1,100 research outputs found

    Protein Kinase A Regulates ATP Hydrolysis and Dimerization by a CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) Domain

    Get PDF
    Gating of the CFTRCl− channel is associated with ATP hydrolysis at the nucleotide-binding domains (NBD1, NBD2) and requires PKA (protein kinase A) phosphorylation of the R domain. The manner in which the NBD1, NBD2 and R domains of CFTR (cystic fibrosis transmembrane conductance regulator) interact to achieve a properly regulated ion channel is largely unknown. In this study we used bacterially expressed recombinant proteins to examine interactions between these soluble domains of CFTR in vitro. PKA phosphorylated a fusion protein containing NBD1 and R (NBD1–R–GST) on CFTR residues Ser-660, Ser-700, Ser- 712, Ser-737, Ser-768, Ser-795 and Ser-813. Phosphorylation of these serine residues regulated ATP hydrolysis by NBD1–R–GST by increasing the apparent Km for ATP (from 70 to 250 μM) and the Hill coefficient (from 1 to 1.7) without changing the Vmax. When fusion proteins were photolabelled with 8-azido- [α-32P]ATP, PKA phosphorylation increased the apparent kd for nucleotide binding and it caused binding to become co-operative. PKA phosphorylation also resulted in dimerization of NBD1– R–GST but not of R–GST, a related fusion protein lacking the NBD1 domain. Finally, an MBP (maltose-binding protein) fusion protein containing the NBD2 domain (NBD2–MBP) associated with and regulated the ATPase activity of PKA-phosphorylated NBD1–R–GST. Thus when the R domain in NBD1–R–GST is phosphorylated by PKA,ATP binding and hydrolysis becomes cooperative and NBD dimerization occurs. These findings suggest that during the activation of native CFTR, phosphorylation of the R domain by PKA can control the ability of the NBD1 domain to hydrolyse ATP and to interact with other NBD domains

    New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8

    Get PDF
    The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for cystic fibrosis patients bearing the ΔF508 mutation. Here we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen–deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1. This article is protected by copyright. All rights reserved

    Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series

    Get PDF
    COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved "EAA motif" of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data

    CFTR Gating II: Effects of Nucleotide Binding on the Stability of Open States

    Get PDF
    Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of ΔR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. ΔR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of ∼100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for ΔR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH(2)-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation

    Structural and Mechanistic Insights into the Yeast Disaggregase Hsp104

    Get PDF
    Hsp104 is a hexameric, AAA+ disaggregase from yeast, which couples ATP hydrolysis to remodeling diverse substrates ranging from amorphous aggregates to amyloid fibers. A mechanistic understanding of Hsp104\u27s substrate remodeling activities remains poorly defined. The hexamer undergoes large conformational changes upon ATP hydrolysis, but the details of these changes and how they are coupled to substrate remodeling are unresolved. The goals of this thesis were to elucidate low and high-resolution structural information about the Hsp104 hexamer and to discover new details of the mechanism of substrate remodeling. We used the in solution structural techniques small angle x-ray scattering and synchrotron x-ray footprinting, complemented by several biochemical assays, to elucidate novel roles for several Hsp104 domains, and to develop a comprehensive model for how the Hsp104 hexamer engages substrate and unleashes its remodeling capabilities. We discovered that the N-terminal domain (NTD) is involved in substrate binding, productive interactions with Hsp70, and an interface with nucleotide binding domain 1 (NBD1) and the middle domain (MD). We discovered a loop in NBD1 that may engage substrate in the ADP bound state to prevent premature substrate release, identified the region of the MD (helix 2) responsible and the mechanism of signal transmission between NBD1 and NBD2, and confirmed the validity of a hexameric model of the NBD2 domain. Hsp104 engages substrate in the ATP-bound state. We have found that in this state Hsp104 displays an increase in rigidity, which we propose as a pre-payment of the entropic cost of substrate binding. Initial substrate engagement in the NTD and NBD1, as well as Hsp70 interactions at the NTD:NBD1:MD interface, serve to `prime the pump\u27. These interactions result in large conformational changes of the MD, specifically in helix 2, which spans the entirety of the domain. These conformational changes increase MD dynamics, partially releasing MD:NBD2 contacts, and allow signal transmission between NBD1 and NBD2. As NBD2 responds to these signals, a positive feedback loop is created. Further nucleotide binding in NBD2 stimulates ATP hydrolysis in NBD1, and substrate is remodeled by iterative binding events and peristaltic motions of the Hsp104 hexamer channel

    Rustless translation

    Get PDF
    ATP binding cassette proteins are a large and diverse family of molecular machines and include transmembrane transporter, chromosome maintenance and DNA repair proteins, and translation factors. However, the function of the ABCE1, the only member of subfamily E of ABC proteins, remained mysterious for over a decade, even though it is perhaps the most conserved ABC protein in eukaryotes and archaea. Recent results have now identified ABCE1 as the ribosome-recycling factor of eukaryotes and archaea. Thus, two iron-sulfur clusters - the hallmark feature of ABCE1 - help catalyze an integral step of the translational cycle at the core of the protein synthesis machinery

    Subunit interactions influence the biochemical and biological properties of Hsp104

    Get PDF
    Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo
    corecore