54 research outputs found

    A Concurrency Control Method Based on Commitment Ordering in Mobile Databases

    Full text link
    Disconnection of mobile clients from server, in an unclear time and for an unknown duration, due to mobility of mobile clients, is the most important challenges for concurrency control in mobile database with client-server model. Applying pessimistic common classic methods of concurrency control (like 2pl) in mobile database leads to long duration blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic methods aren`t appropriate in mobile database. In this article, OPCOT concurrency control algorithm is introduced based on optimistic concurrency control method. Reducing communications between mobile client and server, decreasing blocking rate and deadlock of transactions, and increasing concurrency degree are the most important motivation of using optimistic method as the basis method of OPCOT algorithm. To reduce abortion rate of transactions, in execution time of transactions` operators a timestamp is assigned to them. In other to checking commitment ordering property of scheduler, the assigned timestamp is used in server on time of commitment. In this article, serializability of OPCOT algorithm scheduler has been proved by using serializability graph. Results of evaluating simulation show that OPCOT algorithm decreases abortion rate and waiting time of transactions in compare to 2pl and optimistic algorithms.Comment: 15 pages, 13 figures, Journal: International Journal of Database Management Systems (IJDMS

    An Efficient Concurrency Control Technique for Mobile Database Environment

    Get PDF
    Day by day wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere irrespective of their physical positions Information is shared among multiple clients and can be modified by each client independently However for the assurance of timely access and correct results in concurrent mobile transactions concurrency control techniques CCT happen to be very difficult Due to the properties of Mobile databases e g inadequate bandwidth small processing capability unreliable communication mobility etc existing mobile database CCTs cannot employ effectively With the client-server model applying common classic pessimistic techniques of concurrency control like 2PL in mobile database leads to long duration Blocking and increasing waiting time of transactions Because of high rate of aborting transactions optimistic techniques aren t appropriate in mobile database as well This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases analyses the existing scheme of CCT and justify their performance limitations A modified optimistic concurrency control scheme is proposed which is based on the number of data items cached amount of execution time and current load of the database server Experimental results show performance benefits such as increase in average response time and decrease in waiting time of the transaction

    Mobile transaction management in mobisnap

    Get PDF
    Lecture Notes in Computer Science, 1884To allow mobile users to continue their work while disconnected, mobile systems usually rely on optimistic replication techniques. In mobile database systems, mobile units cache subsets of the database state and allow disconnected users to perform transactions concurrently. These transactions are later integrated in the master database state. As concurrently performed transactions may conflict, it is usually impossible to determine the result of an update in the mobile unit. Moreover, this model differs from the traditional client/server model due to the fundamental fact that the user will usually not be connected to the system when the results of his transactions are finally determined - therefore, he can not immediately perform adequate alternative actions. In this paper we describe a transaction management system that takes into consideration the above-mentioned characteristics. Transactions are specified as mobile transactional programs, which allows the precise definition of operation semantics and the definition of alternative actions. Support for active user notification is also provided in the system. Finally, the system relies on a reservation mechanism to be able to guarantee the results of transactions in the mobile units.(undefined

    Automating semantics-based reconciliation for mobile transactions

    Get PDF
    International audienceOptimistic replication lets multiple users update local replicas of shared data independently. These replicas may diverge and must be reconciled. In this paper, we present a general-purpose reconciliation system for mobile transactions. The basic reconciliation engine treats reconciliation as an optimization problem. To direct the search, it relies on semantic information and user intents expressed as relations among mobile transactions. Unlike previous semantics-based reconciliation systems, our system includes a module that automatically infers semantic relations from the code of mobile transactions. Thus, it is possible to use semantics-based reconciliation without incurring the overhead of specifying the semantics of the data types or operations

    Cost- and workload-driven data management in the cloud

    Get PDF
    This thesis deals with the challenge of finding the right balance between consistency, availability, latency and costs, captured by the CAP/PACELC trade-offs, in the context of distributed data management in the Cloud. At the core of this work, cost and workload-driven data management protocols, called CCQ protocols, are developed. First, this includes the development of C3, which is an adaptive consistency protocol that is able to adjust consistency at runtime by considering consistency and inconsistency costs. Second, the development of Cumulus, an adaptive data partitioning protocol, that can adapt partitions by considering the application workload so that expensive distributed transactions are minimized or avoided. And third, the development of QuAD, a quorum-based replication protocol, that constructs the quorums in such a way so that, given a set of constraints, the best possible performance is achieved. The behavior of each CCQ protocol is steered by a cost model, which aims at reducing the costs and overhead for providing the desired data management guarantees. The CCQ protocols are able to continuously assess their behavior, and if necessary to adapt the behavior at runtime based on application workload and the cost model. This property is crucial for applications deployed in the Cloud, as they are characterized by a highly dynamic workload, and high scalability and availability demands. The dynamic adaptation of the behavior at runtime does not come for free, and may generate considerable overhead that might outweigh the gain of adaptation. The CCQ cost models incorporate a control mechanism, which aims at avoiding expensive and unnecessary adaptations, which do not provide any benefits to applications. The adaptation is a distributed activity that requires coordination between the sites in a distributed database system. The CCQ protocols implement safe online adaptation approaches, which exploit the properties of 2PC and 2PL to ensure that all sites behave in accordance with the cost model, even in the presence of arbitrary failures. It is crucial to guarantee a globally consistent view of the behavior, as in contrary the effects of the cost models are nullified. The presented protocols are implemented as part of a prototypical database system. Their modular architecture allows for a seamless extension of the optimization capabilities at any level of their implementation. Finally, the protocols are quantitatively evaluated in a series of experiments executed in a real Cloud environment. The results show their feasibility and ability to reduce application costs, and to dynamically adjust the behavior at runtime without violating their correctness

