222 research outputs found

    NP-hardness of hypercube 2-segmentation

    Full text link
    The hypercube 2-segmentation problem is a certain biclustering problem that was previously claimed to be NP-hard, but for which there does not appear to be a publicly available proof of NP-hardness. This manuscript provides such a proof

    Clustering Boolean Tensors

    Full text link
    Tensor factorizations are computationally hard problems, and in particular, are often significantly harder than their matrix counterparts. In case of Boolean tensor factorizations -- where the input tensor and all the factors are required to be binary and we use Boolean algebra -- much of that hardness comes from the possibility of overlapping components. Yet, in many applications we are perfectly happy to partition at least one of the modes. In this paper we investigate what consequences does this partitioning have on the computational complexity of the Boolean tensor factorizations and present a new algorithm for the resulting clustering problem. This algorithm can alternatively be seen as a particularly regularized clustering algorithm that can handle extremely high-dimensional observations. We analyse our algorithms with the goal of maximizing the similarity and argue that this is more meaningful than minimizing the dissimilarity. As a by-product we obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary factorizations. Our algorithm for Boolean tensor clustering achieves high scalability, high similarity, and good generalization to unseen data with both synthetic and real-world data sets

    Correlation Clustering with Low-Rank Matrices

    Full text link
    Correlation clustering is a technique for aggregating data based on qualitative information about which pairs of objects are labeled 'similar' or 'dissimilar.' Because the optimization problem is NP-hard, much of the previous literature focuses on finding approximation algorithms. In this paper we explore how to solve the correlation clustering objective exactly when the data to be clustered can be represented by a low-rank matrix. We prove in particular that correlation clustering can be solved in polynomial time when the underlying matrix is positive semidefinite with small constant rank, but that the task remains NP-hard in the presence of even one negative eigenvalue. Based on our theoretical results, we develop an algorithm for efficiently "solving" low-rank positive semidefinite correlation clustering by employing a procedure for zonotope vertex enumeration. We demonstrate the effectiveness and speed of our algorithm by using it to solve several clustering problems on both synthetic and real-world data

    Weakly Submodular Functions

    Full text link
    Submodular functions are well-studied in combinatorial optimization, game theory and economics. The natural diminishing returns property makes them suitable for many applications. We study an extension of monotone submodular functions, which we call {\em weakly submodular functions}. Our extension includes some (mildly) supermodular functions. We show that several natural functions belong to this class and relate our class to some other recent submodular function extensions. We consider the optimization problem of maximizing a weakly submodular function subject to uniform and general matroid constraints. For a uniform matroid constraint, the "standard greedy algorithm" achieves a constant approximation ratio where the constant (experimentally) converges to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search algorithm achieves a constant approximation ratio where the constant (analytically) converges to 10.22 as the rank of the matroid increases

    A QPTAS for Gapless MEC

    Get PDF
    We consider the problem Minimum Error Correction (MEC). A MEC instance is an n x m matrix M with entries from {0,1,-}. Feasible solutions are composed of two binary m-bit strings, together with an assignment of each row of M to one of the two strings. The objective is to minimize the number of mismatches (errors) where the row has a value that differs from the assigned solution string. The symbol "-" is a wildcard that matches both 0 and 1. A MEC instance is gapless, if in each row of M all binary entries are consecutive. Gapless-MEC is a relevant problem in computational biology, and it is closely related to segmentation problems that were introduced by {[}Kleinberg-Papadimitriou-Raghavan STOC\u2798{]} in the context of data mining. Without restrictions, it is known to be UG-hard to compute an O(1)-approximate solution to MEC. For both MEC and Gapless-MEC, the best polynomial time approximation algorithm has a logarithmic performance guarantee. We partially settle the approximation status of Gapless-MEC by providing a quasi-polynomial time approximation scheme (QPTAS). Additionally, for the relevant case where the binary part of a row is not contained in the binary part of another row, we provide a polynomial time approximation scheme (PTAS)

    Clustering {Boolean} Tensors

    Get PDF
    Tensor factorizations are computationally hard problems, and in particular, are often significantly harder than their matrix counterparts. In case of Boolean tensor factorizations -- where the input tensor and all the factors are required to be binary and we use Boolean algebra -- much of that hardness comes from the possibility of overlapping components. Yet, in many applications we are perfectly happy to partition at least one of the modes. In this paper we investigate what consequences does this partitioning have on the computational complexity of the Boolean tensor factorizations and present a new algorithm for the resulting clustering problem. This algorithm can alternatively be seen as a particularly regularized clustering algorithm that can handle extremely high-dimensional observations. We analyse our algorithms with the goal of maximizing the similarity and argue that this is more meaningful than minimizing the dissimilarity. As a by-product we obtain a PTAS and an efficient 0.828-approximation algorithm for rank-1 binary factorizations. Our algorithm for Boolean tensor clustering achieves high scalability, high similarity, and good generalization to unseen data with both synthetic and real-world data sets
    corecore