depending on the highest degree of asymptotes.

Table 10 shows the real time it takes to execute each algorithm for each of the curves,
with results very similar to those obtained in Table 9, which is quite logical because both
times are related.

We recall that real time refers to the period from when the process starts until it ends,
that is, the time it remains in the system. Note that, in some cases, this time is less than
the microprocessor usage time, because the Maple computer algebra software executes on a
multicore system. In this case, the CPU usage time is the sum of all the usage times of the
different microprocessor cores. This sum is what determines the total CPU value given in Table 9.

In Table 10, the worst global results are highlighted in red, and they correspond to
Algorithm 2, executed with the input curves C3 and C11. In addition, the five best CPU
usage times are shown in green, and they correspond to Algorithm 2, executed with the
input curve C6 and when the asymptotes of the curves C4, C8, C9, and C14 are determined
with Algorithm 4.
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It can be verified that these results show an efficiency similar to that obtained when
CPU usage time is computed (see Table 9).

Finally, Table 11 allows comparing the memory needs of the analyzed algorithms.
The worst results are highlighted in red, and the five best CPU usage times are highlighted
in green. These times correspond to Algorithm 4 when constructing the asymptotes of the
curves C4, C7, C8, C9, and C14.

With this hardware resource, the algorithm that marks the best results is Algorithm 4,
followed by Algorithms 1 and 3. However, for the case of Algorithm 2, the hardware
memory requirements grow exponentially with the degree of the input curve and the
number of terms of the input curve.

Figures 9 and 10 reflect the behavior of each of the algorithms considering the parame-
ters of the input curve regarding memory.

For the analysis of these figures, we remark that the y-axis is logarithmic, base 10,
and that the trend lines are exponential.

On the other hand, looking at Figure 11, it does not seem that the number of branches
is a determining condition for memory needs in the case of the analyzed algorithms.
The same happens in Figure 12. In both cases, it can be seen that Algorithm 4 is the one
that, in general, presents the highest efficiency with the least amount of memory needed
to be able to execute it. However, Algorithm 2 has quite disparate behavior, since neither
the number of branches nor the highest degree of the asymptotes seems to determine
the memory requirements to execute the algorithm. For example, it can be seen that
for asymptotes whose maximum degree is two, the memory needs can range between
276.03 KiB for the curve C4 and 2.59 GiB for the curve C12.
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Figure 9. Required memory capacity (KiB) depending on degree.
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Figure 10. Required memory capacity (KiB) depending on the number of terms.
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Table 10. Properties of the input curve and real time of stay in the system necessary to execute Algorithms 1–4.

Number of Terms Asymptotes Real Time Spent in the System (ms)

Id Deg. Implicit Parametric Max. Deg. N.Asymp N.Real
Asymp N.Complex Asymp Alg.3.1 Alg.3.2 Alg.3.3 Alg.3.4

C1 7 21 5 2 5 3 2 25.06 20.38 44.93 11.13
C2 7 21 3 3 3 3 0 31.56 117.78 13.44 5.61
C3 17 114 5 3 5 1 4 283.47 >108 62.82 35.3
C4 3 8 3 2 2 2 0 16.88 3.6 11.4 2.68
C5 6 25 5 4 3 3 0 124.77 63.74 18.78 5.11
C6 4 11 3 2 3 3 0 8.09 2.69 11.31 3.38
C7 4 12 3 3 2 2 0 39.57 26.58 10.73 3.42
C8 5 13 3 3 2 2 0 40.75 72.53 11.56 3.26
C9 5 15 3 1 2 2 0 45.01 25.44 6.48 3.18
C10 7 19 3 3 3 1 2 51.87 16,028 16.5 6.58
C11 15 58 4 5 4 2 2 82.42 >108 31.43 48.29
C12 13 31 3 2 7 1 6 7.93 18,961 34.53 14.51
C13 9 22 2 2 5 3 2 6.88 17,054 17.93 9.14
C14 5 15 2 2 2 2 0 52.47 24.00 8.49 3.23

Table 11. Properties of the input curve and memory capacity needed to execute Algorithms 1–4.

