453 research outputs found

    5G network end-to-end delay measurements for live video streaming

    Get PDF
    Abstract. Focus of this thesis is in the data transmission delay comparison between Edge server and Cloud server when utilizing either 4G or 5G connectivity. In previous mobile phone network generations for example a multimedia server had to be installed on a Cloud server in the internet. 5G mobile phone network introduces a new concept called Edge server. Edge server is located close to the base station and therefore it is assumed to shorten the data transmission delay between the 5G mobile/client and a server application. Edge server can be used both in 4G and 5G networks. In this thesis first the 5G network and the essential new 5G architecture main design principles are gone through. Next the 5G Test Network that is used as a test environment is described and 5G main modules like Multi-access Edge Computing are introduced. 5G performance is clarified and compared against 4G. Delay testing is done in the 5G Test Network using Hospital Use Case demo. There operating room personnel like doctors and nurses is wearing Augmented Reality glasses and they are streaming their view together with patient status related information to multimedia server residing in 5G Test Network Edge server or in internet cloud. From the multimedia server the video is streamed by for example students, medical experts or consultants in a remote location. As part of the thesis the test system is defined and built based on the Hospital Use Case demo. Test specification is created, and tests are executed according to it. Results are recorded and analysed. Data transmission delays between the video stream originator and multimedia server are measured using Qosium measurement system. Also delay between the multimedia server and the streaming client is measured. Measurements are done for configurations where multimedia server is located at the Edge server and the internet cloud server. Both 4G and 5G connectivity is used for both server locations. When delay measurement results were compared it became clear that Edge server has much shorter data transmission delays compared to the internet cloud server. With 5G connectivity the delay was measured to be around 10 milliseconds for both uplink and downlink. With internet cloud the delays varied between 31 and 45 milliseconds with 5G connection. It can be concluded that from today’s mobile phone networks, 5G network does offer the fastest connection to a server environment by utilizing Edge server.5G verkon viiveen mittaaminen videostriimille. Tiivistelmä. Tämä diplomityö keskittyy vertaamaan datatiedonsiirron eroja reunapalvelimen ja internetin pilvipalvelimen välillä 4G ja 5G matkapuhelinverkossa. Aiempien sukupolvien matkapuhelinverkoissa esimerkiksi multimediapalvelin oli asennettava internetin pilvipalvelimelle. Viidennen sukupolven matkapuhelinverkossa otetaan käyttöön reunapalvelin. Reunapalvelin sijaitsee tukiaseman läheisyydessä ja täten sen oletetaan lyhentävän 5G-päätelaitteen ja palvelimen sovelluksen välistä tiedonsiirtoviivettä. Reunapalvelinta voidaan käyttää sekä neljännen että viidennen sukupolven matkapuhelinverkoissa. Tässä diplomityössä käydään ensin läpi 5G-matkapuhelinverkko ja sen arkkitehtuurin pääsuunnittelukriteerit. Seuraavaksi kuvataan testaamisessa käytettävä 5G-testiverkko ja 5G-verkon tärkeimmät moduulit kuten Multi-access Edge Computing. 5G-verkon suorituskyky selitetään ja sitä verrataan edelliseen 4. sukupolven verkkoon. Viivemittaukset tehdään 5G testiverkossa käyttäen 5G lääketieteen käyttötapauksen demoympäristöä. Siinä operointihuoneen henkilöstöllä, kuten lääkäreillä ja hoitajilla, on yllään lisätyn todellisuuden lasit. Lasit lähettävät henkilön näkymän ja potilaaseen liittyvää tietoa 5G-testiverkon reunapalvelimella tai internetin pilvipalvelimella sijaitsevalle multimediapalvelimelle. Multimediapalvelimelta video striimataan esimerkiksi lääketieteen opiskelijoille, asiantuntijoille tai konsulteille, jotka ovat etäällä lähetyspaikasta. Osana diplomityötä määritellään ja rakennetaan lääketieteen käyttötapauksen demon perustuva testausjärjestelmä. Testispesifikaatio luodaan, testit suoritetaan sen perusteella. Testitulokset tallennetaan ja analysoidaan. Tiedonsiirtoviiveet videolähteen ja multimediapalvelimen välillä mitataan käyttäen Qosium mittausjärjestelmää. Myös multimediapalvelimen ja videostriimin vastaanottajan väliset viiveet mitataan. Mittaukset tehdään konfiguraatiolle, jossa multimediapalvelin on sijoitettu reunapalvelimelle ja konfiguraatiolle, jossa se on sijoitettu internetin pilvipalvelimelle. Sekä 4G että 5G-yhteyttä käytetään molemmille konfiguraatiolle. Kun mittaustuloksia verrataan, käy selväksi, että reunapalvelimella on huomattavasti lyhyempi tiedonsiirtoviive kuin internetin pilvipalvelimella. 5G-yhteydellä mitattu viive oli noin 10 ms sekä ylössyöttö- että alassyöttösuuntaan. Internetin pilvipalvelimella viiveet vaihtelivat 31 ja 45 millisekunnin välillä 5G-yhteydellä. Voidaankin todeta, että nykyisistä matkapuhelinverkoista 5G-verkko tarjoaa nopeimman yhteyden palvelinympäristöön reunapalvelimen avulla

