354 research outputs found

    An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters

    Get PDF
    A novel localization framework is presented based on ultra-wideband (UWB) channel sounding, employing a triangulation method using the geometrical properties of propagation paths, such as time delay of arrival, angle of departure, angle of arrival, and their estimated variances. In order to extract these parameters from the UWB sounding data, an extension to the high-resolution RiMAX algorithm was developed, facilitating the analysis of these frequency-dependent multipath parameters. This framework was then tested by performing indoor measurements with a vector network analyzer and virtual antenna arrays. The estimated means and variances of these geometrical parameters were utilized to generate multiple sample sets of input values for our localization framework. Next to that, we consider the existence of multiple possible target locations, which were subsequently clustered using a Kim-Parks algorithm, resulting in a more robust estimation of each target node. Measurements reveal that our newly proposed technique achieves an average accuracy of 0.26, 0.28, and 0.90 m in line-of-sight (LoS), obstructed-LoS, and non-LoS scenarios, respectively, and this with only one single beacon node. Moreover, utilizing the estimated variances of the multipath parameters proved to enhance the location estimation significantly compared to only utilizing their estimated mean values

    CIR Parametric Rules Precocity For Ranging Error Mitigation In IR-UWB

    Get PDF
    The cutting-edge technology to support high ranging accuracy within the indoor environment is Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex architecture and low power consumption align well with mobile devices. A prime challenge in indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable accuracy in the conditions mentioned above without any significant increase in latency and computational burden. This dissertation proposes a solution for addressing the accuracy and reliability problem of indoor localization system satisfying acceptable delay or computational complexity overhead. The proposed methodology is based on rules for identification of line-of-sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP conditions. The proposed methodology provides accuracy for two major application domains, namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This dissertation offers two different solutions for the localization problem. The first solution is a rules-based classification of LOS / NLOS and geometric-based range correction for WSN. In the first solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The logic is based on channel impulse response (CIR) parameters. The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic based mechanism for designing a fuzzy inference system. The system estimates the ranging errors and correcting unmitigated ranges. The expanded rules and designed methodology are based on theoretical analysis and empirical observations of the parameters. The rules accommodate the parameters uncertainties for estimating the ranging error through the relationship between the input parameters uncertainties and ranging error using fuzzy inference mechanism. The proposed solutions are evaluated using real-world measurements in different indoor environments. The performance of the proposed solutions is also evaluated in terms of true classification rate, residual ranging errors’ cumulative distributions and probability density distributions, as well as outage probabilities. Evaluation results show that the true classification rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization system is also more than 90% for error threshold of 15 cm

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    A Novel 3D Indoor Node Localization Technique Using Weighted Least Square Estimation with Oppositional Beetle Swarm Optimization Algorithm

    Get PDF
    Due to the familiarity of smart devices and the advancements of mobile Internet, there is a significant need to design an effective indoor localization system. Indoor localization is one of the recent technologies of location-based services (LBS), plays a vital role in commercial and civilian industries. It finds useful in public security, disaster management, and positioning navigation. Several research works have concentrated on the design of accurate 2D indoor localization techniques. Since the 3D indoor localization techniques offer numerous benefits, this paper presents a Novel 3D Indoor Node Localization Technique using Oppositional Beetle Swarm Optimization with Weighted Least Square Estimation (OBSO-WLSE) algorithm. The proposed OBSO-WLSE algorithm aims to improvise the localization accuracy with reduced computational time. Here, the OBSO algorithm is employed for estimating the initial locations of the target that results in the elimination of NLOS error. With respect to the initial location by OBSO technique, the WLSE technique performs iterated computations rapidly to determine the precise final location of the target. To improve the efficiency of the OBSO technique, the concept of oppositional based learning (OBL) is integrated into the traditional BSO algorithm. A number of simulations were run to test the model's accuracy, and the results were analyzed using a variety of metrics

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201
    • …
    corecore