
COST- AND WORKLOAD-DRIVEN DATA
MANAGEMENT IN THE CLOUD

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Ilir Fetai

aus Oberlangenegg, Bern

Basel, 2016

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Heiko Schuldt, Universität Basel, Dissertationsleiter
Prof. Dr. Norbert Ritter, Universität Hamburg, Korreferent

Basel, den 20.09.2016

Prof. Dr. Jörg Schibler, Dekan

To my family

Zusammenfassung

Die vorliegende Arbeit widmet sich einer zentralen Aufgabenstellung, die im Um-
feld verteilter Datenverwaltung in der Cloud auftritt: Das richtige Gleichgewicht finden
im Spannungsfeld zwischen Verfügbarkeit, Konsistenz, Latenz und Kosten, das vom
CAP/PACELC erfasst wird. Im Zentrum der Arbeit steht die Entwicklung der kosten-
und workload-basierten Konsistenz-, Partitionierungs- und Quorum-Protokolle, die ge-
meinsam als CCQ-Protokolle bezeichnet werden. Erstens, die Entwicklung von C3, wel-
ches ein adaptierbares Konsistenzprotokoll ist. Die wessentliche Eigenschaft von C3 ist
es, die optimale Konsistenzstufe zur Laufzeit zu bestimmen unter der Betrachtung der
Konsistenz- und Inkonsistenz-Kosten. Zweitens, die Entwicklung von Cumulus, das in
der Lage ist dynamisch die Partitionierung der Daten an die Last der Anwendungen
anzupassen. Das Ziel von Cumulus ist es, verteilte Transaktionen zu vermeiden, da die-
se einen hohen Kosten- und Performance-Aufwand mit sich bringen. Und drittens, die
Entwicklung von QuAD. QuAD ist ein quorum-basiertes Replikationsprotokoll, wel-
ches es erlaubt die Quoren in einem voll-replizierten Datenbanksystem dynamisch zu
bestimmen, mit dem Ziel die bestmögliche Performance zu erreichen.

Das Verhalten der CCQ-Protokolle wird durch realitätsnahe Kostenmodelle gesteu-
ert, die das Ziel der Kostenminimierung für die Sicherstellung der gewünschten Ga-
rantien verfolgen. Das Verhalten der Protokolle wird ständig beurteilt, und gegeben-
falls angepasst basierend auf den Kostenmodellen, und unter Betrachtung der Anwen-
dungslast. Diese Eigenschaft der Adaptierbarkeit ist entscheidend aus Sicht der Anwen-
dungen, welche in der Cloud betrieben werden. Diese Anwendungen zeichnen sich aus
durch eine hohe dynamische Last, und müssen gleichzeitig hochverfügbar und skalier-
bar sein.

Die Adaptierbarkeit zur Laufzeit kann erhebliche Kosten verursachen, die den Nut-
zen der Adaptierbarkeit übersteigen. Um dagegen zu wirken, wurde ein Kontrollme-
chanismus in die CCQ-Kostenmodelle integriert. Der Mechanismus stellt sicher, dass
das Verhalten der Protokolle nur dann angepasst wird, wenn dadurch ein signifikanter
Nutzen für die Anwendung entsteht.

Um die praktische Anwendbarkeit der CCQ-Protokolle untersuchen zu können,
wurden diese in einem prototypischen Datenbanksystem implementiert. Die Modulari-
tät der Protokolle ermöglicht die nahtlose Erweiterung der Optimierungsmöglichkeiten
mit geringem Aufwand.

Schlussendlich bietet diese Arbeit eine quantitative Evaluierung der Protokolle mit-
tels einer Reihe von Experimenten unter realistischen Bedingungen in der Cloud. Die
Ergebnisse bestätigen die Umsetzbarkeit der Protokolle, und deren Fähigkeit die An-
wendungskosten zu reduzieren. Darüber hinaus demonstrieren sie die dynamische Ad-
aptierbarkeit der Protokolle ohne die Korrektheit des Systems zu verletzen.

Abstract

This thesis deals with the challenge of finding the right balance between consis-
tency, availability, latency and costs, captured by the CAP/PACELC trade-offs, in the
context of distributed data management in the Cloud. At the core of this work, cost
and workload-driven data management protocols, called CCQ protocols, are devel-
oped. First, this includes the development of C3, which is an adaptive consistency
protocol that is able to adjust consistency at runtime by considering consistency and
inconsistency costs. Second, the development of Cumulus, an adaptive data partition-
ing protocol, that can adapt partitions by considering the application workload so that
expensive distributed transactions are minimized or avoided. And third, the develop-
ment of QuAD, a quorum-based replication protocol, that constructs the quorums in
such a way so that, given a set of constraints, the best possible performance is achieved.

The behavior of each CCQ protocol is steered by a cost model, which aims at re-
ducing the costs and overhead for providing the desired data management guarantees.
The CCQ protocols are able to continuously assess their behavior, and if necessary to
adapt the behavior at runtime based on application workload and the cost model. This
property is crucial for applications deployed in the Cloud, as they are characterized by
a highly dynamic workload, and high scalability and availability demands.

The dynamic adaptation of the behavior at runtime does not come for free, and may
generate considerable overhead that might outweigh the gain of adaptation. The CCQ
cost models incorporate a control mechanism, which aims at avoiding expensive and
unnecessary adaptations, which do not provide any benefits to applications.

The adaptation is a distributed activity that requires coordination between the sites
in a distributed database system. The CCQ protocols implement safe online adaptation
approaches, which exploit the properties of 2PC and 2PL to ensure that all sites behave
in accordance with the cost model, even in the presence of arbitrary failures. It is crucial
to guarantee a globally consistent view of the behavior, as in contrary the effects of the
cost models are nullified.

The presented protocols are implemented as part of a prototypical database system.
Their modular architecture allows for a seamless extension of the optimization capabil-
ities at any level of their implementation.

Finally, the protocols are quantitatively evaluated in a series of experiments executed
in a real Cloud environment. The results show their feasibility and ability to reduce
application costs, and to dynamically adjust the behavior at runtime without violating
their correctness.

Acknowledgements

I am deeply grateful to my advisor, Prof. Dr. Heiko Schuldt, for giving me the
opportunity to obtain a Ph.D, for the many excellent ideas he provided, and patiently
guiding me to the correct path. Without his guidance, encouragements, and help, I
could never finish my thesis.

I wish to thank my colleges of the DBIS group, especially Filip, Nenad, Ihab and Ivan
for the great time we had, and for many valuable discussions from the very beginning.

Many master and bachelor students have contributed to the development of ClouD-
Man, especially Alexander Stiemer, Damian Murezzan and Daniel Kohler. I had a great
time working with such highly motivated and talented students.

A special thanks goes to my parents Menduale and Imer, and to my sister Nermine
for everything they gave to me in the life, their encouragement and great support. My
nephew Loni, and my niece Rina, have always been a source of energy during the writ-
ing of this thesis.

My biggest gratitude goes to my wife, Samije about her great love and unconditional
support, and unending patience during my Ph.D studies.

And finally, I would like to thanks my one and only Ylli, for making me the happiest
person in the world and patiently waiting every night to write yet another sentence in
my thesis before telling him a good-night story.

Contents

Zusammenfassung i

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Data Management in the Cloud: Challenges and Opportunities 2
1.2 Problem Statement . 4

1.2.1 Data Consistency . 5
1.2.2 Data Partitioning . 6
1.2.3 Data Replication . 7
1.2.4 Challenges Related to the Development of Cost and Workload-

driven Data Management Protocols 8
1.3 Thesis Contributions . 9

1.3.1 C3: Cost and Workload-driven Data Consistency 9
1.3.2 Cumulus: Cost and Workload-driven Data Partitioning Protocol . 11
1.3.3 QuAD: Cost and Workload-driven Quorum Replication Protocol . 11
1.3.4 PolarDBMS: Policy-based and Modular Database Management

System (DBMS) . 13
1.4 Thesis Outline . 13

2 Background and Motivating Scenario 15
2.1 Online Shop . 16
2.2 Optimal Interaction Cycle between Clients and Servers 18
2.3 Integrated Data Management . 19
2.4 Modular Database Systems . 22

3 Foundations of Transaction and Data Management 25
3.1 Single Copy Database Systems . 25

3.1.1 ACID Properties . 27
3.1.2 Data (In-) Consistency . 28
3.1.3 Concurrency Control . 29
3.1.4 Multiversion Concurrency Control 33
3.1.5 Concurrency Control Protocols . 36
3.1.6 Concurrency Control and Recovery 37

3.2 Distributed Database Systems . 40
3.2.1 Data Distribution Models . 41
3.2.2 Advantages and Challenges of Distributed Database Systems . . . 43
3.2.3 Concurrency Control for Distributed Databases 46

3.3 Distributed Database Systems with Replication 48

viii CONTENTS

3.3.1 Data (In-) Consistency . 49
3.3.2 Data Freshness . 49
3.3.3 Replication Protocols . 50
3.3.4 Consistency Models for Distributed Databases with Replication . . 54

3.4 Fundamental Trade-offs in the Management of Data in Distributed
Database Systems . 58

4 Cost- and Workload-Driven Data Management 63
4.1 Introduction . 63

4.1.1 Monetary Cost . 67
4.1.2 Configuration and Cost Model . 68

4.2 Workload Monitoring and Prediction . 73
4.2.1 Workload Prediction . 74
4.2.2 Time Series Prediction . 76
4.2.3 Workload Prediction with EMA . 77

4.3 CCQ Configuration and Cost Model . 77
4.3.1 C3 . 78
4.3.2 Cumulus . 79
4.3.3 QuAD . 79
4.3.4 Integrated CCQ . 79
4.3.5 CCQ Adaptive Behavior . 81

5 Design of the Cost- and Workload-driven CCQ Protocols 85
5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 85

5.1.1 C3 Overview . 86
5.1.2 1SR and EC Protocol Definition . 88
5.1.3 Cost Model . 91
5.1.4 Configuration Model . 94
5.1.5 Consistency Mixes . 96
5.1.6 Handling of Multi-Class Transaction Workloads in C3 97
5.1.7 Adaptive Behavior of C3 . 98

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 100
5.2.1 Data Partitioning . 101
5.2.2 The Cumulus Data Partitioning Approach 103
5.2.3 Workload Prediction and Analysis 104
5.2.4 Cost Model . 107
5.2.5 Configuration Model . 109
5.2.6 Handling of Inserts and Deletes . 110
5.2.7 Adaptive Behavior of Cumulus . 110

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 112
5.3.1 Quorum-based Protocols . 113
5.3.2 The QuAD Approach to Quorum-based Replication 115
5.3.3 Cost Model . 122
5.3.4 Configuration Model . 123
5.3.5 Adaptive Behavior of QuAD . 124
5.3.6 Intersection Property . 125

CONTENTS ix

5.4 Summary . 126

6 CCQ Implementation 127
6.1 System Overview . 127
6.2 CCQ Modules . 132

6.2.1 C3 TransactionManager . 132
6.2.2 C3 ConsistencyManager . 133
6.2.3 Cumulus TransactionManager . 134
6.2.4 Cumulus PartitionManager . 134
6.2.5 Cumulus RoutingManager . 135
6.2.6 QuAD TransactionManager . 136
6.2.7 QuAD QuorumManager . 136

6.3 CCQ Online Reconfiguration . 136
6.3.1 C3 Reconfiguration . 137
6.3.2 Cumulus Reconfiguration . 139
6.3.3 QuAD Reconfiguration . 143

6.4 Software Stack of Modules and the Deployment Architecture 148

7 CCQ Evaluation 151
7.1 TPCC . 153
7.2 AWS EC2: Amazon Elastic Compute Cloud 153
7.3 Basic Experimental Setting . 154
7.4 C3 Evaluation Results . 156

7.4.1 Definition of Transactions . 157
7.4.2 Cost-driven Consistency . 157
7.4.3 Sensitivity of C3 to consistency and inconsistency cost 158
7.4.4 Workload with Multi-Class Transactions 160
7.4.5 C3 Adaptiveness . 162
7.4.6 Summary . 163

7.5 Cumulus Evaluation Results . 164
7.5.1 ROWAA vs. Cumulus . 164
7.5.2 Impact of the Workload Analysis on the Quality of the Partitions . 168
7.5.3 Adaptive Partitioning . 169
7.5.4 Summary . 172

7.6 QuAD Evaluation Results . 173
7.6.1 Impact of Site Properties on Performance 173
7.6.2 QuAD vs. MQ . 175
7.6.3 QuAD Quorum Construction Strategies 179
7.6.4 Quorum Reconfiguration . 182
7.6.5 Summary . 183

7.7 Discussion . 183

8 Related Work 185
8.1 Distributed Data Management . 185
8.2 Policy-based and Modular Data Management 186
8.3 Workload Prediction . 187

x CONTENTS

8.4 Data Consistency . 188
8.5 Tunable and Adjustable Consistency . 190
8.6 Data Partitioning . 191
8.7 Data Replication . 193

9 Conclusions and Outlook 195
9.1 Summary . 195
9.2 Future Work . 196

9.2.1 C3 . 196
9.2.2 Cumulus . 197
9.2.3 QuAD . 197
9.2.4 Integrated Data Management Protocols 198
9.2.5 Distributed Meta-data Management and Autonomous Decision

Making . 198
9.2.6 The Cost of the Optimization . 199

A C3 On-the-Fly and On-Demand Reconfiguration 201

B Test Definition File 203

Acronyms 205

Bibliography 209

Index 228

List of Figures

1.1 Software stack of applications deployed in the Cloud [Aba09]. 2
1.2 Guarantee vs. penalty costs. 3
1.3 Continuum of consistency models. 4
1.4 Eager replication protocols. 6
1.5 Partitioning with replication. 7
1.6 C3: Cost and workload-driven consistency control protocol. 9
1.7 Cumulus: Cost and workload-driven data partitioning protocol. 10
1.8 QuAD: Cost and workload-driven quorum-based replication protocol. . . 12
1.9 PolarDBMS: Policy-based and modular DBMS. 13

2.1 Online shop application scenario [FBS14]. 16
2.2 Client-server interaction cycle in the Cloud [FBS14]. 17
2.3 Interaction flow in PolarDBMS [FBS14]. 20

