328 research outputs found

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    Discrete event approach to network fault management

    Get PDF
    Failure diagnosis in large and complex systems such as a communication network is a critical task. An important aspect of network management is fault management, i.e.,determining, locating, isolation, and correcting faults in the network. In the realm of discrete event systems Sampath et al proposed a failure diagnosis approach, and Jiang et al proposed an efficient algorithm for testing diagnosability. In this work, we adopt the framework of the communicating finite state machine (CFSM) of Miller et al for modeling networks and to investigate fault detection, fault identification and fault location using Sampath et al and Jiang et al methods. Our approach provides a systematic way of performing fault diagnosis aspects of network fault management

    Twin‐engined diagnosis of discrete‐event systems

    Get PDF
    Diagnosis of discrete-event systems (DESs) is computationally complex. This is why a variety of knowledge compilation techniques have been proposed, the most notable of them rely on a diagnoser. However, the construction of a diagnoser requires the generation of the whole system space, thereby making the approach impractical even for DESs of moderate size. To avoid total knowledge compilation while preserving efficiency, a twin-engined diagnosis technique is proposed in this paper, which is inspired by the two operational modes of the human mind. If the symptom of the DES is part of the knowledge or experience of the diagnosis engine, then Engine 1 allows for efficient diagnosis. If, instead, the symptom is unknown, then Engine 2 comes into play, which is far less efficient than Engine 1. Still, the experience acquired by Engine 2 is then integrated into the symptom dictionary of the DES. This way, if the same diagnosis problem arises anew, then it will be solved by Engine 1 in linear time. The symptom dic- tionary can also be extended by specialized knowledge coming from scenarios, which are the most critical/probable behavioral patterns of the DES, which need to be diagnosed quickly

    Discrete and hybrid methods for the diagnosis of distributed systems

    Get PDF
    Many important activities of modern society rely on the proper functioning of complex systems such as electricity networks, telecommunication networks, manufacturing plants and aircrafts. The supervision of such systems must include strong diagnosis capability to be able to effectively detect the occurrence of faults and ensure appropriate corrective measures can be taken in order to recover from the faults or prevent total failure. This thesis addresses issues in the diagnosis of large complex systems. Such systems are usually distributed in nature, i.e. they consist of many interconnected components each having their own local behaviour. These components interact together to produce an emergent global behaviour that is complex. As those systems increase in complexity and size, their diagnosis becomes increasingly challenging. In the first part of this thesis, a method is proposed for diagnosis on distributed systems that avoids a monolithic global computation. The method, based on converting the graph of the system into a junction tree, takes into account the topology of the system in choosing how to merge local diagnoses on the components while still obtaining a globally consistent result. The method is shown to work well for systems with tree or near-tree structures. This method is further extended to handle systems with high clustering by selectively ignoring some connections that would still allow an accurate diagnosis to be obtained. A hybrid system approach is explored in the second part of the thesis, where continuous dynamics information on the system is also retained to help better isolate or identify faults. A hybrid system framework is presented that models both continuous dynamics and discrete evolution in dynamical systems, based on detecting changes in the fundamental governing dynamics of the system rather than on residual estimation. This makes it possible to handle systems that might not be well characterised and where parameter drift is present. The discrete aspect of the hybrid system model is used to derive diagnosability conditions using indicator functions for the detection and isolation of multiple, arbitrary sequential or simultaneous events in hybrid dynamical networks. Issues with diagnosis in the presence of uncertainty in measurements due sensor or actuator noise are addressed. Faults may generate symptoms that are in the same order of magnitude as the latter. The use of statistical techniques,within a hybrid system framework, is proposed to detect these elusive fault symptoms and translate this information into probabilities for the actual operational mode and possibility of transition between modes which makes it possible to apply probabilistic analysis on the system to handle the underlying uncertainty present

    Minimal Diagnosis and Diagnosability of Discrete-Event Systems Modeled by Automata

    Get PDF
    In the last several decades, the model-based diagnosis of discrete-event systems (DESs) has increasingly become an active research topic in both control engineering and artificial intelligence. However, in contrast with the widely applied minimal diagnosis of static systems, in most approaches to the diagnosis of DESs, all possible candidate diagnoses are computed, including nonminimal candidates, which may cause intractable complexity when the number of nonminimal diagnoses is very large. According to the principle of parsimony and the principle of joint-probability distribution, generally, the minimal diagnosis of DESs is preferable to a nonminimal diagnosis. To generate more likely diagnoses, the notion of the minimal diagnosis of DESs is presented, which is supported by a minimal diagnoser for the generation of minimal diagnoses. Moreover, to either strongly or weakly decide whether a minimal set of faulty events has definitely occurred or not, two notions of minimal diagnosability are proposed. Necessary and sufficient conditions for determining the minimal diagnosability of DESs are proven. The relationships between the two types of minimal diagnosability and the classical diagnosability are analysed in depth
    corecore