101 research outputs found

    Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles

    Get PDF
    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age Γ— cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges

    Neuro-Mechanics of Recumbent Leg Cycling in Post-Acute Stroke Patients

    Get PDF
    Cycling training is strongly applied in post-stroke rehabilitation, but how its modular control is altered soon after stroke has been not analyzed yet. EMG signals from 9 leg muscles and pedal forces were measured bilaterally during recumbent pedaling in 16 post-acute stroke patients and 12 age-matched healthy controls. Patients were asked to walk over a GaitRite mat and standard gait parameters were computed. Four muscle synergies were extracted through nonnegative matrix factorization in healthy subjects and patients unaffected legs. Two to four synergies were identified in the affected sides and the number of synergies significantly correlated with the Motricity Index (Spearman’s coefficient = 0.521). The reduced coordination complexity resulted in a reduced biomechanical performance, with the two-module sub-group showing the lowest work production and mechanical effectiveness in the affected side. These patients also exhibited locomotor impairments (reduced gait speed, asymmetrical stance time, prolonged double support time). Significant correlations were found between cycling-based metrics and gait parameters, suggesting that neuro-mechanical quantities of pedaling can inform on walking dysfunctions. Our findings support the use of pedaling as a rehabilitation method and an assessment tool after stroke, mainly in the early phase, when patients can be unable to perform a safe and active gait training

    Effects of Force Modulation on Large Muscles during Human Cycling

    Get PDF
    Voluntary force modulation is defined as the ability to tune the application of force during motion. However, the mechanisms behind this modulation are not yet fully understood. In this study, we examine muscle activity under various resistance levels at a fixed cycling speed. The main goal of this research is to identify significant changes in muscle activation related to the real-time tuning of muscle force. This work revealed significant motor adaptations of the main muscles utilized in cycling as well as positive associations between the force level and the temporal and spatial inter-cycle stability in the distribution of sEMG activity. From these results, relevant biomarkers of motor adaptation could be extracted for application in clinical rehabilitation to increase the efficacy of physical therapy.This research was funded by Generalitat Valenciana (grant number GV/2019/025) and the Kakenhi National Japanese Grant for Early-Career Scientists (grant number 18K18431)

    Robust muscle synergies for postural control

    Get PDF
    The musculoskeletal structure of the human and animal body provides multiple solutions for performing any single motor behavior. The long-term goal of the work presented here is to determine the neuromechanical strategies used by the nervous system to appropriately coordinate muscles in order to achieve the performance of daily motor tasks. The overall hypothesis is that the nervous system simplifies muscle coordination by the flexible activation of muscle synergies, defined as a group of muscles activated as a unit, that perform task-level biomechanical functions. To test this hypothesis we investigated whether muscle synergies can be robustly used as building blocks for constructing the spatiotemporal muscle coordination patterns in human and feline postural control under a variety of biomechanical contexts. We demonstrated the generality and robustness of muscle synergies as a simplification strategy for both human and animal postural control. A few robust muscle synergies were able to reproduce the spatial and temporal variability in human and cat postural responses, regardless of stance configuration and perturbation type. In addition inter-trial variability in human postural responses was also accounted for by these muscle synergies. Finally, the activation of each muscle synergy in cat produced a specific stabilizing force vector, suggesting that muscle synergies control task-level variables. The identified muscle synergies may represent general modules of motor output underlying muscle coordination in posture that can be activated in different sensory contexts to achieve different postural goals. Therefore muscle synergies represents a simplifying mechanism for muscle coordination in natural behaviors not only because it is a strategy for reducing the number of variables to be controlled, but because it represents a mechanism for simply controlling multi-segmental task-level variables.Ph.D.Committee Chair: Ting, Lena H.; Committee Member: Chang, Young-Hui; Committee Member: Lee, Robert H.; Committee Member: Nichols, T. Richard; Committee Member: Wolf, Steve L

    Intermuscular coordination in strength training: a transversal study with power clean

    Get PDF
    Muscle synergy extraction has been utilized to investigate muscle coordination in human movement, namely in sports field. However, there is a lack of information regarding strength training complex motor tasks. Thus, the aim of this thesis was to ensure that this procedure is reliable within- and between-days, and to compare neural strategies adopted by two populations with different levels of expertise. Twelve unexperienced participants and 7 weightlifters performed sets of power cleans, and muscle synergies were extracted from electromyography (EMG) data of 16 muscles. First, we analyzed muscle synergies reliability within the untrained subjects. Then, we compared them with the weightlifters to look for different coordination strategies. We observed that synergistic organization of muscle coordination during power clean remained stable across repetitions, sets and days in unexperienced subjects with slight time adjustments and muscle weightings variations within each synergy. In the other hand, although the same number of synergies has been extracted, all synergies presented slight time shifts between groups, and muscle weightings within each synergy were highly variable. Therefore, these results point to an interventional approach to identify how unexperienced subjects modify coordination over time.As sinergias neuromusculares tΓͺm sido investigadas para uma melhor compreensΓ£o do movimento humano, nomeadamente, no ramo do desporto. No entanto, existe pouca informação relativa a tarefas complexas no Γ’mbito do treino de forΓ§a. Deste modo, o objetivo desta tese foi, em primeiro lugar, assegurar a reprodutibilidade do procedimento, e em segundo, comparar as estratΓ©gias neurais adotadas por duas populaçáes com nΓ­veis de desempenho diferenciados. Doze sujeitos destreinados e sete halterofilistas realizaram sΓ©ries de power cleans, e as sinergias foram extraΓ­das de sinais eletromiogrΓ‘ficos provenientes de dezasseis mΓΊsculos. Por um lado, analisΓ‘mos a reprodutibilidade das sinergias para cada sujeito destreinado, e por outro, comparΓ‘mo-las com as de halterofilistas, com o intuito de encontrar diferentes estratΓ©gias coordenativas. ObservΓ‘mos que a organização sinΓ©rgica da coordenação muscular durante o power clean em sujeitos destreinados permaneceu estΓ‘vel entre repetiçáes, sΓ©ries e dias, apenas com pequenos ajustes temporais e espaciais. Por sua vez, entre grupos, embora o mesmo nΓΊmero de sinergias tenha sido extraΓ­do, todas apresentaram desfasamentos na sua ativação, tendo sido tambΓ©m encontradas diferenΓ§as ao nΓ­vel da sua composição. Deste modo, os resultados apontam para a estruturação de uma intervenção para identificar como Γ© que sujeitos destreinados modificam as estratΓ©gias coordenativas ao longo do tempo