3.1 Transactions in a bank scenario. 27
3.2 Relationship between correctness models [WV02]. 32
3.3 Monoversion vs. multiversion databases. 34
3.4 Distributed database system. 41
3.5 Logical objects and their mapping to sites. 42
3.6 Banking application with partitioned and replicated data. 43
3.7 Local vs. global transactions. 45
3.8 Message flow in 2PC between the coordinator and two agents. 46
3.9 Local vs. global correctness. 47
3.10 Example of quorum construction using LWTQ: rq = {s1} and wq =

{s1, s2, s5}. 52
3.11 Behavior of transactions in a lazy replicated database system. 53
3.12 Example of causal schedule that is not serializable. 56
3.13 (a) Depicts an 1SR DDBS. (b) Depicts a causally consistent DDBS. As

writes of s1 and s2 are causally unrelated, s3 and s4 may observe the writes
in different order. The schedule is thus not 1SR. (c) Depicts a causally in-
consistent DDBS. Although the write at s2 is causally dependent on the
write at s1, s4 observes them in the opposite order. (d) Depicts an eventu-
ally consistent DDBS, as s4 observes the writes of 1 and s2 temporarily in
the wrong order. 57

4.1 Availability and consistency costs with increasing number of sites. 64
4.2 Adaptation of the partitions in case of a workload shift. Alice and Bob

are end-users of the online shop. The different possible roles in context
of the online shop are defined in Section 2 (see Figure 2.1). 65

4.3 Integrated data management that jointly considers data consistency, par-
titioning and replication. 67

xii LIST OF FIGURES

4.4 Relationship between system, data management property, protocol and
protocol configuration. 69

4.5 Configuration graph with the nodes depicting configurations and edges
transitions between configurations. 71

4.6 The green node denotes the currently active configuration; orange nodes
denote configurations of interest. Red nodes denote configurations of no
interest. Transitions of interest are depicted by dark arrows. 72

4.7 Workload prediction for the period pi based on historical (p1, p2, . . . pi−2),
and current workload (pi−1). 75

4.8 Workload prediction with EMA. 76
4.9 CCQ configuration space. 78
4.10 Cost and workload-driven reconfiguration. 80

5.1 Consistency vs. inconsistency costs. The stronger the consistency level
the lower the consistency costs and vice-versa. The inconsistency costs
increase with decreasing consistency level. 86

5.2 Relationship between consistency models and protocols. A configuration
is determined by the 〈model, protocol〉 combination. 87

5.3 C3 Configuration Space: CC3 = {1SR, EC}. 88
5.4 Execution of transactions with the EC consistency level. 89
5.5 Consistency costs of 1SR and EC. 91
5.6 Calculation the number of lost-updates given a certain workload. 93
5.7 Transitions between consistency configurations. 95
5.8 Configuration space of Cumulus. 100
5.9 A sample configuration space consisting of three partition sets:

Ccumulus = {PART1, PART2, PART3}. Each partition set consists of one or
more partitions as defined in Section 3.2.1 (see Definition 3.26). 101

5.10 Cumulus partitioning workflow. 103
5.11 Workload prediction and analysis. 105
5.12 Workload graph. 106
5.13 The impact of considering all database objects vs. workload objects only

to the quality of the generated partitions. 107
5.14 Configuration space of QuAD. 113
5.15 A sample configuration space consisting of three quorum configurations:

CQuAD = {QUORUM1, QUORUM2, QUORUM3}. A quorum configu-
ration is defined by the quorums of each of the three sites. An arrow from
one site to another defines an includes-in-quorum relationship. 114

5.16 Lifecycle of transactions in quorum-based protocols. 115
5.17 QuAD quorum configuration. 117
5.18 Graph and matrix representation of the assignment problem. 119

6.1 Modules and their properties. 128
6.2 CCQ system overview. 129
6.3 Common and dedicated modules. 130
6.4 Extension of the common functionality by the specific CCQ (sub-)modules.131

LIST OF FIGURES xiii

6.5 Thread pool for the execution of messages at the TransactionManager and
2PCManager . 132

6.6 Execution of a transaction in C3 with the EC consistency model. 133
6.7 Execution of transactions in Cumulus. We have omitted the DataAccess-

Manager due to space reasons. 134
6.8 Execution of a transaction in QuAD. We have omitted the DataAccessMan-

ager due to space reasons. The two TransactionManagers define the read
and write quorums. 135

6.9 Reconfiguration to the EC consistency level. 138
6.10 Site reconciliation: s1 (coordinator) pushes its modified Objects to s2. The

pushed data contain the timestamp for each modified object that allows
the sites to decide on the winning values based on TWR. 139

6.11 Data inconsistencies as the consequence of both sites considering them-
selves responsible for o1. 140

6.12 Cumulus reconfiguration. 141
6.13 Merging of old and new change-sets. 142
6.14 Inconsistent online reconfiguration. 144
6.15 QuAD reconfiguration. 145
6.16 QuAD: Merging of DOs at s1. 146
6.17 The software stack of modules. 147
6.18 Deployment architecture. 148

7.1 Relationships between warehouses, districts and customers in TPCC. . . . 152
7.2 Overview of the test infrastructure setup. 154
7.3 Deployment architecture used in the evaluations. The orange modules

denote placeholders that are replaced during the deployment with con-
crete CCQ modules as described in Section 6. 156

7.4 Cost and response time of transactions for different consistency models
with a varying workload. 158

7.5 Cost and response time of transactions for different consistency levels
with varying inconsistency cost. 159

7.6 Cost behavior of the different consistency levels with varying inconsis-
tency costs. 159

7.7 Costs and response time of transactions for different consistency models
with varying consistency cost. 160

7.8 Cost behavior of different consistency levels with varying consistency cost.161
7.9 Costs and response time of transactions for a workload consisting of

multi-class transactions. 161
7.10 Consistency costs of transactions using C3’s adaptive consistency. 163
7.11 Percentage of distributed transactions. 165
7.12 Transaction throughput. 165
7.13 Response time of transactions. 166
7.14 Comparing Cumulus with ROWAA based on a sizeup test. 166
7.15 Percentage of distributed transactions with increasing number of sites. . . 167
7.16 Percentage of distributed transactions. 169
7.17 Impact of workload analysis on the percentage of distributed transactions. 170

xiv LIST OF FIGURES

7.18 Comparison of the different partitioning approaches. 170
7.19 Stop-and-copy reconfiguration. 171
7.20 On-the-fly and on-demand reconfiguration. 172
7.21 Percentage of distributed transactions over time with shifting access pat-

terns. 172
7.22 MQ: Transaction overhead with varying r/w ratio. 174
7.23 Transaction overhead in MQ for a workload consisting of update trans-

actions only. 174
7.24 Overall response time of transactions with varying site load (single-data

center setting). 176
7.25 Sizeup: QuAD vs. other quorum protocols for r/w = 50%/50% (single-

data center setting). 177
7.26 Varying RTT (multi-data center setting). 178
7.27 Correlation between the 2PC and S2PL overhead [SFS15]. 178
7.28 Comparison of strategies for the assignment of slaves to core sites. 180
7.29 Balanced vs. unbalanced assignment of slaves to core sites for varying

r/w ratio. 181
7.30 Varying κ (8 sites). 182
7.31 QuAD adaptive behavior. 183

A.1 Change-set of s1 and s2 consisting of objects modified by Eventual Con-
sistency (EC) transactions and the resulting merged change-set at s1 that
includes the site containing the most recent value for each object. The en-
try for o3 is deleted from the merged change-set as s1 is up-to-date with
regards to o3. 202

List of Tables

2.1 Summary of SLOs. 18

3.1 System model: symbols and notations. 26
3.2 Lock compatibility matrix. 36
3.3 Distributed database model: symbols and notations (see also Table 3.1). . 40
3.4 Distributed database with replication: symbols and notation. 48
3.5 System types according to CAP . 58

4.1 Amazon S3 pricing as of 2nd February 2016 for the US East Region. 68
4.2 Configuration and cost model: symbols and notations. 70

5.1 C3 symbols and notations. 90
5.2 Cumulus symbols and notations. 108
5.3 QuAD symbols and notations. 116

7.1 Basic setup parameters. 155

1
Introduction

CLOUD COMPUTING is a term coined to describe the delivery of on-demand re-
sources to customers. Cloud resources refer to the applications, the hardware,

and the system software delivered as services. The idea of the Cloud is not new
[Bir12, ÖV11]. It is based on a combination of well-known models, such as Service
Oriented Architectures (SOA), virtualization, self-* properties of systems, and others,
and has been made popular by companies, such as Amazon, Google or Microsoft, that
started offering their existing resources and services to customers. The resources deliv-
ered by the Cloud can be divided into three main categories. 1.) Infrastructure-as-a-
Service (IaaS) that consists of infrastructure services, such as computing power, storage
resources, etc. Examples include Amazon Web Services (AWS), Elastic Compute Cloud
(EC2) [awsa] and Azure [azu]. 2.) Platform-as-a-Service (PaaS) that consists of platform
services, such as development tools and environments. Examples include AWS Elastic
Beanstalk [awsb] and Google App Engine [app]. 3.) Software-as-a-Service (SaaS) that
consists of application software delivered as a service. Examples of popular SaaS in-
clude Salesforce [Sal], Google Apps [Goo] and others. Cloud Computing is emerging
towards a model that supports everything-as-a-service (XaaS), such as Data-as-a-Service
(DaaS) [WTK+08], Archiving-as-a-Service (AaaS) [BS15a], etc.

The Cloud has considerably reduced the barrier for building large-scale applications,
such as Instagram [ins], Foursquare [fou], etc., which are characterized by a massive
number of users and their high scalability and availability demands [Aba09]. Avail-
ability denotes the percentage of time a system is functioning according to its specifi-
cation, whereas scalability denotes the ability of a system to cope with an increasing
load [Aba09].

These demands inherently lead to distributed systems that are complex and costly in
terms of both the components needed for building them and the expertise required for
their management. Prior to the Cloud, application providers had to conduct consider-
able upfront investments for building the necessary deployment infrastructure without
having validated the market success of their applications.

With the pay-as-you-go cost model of the Cloud, application providers pay only for
the resources they consume and can thus avoid the upfront investments that are con-
sidered a business disabler. The entire complexity and risk of building and managing

2 1 Introduction

Data
tier

Web/
Application

Server
tier

Internet

... ...

... ...

etInternet

Applications ...

InternenternetI

Figure 1.1: Software stack of applications deployed in the Cloud [Aba09].

expensive distributed infrastructures shifts to the Cloud provider [GG09,ÖV11], as they
can amortize the costs across many customers – a property known as the economy of
scale [KK10].

The elasticity property of Cloud services allows for their dynamic tailoring to the
application demands by provisioning and de-provisioning these services based on for
example application load, failures, etc. It supports the scale-out, also known as hori-
zontal scalability, of applications, by allowing them to add commodity servers on de-
mand and use them in the load distribution. Scale-out is critical for Cloud applications,
as, in contrast to scale-up (also known as vertical scalability), it does not require any
hardware updates, which considerably reduces the reaction time. Moreover, scale-up
requires high-end hardware that is more expensive compared to commodity hardware
as the economy of scale does not apply to the same degree [McW08].

1.1 Data Management in the Cloud: Challenges and
Opportunities

The typical software stack of applications deployed in the Cloud is depicted in Fig-
ure 1.1. The data tier consists of the data denoted as the Database (DB), and the software
managing the data denoted as the DBMS. The DB and DBMS are jointly referred to
as Database System (DBS) [ÖV11]. In the context of this thesis, we only consider ap-
plications that use a DBS, which is almost always the case in practice. It is crucial to
provide high availability and scalability guarantees not only at the application and web

1.1 Data Management in the Cloud: Challenges and Opportunities 3

Costs

Guarantee
Penalty

Figure 1.2: Guarantee vs. penalty costs.

tier, but also at the data tier, as in contrary the guarantees of the entire application may
degrade [Aba09, DAE10, KK10]. Moreover, from a performance point of view, the DBS
usually becomes the bottleneck [DAE10, YSY09].

To satisfy the availability demands applications have towards the data tier, Cloud
providers usually replicate and distribute data across sites in different data-centers
[Aba09]. Such an approach, also known as geo-replication, is crucial not only with re-
gards to the availability but also for the performance as it allows to place the data in a ge-
ographical location close to the user. Moreover, the additional resources in a Ditributed
Database System (DDBS) can be used to distribute the load and thus increase the scalabil-
ity of the system. Elasticity1 denotes the ability of the Cloud to scale resources out and
down dynamically based on, for example, application load. Scale down is an important
aspect as it allows to save costs by undeploying unnecessary resources. While elasticity
is nicely applicable to the web and the application tier (Figure 1.1), implementing elas-
tic DBSs is challenging as it requires the transfer (copying) of a possibly considerable
amount of data over the network.

DDBS face the trade-offs captured by the CAP-theorem2, which states that any dis-
tributed system can provide two of the three properties, namely consistency, availabil-
ity, and partition-tolerance. The CAP-theorem was turned into a formal definition and
proved in [GL02]. Distributed systems cannot sacrifice tolerance to network partitions
as that would require to run on an absolutely reliable network [Hal10]. Thus, they are
left with the choice of consistency or availability [Vog09, DHJ+07, Simb, Cas, Mon].

While CAP is about failures, there are also consistency-latency trade-offs during nor-
mal operations [Aba12]. The stronger the consistency model the higher the performance

1While scalability is a static property that guarantees the ability of a system to scale to a large number
of users, elasticity is a dynamic property, which enables a system to scale out and down at runtime with
possibly no downtime [Aba09].

2Notice that the CAP trade-off was already observed in [JG77]: "Partitioning - When communication
failures break all connections between two or more active segments of the network ... each isolated
segment will continue ... processing updates, but there is no way for the separate pieces to coordinate
their activities. Hence ... the database ... will become inconsistent. This divergence is unavoidable if the
segments are permitted to continue general updating operations and in many situations it is essential
that these updates proceed." [BD].

4 1 Introduction

Eventual
consistency

Strong
consistency

Not
considered

No
consistency

Figure 1.3: Continuum of consistency models.

penalty and vice-versa. The intuition is that strong consistency models require more
coordination than weaker models [BG13, Hal10]. The consistency-performance trade-
off is valid also for single copy-systems, which is one of the reasons why commercial
databases have ever since included weaker models [BFG+13, BDF+13]. However, with
the deployment of large-scale applications in the Cloud, which have stronger emphasis
on performance, this trade-off has become even more tangible.