N. of Terms Asymptotes Memory Capacity (KiB)
Id Deg. Impl. Param. Max. Deg. N.Asymp N.Real Asymp N.Complex Asymp Alg.3.1 Alg.3.2 Alg.3.3 Alg.3.4

C1 7 21 5 2 5 3 2 1978.84 2014.46 4815.36 803.07
C2 7 21 3 3 3 3 0 1386.33 17,305.41 1241.23 347.86
C3 17 114 5 3 5 1 4 10,806.75 >108 5910.91 5155.88
C4 3 8 3 2 2 2 0 810.67 276.03 587.45 223.10
C5 6 25 5 4 3 3 0 3758.74 10,630.93 1836.80 331.83
C6 4 11 3 2 3 3 0 695.43 288.92 832.64 284.55
C7 4 12 3 3 2 2 0 1425.48 3193.96 871.49 266.60
C8 5 13 3 3 2 2 0 1924.63 8634.75 973.96 268.50
C9 5 15 3 1 2 2 0 1755.44 2832.28 527.17 263.64
C10 7 19 3 3 3 1 2 1333.29 1,795,206.41 1302.70 421.00
C11 15 58 4 5 4 2 2 3706.32 >108 2796.50 7446.49
C12 13 31 3 2 7 1 6 782.95 2,720,673.58 3242.84 1234.98
C13 9 22 2 2 5 3 2 602.33 2,667,242.91 1390.01 715.44
C14 5 15 2 2 2 2 0 1875.11 3668.91 636.60 265.36
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Finally, it can be stated that Algorithm 4 is the one that presents the best computational
performance, requiring the least amount of hardware resources: CPU time, real execution
time, and amount of memory. Likewise, it is also shown that, for all algorithms, the degree
of the curve is the parameter that determines, to a greater extent, the amount of system
resources needed to build the asymptotes.

On the other hand, it is noteworthy that Algorithm 2 has a good behavior with “simple”
curves’ see the values for the case of the curves C4 and C6 in Tables 9–11. However, it is a
very “heavy” algorithm when the degree of the input curve increases and the number of
terms increases, in which case the hardware needs of said algorithm increase exponentially
(see curves C3 and C11 in the tables above).
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Figure 11. Required memory capacity (KiB) depending on the number of branches.
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Figure 12. Required memory capacity, in KiB, according to the maximum degree asymptote.

The results of this evaluation show how the Algorithms 3 and 4, additionally to
improving the degree of system overload, are more efficient than Algorithms 1 and 2,
mainly highlighting the results of Algorithm 4.

On the other side, Algorithm 2 is the one that requires the most resources, generating
the greatest overhead in the system, mainly due to the complexity introduced by the
computation of the Puiseux series. In addition, the higher the precision for obtaining the
series, the greater memory capacity and longer execution time the process requires.

After carrying out this analysis, we have the following conclusions regarding the main
aspects that determine the greatest overload in the system, when the g-asymptotes of a
given curve are constructedwith: the degree of the input curve, the number of terms of the
input curve, and the degree of complex asymptotes.
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On the other hand, it was observed that the precision applied when performing the
Puiseux series expansion determines the memory capacity needed by the process. At higher
precision, the memory requirement grows exponentially and, also, although to a lesser
extent, the CPU time and the real execution time.

These results support the idea that the proposed methods can be used effectively
for solving large-scale problems, without the high computational resource utilization
requirements imposed by previous methods based on the development of Puiseux se-
ries. In particular, Algorithms 3 and 4 improve the efficiency of the previous methods
(Algorithms 1 and 2), showing higher computational performance, requiring fewer hard-
ware resources, and considerably reducing the degree of computer overload.

6. Conclusions and Future Works

The g-asymptotes determine the behavior of a curve at infinity. The importance of
these entities is clear for, for instance, plotting the graph of the input curve, studying
the topology, or giving some ideas to deal with some numerical problems. In addition,
using these mathematical objects, predictive or trend calculation models can be established,
which could improve, for instance, results of simple linear regression.