    Maintaining consistency in client-server database systems with client-side caching

    Get PDF
    PhD ThesisCaching has been used in client-server database systems to improve the performance of applications. Much of the current work has concentrated on caching techniques at the server side, since the underlying assumption has been that clients are “thin” with application level processing taking place mainly at the server side. There are also a new class of “thick client” applications where clients need to access the database at the server but also perform substantial amount of processing at the client side; here client-side caching is needed to provide good performance for applications. This thesis presents a transactional cache consistency scheme suitable for systems with client-side caching. The scheme is based on the optimistic approach to concurrency control. The scheme provides serializability for committed transactions. This is in contrast to many modern systems that only provide the snapshot isolation property which is weaker than serializability. A novel feature is that the processing load for validating transactions at commit time is shared between clients and the database server, thereby reducing the load at the server. Read-only transactions can be validated at the client-side, without communicating with the server. Another feature is that the scheme permits disconnected operation, allowing clients with cached objects to work offline. The performance of the scheme is evaluated using simulation experiments. The experiments demonstrate that for mostly read only transaction load – for which caching is most effective - the scheme outperforms the existing concurrency control scheme with client-side caching considered to be the best, and matches the performance of the widely used scheme that only provides snapshot isolation. The results also show that the scheme in a disconnected environment provides reasonable performance.Directorate General of Higher Education, Ministry of National Education, Indonesia

    An Efficient Concurrency Control Technique for Mobile Database Environment

    Get PDF
    Day by day, wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality. Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere, irrespective of their physical positions. Information is shared among multiple clients and can be modified by each client independently. However, for the assurance of timely access and correct results in concurrent mobile transactions, concurrency control techniques (CCT) happen to be very difficult. Due to the properties of Mobile databases e.g. inadequate bandwidth, small processing capability, unreliable communication, mobility etc. existing mobile database CCTs cannot employ effectively. With the client-server model, applying common classic pessimistic techniques of concurrency control (like 2PL) in mobile database leads to long duration Blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic techniques aren`t appropriate in mobile database as well. This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases, analyses the existing scheme of CCT and justify their performance limitations. A modified optimistic concurrency control scheme is proposed which is based on the number of data items cached, amount of execution time and current load of the database server. Experimental results show performance benefits, such as increase in average response time and decrease in waiting time of the transactions

    Contention management for distributed data replication

    Get PDF
    PhD ThesisOptimistic replication schemes provide distributed applications with access to shared data at lower latencies and greater availability. This is achieved by allowing clients to replicate shared data and execute actions locally. A consequence of this scheme raises issues regarding shared data consistency. Sometimes an action executed by a client may result in shared data that may conflict and, as a consequence, may conflict with subsequent actions that are caused by the conflicting action. This requires a client to rollback to the action that caused the conflicting data, and to execute some exception handling. This can be achieved by relying on the application layer to either ignore or handle shared data inconsistencies when they are discovered during the reconciliation phase of an optimistic protocol. Inconsistency of shared data has an impact on the causality relationship across client actions. In protocol design, it is desirable to preserve the property of causality between different actions occurring across a distributed application. Without application level knowledge, we assume an action causes all the subsequent actions at the same client. With application knowledge, we can significantly ease the protocol burden of provisioning causal ordering, as we can identify which actions do not cause other actions (even if they precede them). This, in turn, makes possible the client’s ability to rollback to past actions and to change them, without having to alter subsequent actions. Unfortunately, increased instances of application level causal relations between actions lead to a significant overhead in protocol. Therefore, minimizing the rollback associated with conflicting actions, while preserving causality, is seen as desirable for lower exception handling in the application layer. In this thesis, we present a framework that utilizes causality to create a scheduler that can inform a contention management scheme to reduce the rollback associated with the conflicting access of shared data. Our framework uses a backoff contention management scheme to provide causality preserving for those optimistic replication systems with high causality requirements, without the need for application layer knowledge. We present experiments which demonstrate that our framework reduces clients’ rollback and, more importantly, that the overall throughput of the system is improved when the contention management is used with applications that require causality to be preserved across all actions

    Comparing Optimistic Database Replication Techniques

    Get PDF
    International audienceReplication is attractive for scaling databases up, as it does not require costly equipment and it enables fault tolerance. However, as the latency gap between local and remote accesses continues to widen, maintaining consistency between replicas remains a performance and complexity bottleneck. Optimistic replication (OR) addresses these problems. In OR, a database tentatively executes transactions against its local cache; databases reconcile a posteriori to agree on a common schedule of committed transactions. We present three OR protocols based on the deferred update scheme. The first two are representative of the state the art. The third is new; we describe it in detail. As all three protocols are expressed within a common formal framework, we are able to compare them, to identify similarities and differences, and to introduce common variants. We show that our protocol behaves better than the other two, with respect to latency, message cost and abort rate
    corecore