The fine-grained pricing of resources and actions in the Cloud allows charging cus-
tomers based on the pay-as-you-go cost model. There is a trade-off between the desired
level of guarantees and the costs. Increasing the level of guarantees also increases the
costs and vice-versa. Applications require the DDBS to be cost-driven, i.e., they should
consider the costs that incur as the consequence of enforcing the desired guarantees –
guarantee costs. The guarantee costs should determine not only the most appropriate
level of guarantee but also the most optimal approach in terms of costs for providing
the chosen level of guarantee, as there might be more than one approach that leads to
the same level of guarantee. They all are more suited for a certain scenario and less for
others, i.e., generate different costs depending on the concrete scenario. Decreasing the
level of guarantees may reduce guarantee costs. However, it might lead to a long-term
business impact as a reduced guarantee level may directly affect the end-user behavior.
For example, frequent unavailability of an application may lead to a loss of customers.
The effect of reduced guarantees can be captured by application specific penalty costs.
The DDBS should find the right balance between the guarantee and penalty costs, and
it should provide that level of guarantees that incurs the minimal overall costs (Fig-
ure 1.2).

1.2 Problem Statement

The choice of the guarantees, and the protocols implementing those guarantees should
be influenced by the application requirements, its properties, such as the workload, and
the costs (Figure 1.2). Existing DBSs are over-customized and earmarked with a fo-
cus on a very specific application type and provide only a limited means of influencing
their behavior. For example, commercial DBSs, such as Oracle [oraa], and Postgres [siP],
provide strong data consistency, such as One-Copy Serializability (1SR) or Snapshot Iso-
lation (SI), and thus take limited scalability and availability into account [GHOS96]. The
consistency models can be implemented by different protocols [BG84, KA00a]. Usually

1.2 Problem Statement 5

these protocols are tailored to a specific scenario and neglect crucial parameters, such as
the application workload. Moreover, they are rigid and not able to adapt their behavior
at runtime.

Not only SQL (NoSQL) is a term coined to denote a new type of DBSs that are non-
relational, schema-less, that support horizontal scalability and provide high-availability
[SF12]. NoSQL databases provide only relaxed consistency guarantees known as Even-
tual Consistency (EC) in order to increase scalability and availability as a consequence of
the CAP theorem. However, while this nicely serves several novel types of applications,
it has turned out that it is very challenging to develop applications that demands strong
consistency on top of weakly consistent DBSs [Ham10].

In summary, existing databases have the following limitations. First, they provide
only a static choice of the desired guarantees as well as only a limited means of steering
these guarantees by applications. Second, they consider only specific protocols and pro-
tocol behavior (configuration) and do not include any means of dynamically reconfigur-
ing the protocols at runtime. This means that these protocols are rigid and unadaptable
to, for example, shifting application workload. Third, they neglect the costs incurring
from the resources needed to provide the desired guarantees, which is a critical factor
for the applications deployed in the Cloud. Therefore, novel concepts and solutions are
needed that can cope with the dynamic nature of applications deployed in Cloud, and
that do consider the costs as a first-class-citizen of their optimization models.

This thesis considers the development of adaptive3, cost and workload-driven proto-
cols for data consistency, partitioning, and replication. Our protocols can adapt dynam-
ically (reconfigure) their behavior to shifting application workload based on cost mod-
els that find the right balance between guarantee, penalty and reconfiguration costs.
Moreover, they incorporate online reconfiguration approaches that guarantee consis-
tency even in the presence of failures. The cost models ensure that the adaptations only
happen within the boundaries specified by the application providers, i.e., do not violate
in any case the desired guarantees.

1.2.1 Data Consistency

Initially, NoSQL databases provided only weak consistency, such as EC [Vog09]. How-
ever, while this nicely serves several novel types of applications, it has turned out that
it is very challenging to develop traditional applications on the top of weakly consis-
tent databases [AEM+13,Ham10]. The complexity arises from the necessity of compen-
sating the missing consistency guarantees at the application level. In reaction to that,
today, NoSQL databases provide a range of consistency models stronger than EC (Fig-
ure 1.3). Applications can thus choose the most suited consistency model based on their
demands such as, for instance, their performance requirements. In the Cloud with its
pay-as-you-go cost model where each resource and each action come with a price tag, the
consideration of costs is an essential complement to the trade-off between availability
and consistency. While strong consistency generates high consistency costs, weak con-

3Denotes the ability of a system to adjust its behavior at runtime to different requirements and con-
straints.

6 1 Introduction

ROWA ROWAA QUORUM

Figure 1.4: Eager replication protocols.

sistency in turn may generate high inconsistency costs for compensating access to stale
data (e.g., book oversells) [KHAK09, FS12].

Current approaches allow only a static choice of consistency that is not able to cope
with the dynamic nature of the application workload. Thus, the decision on the con-
sistency model may not be optimal as it is based on knowledge that will potentially be
outdated at execution time. Additionally, current approaches do not provide a means
of influencing the data consistency based on the monetary costs [KHAK09, FK09].

1.2.2 Data Partitioning

Update transactions in the presence of replication, require additional coordination be-
tween sites if applications demand strong consistency guarantees [KJP10, CZJM10,
TMS+14]. This is the case for various types of Online Transaction Processing (OLTP)
applications, such as financial applications, that cannot sacrifice consistency and thus,
need guarantees like 1SR which, in turn, requires expensive distributed commit proto-
cols like Two-Phase Commit (2PC) or Paxos [GL06]. These protocols are expensive since
they require some costly rounds of network communication. This additional overhead
is considerable if geo-replication is used [BDF+13]. Moreover, 2PC may block in case
of failures, and this may lead to a decreased availability level as resources are unavail-
able during the blocking phase. Non-blocking distributed commit protocols, such as
Paxos [GL06, Ske81], can be used at even higher costs than 2PC. At the same time, de-
spite the high latency due to the overhead of transaction coordination [BDF+13, Dea],
these applications need highly scalable databases [Asl11].

Shared-nothing architectures [Sto86], that make use of data partitioning (also known
as sharding), are able to manage data in such a way that distributed transactions are
avoided – or at least that their number is minimized. This eliminates or minimizes the
necessity of expensive distributed commit protocols.

Existing partitioning protocols are mainly static and thus tailored to a specific work-
load. This makes them unsuitable if the workload shifts at runtime, which is inherent
for applications deployed in the Cloud. Dynamic approaches are necessary that are able

1.2 Problem Statement 7

ROWA ROWAA

QUORUM

Figure 1.5: Partitioning with replication.

to adapt to workload changes with the goal of retaining the advantages of the data parti-
tioning. However, the process of partitioning and reconfiguring the system is expensive
and should be done only when it provides a benefit to the application, otherwise the re-
configuration costs may overweigh its benefit.

1.2.3 Data Replication

Data replication is a mechanism used to increase the availability of data by storing
redundant copies (replicas) at usually geographically distributed sites. In the case of
read-only transactions, data replication can increase system scalability by using the ad-
ditional processing capacities of the hosts where replicas reside to balance the load.
However, in the case of update transactions, depending on the desired data consistency
guarantees, data replication may generate a considerable overhead and thus decrease
the overall system scalability and availability [KJP10]. For many applications, 1SR is
the desired level of data consistency. It guarantees serializable execution of concurrent
transactions and a one-copy view on the data [BHG87]. Usual protocols implement-
ing 1SR are based on Two-Phase Locking (2PL) for the synchronization of concurrent
transactions and 2PC for the eager commit of replica sites in case of update transac-
tions [BHG87]. However, as depicted in Figure 1.4, protocols differ in the strategies
with regards to the commit strategy, which impacts both the provided availability and
the overhead for transactions. While Read-One-Write-All (ROWA) protocols update all
replica sites eagerly, Read-One-Write-All-Available (ROWAA) will consider only those
sites that are available, leading to an increased level of availability compared to ROWA
at the cost of increased complexity for site reconciliation [KJP10]. Quorum protocols
consider only a subset of all sites when committing, leading to a decreased overhead

8 1 Introduction

for update transactions. It is well known that quorum protocols are better suited for
update-heavy workloads compared to the ROWA(A) approaches [JPAK03].

The size of the quorums, as well as the properties of the sites constituting these quo-
rums, is one of the major factors for the overall transaction overhead. Existing quorum-
based protocols generate quorums of different sizes, and usually neglect the site proper-
ties, or consider them without the ability to adapt the quorums if the properties change.

Replication or data partitioning alone solve only parts of the problem. While replica-
tion is expensive for update transactions, data partitioning does not provide any avail-
ability guarantees in case of site failures. Hence, partitioning needs to be combined with
replication to find a trade-off between consistency, availability, and latency that satisfies
application requirements (Figure 1.5). Existing approaches consider either replication
or partitioning in an isolated manner without providing a holistic model that would
combine both dimensions with the goal of satisfying availability and performance re-
quirements.

1.2.4 Challenges Related to the Development of Cost and
Workload-driven Data Management Protocols

In summary, existing data management approaches have the following limitations.
First, they neglect the cost parameter, which is becoming increasingly important for
applications deployed in the Cloud. Second, they are tailored to a subset of scenarios
characterized by their workload and are unable to adapt their behavior at runtime in
case the workload shifts. This rigidity may lead to a violation of application require-
ments and a considerable increase in costs.

Thus, cost and workload-driven protocols are necessary, which are able to cope with
dynamic application workloads and that consider the costs as a first-class citizen. The
challenges related to the development of such protocols are as follows:

1. It is necessary to develop models that capture relevant costs for different data man-
agement properties, such as data consistency, partitioning and replication. These
models should steer the protocol behavior, so that the costs for providing the de-
sired application guarantees are minimized.

2. It is necessary to develop or incorporate workload prediction models, which allow
the protocols to adjust their behavior at runtime so that application requirements
continue to be satisfied.

3. It is necessary to develop low cost and safe approaches, which are able to recon-
figure the protocols if their behavior is to be adapted. The low cost requirement is
crucial for ensuring that the reconfiguration costs do not outweigh its gain. Safety
denotes the ability to reconfigure a protocol without violating its correctness.

1.3 Thesis Contributions 9

Module
repository

cost(1SR)
<= cost (EC)

NO EC YES 1SR

C3

1SR EC
Cumulus

QuAD

Application
SLOs:

Application
properties:

Infrastructure
properties:

Consistency
Availability
Cost
…

Workload

VM cost/h
CRUD cost

N

Determine
consistency

Figure 1.6: C3: Cost and workload-driven consistency control protocol.

1.3 Thesis Contributions

In what follows, we will summarize our cost and workload-driven data consistency,
partitioning and replication protocols, that tackle with the aforementioned challenges.
In this thesis, our protocols will be jointly referred to as CCQ.

1.3.1 C3: Cost and Workload-driven Data Consistency

C3 is a cost and workload-driven data consistency protocol, which can dynamically ad-
just the consistency level at runtime so that application costs are minimized [FS12]. The
consistency level of transactions is determined by finding the right balance between the
operational costs – denoted as consistency costs – incurring for providing that consis-
tency level, and the application specific inconsistency costs that incur for compensating
the effects of relaxed consistency (Figure 1.2). As depicted in Figure 1.6, in the current
version, C3 considers the 1SR and EC consistency models. However, considering its
modular architecture, C3 can be easily extended with further consistency models and
protocols, allowing it to extend its optimization space (Figure 1.3).

The contributions in context of C3 are as follows:

We introduce C3, a meta-consistency protocol, which determines the optimal consis-
tency level of transactions based on a cost model that finds the right balance be-
tween consistency and inconsistency costs. Consistency costs denote the costs that
incur from the consumption of resources and services necessary to enforce a cer-
tain consistency level, whereas inconsistency costs denote the costs for compen-
sating the effects of a relaxed consistency level. Moreover, the consistency decision

10 1 Introduction

Module
repository

C3

1SR EC
Cumulus

QuAD

Application
SLOs:

Application
properties:

Infrastructure
properties:

Consistency
Availability
Cost
…

Workload

VM cost/h
CRUD cost

ECEEEEEEEEEEEEEEEEEEEEEEEEEEECEEEEEECCC

Key Title Stock Price
1 Introduction to C++ 23 40
2 Professional Java 10 23
3 Applying UML 100 50
4 Beginning Node.JS 45 30
5 JavaScript for

Beginners
110 25

Key Title Stock Price
1 Introduction to C++ 23 40
3 Applying UML 100 50

Key Title Stock Price
4 Beginning Node.JS 45 30
5 JavaScript for

Beginners
110 25

Key Title Stock Price
2 Professional Java 10 23

Key Title

Determine
partitions

Figure 1.7: Cumulus: Cost and workload-driven data partitioning protocol.

will be continuously assessed, and C3 will initiate a reconfiguration, i.e., will ad-
just the consistency level, if the gain in doing so outweighs the reconfiguration
costs.

C3 implements a stop-and-copy reconfiguration approach, which guarantees that all
sites have the same view on the active consistency level even in presence of fail-
ures.

C3 provides an intuitive Application Programming Interface (API) that allows devel-
opers to enforce a certain consistency level or to define application specific incon-
sistency costs and let C3 to adaptively adjust the consistency.

C3 is able to handle multi-class transaction workloads by adjusting the most optimal
consistency level for each of the classes separately.

We describe a complete implementation of C3 and present thorough evaluations con-
ducted in the EC2 infrastructure. The evaluations compare C3 with static ap-
proaches in terms of costs and performance. The results show the feasibility of C3

and its capability to reduce application costs. Moreover, the results show that C3

is able to adjust transaction consistency at runtime and handle multi-class trans-
actions.

1.3 Thesis Contributions 11

1.3.2 Cumulus: Cost and Workload-driven Data Partitioning
Protocol

The second contribution is related to the development of a cost and workload-driven
partitioning protocol called Cumulus [FMS15]. As depicted in Figure 1.7, the main goal
of Cumulus is, given a certain application workload, to determine a partition schema
that reduces or completely avoids distributed transactions. Cumulus will monitor the
application workload and readjust the schema so that the advantages of data partition-
ing are retained.