As future work, it is proposed to generalize these results to curves defined by a
nonrational parametrization (see [25]), as well as to surfaces, and to study the families of
existing asymptotes.

Furthermore, we think that as future works, these methods could satisfactorily be
extended to enhanced fuzzy-based algorithms, interval environment or shortest path
problem solving (see for instance [33–35]).

Although this article computes “real” performance and the system overload of the
algorithms proposed, the point we wish to make here is the importance of time complexity,
which is difficult to compute exactly. Nevertheless, we estimated some preliminary results
that confirm the analytical discussion presented in this article, where the time complexity
to calculate the Puiseux series is too high (see [36]) compared with the calculation of limits
or derivatives (see [37]), even if they are of different orders.

Our main objective is to propose methods that can be used effectively to solve large-
scale problems, including real-world cases and symmetry issues, without the high compu-
tational requirements.
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Appendix A

In the following Appendices, we present the parametric curves used in the study
of the algorithms presented in the previous sections and the pseudocode for the algebra
system Maple of the algorithms presented in this paper to construct the asymptotes of plane
algebraic curves.

Appendix B. Definition of Parametric Curves

• P1(s) :=

(
s2 + 1

(s3 − s + 1)(s2 − 1)2 ,
2s3 + 5s2 + 1

s5 − 2s3 + s2 + s− 1

)
.

• P2(s) :=

( (
10 · s3 − 1

)
· s2

(s2 − 1)2 · (s− 2)3 ,
s3 + s2 + 3

(s− 2)2 · (s2 − 1)

)
.

• P3(s) :=

(
s8 + 2s4 − s2 − s− 1

(s2 + 1)4 · (s2 + 2)3 · s3
,

s7 + s6 − s5 + s2 + 1

(s2 + 2)3 · s

)
.

• P4(s) :=

(
5 + s2

s · (s− 2)2 ,
s2 + 3s + 1
s · (s− 2)

)
.

• P5(s) :=
(

s4 − s3 + 5s2 + 2s + 1
s4 · (s− 1) · (s− 2)

,
2s4 − 3s3 − 2s2 − 26s− 18

s4 · (s− 1) · (s− 2)

)
.

• P6(s) :=

(
s3 + 2s− 1

(s2 − 1) · (s− 2)2 ,
2s3 + s2 + 1

(s− 2) · (s2 − 1)

)
.

• P7(s) :=

(
s3 + 2s− 1

(s− 1) · (s− 2)3 ,
2s3 + s2 + 1

(s− 2)2 · (s− 1)

)
.

• P8(s) :=

(
4 ·
(
s2 + 1

)
s2 · (s− 2)3 ,

(
2 · s2 + 2 · s− 1

)
s2 · (s− 2)2

)
.

• P9(s) :=

(
2 · s2 − 9

s2 · (s + 3)3 ,
s2 + s− 1

s2

)
.

• P10(s) :=

(
s3 + 2s− 1

(s2 + 1)2 · (s− 2)3 ,
2s3 + s2 + 1

(s− 2)2 · (s2 + 1)

)
.

• P11(s) :=

(
s5 + 2s2 + s− 1

s2 · (s− 1)3 · (s2 + 1)5 ,
2s4 − s3 + s2 + 1

(s2 + 1)3 · (s− 1)2

)
.

• P12(s) :=

(
s− 1

s · (s6 + 2)2 ,
s3 − s + 1
(s6 + 2)

)
.

• P13(s) :=

(
s− 1

(s + 1) · (s4 − 2)2 ,
s3

s4 − 2

)
.

• P14(s) :=

(
s2 + 10

s2 · (s− 2)3 ,
s2 + 1

s2

)
.

Appendix C. Implementation

The following page shows the procedures which were implemented for Algorithms 1–4
with the Maple algebra software.
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> > 

> > 

> > 

> > 

Procedure AsymptotesImplicit (implicit_curve, accuracy)

Description
Computes the parametrizations of the g-asymptotes of an implicit curve, considering Puiseux 
expansion up to a fixed accuracy.

