3,913 research outputs found

    Investigation of split injection in a single cylinder optical diesel engine

    Get PDF
    SAE paper 2010-01-0605, Copyright © 2010 SAE International. This paper is posted on this site with permission from SAE International, and is for viewing only. Further use and distribution of this paper is not permitted without permission from SAE.Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters’ (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied. Optical techniques like direct spray and combustion visualization were applied by means of a high speed imaging system with a copper vapor laser illumination system and a high-speed two-color system was applied to obtain in-cylinder diesel combustion temperature and soot measurements distributions

    Controlled autoignition of hydrogen in a direct-injection optical engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ϕ = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate

    Design and implementation of MIMO-long term evolution-advanced to support larger bandwidth

    Get PDF
    The migration of mobile communication technologies are divided into four generations. Long Term Evolution (LTE) is called LTE rel-8, the evolution of LTE led to new technology referred to as LTE-Advanced, is the true fourth generation (4G) evolution step, with the first release of LTE (rel-8) which was labeled as “3.9G”. LTE-Advanced is a mobile broadband access technology founded as a response to the need for the improvement to support the increasing demand for high data rates. The standard for LTE-A is a milestone in the development of Third Generation Partnership Project (3GPP) technologies. Carrier Aggregation is one of the most distinct features of LTEïżœAdvanced that makes the bandwidth extension of up to 100 MHz thus the theoretical peak data rate of LTE-A may be even up to 1 Gbps. This proposed system presents new LTE-Advanced depending on carrier aggregation to obtain better performance of the system. The new design of LTE-Advanced offers higher peak data rates than even the initial LTE-A; while the spectrum efficiency has been amended; As a result, the aggregated LTE-A will support 120 MHz instead of 100 MHz in order to obtain higher peak data rate access up to 4 Gbps. The system was applied with 8x8 Multiple Input Multiple Output (MIMO) using different modulation techniques: QPSK, 16 QAM, and 64 QAM. From the simulation results, it is clear that proposed LTE-Advanced with 64 QAM has high values of throughput in case of depending code rate equals to 5/6 with 8x8 MIMO

    Effects of hydrogen and primary air in a commercial partially-premixed atmospheric gas burner by means of optical and supervised machine learning techniques

    Get PDF
    In order to ascertain the effects of the hydrogen addition and the primary air-fuel ratio on burner performance and emissions, we conduct tests on a commercial atmospheric gas burner using pure methane and a blend of hydrogen/methane. Relevant statistical image features are extracted from a UV–VIS camera equipped with narrow-band optical filters. Radical image results agrees with spectrometric data, showing the relevance of the OH* intensity radiation coming from the outer non-premixed zone. The double-cone flame structure is evident, showing a growing secondary non-premixed cone as the primary air-fuel ratio is decreased. In addition, the direct relationship found between flame radical imaging features and NOx emissions has been used to develop a predictive model by integrating classification techniques and neural networks. The research confirms UV–VIS chemiluminescence imaging techniques as powerful tools aimed at combustion monitoring, with huge prospects of being integrated within advanced emission control techniques for commercial burners