The contributions in context of Cumulus are as follows:

We introduce Cumulus, a cost and workload-driven protocol that is able to partition
the data based on a model that captures the costs of distributed transactions. Cu-
mulus is able to dynamically adjust the partitions based on the application work-
load and the cost model. Cumulus finds the right balance between the reconfigu-
ration costs and the gain resulting from a reduced number of distributed transac-
tions with the goal of avoiding unnecessary and expensive reconfigurations.

Cumulus implements a reconfiguration approach, which ensures that all sites have the
same view on the active partitions even in presence of failures.

Cumulus is able to distinguish between significant (frequent) and insignificant (infre-
quent) transactions in the workload. It will consider only significant transactions
for the definition of partitions, as considering all transactions: i.) may not be feasi-
ble in an adaptive protocol, and ii.) partitions tailored to insignificant transactions
will generate low or no benefit at all.

We describe the implementation of Cumulus and present its evaluation results. The
evaluations compare Cumulus, in terms of partitions quality, to static approaches,
and approaches that do not incorporate a means of analyzing the workload. The
results show that Cumulus considerably outperforms the other approaches, and
we depict its ability to adjust the partitions at runtime in reaction to workload
shifts.

1.3.3 QuAD: Cost and Workload-driven Quorum Replication
Protocol

The third contribution, called QuAD, considers the development of a cost and
workload-driven quorum replication protocol that considers the properties of the sites,
such as their load and network proximity, when constructing the quorums [SFS15] (Fig-
ure 1.8). QuAD is based on the idea of avoiding ’weak’ sites from the read and commit
paths of transactions, where weak can have different meanings, such as slow and dis-
tant, but also expensive. QuAD jointly considers the load of the sites and their distance,
i.e., the Round-Trip Time (RTT), when determining the quorums. Additionally, it seeks
a possibly balanced assignment of sites to quorums, since if some sites are frequently
included in the quorums, they may become a bottleneck.

12 1 Introduction

Module
repository

C3

1SR EC
Cumulus

QuAD

Application
SLOs:

Application
properties:

Determine
quorums

Consistency
Availability
Cost
…

Workload

VM cost/h
CRUD cost

Read-quorum Write-quorum i

Infrastructure
properties:

Figure 1.8: QuAD: Cost and workload-driven quorum-based replication protocol.

QuAD is able to react to changes in the system, such as increased load at sites, new
sites joining the system, or site failures, and consequently to adapt its quorums to ad-
dress these changes.

The contributions in context of QuAD are as follows:

We provide a cost model for the quorum construction that jointly considers the load
and network distance between sites. The goal of the cost model is to construct the
quorums in such a way so that weak sites are avoided from the read and commit
paths of transactions, if possible. QuAD is able to dynamically adapt its quorums
in reaction to workload changes and site failures. A reconfiguration is initiated
only if the gain outweighs the reconfiguration costs.

The QuAD reconfiguration approach ensures a consistent view on the quorum config-
urations even in presence of failures.

We describe the implementation of QuAD and present thorough evaluations con-
ducted in the EC2 infrastructure. We compare QuAD to other quorum protocols
that i.) neglect site properties, ii.) consider only a subset of site properties, and
that iii.) are non-adaptive. The evaluations show that QuAD considerably out-
performs, in terms of transaction performance, both static quorum protocols, and
dynamic protocols that neglect site properties during the quorum construction
process. Moreover, they show that QuAD is able to reconfigure the quorums in
case of workload shifts or site failures.

1.4 Thesis Outline 13

Application
SLOs:

Application
properties:

Infrastructure
properties:

Module
repository

Determine
behavior

C3

1SR EC
Cumulus

QuAD

Consistency
Availability
Cost
…

Workload

VM cost/h
CRUD cost

Figure 1.9: PolarDBMS: Policy-based and modular DBMS.

1.3.4 PolarDBMS: Policy-based and Modular DBMS

In [FBS14] we introduced our work in progress system PolarDBMS (Policy-based and
modular DBMS for the Cloud). PolarDBMS is based on a modular architecture, with
each module (protocol) providing certain data management functionality, such as data
replication (ROWAA, quorum), data consistency, atomic commitment, consensus pro-
tocols, etc. The main objective of PolarDBMS is to automatically select and dynamically
adapt the module combination that best provides the desired guarantees by incorporat-
ing the incurring costs, the application objectives and workload, and the capabilities of
the underlying system (Figure 1.9).

In context of PolarDBMS, this thesis provides concrete contributions towards its re-
alization. Our CCQ protocols are implemented as modules, which can be seamlessly
integrated into PolarDBMS. While each of the modules tackles one aspect of data man-
agement, PolarDBMS serves as an integrator, which, based on a holistic model, steers
the modules and their behavior. The holistic model considers the requirements of dif-
ferent applications, and the requirements of the Cloud provider, which aims to provide
the best possible data management behavior.

1.4 Thesis Outline

This thesis is organized into nine chapters. The first two chapters, i.e., this chapter
and Chapter 2, provide an overview on Cloud Computing as well as on challenges and
opportunities related to the data management in the Cloud. We have summarized the
research field of this thesis and the problem statement as well as the main contributions.

14 1 Introduction

The problem statement is further detailed in Chapter 2 based on a concrete application
scenario. The embeddings of this thesis’ contributions in the context of a long-term
project that aims at building a fully-fledged Service Level Agreement (SLA)-driven and
modular DBS are also described in Chapter 2.

In Chapter 3 we describe the fundamentals of the data and transaction model for
DBSs, we summarize main concepts related to data consistency, replication and parti-
tioning, and provide a formal model for capturing data freshness that complements ex-
isting consistency models. Chapter 4 introduces the big picture and the main concepts,
and definitions related to the development of cost and workload-driven data manage-
ment protocols in general, and to the development of the CCQ protocols in particular.

Chapter 5 is devoted to the concepts developed as part of the contributions. We
provide an in-depth description of the CCQ protocols, and their cost and configuration
models.

In Chapter 6 we describe the implementation details of the CCQ protocols.
Chapter 7 discusses qualitative evaluations of our contributions, and quantitative

comparisons to other approaches on the basis of the Transaction Processing Perfor-
mance Council (Transaction Processing Performance Council (TPCC)) benchmark.

Finally, Chapter 8 summarizes related work, and Chapter 9 provides an outlook on
possible future work and concludes.

2
Background and Motivating Scenario

IN THIS CHAPTER, we describe an online shop application scenario that illustrates the
challenges of data management in the Cloud. Based on the scenario, we derive

a generic interaction cycle between customers, i.e., application providers and Cloud
providers, with the goal of satisfying the application requirements as good as possible
by considering general constraints (e.g., legal constraints), multi-tenancy (requirements
of different applications) as well as provider’s capabilities and its requirements.

When considering all layers of the online shop application depicted in Figure 2.1,
there are different actors, such as end users, application providers, service providers,
cloud providers, and others, that may provide or consume services. These roles are
dependent on the context, and may change if the context changes. For example, the
application provider provides services towards the end users, and consumes services
of the underlying service provider. A client denotes a consumer of a service provided
by a server. A service may denote an application, a domain specific service, such as
a payment service, Cloud infrastructure, data management service, etc. Each client
specifies its requirements towards the server in form of SLAs. An SLA contains financial
aspects of service delivery, penalties, bonuses, terms and conditions, and performance
metrics denoted as Service Level Objectives (SLOs) [KL02]. The underlying service will
generate guarantees, denoted as Service Level Guarantees (SLGs), that will best match
the specified SLAs by considering all possible constraints.

Each layer of an application must not only consider the specified requirements in
form of SLAs, but must continuously monitor them, the generated SLGs and adjust its
configuration if the SLGs significantly deviate from the requirements, either due to a
change in SLAs or shift in end user behavior (e.g., increased load). Usually, this has a
cascading effect on all layers, which may lead to their reconfiguration.

In this thesis, we focus on the data layer, more concretely on the development of the
adaptive data management protocols under the umbrella of PolarDBMS. PolarDBMS is
based on a modular architecture, and considers SLAs to determine its module composi-
tion and the module configuration that best satisfy the given SLAs. It will continuously
monitor the fulfillment of the SLAs, and dynamically adapt the configuration of exist-
ing modules, or exchange modules if necessary in order to reflect changes in the SLAs
or client behavior. In what follows we will motivate the need for PolarDBMS based on a

16 2 Background and Motivating Scenario

Payment
Service

Shop Service Provider
Online Shop

Service

Alice Bob Charlie

Check/ Modify
Order

Buy + Pay
Goods

Browse
Store

Application Provider

Logistics Service Provider
Shipment Tracking

Service

Order Processing Catalogue

MyShoeShop

Terms
and
Conditions

Client

Server

SLA

Client

Server

SLA

Client

Server

Cloud Provider

Figure 2.1: Online shop application scenario [FBS14].

concrete scenario. While PolarDBMS considers the full spectrum of data management,
the CCQ protocols consider only a subset of data management properties, namely data
consistency, partitioning and replication.

2.1 Online Shop

This application scenario describes a simplified online shop, which is depicted in Fig-
ure 2.1. Various end customers use the MyShoeShop to search for and eventually buy
shoes. While Charlie only browses the shop without intending to order any shoes, Bob
does both. Alice, on the other hand, just changes the delivery address of a previous
order. Inside the MyShoeShop application, several subsystems are responsible for the
different actions. While the Catalogue system is responsible for displaying the prod-
uct catalogue, the Order Processing system handles orders and shipping.

The application provider who runs the shop does not host the infrastructure for
her application. In fact, the latter relies on two different service providers: a provider
specializing in logistics offers a Shipment Tracking Service and another service

2.1 Online Shop 17

SLOs

Policies

Normalized and
conflict-free policies Optimal configuration

SLGs

Policies normalization
& conflict resolution

Selection and evaluation
of the configuration

Guarantee
extraction

Modification of
SLOs based on

SLGs

Transformation
to policies

Requirements specification
in form of SLOs

Figure 2.2: Client-server interaction cycle in the Cloud [FBS14].

provider hosts a Payment Service. In this context, the term service is used to denote
a reusable functionality for a set of business domains, that is typically not directly ac-
cessed by end customers. In contrast to a service, an application provides functionality
of benefit for the end customer, and uses one or more services to achieve its goals (cf.
programming in the large [DK75]).

Both services are used by the Order Processing system of the application
provider. None of the service providers directly hosts a database. Instead, they both
rely on (possibly different) cloud DBSs (e.g., NoSQL and NewSQL systems [Mel00]).
Obviously, an action that is launched by an end user is, automatically and transparently
to the client, broken down to several different organizations and systems. Since each
of the participants offers and/or uses services, bilateral agreements exist which spec-
ify various aspects of the services. For example, the end users agree to the Terms and
Conditions (ToC) of the online shop provider as soon as they place an order.

The application provider and the service providers can rely on SLAs to specify the
details of the bilateral relationship. This applies also for the interaction between the
service providers and the underlying DBS provider. Furthermore, the aforementioned
ToC and SLAs are defined independently of each other and may thus be contradictory.
This results in a complex set of dependencies leading to a non-transparent system with
regards to the guarantees provided towards the end user.

As today’s businesses are rapidly evolving, a dynamic adaptation to changing re-
quirements is necessary. The MyShoeShop provider in the scenario may, for instance,

18 2 Background and Motivating Scenario

SLO Description
availability Defines the desired degree of availability. The avail-

ability SLO is mapped to a number of parameters, such
as the number of replicas (#replicas) data is replicated
to and the the distance between them.

maxBudget Defines the maximum budget that can be spent for
providing the desired guarantees.

upperBoundAccessLatency Defines the desired upper bound of access latency.

Table 2.1: Summary of SLOs.

request different degrees of availability. She may require either an increased availability
due to changed legal regulations or an expected peak load – or a reduced availability in
order to save money, since higher availability implies higher cost.

Today’s Cloud services, in particular DBSs and applications, come with a predefined
and fixed set of characteristics. This leads to rigid systems that are difficult to adapt
to changing business and technical needs. For example, the MyShoeShop provider
may choose a relational DBS or a NoSQL database for its application. In contrast to
NoSQL databases, which provide relaxed consistency guarantees, relational DBSs pro-
vide strong consistency at the cost of scalability and availability. As today’s applica-
tions are basically available to everyone, and as customer behavior and requirements
towards the application may shift at any time, the choice of the DBS may turn out to be
suboptimal. Currently, it is difficult, if not impossible, to adapt the DBS even by highly
skilled administrators to satisfy the application requirements, let alone the DBS to adapt
its behavior at runtime without any manual intervention. Faced with such a situation,
application providers usually either choose to remain in the status quo, which is a clear
business disabler, or initiate expensive migration processes to another DBS, which may
not be the most appropriate choice anymore by the time migration has finished. This
might be a consequence of in meanwhile changed legal or business constraints, or cus-
tomer behavior.

This urgently demands a dynamically adaptable system, which allows for a flexible
interaction between customers and providers in broader terms, and between applica-
tions and DBSs more specifically.

2.2 Optimal Interaction Cycle between Clients and
Servers

An optimal interaction cycle between clients and cloud providers in a business inter-
action is depicted in Figure 2.2. A client using a service provided by a server specifies
her requirements towards that service in form of SLOs that are included in the SLA (see
Table 2.1). An SLO specifies an expected guarantee with regards to a parameter [KL02].

2.3 Integrated Data Management 19

For example, a client might define a lower bound of availability that has to be guaran-
teed by a service:

SLO : availability ≥ 0.95

In the example above availability denotes the parameter, and 0.95 its value, i.e., the
minimum level of availability to be guaranteed. The system providing the service trans-
forms all SLOs of an SLA to internal objective representation called policies. Since the
service may be used by many different clients, their SLOs may lead to potentially con-
flicting policies. Thus, in a next step, the policy conflicts have to be resolved.

At this stage the system has conflict-free policies, which form the basis of an eval-
uation process of different possible system configurations. Moreover, in a multi-tenant
environment such as the Cloud, the evaluation process has to take SLOs of different
clients into account. At the end of this process, the best possible configuration is chosen
and transformed into SLGs. An SLG is a commitment of the provider on the fulfillment
of an SLO:

SLG : availability ≥ 0.99.

It might however be that the provided SLG does not fulfill the corresponding avail-
ability SLO. A client may require an availability ≥ 0.95, whereas the provider may only
be able to guarantee availability ≥ 0.9. In that case, the client has the possibility to adapt
its SLO or decide to use another service provider.

