6 research outputs found

    Kinematic Analysis of Multi-Fingered, Anthropomorphic Robotic Hands

    Get PDF
    The ability of stable grasping and fine manipulation with the multi-fingered robot hand with required precision and dexterity is playing an increasingly important role in the applications like service robots, rehabilitation, humanoid robots, entertainment robots, industries etc.. A number of multi-fingered robotic hands have been developed by various researchers in the past. The distinct advantages of a multi-fingered robot hand having structural similarity with human hand motivate the need for an anthropomorphic robot hand. Such a hand provides a promising base for supplanting human hand in execution of tedious, complicated and dangerous tasks, especially in situations such as manufacturing, space, undersea etc. These can also be used in orthopaedic rehabilitation of humans for improving the quality of the life of people having orthopedically and neurological disabilities. The developments so far are mostly driven by the application requirements. There are a number of bottlenecks with industrial grippers as regards to the stability of grasping objects of irregular geometries or complex manipulation operations. A multi-fingered robot hand can be made to mimic the movements of a human hand. The present piece of research work attempts to conceptualize and design a multi-fingered, anthropomorphic robot hand by structurally imitating the human hand. In the beginning, a brief idea about the history, types of robotic hands and application of multi-fingered hands in various fields are presented. A review of literature based on different aspects of the multi-fingered hand like structure, control, optimization, gasping etc. is made. Some of the important and more relevant literatures are elaborately discussed and a brief analysis is made on the outcomes and shortfalls with respect to multi-fingered hands. Based on the analysis of the review of literature, the research work aims at developing an improved anthropomorphic robot hand model in which apart from the four fingers and a thumb, the palm arch effect of human hand is also considered to increase its dexterity. A robotic hand with five anthropomorphic fingers including the thumb and palm arch effect having 25 degrees-of-freedom in all is investigated in the present work. Each individual finger is considered as an open loop kinematic chain and each finger segment is considered as a link of the manipulator. The wrist of the hand is considered as a fixed point. The kinematic analyses of the model for both forward kinematics and inverse kinematic are carried out. The trajectories of the tip positions of the thumb and the fingers with respect to local coordinate system are determined and plotted. This gives the extreme position of the fingertips which is obtained from the forward kinematic solution with the help of MATLAB. Similarly, varying all the joint iv angles of the thumb and fingers in their respective ranges, the reachable workspace of the hand model is obtained. Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for solving the inverse kinematic problem of the fingers. Since the multi-fingered hand grasps the object mainly through its fingertips and the manipulation of the object is facilitated by the fingers due to their dexterity, the grasp is considered to be force-closure grasp. The grasping theory and different types of contacts between the fingertip and object are presented and the conditions for stable and equilibrium grasp are elaborately discussed. The proposed hand model is simulated to grasp five different shaped objects with equal base dimension and height. The forces applied on the fingertip during grasping are calculated. The hand model is also analysed using ANSYS to evaluate the stresses being developed at various points in the thumb and fingers. This analysis was made for the hand considering two different hand materials i.e. aluminium alloy and structural steel. The solution obtained from the forward kinematic analysis of the hand determines the maximum size for differently shaped objects while the solution to the inverse kinematic problem indicates the configurations of the thumb and the fingers inside the workspace of the hand. The solutions are predicted in which all joint angles are within their respective ranges. The results of the stress analysis of the hand model show that the structure of the fingers and the hand as a whole is capable of handling the selected objects. The robot hand under investigation can be realized and can be a very useful tool for many critical areas such as fine manipulation of objects, combating orthopaedic or neurological impediments, service robotics, entertainment robotics etc. The dissertation concludes with a summary of the contribution and the scope of further work

    Simulation-based functional evaluation of anthropomorphic artificial hands.