       @param {polynomial} implicit_curve  
       @param {number} accuracy
       @return [[{expression}, {expression}]...] parametric_asymptotes list

Code
AsymptotesImplicit proc implicit_curve, accuracy
 local F, g;
 local x, y, nroots, i 1;
 local points_inf_list;
 local Phi, parametric_asymptoteslist  NULL;
 local phi, l_YZ, l_aux, e_index, r, tilde_aux, tilde_r;

 x indets implicit_curve 1 ;
 y indets implicit_curve 2 ;

 F numer subs x=xz, y=
y
z , implicit_curve ;  # Projective curve 

 g subs x=1, F ;    # g(y,z)
 Phi convert puiseux g, z=0, y, accuracy , list ; 
 nroots  nops Phi ;

 for i from 1 to nroots do  # Leaves and braches
 phi  Phi i ;

l_YZ  phiz ;

 l_aux subs z=1z, l_YZ ; 

 e_index EIndex l_aux ;
 r simplify subs z=ze_index, l_aux , radical, symbolic ;
 tilde_aux NonNegativeOps expand simplify r , radical, symbolic ;
 tilde_r subs z=t, tilde_aux ;
 parametric_asymptoteslist te_index, tilde_r , parametric_asymptoteslist;

 end do;

 return parametric_asymptoteslist ;

end proc:

Example
 f 176 x y3 88 y4 2352 x2 y 1368 x y2 360 y3 1568 x2 1960 x y 520 y2 896 x

368 y 128:
 AsymptotesImplicit f, 3 ; 

t, 2 t 3 , t2,
7 33  t

11
7

33
, t,

2
3
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> > 

> > 

> > 

> > 

Procedure AsymptotesParametric (parametric_curve, accPuiseux)

Description
Computes the parametrizations  of the g-asymptotes from a parametric curve, considering Puiseux
expansions up to a fixed accuracy.
      @param [{expression}, {expression}] parametric_curve 

  @param number  accPuiseux
      @return [[{expression}, {expression}], ...] parametric_asymptotes list

Code
AsymptotesParametric proc parametric_curve, accPuiseux
 local PP, g;
 local p1, p2, ec_aux;
 local , aux_ , aux_r, r, tilde_r;
 local s, e_index, i 1;
 local parametric_asymptoteslist NULL;

 s indets parametric_curve 1 ;
 p1  parametric_curve 1 ;
 p2  parametric_curve 2 ;

 PP 1, p2p1, 
1
p1 ;  # Projective curve

 g p2
p1,

1
p1 t ;

 ec_aux numer g 2 ;
convert puiseux ec_aux, t=0, s, accPuiseux , set ; 

 for i to nops  do
 aux_r subs s= i , p2 ; 
 aux_r convert series aux_r, t=0, accPuiseux , polynom ; 
 r subs t=z 1, aux_r ;
 e_index EIndex r ;
 r expand simplify subs z=ze_index, r , radical, symbolic ;
 tilde_r NonNegativeOps r ;
 parametric_asymptoteslist te_index, subs z=t, tilde_r ,

 parametric_asymptoteslist; 
 end do; 

 return parametric_asymptoteslist ; 

end proc:

Example

P s3 2 s 1
s2 1 s 2 2,

2 s3 s2 1
s 2 s2 1 :

parametric_asymptotesL  AsymptotesParametric P, 4 ;

parametric_asymptotesL t2,
7 3 11  t

11
7

33
, t, 2 t 3 , t,

2
3
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> > 

> > 

(2.2.3.1)(2.2.3.1)

Procedure AsymptotesParametricLimits (parametric_curve)

Description
Computes the parametrization of the g-asymptotes of a given parametric curve using limits.
      @param [{expression}, {expression}] parametric_curve 
      @return [[{expression}, {expression}], ...] parametric_asymptoteslist