An adaptation of the SLOs leads to the restart of the entire interaction cycle. Ad-
ditionally, the cycle may be re-started later at any point in time and at any phase. For
example, a change in the underlying infrastructure may lead to a reduced level of avail-
ability, which needs to be reflected in the corresponding SLGs. Again, the customer
may decide to adapt its SLOs or change the service provider.

2.3 Integrated Data Management

The CCQ protocols developed as part of this thesis consider only a subset of a data
management properties and SLOs. They rely on the ability of PolarDBMS to resolve
conflicting requirements of different clients and to validate the satisfiability of the re-
sulting policies. Moreover, based on these policies, PolarDBMS will choose the most
appropriate module composition and configuration so that the requirements are opti-
mally satisfied. PolarDBMS enables the implementation of the optimal interaction cycle
depicted in Figure 2.2 at the data management layer, which gives the application the full
flexibility to react to changed legal or business constraints, and client behavior. In what
follows we will describe the high-level architecture of PolarDBMS, its components, as
well as their interactions.

As depicted in Figure 2.3, clients specify their SLOs and submit to PolarDBMS. As
part of phase a)., the submitted SLOs are integrated with the existing system capabilities
as described in the Example 2.1. During this phase, the integrator decides if the specified
SLOs can be satisfied at all given the system capabilities.

20 2 Background and Motivating Scenario

+

SLOs

SLGs

SLOs

SLGs

Policies

System
Capabilities

Modules

Policy 1

Policy 2

Policy 3

Policy N
...

Module 1

Module 2

Module 3

Module M

...
a).

b).

a).

c).

d).e).
e).

f).

f).

+
Policies

System
Capabilities

Modules

Policy 1

Policy 2

Policy 3

Policy N
...

Module 1

Module 2

Module 3

Module MM

...
b).

a).

c).

d).e).

Integration

Figure 2.3: Interaction flow in PolarDBMS [FBS14].

Example 2.1 (System Capabilities)

Let us assume that a client has defined the following SLO: availability ≥ 0.99995. Ad-
ditionally, the client may require the data to be stored only in the EU. However, the
provider runs data centers only within the US. This is a sort of a business constraint,
which, along with possible legal, organizational and functional constraints, defines the
system capabilities. In this case, the client must be notified that the requirements on the
data storage location cannot be satisfied.

In the same scenario, the client may also specify that it desires 1SR consistency for
its application. However, the DBS provider is only capable of providing EC consistency.
This is a functional constraint that hinders the satisfiability of the client’s requirements.

In both cases it is clear that the provider, given its capabilities, cannot satisfy the
requirements, and must reject them. In reaction to that, the client may adapt its SLOs or
change the provider, which would restart the interaction cycle (Figure 2.2).

Assuming that the system capabilities do not prevent the satisfiability of the SLOs,
the next step is to express the combined SLOs and system capabilities in form of policies
– phase b.) as described in the Example 2.2.

Example 2.2 (Policies)

The availability SLO is mapped to a policy, which consists of various parameters, such
as for example the number of machines (#replicas) data has to be replicated to (phase b)).
High availability, thus high #replicas leads to higher costs. The relationship between
#replicas and costs is reflected in another policy. This needs to be taken into account
in case the client wants to limit the costs per billing period (SLO: maxBudget ≤ 1000$).

2.3 Integrated Data Management 21

This implies that the system already has information about its (estimated) runtime char-
acteristics (such as average cost per replica). Initially, the system starts with default
values derived from a cost model.

Certain parameters (e.g., #replicas needed to satisfy the desired level of availability)
can be estimated without involving the capabilities of the concrete functional building
blocks of PolarDBMS, which are represented by modules. However, for the final deci-
sion on the fulfillment of other SLOs (e.g., uperBoudAccessLatency) a collaboration with
the underlying modules might be necessary (Example 2.3). This means that concrete ob-
jectives are provided to the modules as part of phase c). This step initiates the so called
negotiation process between policies and modules. This negotiation process is actually an
optimization problem, which aims to find the optimal combination of modules together
with their configurations (see dashed box in Figure 2.2).

Example 2.3 (Negotiation Process)

The guarantees provided by certain modules, such as the upperBoundAccessLatency,
may be dependent on the application workload. For instance, while ROWAA is suitable
for read-only or read-heavy workloads, quorum-based Replica Protocols (RPs) are more
appropriate for workloads that contain a large portion of update transactions.

Any of the RP modules require the application workload as input to determine the
level of guarantees they can deliver, which is typically not known a priori and must
be predicted. Different workload prediction modules may exist that differ in terms of
overhead and prediction accuracy. Again, it is the task of PolarDBMS to select the most
appropriate prediction module by considering the different available constraints.

The ability to predict the application workload is however based on the assumption
that there are some runtime data available about the application behavior. As the ap-
plication workload is highly dynamic, the satisfiability of the client requirements needs
to be continuously monitored. The negotiation process may be restarted any time when
there is a significant change in the workload.

As described in the Example 2.3 there might be multiple modules that implement
the same data management property. Moreover, as data management properties are not
orthogonal, they might also be influenced by policies related to other data management
properties as the consequence of the CAP trade-off (Example 2.4).

Example 2.4 (Integrated and Adaptive Data Management)

Let us assume that the client has specified a lower bound of availability guarantee
that must not be violated (availability ≥ 0.99995), as well as an upper bound of la-
tency (upperBoundAccessLatency ≤ 50ms). By considering the consistency-latency and
consistency-availability trade-offs, PolarDBMS will choose the most appropriate con-
sistency model and module implementing the model so that the latency requirement
(upperBoundAccessLatency) is satisfied.

22 2 Background and Motivating Scenario

In the aforementioned case, the decision on the consistency model is left to Po-
larDBMS. However, in addition to the availability and latency requirements, the client
may specify that DBS must enforce a certain consistency model, such as 1SR. In this case,
PolarDBMS may consider the application workload to determine the most appropriate
1SR implementation (module) (see Example 2.3).

The choice of the consistency model may also be influenced via the costs. For ex-
ample, instead of enforcing a certain consistency model, application may quantify the
overhead for compensating the effects of relaxed consistency models in terms of costs.
PolarDBMS should then jointly consider all requirements, the application workload and
infrastructure properties (e.g., #replicas and their network distance), and decide on the
most appropriate consistency model and implementation so that the requirements are
optimally satisfied.

The dependencies between the different data management properties, and modules
implementing these properties, imply the necessity of finding the optimal module set,
which delivers the best module guarantees with regards to the integrated objectives.

The guarantees are then transformed back to policies as part of phase d.). At this
point, the negotiation process is finished and the policies are transformed into client
SLGs (phase e.)). The contrast between the originally defined SLOs and the offered SLGs
(phase f.)) may lead to the client choosing another DBS provider or to the adaptation of
the SLOs, if e.g., expBudget > maxBudget. In the second case, the client may modify its
desired availability requirement. This leads to the adjustment of the entire interaction
cycle.

2.4 Modular Database Systems

For requirements regarding data management in the Cloud, the underlying DBS has to
be highly modular so as to allow the Cloud provider to host a large variety of differ-
ent applications (with potentially heterogeneous client objectives) on top of the same
infrastructure.

The main objective of PolarDBMS is to automatically select, and, if necessary, dy-
namically adapt, the module combination and configuration that best provides the de-
sired data management guarantees by incorporating the incurring costs, the client ob-
jectives, application workload and the capabilities of the underlying system. This al-
lows to individually combine the modules that best fit the clients’ objectives and thus
overcomes the drawbacks of monolithic DBSs [GD01].

Obviously, modules are not independent from each other, and the disambiguation
of client SLOs is part of the system design and deployment process. The separation
of client objectives and policies from concrete mechanisms (modules) is in line with
well established design principles in areas like operating system design [MD88,W+74].
The use of a high level language allows clients to easily specify the requirements of
their applications and shields details of the underlying DBS. One goal is to dynamically
remove or replace parts of PolarDBMS when objectives or system parameters change,
thus to let the system incrementally evolve.

2.4 Modular Database Systems 23

The CCQ protocols are implemented as PolarDBMS-modules and consider a subset
of possible data management properties and client SLOs. The choice of which CCQ
modules and configurations are deployed is steered by the interaction cycle depicted in
Figure 2.2. The generated SLGs are continuously monitored, and if they do not satisfy
the SLOs, either the module configuration is adapted or the active module is replaced
by another (more suitable) CCQ module. Moreover, the CCQ modules can be integrated
(combined) to jointly consider a subset of SLOs that affect different data management
properties (Example 2.4).

3
Foundations of Transaction and Data
Management

IN THIS CHAPTER, we will provide an overview of the transaction and data model for
single-copy and distributed database systems that lay the foundation for the subse-

quent chapters. We will first summarize the main correctness models for concurrent
transactions in single-copy database systems, and describe protocols that implement
these models. Distributed database systems host data in different locations (sites). This
is in sharp contrast to single-copy databases, which consist of a single site. While data
distribution provides considerable advantages in terms of performance and availabil-
ity, from the formal point of view, it necessitates the extension of the correctness models
to consider the location of data. We will provide an in-depth discussion on these ex-
tensions, and describe protocols that implement the models in context of distributed
database systems. Fully replicated databases define a subtype of distributed database
systems, in which data object are physically present at multiple sites, i.e., have multiple
copies (replicas). In this context, we will define the freshness concept, which is eminent
for capturing correctness in distributed databases with replication, and describe proto-
cols that, by controlling the copies, define the freshness of data observed by transactions.

This chapter is concluded with a summary of the fundamental CAP/PACELC trade-
offs in distributed database systems, which have been the main driving force for the
development of different correctness models and protocols implementing these models.

3.1 Single Copy Database Systems

A database is a collection of objects denoted as denoted as LO = {o1, o2, · · · } (see Ta-
ble 3.1). Each object o consists of an id oid and a value denoted as val. It is up to an
application to organize the objects into types and decompose their values to a set of
attributes. This aspect is however not relevant in the context of this thesis. The values
of all data objects from LO at any time point denote the database state [BHG87]. A DBS
denotes the hardware and software that support access to the database through a set of
operations denoted as OP [BHG87]. In this thesis we will consider the read/write model,

26 3 Foundations of Transaction and Data Management

Symbol Description
LO Denotes the set of all data objects.
o Denotes a logical data object: o ∈ LO.
oid Denotes the id of o.
ov Denotes the v version of o.
val Denotes the value of an object.
T Denotes the set of all transactions.
t Denotes a transaction: t ∈ T.
tr Denotes a read-only transaction.
tu Denotes an update transaction.
OP Denotes the set of all operations.
op Denotes an operation: op ∈ OP.
r Denotes a read operation: r ∈ OP.
w Denotes a write operation: r ∈ OP.
AC Denotes the set of all actions.
AC.t Denotes the set of actions of transaction t.
ac Denotes an action: ac ∈ AC.
ac.op Denotes the operation of action ac.
ac.o Denotes the object o on which ac.op operates.
Term Denotes the set of termination actions.
term Denotes a termination action: term ∈ Term.
t.term Denotes the termination action of transaction t.
c Denotes a commit (termination) action: c ∈ Term.
a Denotes an abort (termination) action: a ∈ Term.
acy Denotes an action of transaction ty.
aci

y Denotes the ith action of transaction ty.
RS(t) Denotes the read-set of transaction t.
WS(t) Denotes the write-set of transaction t.
SCH Denotes the set of all schedules.
sch Denotes a schedule: sch ∈ SCH.
sch.T Denotes the set of transactions T of schedule sch.
RF(sch) Denotes the set of all reads-from between transactions

of schedule sch.
start(t) Denotes the start time of transaction t.
commit(t) Denotes the commit time of transaction t.
ts(t) Denotes the timestamp of transaction t.

Table 3.1: System model: symbols and notations.

in which OP consists of the read and write operations: OP = {r, w}. An action ac de-
notes an operation that acts on a specific logical: ac ∈ OP × LO. A r(oi)[vali] returns the
value vali of oi without any side-effect, whereas a w(oi)[vali] sets the value of oi to vali.

In [Gra81] the transaction concept was introduced, in which a transaction is defined
as a collection of actions that form a single logical unit. The transaction concept defines
a contract in terms of guarantees that are to be provided to applications by the DBS. In
particular, these guarantees include the following aspects [WV02]:

3.1 Single Copy Database Systems 27

customerId balance zip country

1313131 10’000 10005 US

1454333 3’542 3006 CH

1789999 4’125 94101 US

1645555 500 8001 CH

ustomerId balance zip cce

: (1645555, 550)
: (1313131, 1789999, 600): 1313131, 600 (1789999, 600)

Figure 3.1: Transactions in a bank scenario.

1. Correct execution of concurrent or parallel data access.

2. Correct execution of data access in case of failures.

A transaction is defined as follows:

Definition 3.1 (Transaction). A transaction t is a tuple: t = (AC,≺), with AC defining the
set of actions and ≺ denoting the precedence relation of actions:

AC = {ac1, ac2, · · · ack} ∪ Term
≺ ⊆ (AC × AC)

A term ∈ {c, a} denotes a termination action. Any termination action must be or-
dered after all other actions of a transaction with regards to ≺, i.e., aci ≺ term for all
1 ≤ i ≤ k. The set of objects that are read by a transaction t denote its read set (RS(t)),
whereas the objects that a transaction writes denote its write set (WS(t)).

A read-only transaction (tr), in contrast to an update (tu) transaction, does not include
any write action, i.e., WS(tr) = ∅.

3.1.1 ACID Properties

Transactions provide certain guarantees commonly referred to as ACID properties: (1)
atomicity, (2) consistency, (3) isolation, and (4) durability.

28 3 Foundations of Transaction and Data Management

Atomicity. Refers to the guarantee that a transaction is treated as unit of work. This
means that either all operations of the transaction have succeeded or the transac-
tion does not have any effect on the data. If the withdraw action of the transfer
transaction in Figure 3.1 succeeds, but the deposit fails, then the old value on the
withdrawn account (1313131) should be recovered.

Consistency. Is related to the guarantee that transactions should maintain consistency
of database, which is defined by application-specific constraints. For example,
the withdraw transaction in Figure 3.1 should not violate the constraint that an
account can not have a negative balance.