    Get PDF
    This thesis proposes an outline for a framework for an evaluation method that takes as an input a model of an artificial hand, which claims to be anthropomorphic, and produces as output the set of tasks that the hand can perform. The framework is based on studying the literature on the anatomy and functionalities of the human hand and methods of implementing these functionalities in artificial systems. The thesis also presents a partial implementation of the framework which focuses on tasks of gesturing and grasping using anthropomorphic postures. This thesis focuses on the evaluation of the intrinsic hardware of robot hands from technical and functional perspectives, including kinematics of the mechanical structure, geometry of the contact surface, and functional force conditions for successful grasps. This thesis does not consider topics related to control or elements of aesthetics of the design of robot hands.The thesis reviews the literature on the anatomy, motion and sensory capabilities, and functionalities of the human hand to define a reference to evaluate artificial hands. It distinguishes between the hand's construction and functionalities and presents a discussion of anthropomorphism that reflects this distinction. It reviews key theory related to artificial hands and notable solutions and existing methods of evaluating artificial hands.The thesis outlines the evaluation framework by defining the action manifold of the anthropomorphic hand, defined as the set of all tasks that a hypothetical ideal anthropomorphic hand should be able to do, and analysing the manifold tasks to determine the hand capabilities involved in the tasks and how to simulate them. A syntax is defined to describe hand tasks and anthropomorphic postures. The action manifold is defined to be used as a. functional reference to evaluate artificial hands' performance.A method to evaluate anthropomorphic postures using Fuzzy logic and a method to evaluate anthropomorphic grasping abilities are proposed and applied on models of the human hand and the InMoov robot hand. The results show the methods' ability to detect successful postures and grasps. Future work towards a full implementation of the framework is suggested

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Desarrollo e integración de mano robótica antropomórfica en el robot humanoide TEO

    Get PDF
    Este proyecto de fin de grado tiene como finalidad el desarrollo e integración de una mano robótica antropomórfica en el robot humanoide TEO. TEO es un robot asistente del hogar desarrollado en RoboticsLab, en la Universidad Carlos III de Madrid, cuyas manos robóticas actuales carecen de la funcionalidad necesaria para las tareas que requieren elevada destreza manual, como puede ser la manipulación de textiles. Partiendo de esta motivación, el presente documento comienza con el planteamiento completo del problema y finaliza con la valoración de la solución aportada. El alcance de los objetivos propuestos se consigue mediante el desarrollo y estudio de varias versiones de la mano seleccionada a nivel mecánico, electrónico y software. Se desarrollan experimentos para evaluar la eficacia de la mano robótica. Adicionalmente, se evalúa el marco regulador técnico y el entorno socio-económico del proyecto, de modo que este atienda satisfactoriamente a las restricciones establecidas y se encaje correctamente en el contexto social y económico actual. Estas páginas exponen el proceso completo de desarrollo integración de las nuevas manos en el robot, lo cual forma parte de un proyecto que continuará de forma posterior a la defensa del trabajo, orientado a la ejecución de estudios adicionales en torno a su comportamiento en el humanoide, contemplando la expansión de las funciones de TEO en relación a la versatilidad que le aportan sus nuevas manos.This final degree project comprises the development and integration of an anthropomorphic robotic hand in the humanoid robot TEO. TEO is a household companion developed by RoboticsLab, at Carlos III University of Madrid, whose current robotic hands lack the necessary functionality for the tasks that require high manual dexterity, like fabric manipulation. Based on this motivation, this document begins with the approach of the problem and ends with the evaluation of the solution provided. the scope of the proposed objectives is achieved through the development and study of several versions of the selected hand at the mechanical, electronic and software level. Multiple experiments are developed to evaluate the effectiveness of the robotic hand. In addition, the regulatory technical framework and the socio-economic environment of the project are evaluated, so that it complies satisfactorily with the established restrictions and adjusts to the current social and economic context. These pages expose the complete development and integration process of the new hands, as part of a project that will continue after the defense of the work. The project is oriented to numerous additional studies around their behavior in the humanoid, contemplating the expansion of the TEO functions in relation to the versatility provided by his new fully functional hands.Ingeniería en Tecnologías Industriale
    corecore