Code
AsymptotesParametricLimits proc parametric_curve
 local s, , , n1, n2, i 1, j, aux;
 local p1, p2, tilde_r;
 local parametric_asymptote;
 local list, list, parametric_asymptoteslist NULL;
 local f, a;

 s indets parametric_curve 1 ;
 p1 parametric_curve 1 ;
 p2 parametric_curve 2 ; 
list  RootsMultiplicityParametric parametric_curve, 1 ;
list RootsMultiplicityParametric parametric_curve, 2 ;

 for i to nops list  do 
list i, 1 ;

 n1 list i, 2 ;
 aux  factor subs s= , denom p2 ;
 if aux 0 then     # Horizontal asymptote

 parametric_asymptote t, subs s= , p2 ;

 else   # Parametrization asymptote
 for j from 1 to nops list  do

list j, 1 ;
 if =  then 

 break;
    end if;
 end do;
 n2  list j, 2 ;

 f n2 simplify p2

p1
n2
n1

, radical, symbolic ;

 a n2 limit f n2 , s= ;
 tilde_r  a n2 tn2;
 for j from n2 1 by 1 to 0 do 

 f j simplify p1
1
n1 f j 1 a j 1 , radical, symbolic ;

 a j limit f j , s= ;
 tilde_r tilde_r  a j tj;

 end do; 
    parametric_asymptote tn1, tilde_r ;
 end if;

 parametric_asymptoteslist  parametric_asymptote, parametric_asymptoteslist; 
 end do:    
 for j from 1 to nops list  do            # Vertical asymptote

list j, 1 ;
 aux  factor subs s= , denom p1 ;
 if aux 0 then

 parametric_asymptote  subs s= , p1 , t ;
 parametric_asymptoteslist  parametric_asymptote, parametric_asymptoteslist; 

    end if; 
 end do;

 return parametric_asymptoteslist ;

 end proc:
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> > 

> > 

(2.2.3.1)(2.2.3.1)

Example

P s3 2 s 1
s2 1 s 2 2,

2 s3 s2 1
s 2 s2 1 :

parametric_asymptotesL AsymptotesParametricLimits P ;

parametric_asymptotesL t,
2
3

, t, 2 t 3 , t2,
7 33  t

11
7

33

> > 

> > 

(2.2.3.1)(2.2.3.1)

> > 

Procedure AsymptotesParametricDerivatives (parametric_curve)

Description
Computes the parametrization of the g-asymptotes of a given parametric curve using derivatives.
      @param [{expression}, {expression}] parametric_curve 
      @return [[{expression}, {expression}], ...] parametric_asymptoteslist

Code
AsymptotesParametricDerivatives proc parametric_curve
 local s, , n, i 1, j;
 local q, q1, q2, , , a, a_aux, tilde_r;
 local P, PP_aux, PP, overline_q;
 local list, list, alist, parametric_asymptoteslist NULL;

 P parametric_curve;
 s indets P 1 ;
 PP_aux  P 1 , P 2 , 1 ;  # Proyective curve
 q lcm denom P 1 , denom P 2 ;
 q1 P 1 q;
 q2 P 2 q;
 PP q1, q2, q ;
list RootsMultiplicityParametric P, 1 ;

normal q2
q1 ;

 for i to nops list  do
list i, 1 ;

    n list i, 2 ;

 overline_q radnormal q
s n ;

q1
overline_q

1
n
;

 a subs s= , ;
 tilde_r a tn;
 for j from n 1 by 1 to 0 do

 a_aux normal diff diff , s n j , s$ n 1 j ;

a 1
n j ! subs s= , a_aux ;

 tilde_r tilde_r  a tj; 
 end do;

    parametric_asymptoteslist tn, tilde_r , parametric_asymptoteslist;
 end do;   

 return parametric_asymptoteslist ;

 end proc:

Example

P s3 2 s 1
s2 1 s 2 2,

2 s3 s2 1
s 2 s2 1 ;

parametric_asymptotesL AsymptotesParametricDerivatives P ;

P
s3 2 s 1

s2 1 s 2 2 ,
2 s3 s2 1
s 2 s2 1

parametric_asymptotesL t,
2
3

, t, 2 t 3 , t2,
7 11 3  t

11
7

33
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