Isolation. Defines that the effects of interleaved transaction execution should corre-
spond to that of a serial execution. In the example with the bank in Figure 3.1 this
means that, although different clients may simultaneously initiate transactions ty
and tz that have non-disjoint read/write (RS(ty) ∩ WS(tz) �= ∅) or write/write
sets (WS(ty) ∩ WS(tz) �= ∅), i.e., are in conflict, their effects on the database
should correspond to a serial execution of the transactions. The coordination of
concurrent conflicting transactions is denoted as Concurrency Control (CC) and
implemented by a Concurrency Control Protocol (CCP).

Durability. Requires that once a transaction successfully commits, its changes to the
data survive failures.

3.1.2 Data (In-) Consistency

In [FJB09] the authors define data and transaction consistency as follows:

Definition 3.2. Data or database is consistent if its state satisfies given integrity constraints,
and a transaction is consistent if its actions on a consistent database result in consistent states.

From the Definition 3.2 one can conclude that given a consistent state of the database,
if the workload consists of read-only transactions then it is impossible to generate data
inconsistencies. Relaxing or avoiding ACID guarantees in case of workloads that con-
tain update transactions, may result in different inconsistencies, which are summarized
as follows.

Dirty read. In this case a transaction t1 reads a data object which has been modified by
another transaction t2. If t2 aborts, then t1 has read an object or a value that never
existed.

Non-repeatable read. A transaction t1 reads a data object oi. Later, another transaction
t2 updates the value of oi and commits. t1 re-reads oi and gets a different value.

Phantom read. In such a case, a transaction t1 reads a set of data objects satisfying a cer-
tain condition. Another transaction t2 creates (inserts) new objects that satisfy the
condition or deletes some of the existing objects. A second read from t1 provides
a different set of objects.

3.1 Single Copy Database Systems 29

Lost-update. It occurs when a transaction t1 reads an object oi. Another transaction t2
updates oi and commits. t1 updates the value of oi based on the earlier value (it
has received on the read) and commits. Then the update of t2 has gone.

Constraint violation. Let us assume two objects oi = 5 and oj = 10 and the constraint:
oi + oj ≥ 10. Transaction t1 reads r1(oi)[5] and r1(oj)[10]. Later, another transaction
t2 reads both objects (r2(oi)[5], r2(oj)[10]) and sets the value of oi to 0 (w2(oi)[0]). t2
can successfully commit as, from its viewpoint, it does not violate the constraint.
Next, t1 updates the value of oj to 5 and successfully commits, as it is not aware of
the t2’s update. The end result does however violate the constraint as oi + oj =
5 < 10.

3.1.3 Concurrency Control

Concurrency control is the activity of coordinating the interleaved execution of trans-
actions [BHG87]. The main goal of CC is the concurrent execution of transactions (in-
creased performance) with a consistency correctness corresponding to a serial (non-
concurrent) execution. In a serial system, transactions would be executed one after the
other, which would lead to total transaction ordering. In that case, no inconsistencies
would occur. However, such a system would be highly inefficient as it would not allow
any concurrency or parallelization of transaction execution.

A Concurrency Control Model (CCM) defines a correctness model for the execution
of concurrent transitions. It defines allowed/disallowed interleaving of transitions and
thus possible/impossible inconsistencies (see Section 3.1.2) [BBG+95]. A specific CCM,
such as Serializability or SI, is implemented by a CCP. The same CCM can be imple-
mented by different CCPs. For example, lock-based or timestamp-based protocols may
be used to provide serializable execution of transactions [WV02]. It is crucial however
that protocols comply with the correctness model, i.e., they should only produce trans-
action interleavings that are permitted by the model. Although it is not necessary that
a protocol produces every allowed interleaving, it is required that each interleaving of
concurrent transactions must be correct with regards to the correctness model.

The stronger the CCM the more inconsistencies are forbidden (the stronger the con-
sistency) and vice-versa [BHG87]. Based on the CAP/PACELC trade-offs and on the ob-
servation that not every application demands strong consistency [Fek05], existing DBSs
usually provide a range of models and protocols, leaving the choice of suitable model
to the application developers. The choice may consist of a single correctness model or a
mix of models and protocols [BBG+95, Ady99, Fek05, ALO00].

A correctness model is defined in terms of generated schedules. A schedule is a ma-
terialization of the correctness criteria, i.e., an interleaved execution of transactions con-
forming to that correctness criteria [WV02, BBG+95]. Schedules can be complete, i.e.,
contain all actions of each transaction; or incomplete. The first type of schedules is also
known as histories. Incomplete schedules are prefixes of histories and from now on will
be simply called schedules.

Definition 3.3 (Schedule). A schedule is a triple sch = (T,AC,≺AC), with AC =
AC.t1 ∪ ... ∪ AC.ty ∪ ... ∪ AC.tz denoting the set of actions of all transactions from T with

30 3 Foundations of Transaction and Data Management

≺AC⊆ (AC,AC) defining a partial order between the actions in AC, and ≺AC containing ≺t
of all t ∈ T.

Definition 3.4 (Committed Projection). The committed projection of a schedule sch is the set
ACc consisting of actions of committed transactions only:

ACc = ∪ AC.ty : ∀ty ∈ Tc with Tc = {ty ∈ Tc | ty.term = c} (3.1)

A CCM defines correctness criteria for correct schedules. A schedule sch can either
be correct or not with regards to that CCM:

ccm : SCH
→ { f alse, true}, with SCH denoting the set of all schedules (3.2)

A CCP implementing a CCM must only generate correct schedules as defined by the
ccm function:

∀sch ∈ SCH : ccm(sch) = true (3.3)

In what follows we will summarizes common CCMs and protocols implementing
those CCMs.

Serializability

The serializable correctness model informally defines that all schedules that are
equivalent to a serial execution of transactions are correct.

Definition 3.5 (Serial Schedule). Let AC.t denote the set of actions of transaction t ∈ sch.T. A
schedule sch is serial if for all pairs of actions acy, acz ∈ AC with acy ∈ AC.ty and acz ∈ AC.tz
and y �= z, if acy ≺sch acz then acy ≺sch ac′z for all actions ac′z ∈ AC.tz.

In a serial schedule there is no interleaving of transactions, i.e., any transaction is
fully executed before the start of another transaction. We assume any serial schedule
to be correct, although different serial schedules can lead to different intermediate and
final data object states.

Final State Serializability

Definition 3.6 (Final State Serializability). Two schedules sch and sch′ are said to be final
state equivalent, if they result in the same final state from a given initial state, which means that
they map initial database state into the same final database state [WV02]. A schedule sch is final
state serializable if it exists a schedule history sch′ so that sch is final state equivalent to sch′.

View Serializability

Definition 3.7 (Reads-From). Let sch denote a schedule and ty, tz transaction in sch. rz(o)
reads from wy(o) (y �= z), if wy(o) is the last write action so that wy(o) <sch rz(o) [WV02].

Definition 3.8 (View Equivalence). Two schedules sch and sch′ are view equivalent if the
following conditions are met:

3.1 Single Copy Database Systems 31

1. If tz reads the initial value of a data object in sch, then the same applies for sch′.

2. If tz reads a value of a data object written by ty in sch (reads-from), then the same applies
for sch′.

3. If tz executes the final write on a data object in sch, then the same applies for sch′.

Definition 3.9 (View Serializability). A schedule is view serializable if it is view equivalent
to some serial schedule.

Determining view serializability of a schedule is an NP-complete problem [WV02].

Conflict Serializability

Conflict serializability is based on the notion of conflicts between actions that is defined
as follows:

Definition 3.10 (Conflicts). Two actions acy ∈ ty and acz ∈ tz are in conflict if they access
the same data object and at least one of them is a write action: (acy.o = acz.o) ∧ (acy.op = w
∨acz.op = w)

The conflict equivalence between schedules is defined as follows:

Definition 3.11 (Conflict Equivalence and Conflict Serializability). The schedules sch and
sch′ are conflict-equivalent if the following conditions hold:

1. AC.sch = AC.sch′, i.e., both schedules have the same set of actions, and sch.T = sch′.T.

2. All pairs of conflicting actions appear in both schedules sch and sch′ in the same order
(≺sch and ≺sch′).

A schedule sch is Conflict Serializable (CSR) if it (its committed projection) is conflict-equivalent
to a serial schedule. Every conflict serializable schedule is also view serializable.

A view serializable schedule that is not conflict serializable contains blind writes,
i.e., writes on data object without prior reads.

Conflict serializability of a schedule can be proved if its precedence graph is acyclic
[BHG87]. The precedence graph contains nodes that denote committed transactions,
and edges from a node ty to a node tz if ∃acy, acz : acy ∈ ty, acz ∈ tz and acy is in conflict
with and precedes acz. If the precedence graph is acyclic then the serializability order
can be obtained from its topological sorting.

Order Preserving Serializability

Two types of order preserving schedules are well known in literature: Order-
Preserving Conflict Serializable (OCSR) and Commit Order-Preserving Conflict Seri-
alizable (COCSR) schedules [Pap79, BSW79].

Order preserving conflict serializability requires that two transactions that are not
interleaved appear in the same order in a conflict-equivalent schedule [WV02].

32 3 Foundations of Transaction and Data Management

Final-State Serializability

View Serializability

Conflict Serializability

OCSROCSRO

COCSR

Figure 3.2: Relationship between correctness models [WV02].

Definition 3.12 (OCSR Equivalence and Order-Preserving Conflict Serializability). Two
schedules sch and sch′ over the same set of transactions T are OCSR equivalent if AC.sch =
AC.sch′ and for all transactions ty, tz, if ty occurs completely before tz in sch′, then the same
holds also in sch. A schedule is OCSR if it is order-preserving conflict serializable equivalent to
a serial schedule.

Example 3.1 (CSR Schedule that is not OCSR)

The following schedule is CSR, but not OCSR [WV02]:

sch = w1(o1)r2(o1)c2w3(o2)c3r1(o2)c1 (3.4)

An equivalent serial order would be t3t1t2. However, there is a mismatch between
the serialization order and the actual execution order, since t2 has already committed
when t3 starts.

Definition 3.13 (Commit Order-Preserving Conflict Serializability). A schedule sch is
COCSR if the order of commits corresponds to the conflict-serialization order.

Example 3.2 (OCSR Schedule that is not COCSR)

The following schedule is OCSR, but not COCSR [WV02]:

sch = w3(o1)c3w1(o2)r2(o2)c2r1(o1)c1 (3.5)

Strict serializability is even stronger than order preserving serializability as it re-
quires the real time of transactions to be taken into account - it adds the strictness con-
straint on order-preserving serializability [HLR10].

The following relationships depicted Figure 3.2 exist between the aforementioned
correctness models [Vog09]:

3.1 Single Copy Database Systems 33

1. View-Serializability is a restriction of Final-State Serializability.

2. Conflict-Serializability is a restriction of View-Serializability.

3. Order-Preserving-Serializability is a restriction of Conflict-Serializability.

4. Commit-Order-Preserving Serializability is a restriction of Order-Preserving-
Serializability.

5. Strictness property restricts further the Order-Preserving-Serializability.

3.1.4 Multiversion Concurrency Control

A Monoversion Database (MoVDB) denotes a database in which a write action replaces
the existing value of a data object – update in place (Figure 3.3a). At any point in time,
for each object a single value exists in the database. In contrast to MoVDBs, in a Multi-
version Database (MuVDB) a write action does not replace the existing value of a data
object, but instead creates a new version of that data object containing the new value
(Figure 3.3b). We assume that each version of objects is maintained and ignore issues
related to storage space. If required, purging of versions may be applied. Additionally,
we assume that versions are transparent to applications unless more complex read se-
mantics are supported that require version-awareness, which is the case with archiving
applications [BS15b].

We will use the following notation to denote an action on a MoVDB: r(o)[value] and
w(o)[newValue]. A multiversion read action is defined as r(ov)[value] and returns the
value of the version v of o. Each write action wv(o)[newValue] generates the version v
of o that contains the newValue: ov[newValue], assuming that v does not exist yet, i.e.,
v > v′ for all existing versions v′.

As it can be seen in Figure 3.3b, the object oi has a corresponding set V(oi) of all
versions at time τ, with each version having a concrete value associated to it. Each
object has an initial (invisible) version denoted as oinitial

i [NULL], and a latest version at
time τ denoted as olatestτ

i .
The definition of correctness for multiversion concurrency control is based on the

assumption that the existence of versions is transparent to user transactions, which im-
plies that they naturally expect the same behavior as in the MoVDB case.

In context of MuVDBs, we distinguish two type of histories, namely a multiversion
history denoted as muvh, and singleversion histories denoted as movh [BHG87]. In movh
interpretation of a muvh each read step is mapped to the last preceding write step. No-
tice that a movh represent the users’ monoversion view on a MuVDB. It follows that the
correctness provided to users should correspond to that of MoVDBs, the interpretation
of actions by the scheduler is what changes in a MuVDB.

Definition 3.14 (Multiversion History). A multiversion history muvh for T is a partial order
≺ for which the following holds [WV02, BHG87]:

1. A translation function v f maps each wy(o) into wy(oy), and ry(o) into ry(oz). This
means that each action of each transaction in a history is translated to a multiversion
action.

34 3 Foundations of Transaction and Data Management

LOs Values

o₁

o₂

o₃

o₁-value

o₂-value

o₃-value

(a) Monoversion database: state at time τ

LOs Values

o₁

o₂

o₃

Versions
of LOs

v₁
v₂

v₁-value
v₂-value

v₁ v₁-value

v₁
v₂
v₃

v₁-value
v₂-value
v₃-value

(b) Multiversion database: state at time τ

Figure 3.3: Monoversion vs. multiversion databases.

2. The ordering of actions inside a transaction is stipulated: ∀ty ∈ T and for all actions
aci

y, acj
y ∈ ty : aci

y ≺ty acj
y =⇒ v f (aci

y) ≺ v f (acj
y).

3. If v f (rz(o)) = rz(oy), then wy(oy) ≺ rz(oy).

4. If wy(o) ≺ty ry(o), then v f (ry(o)) = ry(oy).

5. If v f (rz(o)) = rz(oy), and y �= z and cz ∈ muvh, then cy ≺ cz.

A multiversion schedule is a prefix of a multiversion history.