    An Investigation of Premixed and Lean Combustion in Engines

    Get PDF
    Spark ignited internal combustion engines are expected to continue to be the mainstay for the passenger cars and light duty trucks for the next few decades. It is understood that to conform to the stringent fuel efficiency legislations as well as meet the regulated exhaust emission limits, combustion technology must evolve significantly. It is imperative to develop a deeper understanding of the fundamental engine processes such as air intake, fuel-air interaction, and ignition so that avenues for incremental improvements may be explored. With this broad objective, the present study focuses on spark ignition engines in which premixed and lean (air in excess) charge of fuel and air can be burned efficiently. Studies have indicated that under these conditions, it is possible to simultaneously reduce the oxides of nitrogen (NOx), while keeping the carbon monoxide (CO) and unburned hydrocarbons (UHCs) at low levels. The in-cylinder turbulence plays a major role in the fuel-air mixture preparation. When this mixture ignites, the combustion may propagate through what is known as a premixed turbulent flame. Turbulence is beneficial since it enhances the mass burning rate. This is particularly critical in lean burn engines in which it is difficult to complete the combustion within the extremely short time scales typical of modern engines. Excess turbulence however, may lead to flame quenching. In order to investigate the conditions leading up to and the propagation of the turbulent flame itself, analytical and empirical studies are performed. Tests are conducted on a constant volume combustion chamber with optical access to provide insight into the combustion characteristics of lean mixtures subject to turbulence. Fundamental studies on premixed flame propagation are performed with a variety of fuels at different equivalence ratios with different fuels. Impacts of engine operating conditions such as air-fuel ratio, exhaust gas recirculation, engine load, fuels, and ignition strategies on the flame initiation and development are investigated in detail on a research engine test setup. Chemical simulation and computational fluid dynamics (CFD) tools are used to supplement the understanding of the results. Finally, an attempt is made to comprehensively understand the combined effects of in-cylinder flow and fuel reactivity on premixed and lean combustion

    Flame chemiluminescence and OH LIF imaging in a hydrogen-fuelled spark-ignition engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines. Hydrogen’s wide flammability range allows higher engine efficiency with much leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. This paper presents results from an optical study of combustion in a spark-ignition research engine running with direct injection and port injection of hydrogen. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles in order to calculate in-cylinder rates of flame growth. Laser induced fluorescence of OH was also applied on an in-cylinder plane below the spark plug to record detailed features of the flame front for a series of engine cycles. The tests were performed at various air-to-fuel ratios, typically in a range of φ = 0.50–0.83 at 1000 RPM with 0.5 bar intake pressure. The engine was also run with gasoline in direct-injection and port-injection modes to compare with the operation on hydrogen. The observed combustion characteristics were analysed with respect to laminar and turbulent burning velocities, as well as flame stretch. An attempt was also made to review relevant hydrogen work from the limited literature on the subject and make comparisons were appropriate

    THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September

    Full text link
    'The THIESEL 2020 Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Desantes FernĂĄndez, JM. (2020). THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September. Editorial Universitat PolitĂšcnica de ValĂšncia. http://hdl.handle.net/10251/150759EDITORIA

    An Experimental Study of Flame Lengths and Emissions of fully-Modulated Diffusion Flames

    Get PDF
    A pulsed fuel injector system was used to study flame structure, flame length, and emissions of ethylene jet diffusion flames over a range of injection times and duty-cycles with a variable air co-flow. In all cases the jet was completely shut off between pulses (fully-modulated) for varying intervals, giving both widely-spaced, non-interacting puffs and interacting puffs. Imaging of the luminosity from the flame revealed distinct types of flame structure and length, depending on the duration of the fuel injection interval. Flame lengths for isolated puffs (small injection times) were up to 83% less than steady state flames with the same injection velocities. With the addition of co-flow flame lengths grew to a maximum of 30% longer than flames without any co-flow. A scaling argument is also developed to predict the amount of co-flow that gives a 15% increase in mean flame length. Interacting flames with a small co-flow and small injection times (injection time = 5.475 ms) experienced flame length increases of up to 212% for a change in injection duty-cycle from 0.1 to 0.5. For interacting flames with long injection times (on time = 119 ms), essentially no change in flame length was noticeable over the same range of duty-cycles. Emission measurements suggest partial quenching of the reaction in isolated puffs with low duty-cycles and injection times (injection times less than 5.475 ms) resulting in high CO and UHC concentrations and low NO and NOx concentrations. With an increase in duty-cycle, the puffs began to interact and CO and UHC concentrations decreased while NO and NOx concentrations increased. For flames with injection times greater than 5.475 ms emission concentrations seem to be reasonably constant, with a slight increase in NO and NOx concentrations as the duty-cycle increased. Also the duty-cycle experienced in the vicinity of the probe is estimated and used as a scaling factor for the emission measurements
    • 

    corecore