    Assessment of joint kinetics in elite sprint cyclists

    Get PDF
    Sprint cycling requires the production of explosive muscle power outputs up to very high pedalling rates. The ability to assess muscular function through the course of the sprint would aid training practices for high-level performers. Inverse dynamics provides a non-invasive means of estimating the net muscle actions acting across any joint contributing to movement. However, analysis of joint kinetics requires motion-capture techniques that present some unique challenges for cycling. This thesis presents three studies investigating the application of a custom-designed force pedal system to examine the joint kinetics of elite trained track sprint cyclists. To provide the basis for selecting appropriate testing procedures, study one evaluated differences between two- and three- dimensional techniques while assessing joint kinetics of seated and standing sprint cycling at optimal cadence (the cadence where peak power is delivered). Study two examined the impact of cadence and seating position on joint kinetics, while determining testing reliability using the three-dimensional process. Coefficients of variation were established for between- and within- days repetitions of sprint performance at optimal cadence, and cadences 30% lower and 30% higher, in both seated and standing positions. Study three compared joint kinetics of sprint cycling performance with commonly-applied resistance-training exercises in an elite cycling cohort, in order to better understand training specificity. Joint-specific torque-angular velocity relationships were established from seated and standing sprinting at three cadences and the clean exercise at three loads, with other strength-based exercises examined at maximal load only. Study one determined that flattened projections of the 3D motion into 2D resulted in significant differences in joint powers calculated in the sagittal-plane. When using 2D methods, knee joint power was significantly lower and hip transfer power significantly greater, while hip range of motion was lower and the angle where hip peak power occurred later in the crank cycle. These results indicate that 3D processes should be used where evaluation of absolute values are important, although 2D processes may still be acceptable where relative differences are being assessed. It was observed in Study two that, while crank and total muscle power upheld a quadratic power-cadence relationship, joint-specific powers were uniquely related to cadence and riding position. Crank and joint-specific optimal cadences for power production were distinctly different. The hip displayed a linear maximum power-cadence relationship in seated but quadratic in standing position, with the reverse observed at the knee. Ankle and hip transfer powers both linearly declined with cadence irrespective riding position. In such a case, joint-specific power contribution, hence distribution of muscular effort, cannot be directly inferred from power assessed at the crank. Reliability was highest for crank and total muscle power, particularly at the riders’ optimal cadence. Reliability of joint powers were somewhat lower and uniquely dependent on joint, joint action and trial condition. Results indicate that external power output at the crank is relatively stable across sprints, despite variation in the underlying muscular contributions. Results of study three showed equivalence in the torque-angular velocity relationships at the hip in sprint cycling and different phases of the clean. No such relationship was evident at the knee or ankle. In contrast to the negative linear relationships observed in all other conditions, ankle mechanics in sprinting showed a positive linear relationship highlighting a distinct functional role of this joint. Highest maximal torques at the hip and knee were observed during unilateral single rack pull and step-up exercises, respectively, supporting their efficacy for improving the maximum strength characteristics at these joints. The results of this thesis indicate that joint kinetics are an effective means of assessing muscular performance in highly-trained track sprint cyclists and provide information on the underlying strategies that could not be assessed through conventional testing of power at the crank. The use of 3D processes is recommended where accuracy of assessment and absolute values are important. Flexibility of 2D processes may be advantageous in field-based settings and may be acceptable where only relative change is of interest. High reliability of 3D testing supports its use in monitoring of athletes, with the reliability data presented in this thesis providing an indication of the smallest meaningful changes in various trial conditions. Low coefficients of variation observed in crank and muscle power terms, despite greater variation in joint powers, suggest motor control strategies dynamically respond to task conditions while maintaining a consistent external power. Resistance exercises are seen to display jointspecific profiles that characterise relative hip- or knee- dominance. The comparison of these profiles with those of sprint cycling can help inform exercise selection for strength development of elite riders. The ability to monitor changes and target training intervention at joint level provides a unique approach to athlete development. Outcomes of this thesis support the practical application of joint kinetic assessment in aiding training practices to the highest levels of competition in track sprint cycling. Indeed, the equipment, methods and knowledge obtained from this research is currently applied in the preparation of Australia’s best sprint cyclists

    Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    Get PDF
    In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (nβ€Š=β€Š3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (β‰ˆ2Γ—) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance
    • …
    corecore