In Definition 3.14, condition (3) defines that a version of an object can be read only
when it has been produced. Condition (4) defines that if a transaction writes o before it
reads o, then it must read that version o that it previously created. Condition (5) defines
that before a transaction t commits, all transactions that t read from must already have
committed.

Serializability

Definition 3.15 (Multiversion Reads-From). In a MuVDB a transaction tz reads o from ty
if tz reads the version oy produced by ty.

Definition 3.16 (Multiversion Equivalence). Two mvh are equivalent if they have the same
operations and the same reads-from relationships. A history mvh is view serializable if there
exists a serial monoversion history movh for the same set of transactions such that mvh is view
equivalent to movh, i.e., has the same reads-from as the monoversion history mvh.

As described in [WV02], it is not enough to require the view equivalence of a multi-
version schedule to a serial multiversion schedule, since a serial multiversion schedule
must not have reads-from compatible with a serial monoversion schedule. The prob-
lem of deciding whether a multiversion history in multiversion-view serializable is NP
complete [WV02].

3.1 Single Copy Database Systems 35

Definition 3.17 (Multiversion Conflict). A multiversion conflict in a multiversion schedule
mvsc is a pair of actions rz and wy such that rz(oi) ≺mvsc wy(oy).

Notice that a multiversion conflict is defined on a data object and not on the versions
of data objects. Two write-actions wz(oz) and wy(oy) are not in conflict since both would
generate unique versions.

Definition 3.18 (Multiversion Conflict Serializability). A mvh is multiversion conflict seri-
alizable if there is a serial monoversion history with the same transactions and the same ordering
of multiversion conflicting actions.

Multiversion conflict serializability has polynomial-time membership problem
[WV02]. A multiversion schedule is multiversion conflict serializable if its multiver-
sion conflict graph is acyclic. The multiversion conflict graph has transactions as nodes
and an edge from tz to ty if tz reads the same object which is written by ty and read
comes before write (so there is a multiversion conflict).

SI

SI is a popular correctness model for MuVDBs, in which reads never block writes and
vice-versa [BBG+95]. It is included in major databases, such as Oracle [oraa] and Post-
greSQL [siP]. In Oracle it is even the strongest correctness model provided and is called
as serializable CCM.

Definition 3.19 (Snapshot Isolation). Let start(t) denote the start time of transaction t and
commit(t) its commit time. A multiversion schedule of transactions T satisfies the SI correctness
if following holds [WV02]:

• A read action ry(o) is mapped to the most recent committed write action wz(o) as of
start(ty).

• The write sets of two concurrent transactions are disjoint. Two transaction ty, tz are
concurrent if their life-times overlap, i.e., if either start(ty) < start(tz) < commit(ty) or
start(tz) < start(ty) < commit(tz).

The increased concurrency of SI compared to the serializable model comes at a cost.
It is well-known that SI permits certain non-serializable transaction execution, namely
the write-skew inconsistency (constraint violation) may occur in SI-based schedules
[BBG+95, WV02] (Example 3.3).

Example 3.3 (Write-Skew Inconsistency)

Let us assume two objects oi = 5 and oj = 10 and the constraint oi + oj ≥ 10. Transaction
t1 reads oi and oj. t2 reads oi and oj and then sets the value of oj to 0. Afterwards, t1 up-
dates oj to 5 leading to the write-skew inconsistency as the result violates the constraint
oi + oj = 5 < 10.

36 3 Foundations of Transaction and Data Management

3.1.5 Concurrency Control Protocols

The scheduler, a module of the DBMS, is responsible for ensuring that the generated
schedules are correct as defined by the correctness model. However, checking for equiv-
alence can be a very time consuming task. For example, in case of u transactions, in the
worst case u! serial schedules need to be checked. Instead of checking for equivalence,
each transaction should follow a CCP and that CCP ensures the generation of correct
schedules only.

The scheduler forwards received actions to a CCP, which then outputs correct sched-
ules with regards to the correctness model. Notice that a transaction may be aborted due
to reasons external or internal to the CCP. External reasons are mainly failures, which
arise outside the scheduler. In that case, the termination action is simply forwarded to
the CCP. A CCP can also decide to abort a transaction if it decides that an action may
lead to a violation of the correctness model. Depending on when the violation test is
done, CCPs can be classified as pessimistic or optimistic.

Pessimistic CCPs check for possible violations at the time they receive an action. If
the execution of an action does not violate the correctness criteria, that action is for-
warded to the underlying layers of the DBMS for execution; otherwise the correspond-
ing transaction is blocked or aborted. Optimistic CCPs, also known as certification-
based CCPs, check for violations once the commit action is received for a transaction.
If the execution of the commit would lead to a correctness violation, then one or more
transactions are aborted.

In what follows we will provide a summary of CCPs for single-copy DBSs.

2PL

In lock-based protocols the lock mechanism is used as a means to control access to data
objects. There two types of locks, exclusive (X) and shared(S) locks. The owner of an
exclusive lock on data object can read and write that data object, whereas if only a
shared lock is owned that data object can only be read but not written. A lock on a data
object can be acquired only if the requested lock is compatible with already held locks on
that data object. The compatibility matrix is defined as follows:

SHARED EXCLUSIVE
S TRUE FALSE
X FALSE FALSE

Table 3.2: Lock compatibility matrix.

Each transaction before it can execute an action, has to acquire the corresponding
lock on the object. For a read action a shared lock has to be acquired, whereas for a
write action an exclusive lock. The locks are released immediately after the operation is
executed. Such a simple protocol would not forbid the well-known anomalies [WV02].

2PL is a well-known lock-based protocol that ensures conflict-serializable schedules.
The Basic Two-Phase Locking (B2PL) has two phases, namely a growing phase and
a shrinking phase. In the growing phase, transactions may obtain locks, but are not

3.1 Single Copy Database Systems 37

allowed to release any lock. In the shrinking phase, transactions release locks and are
not allowed to obtain any new lock. It is well-known that B2PL can generate deadlocks,
a situation in which no transaction can proceed as they all wait for locks held by the
other transactions.

Conservative Two-Phase Locking (C2PL) requires that each transaction acquires all
locks at the beginning. If a transaction cannot acquire all locks, then it does not hold any
lock. It is part of the implementation detail if the transaction is immediately aborted,
retries the lock acquisition or is put in a wait queue. Similar to the B2PL, locks are
released regularly in phase two.

Strict Two-Phase Locking (S2PL) releases shared locks regularly in phase two,
whereas the exclusive locks are released only after the end of the transaction. Strickt
Strong Two-Phase Locking (SS2PL) keeps all locks, shared and exclusive ones, until
after the end of a transaction. SS2PL can be used to generate COCSR schedules. In
general, there are conflict-serializable schedules that can not be obtained when 2PL is
used [WV02].

Timestamp-Ordering (TO)

In timestamp-based protocols each transaction will receive a unique timestamp denoted
as ts(t). All operations of t inherit the ts(t). A timestamp-based schedule has to order
conflicting actions based on the timestamps of their transactions. For two conflicting
actions acy(o) and acz(o) the following has to hold:

acy(o) ≺ acz(o) ⇔ ts(ty) < ts(tz)

The basic approach to enforce the TO rule is as follows [BHG87]:

• Each accepted action is immediately forwarded for execution in first-come-first-
serve order.

• An action is only rejected if it comes too late. An action acy(o) comes too late, if
another conflicting action acz(o) with ts(tz) > ts(ty) has already been processed.
In that case ty is aborted.

3.1.6 Concurrency Control and Recovery

While CC addresses the isolation of transactions, it is also necessary to consider the re-
covery of transactions in case of failures in order to ensure the atomicity and durability
guarantees. Different failures may occur during the transaction execution, such as fail-
ures in the operating system or DBS, transient failures, media failures and others. In
what follows we will focus on the aspect of transaction recovery, which is needed to im-
plement transaction rollbacks in case of failures, i.e., to undo the effects of transactions
in presence of concurrent transactions. The atomicity property requires the ability to
completely undo the effects of an aborted transaction (Example 3.4).

38 3 Foundations of Transaction and Data Management

Recoverable Schedules

Example 3.4 (Impossible Recoverability)

Let us consider the following schedule [WV02]:

w1(o1)r2(o1)c2a1

In the depicted schedule t2 reads o1 that was written by t1 and commits. Therefore, t1’s
effects cannot be undone. Although acceptable by a serial scheduler, such a schedule
should be avoided as it violates the atomicity guarantee.

Based on the Example 3.4 we can conclude that correctness models are needed that
guarantee both serializability and transaction recovery.

Definition 3.20 (Recoverable Schedules). Let RF(sch) capture all reads-from relations be-
tween transactions in sch (see Definition 3.7):

RF(sch) = {(ty, o, tz)|rz(o) reads-from wy(o)}
The schedule sch is recoverable, if the following condition holds: ∀ty, tz ∈ sch, ∀(ty, o, tz) ∈
RF(sch) ∧ y �= z ⇒ cy ≺sch cz.

Schedules that Avoid Cascading Aborts

As depicted in Example 3.5, recoverable schedules do not avoid cascading aborts, which
may occur if a transaction reads values from a transaction that aborts.

Example 3.5 (Cascading Aborts)

Consider the following schedule: w1(o1)r2(o1)w2(o2)a1. As t2 reads from t1 and t1 aborts
it is necessary to also abort t2.

The example above necessitates the definition of schedules that avoid cascading
aborts.

Definition 3.21 (Avoiding Cascading Aborts). A schedule sch avoids cascading aborts if the
following condition holds: ∀(ty, o, tz) ∈ RF(sch) ∧ y �= z ⇒ cy ≺sch rz(o).

Strictness

In order to allow undo of actions, usually the before-image of objects are written. How-
ever, that does not guarantee correct undo of effects as shown by the following example:

Example 3.6 (Incorrect Undo)

Let us consider the following schedule: w1(o1)w2(o1)c2a1. Applying the before image
as a consequence of the t1’s abort may lead to t2’s effects being undone.

3.1 Single Copy Database Systems 39

Definition 3.22 (Strict Schedule). A schedule sch is strict if the following applies: wz(o) ≺sch
acy(o) ∧ y �= z ⇒ az ≺sch acy(o) ∨ cz ≺sch acy(o).

Rigorousness

While a strict schedules avoids write/read and write/write conflicts between uncom-
mitted transactions, rigorous schedules additionally avoid read/write conflicts between
uncommitted transactions.

Definition 3.23 (Rigorous Schedules). A schedule sch is rigorous if the following condition
holds: ∀rz(o) ≺sch wy(o), y �= z ⇒ az ≺sch wy(o) ∨ cz ≺sch wy(o).

2PL and Transaction Recovery

Both B2PL and C2PL described in Section 3.1.5 generate schedules which are not free of
cascades. S2PL generates strict schedules, whereas SS2PL generates exactly the class of
rigorous schedules [WV02].

40 3 Foundations of Transaction and Data Management

3.2 Distributed Database Systems

Symbol Description
S Denotes the set of sites.
s Denotes a site: s ∈ S.
PC(oi) Denotes the set of physical copies of oi.
pci,j Denotes the physical copy of oi hosted at site j: pci,j ∈

PC(oi).
rep f ull Denotes the mapping of logical objects to sites in a

fully replicated DDBS.
reppartial Denotes the mapping of logical objects to sites in a

partially replicated DDBS.
rep f ull Denotes the mapping of logical objects to sites in a

fully replicated DDBS.
PART Denotes the set of data partitions.
part Denotes a data partition: part ∈ PART.
σPri Denotes the selection operator applied on a set of log-

ical objects. The operator will select only those objects
that satisfy the predicate Pri.

ΠATTi Denotes the projection operation on a set of attributes
ATTi. The operator will select all values contained in
the attributes.

rstart(t) Denotes the real start time of transaction t.

Table 3.3: Distributed database model: symbols and notations (see also Table 3.1).

In what follows we will extend the single-copy database model described in Sec-
tion 3.1 to the distributed database case. The list of symbols and notations is summa-
rized in Table 3.3.

A distributed database system consists of a set of sites S = {s1, s2, s3, ...}, that host the
database, i.e., the logical objects (LO), and the software that manages the data, which is
denoted as a DBMS. We assume the sites to have identical (homogeneous) DBMSs.

As described in [ÖV11], both properties, namely the distribution of data and the ex-
istence of network, distinguish DDBS from single-copy DBS. These properties, despite
the clear advantages of DDBSs, lead to problems that are fare more complex with re-
gards to desired guarantees, such as data consistency, compared to single-copy DBSs
(Figure 3.4).

There are different reasons that have led to the development of DDBSs, ranging from
availability, performance, scalability and elasticity, to economical and sociological as-
pects, such as assigning responsibility of data to units of an enterprise, that provides
them with all necessary resources to accomplish their tasks, and increases their respon-
sibility towards business [d’O77].

3.2 Distributed Database Systems 41

DBMS

DB

Site

DBMS

DB

Site

DBMS

DB

Site

DBMS

DB

Site

DBMS

DB

Site

DBMS

DB

Site

DBMS

DB

Site DBMS

DB

Site

Figure 3.4: Distributed database system.

3.2.1 Data Distribution Models

DDBSs differ in the distribution model of logical objects to sites, which is closely related
to the complexity degree of the functionality required for providing the desired data
guarantees, such as availability and scalability.

Based on the distribution model, each logical object oi is mapped to a set of physical
copies PC(oi) = {pci,j, pci,k, · · · , pci,r} with pci,j denoting the physical copy of oi hosted
at site j.1 In what follows we will define the common distribution models, which are
depicted in Figure 3.5.

Data Replication

Definition 3.24 (Full Replication). In a fully replicated DDBS each object is present at each
site. The mapping function of logical objects to sites is defined as follows:

rep f ull : LO
→ S × · · · × S︸ ︷︷ ︸
|S| times

Definition 3.25 (Partial Replication:). In a partially replicated DDBS, each logical object is
available only at a subset of sites (Equation (3.25)). We distinguish between pure partial replica-
tion and hybrid partial replication. In a pure partial replication no site contains all data objects,

1In our model we assume that each logical object is mapped to at least one site.

