2,072 research outputs found

    Fast Quantum Algorithm for Solving Multivariate Quadratic Equations

    Get PDF
    In August 2015 the cryptographic world was shaken by a sudden and surprising announcement by the US National Security Agency NSA concerning plans to transition to post-quantum algorithms. Since this announcement post-quantum cryptography has become a topic of primary interest for several standardization bodies. The transition from the currently deployed public-key algorithms to post-quantum algorithms has been found to be challenging in many aspects. In particular the problem of evaluating the quantum-bit security of such post-quantum cryptosystems remains vastly open. Of course this question is of primarily concern in the process of standardizing the post-quantum cryptosystems. In this paper we consider the quantum security of the problem of solving a system of {\it mm Boolean multivariate quadratic equations in nn variables} (\MQb); a central problem in post-quantum cryptography. When n=mn=m, under a natural algebraic assumption, we present a Las-Vegas quantum algorithm solving \MQb{} that requires the evaluation of, on average, O(20.462n)O(2^{0.462n}) quantum gates. To our knowledge this is the fastest algorithm for solving \MQb{}

    Estimating proportions of objects from multispectral scanner data

    Get PDF
    Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging

    The dendritic cell algorithm for intrusion detection

    Get PDF

    Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly

    Get PDF
    There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a "`quantum advantage" over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.Comment: 14 pages, 8 figures, 3 tables, way too many reference

    The dendritic cell algorithm for intrusion detection

    Get PDF
    As one of the solutions to intrusion detection problems, Artificial Immune Systems (AIS) have shown their advantages. Unlike genetic algorithms, there is no one archetypal AIS, instead there are four major paradigms. Among them, the Dendritic Cell Algorithm (DCA) has produced promising results in various applications. The aim of this chapter is to demonstrate the potential for the DCA as a suitable candidate for intrusion detection problems. We review some of the commonly used AIS paradigms for intrusion detection problems and demonstrate the advantages of one particular algorithm, the DCA. In order to clearly describe the algorithm, the background to its development and a formal definition are given. In addition, improvements to the original DCA are presented and their implications are discussed, including previous work done on an online analysis component with segmentation and ongoing work on automated data preprocessing. Based on preliminary results, both improvements appear to be promising for online anomaly-based intrusion detection.Comment: Bio-Inspired Communications and Networking, IGI Global, 84-102, 201
    corecore