505 research outputs found

    Further shock-tube studies by infrared emission of the decomposition of ammonia

    Get PDF
    N/

    Coverage, lateral order, and vibrations of atomic nitrogen on Ru(0001)

    Get PDF
    The N/Ru(0001) system was studied by thermal desorption spectroscopy (TDS), low‐energy electron diffraction (LEED), and high‐resolution electron energy‐loss spectroscopy (HREELS). Atomic nitrogen was prepared by NH3 decomposition at sample temperatures decreasing from 500 to 350 K during NH3 exposure. A maximum N coverage of θN=0.38 could thus be achieved. ∛, split 2×2 and 2×2 LEED patterns were observed for decreasing θN. After NH3 decomposition and before annealing the sample to a temperature above 400 K, the surface is composed of adsorbed N, H, and NH species. This composite layer exhibits a split ∛ LEED pattern due to domains of size 4 with heavy walls. This phase decays through dissociation of NH leading to sharp first‐order type desorption peaks of H2 and N2. From the weak intensity of the ν(Ru–NH) stretch mode it is concluded that NH is adsorbed at threefold‐hollow sites. The energy of the ν(Ru–N) mode shifts from 70.5 to 75.5 meV when θN is increased from 0.25 to 0.38

    Alloying Effect of Nickel–Cobalt Based Binary Metal Catalysts Supported on α-Alumina for Ammonia Decomposition

    Get PDF
    The development of a base metal catalyst which shows high performance for the ammonia (NH3) decomposition have been conducted. For the Ni and Co based catalysts using α-Al2O3 as a support, the performance of the single metal catalysts was lower than that of the γ-Al2O3 supported catalysts. However, its performance was greatly improved by using a binary metal catalyst system. Based on the XRD analysis, it was found that Ni and Co supported on α-Al2O3 were alloyed. TEM observation confirmed that the metal particle size in the α-Al2O3 supported Ni-Co catalyst is smaller than that of the single metal catalysts (Ni/α-Al2O3 or Co/α-Al2O3). Furthermore, in-situ XRD and H2-TPR measurements revealed that the Ni-Co alloy forms during the reduction process. The optimum mixing ratio of Ni and Co components was 1:1, and the optimum pre-reduction temperature before the performance test was 600 °C. Studies on the differences of support oxides proved that the improvement effect by alloying can be similarly obtained with the SiO2 supported catalyst, indicating that the catalyst using the support with less interaction between the active metal and the support is more likely to obtain the performance improvement effect by alloying

    Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells

    Get PDF
    This paper presents a detailed surface reaction mechanism for the decomposition of NH3 to H2 and N2 on a Ni surface. The mechanism is validated for temperatures ranging from 700 to 1500K and pressures from 5.3Pa to 100kPa. The activation energies for various elementary steps are calculated using the unity bond index-quadratic exponential potential (UBI-QEP) method. Sensitivity analysis is carried out to study the influence of various kinetic parameters on reaction rates. The NH3 decomposition mechanism is used to simulate SOFC button cell operating on NH3 fuel

    H2 production via ammonia decomposition in a catalytic membrane reactor

    Get PDF
    The membrane reactor is proposed in this work as a system with high potential to efficiently recover the hydrogen (H2) stored in ammonia (NH3), which has been recently proposed as an alternative for H2 storage. With this technology, NH3 decomposition and high-purity H2 separation are simultaneously performed within the same unit, and high H2 separation efficiency is achieved at lower temperature compared to conventional systems, leading to energetic and economic benefits. NH3 decomposition was experimentally performed in a Pd-based membrane reactor over a Ru-based catalyst and the performance of the conventional packed bed reactor were used as benchmark for a comparison. The results demonstrate that the introduction of a membrane in a conventional reactor enhances its performance and allows to achieve conversion higher than the thermodynamic equilibrium conversion for sufficiently high temperatures. For temperatures from and above 425 °C, full NH3 conversion was achieved and more than 86% of H2 fed to the system as ammonia was recovered with a purity of 99.998%. The application of vacuum at the membrane permeate side leads to higher H2 recovery and NH3 conversions beyond thermodynamic restrictions. On the other hand, the reactor feed flow rate and operating pressure have not shown major impacts on NH3 conversion.This project receives support from the European Union’s Horizon 2020 research and innovation under grant agreement No. 862482 (ARENHA project)

    Advances and Perspectives of H2 Production from NH3 Decomposition in Membrane Reactors

    Get PDF
    Hydrogen is often regarded as an ideal energy carrier. Its use in energy conversion devices does in fact not produce any pollutants. However, due to challenges related to its transportation and storage, liquid hydrogen carriers are being investigated. Among the liquid hydrogen carriers, ammonia is considered very promising because it is easy to store and transport, and its conversion to hydrogen has only nitrogen as a byproduct. This work focuses on a review of the latest results of studies dealing with ammonia decomposition for hydrogen production. After a general introduction to the topic, this review specifically focuses on works presenting results of membrane reactors for ammonia decomposition, particularly describing the different reactor configurations and operating conditions, membrane properties, catalysts, and purification steps that are required to achieve pure hydrogen for fuel cell applications

    Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO₂ Hydrogenation

    Get PDF
    Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in carbon dioxide (CO2) hydrogenation at 633 K and 25 bar (1 bar = 105 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L·(g·h)−1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promoted with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn promoter stabilized wüstite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammonia (NH3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions
    corecore