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    DistB-Condo: Distributed Blockchain-based IoT-SDN Model for Smart Condominium

    Full text link
    Condominium network refers to intra-organization networks, where smart buildings or apartments are connected and share resources over the network. Secured communication platform or channel has been highlighted as a key requirement for a reliable condominium which can be ensured by the utilization of the advanced techniques and platforms like Software-Defined Network (SDN), Network Function Virtualization (NFV) and Blockchain (BC). These technologies provide a robust, and secured platform to meet all kinds of challenges, such as safety, confidentiality, flexibility, efficiency, and availability. This work suggests a distributed, scalable IoT-SDN with Blockchain-based NFV framework for a smart condominium (DistB-Condo) that can act as an efficient secured platform for a small community. Moreover, the Blockchain-based IoT-SDN with NFV framework provides the combined benefits of leading technologies. It also presents an optimized Cluster Head Selection (CHS) algorithm for selecting a Cluster Head (CH) among the clusters that efficiently saves energy. Besides, a decentralized and secured Blockchain approach has been introduced that allows more prominent security and privacy to the desired condominium network. Our proposed approach has also the ability to detect attacks in an IoT environment. Eventually, this article evaluates the performance of the proposed architecture using different parameters (e.g., throughput, packet arrival rate, and response time). The proposed approach outperforms the existing OF-Based SDN. DistB-Condo has better throughput on average, and the bandwidth (Mbps) much higher than the OF-Based SDN approach in the presence of attacks. Also, the proposed model has an average response time of 5% less than the core model

    Improving Security in Internet of Things with Software Defined Networking

    Get PDF
    Future Internet of Things (IoT) will connect to the Internet billions of heterogeneous smart devices with the capacity of interacting with the environment. Therefore, the proposed solutions from an IoT networking perspective must take into account the scalability of IoT nodes as well as the operational cost of deploying the networking infrastructure. This will generate a huge volume of data, which poses a tremendous challenge both from the transport, and processing of information point of view. Moreover, security issues appear, due to the fact that untrusted IoT devices are interconnected towards the aggregation networks. In this paper, we propose the usage of a Software- Defined Networking (SDN) framework for introducing security in IoT gateways. An experimental validation of the framework is proposed, resulting in the enforcement of network security at the network edge

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Software-defined zero-trust network architecture : Evolution from Purdue model -based networking

    Get PDF
    Digitalization has brought many technological developments which improve the business operations on many industries. In recent years, the drive towards service based solutions has superseded the locally managed solutions towards vendor managed solutions that are managed through the Internet. Unfortunately, the architecture, and the infrastructure which it is based on, have not developed at the same pace. This has led to organizations undermining the architecture and policies designed for it. Therefore, a modern architecture is needed with the capability of supporting these uprising technologies. The objective of this thesis was to find out if Purdue model works as a valid reference architecture for building networks in today’s standards, and if it needs to be replaced, what would be the alternatives. To answer the research question, it was first investigated whether Purdue model can be used for modern network architecture. After that, a literacy review was performed to see what some of the current and modern recommendations are. The literacy review also included research on what some of the current threats to digital platforms are, and how cybersecurity is engineered. It was discovered that zero trust architecture and software defined solutions enhance the overall security and management of the operating environments. The thesis concludes with a logical reference architecture for networks as a suggested solution. The suggested solution is a new network architecture that implements the elements of zero trust and uses software defined networking to manage the underlying infrastructure
    corecore