42 3 Foundations of Transaction and Data Management

ID
 …
 …
 …
 …

, , ,

, , , , ,

, , ,

,

,

, ,

, ,

, ,

Figure 3.5: Logical objects and their mapping to sites.

whereas hybrid partial replication means that some sites contain copies of all and others contain
a copy of only a subset of data objects:

reppartial : LO
→ P(S) \ {{S}}

Data Partitioning

The goal of data partitioning is to generate subsets of data denoted as partitions:
PART = {part1, part2, . . . }. The partitions should satisfy the following conditions:

• Completeness. The decomposition of logical objects to partitions is complete iff:
∀o ∈ LO ∃part ∈ PART : o ∈ part.

• Reconstruction. There should exist an operator ∇ that reconstructs LO from
PART.

• Disjointness. The partitions should be disjoint, i.e., ∀i, j ∧ i �= j : parti ∩ partj = ∅.

There are three basic approaches to partition a database, namely horizontal, vertical and
hybrid [ÖV11]. In what follows we will provide the definitions for each of the different
approaches based on the relational model. We assume that the object values have been
decomposed into a set of attributes: ATT = {att1, att2, . . . , attn}.

Definition 3.26 (Horizontal Partitioning). Horizontal partitioning splits data across parti-
tions based on predicates applied to a set of attributes. In terms of the relational model, horizontal
partitioning can be defined as a selection on the logical objects [SKS05]:

parti = σPri(LO)

3.2 Distributed Database Systems 43

customer balance zip country

1313131 10’000 10005 US

1454333 3’542 3006 CH

1789999 4’125 94101 US

1645555 500 8001 CH

customer balance zip country

1454333 3’542 3006 CH

1645555 500 8001 CH

customer balance Zip country

1313131 10’000 10005 US

1789999 4’125 94101 US

e zip country customer balance

Customer data

CH-site 1 US-site 1

customer balance Zip country

1313131 10’000 10005 US

1789999 4’125 94101 US
US-site 2

ustomer balanc

55 500
11

Zip cou

Figure 3.6: Banking application with partitioned and replicated data.

Definition 3.27 (Vertical Partitioning). In the vertical partitioning, each partition is defined
as a projection on a subset of attributes [SKS05]:

parti = ΠATTi⊂ATT(LO)

Definition 3.28 (Hybrid Partitioning). Hybrid partitioning consists of a horizontal partition
followed by a vertical partitioning, or a vertical partition followed by a horizontal partitioning:

parti =

{
σPri(PiATTi(LO)

ΠATTi(σPri(LO))

As our data model is agnostic to the concrete decomposition of the object values, we
will stick to the horizontal partitioning based on the oid, i.e., the predicate Pri is applied
on oid (Figure 3.5).

Once the partitions are determined, the next task is their mapping to sites, which is
also known as allocation:

allocation : PART
→ S

The allocation function is surjective, i.e., each site will get a partition and some sites
may get multiple partitions assigned. By mapping PART to P(S) it is possible to neglect
some sites during the allocation process.

3.2.2 Advantages and Challenges of Distributed Database Systems

Let us consider a simple bank with branches at two different locations, for instance in
Zurich and New York. Clerks in Zurich must have access to Swiss customers, i.e., cus-

44 3 Foundations of Transaction and Data Management

tomers having a Swiss zip code, and those in New York must access customers residing
in the US in order to perform their tasks. In a centralized DBS, depending on the geo-
graphical location of the DBS, either the Zurich’ clerks or the New York’ clerks or both
would incur a high network latency for accessing their customers. Such a latency may
become a major bottleneck to performance [BDF+13].

However, as depicted in Figure 3.6, we can partition the data and place all Swiss cus-
tomers to a DBS located in Zurich and all US customers to a DBS located in New York.
This would provide satisfiable performance to the corresponding clerks. Moreover, by
replicating certain data partitions, we can increase the availability of particular data in
order to satisfy business or legal requirement. Furthermore, in case of an increased load,
i.e., increased number of clerks accessing the data, the DDBS can add additional sites
and incorporate these sites in the load distribution.

In summary, DDBSs provide clear advantages compared to centralized DBSs. How-
ever, clients, i.e., applications should be shielded from the underlying low-level details
of the system, which means that the DDBS should provide transparent data manage-
ment. The effort for ensuring transparency in DDBSs is considerably higher compared
to that of centralized DBSs. This is related to the fact that data is not available at a single
site, which necessitates a network communication between the sites. Moreover, site and
network failures may occur.

If we consider the banking application depicted in Figure 3.6, the clerks should be
provided with data transparency that can be materialized as follows:

• Partitioning transparency. The clerks should not be aware how the data has been
partitioned.

• Location transparency. The clerks should not be aware of the physical location of
objects.

• Replication transparency. The DBS may replicate single objects, a subset of ob-
jects or all objects to increase availability or performance. The existence of multiple
copies an object should not be of concern to the clerks.

Distributed Transactions

A distributed transaction is a transaction that accesses data residing on at least two dif-
ferent sites. Distributed read-only transactions consist of read actions that access ob-
jects residing at different sites, and distributed update transactions must commit their
changes at two or more sites. As depicted in Figure 3.7 the actions of a global (dis-
tributed) transaction are mapped to local transactions consisting of actions on physical
copies of the objects residing at a specific site. The global transaction t must have a ter-
mination action in every local (sub-) transaction, that must globally be consistent. This
means that the same termination action must be present at each local transaction and
this requires a coordination between sites (local sub-transactions). In order to achieve
a global consensus on the faith of a distributed transaction by considering various fail-
ures a distributed commit protocol must be used [WV02]. 2PC is the most widely utilized
protocol for the coordination of distributed transactions. It introduces a transaction coor-
dinator that mediates between the transaction commit and the participating sites – also

3.2 Distributed Database Systems 45

, ,

, ,

: ()
Global

transaction:

: , , : ,

Local
transactions:

Figure 3.7: Local vs. global transactions.

referred to as agents – in two phases, namely the preparation phase and the commit phase
(Figure 3.8):

• Preparation phase – In the first phase the coordinator will ask every agent whether
it is ready commit a transaction by sending a PREPARE message. Each agent will
reply with YES or NO vote depending on whether it is able to commit or not.
After an agent has voted, its uncertainty phase begins, and the agent is not allowed
to unilaterally take any decisions prior to receiving the final decision from the
coordinator.

• Commit phase – In the second phase the coordinator collects all votes and will de-
cide based on them on the fate of the transaction. If all agents have voted with
YES, the decision is to commit, otherwise to abort the transaction. The agents are
notified via a COMMIT or ABORT messages about the final decision. Upon re-
ception decision, each agent will either commit or abort its local transaction, and
acknowledge that with an ACK message to the coordinator.

2PC guarantees the safety property, i.e., that "nothing bad will ever happen" [WV02].
This means that all sites of a DDBS will never decide on a different outcome. However,
it does not guarantee the liveness property in case of failures. It is well known that 2PC is
a blocking protocol.

Let us assume that the coordinator fails after having received the votes. During that
period of time, the agents remain blocked (uncertain) waiting for the decision. This
has considerable impact on the overall availability of the system as all resources must
remain locked during the uncertainty phase. By the use of the cooperative termination
protocol the agents can reach a decision even if the coordinator is unavailable. However,

46 3 Foundations of Transaction and Data Management

CoordinatorCoordinator CoordinatorAgent 1 CoordinatorAgent 2

Preparati-
on phase

Commit
phase

Uncertainty
period

Uncertainty
period

Figure 3.8: Message flow in 2PC between the coordinator and two agents.

the precondition is that at least one of the agents received the decision. If all of them
are uncertain, then the cooperative termination protocol causes considerable extra costs,
without being able to reach a decision [BG84].

Three-Phase Commit (3PC) protocols avoids blocking in case of site failures only at
an additional message overhead. Moreover, it may violate agreement (safety) in case of
link failures [WV02]. Paxos is another agreement protocol that is safe and largely-live,
i.e., avoids blocking if less than half of the sites fail [Lam02].

Data distribution does however not per se lead to distributed transactions. Let us
assume that the data has been partitioned in such a way that it perfectly matches the
access patterns of transactions, which are defined by the read and write sets of trans-
actions. By a perfect match we mean that each single partition can serve transactions
without a coordination with any other partition, i.e., each transaction is non-distributed.
In that case, data management challenges are similar to those of a single-copy DBS.

3.2.3 Concurrency Control for Distributed Databases

With respect to concurrency control for distributed databases we distinguish between
local and global correctness. By local correctness we mean the correctness provided at a
particular site, whereas global correctness is the system-wide correctness. Local correct-
ness does not imply global correctness [WV02, BHG87].

3.2 Distributed Database Systems 47

, ,

, ,

: ()

: , , : , ,

()

Serialization
order:

Serialization
order:

Figure 3.9: Local vs. global correctness.

Example 3.7 (Local vs. Global Correctness)

In the scenario depicted in Figure 3.9, a transaction t is submitted for execution to a
distributed (partitioned) DBS. Transaction t is split in two sub-transactions t1 and t2 that
are serialized differently at the sites. While site s1 serializes them as t1 t2, s2 decides for
the opposite order, namely t2 t1. From the local point of view, the execution is correct.
However, from the global point of view it is incorrect.

The globally provided correctness guarantees may be stronger, weaker than or
equivalent to the local correctness guarantees. Example 3.7 depicts a scenario in which
the global CCM is weaker than the locally provided CCMs. In [BHEF11a] the authors
provide a protocol that guarantees global serializability on top of a systems with sites
providing locally only SI correctness. [SW00] follows similar goals, by providing a pro-
tocol that guarantees serializability for federated databases, when the sites use different
correctness models and protocols.

Distributed 2PL

The 2PL protocol for single-copy systems can be easily extended for the DDBSs. Now,
each transaction must transmit lock requests and unlock request to each of the sites
in the DDBS in a consistent manner. It should be avoided that a transaction releases
locks at one site and obtaining locks at other sites. Such a Distributed 2PL implies
global knowledge, i.e, that each site has knowledge on local schedulers. Compared
to a centralized 2PL the message overhead is considerable. Moreover, based on the
variant of 2PL deadlocks are possible, and their detection and resolution becomes more
complex compared to the single-copy case.

48 3 Foundations of Transaction and Data Management

Distributed Timestamp-Ordering

As already described for the centralized case, timestamp-ordering requires that if two
operations are in conflict, then they are ordered based on the timestamps of the cor-
responding transactions. This part of the protocol remains the same also for DDBSs.
However, the assignment of timestamps is more difficult. So, one can have a dedicated
site in the system responsible for assigning timestamps or do the timestamp assignment
in a distributed manner by using for example lamport clocks. Their global uniqueness
can be achieved by adding the site id as a prefix to the local lamport clock [TvS07a].

3.3 Distributed Database Systems with Replication

Symbol Description
f reshness(o, v, w) Defines how outdated or recent is ov with regards to

another version w of o.
latestτ(o) Denotes the most recent version of o as of time τ.
s.LO Denotes the set of logical objects hosted by the site s.
t.LO Denotes the set of objects accessed by transaction t.

t.LO = RS(t) ∪ WS(t).
R.All(oi) Denotes the set of all read actions applied to all phys-

ical copies of oi.
W.All(oi) Denotes the set of all write actions applied to all phys-

ical copies of oi.
wts(o) Denotes the write timestamp of object o.
rstart(t) Denotes the real start time of transaction t.

Table 3.4: Distributed database with replication: symbols and notation.

A distributed database, in which multiple copies of data objects are available is
called a replicated DBS (see Section 3.2.1). The main reasons for data replication are
as follows [ÖV11]:

Data availability. By storing multiple copies of all or subset of data, the system be-
comes resilient to failures. Even if some of the sites become unavailable, data can
be accessed from other sites.

Performance. Data replication allows the placement of data closer to the query, i.e., to
the user accessing the data. This is especially beneficial for large-scale applications
that serve users residing at different geographical locations.

Scalability. The available copies can be used to distribute the load. If the load increases,
new copies can be deployed and used for load distribution, so that the response
time remains acceptable.

3.3 Distributed Database Systems with Replication 49

3.3.1 Data (In-) Consistency

In addition to the inconsistencies for single-copy databases described in Section 3.1, in
DDBS with replication, relaxing ACID guarantees, may result in additional inconsisten-
cies, which are materialized as follows:

Recency violation. Different sites hosting replicas of an object may, at least temporarily,
reflect different states. This inconsistency may have a cascading effect if transac-
tions update object values based on stale values and may lead to other inconsis-
tencies, such as the lost-update or constraint violation. It should be noted that
recency violations are inherent to replicated databases, as in non-replicated ones
there is always a single copy of an object that reflects the most recent value.

Inconsistent ordering of updates. In these case different sites reflect different views on
what the value of an object should be. Inconsistent ordering can be temporal or
permanent. The previous case may be a result of either the impossibility of com-
munication between sites, or the temporal avoidance of coordination in order to
not penalize availability and performance. However, the sites will eventually con-
verge towards the consistent state. In the latter case, there is a missing consensus
on what the final value of an object should be.

3.3.2 Data Freshness

As we described in Section 3.1.2, in DDBSs with replication, sites may, in certain points
in time, reflect different data states. This divergence between the hosts may lead to
situations in which applications access stale data, i.e., do not access that version of data
objects that represents the most recent value as of time τ.

In what follows we will provide a model capturing recency in replicated DBSs. Let
us assume that a timestamp oracle assigns a system wide unique timestamp to transac-
tions 2. Each update transaction assigns at commit its timestamp to all objects that it has
modified. The oracle is free to generate the timestamp using different strategies, such
as for example using its local physical clock, a simple counter, etc. Our recency model
requires however the generated timestamps to be strictly monotonic increasing.

Definition 3.29 (Object Freshness). Let latestτ(o) denote the globally most recent (commit-
ted) version of o at time τ (Table 3.4). The freshness of an object oi with the timestamp (version)
v defines how outdated or recent ov is with regards to latestτ(o) :

f reshness(o, v) =

{
1 if v > latestτ(o)

v
latestτ(o)

otherwise

We can now extend the definition of freshness at the level of sites as follows:
2The timestamp must not reflect the real time of transactions. For example, two transactions t1 and t2

may in real-time start in the sequence t1 t2. However, as t2 may reach first the timestamp oracle it will
also get a lower timestamp than t1.

50 3 Foundations of Transaction and Data Management

Definition 3.30 (Site Freshness). Let s.LO denote the set of objects hosted by s, ov denote the
current version (at time τ) of o ∈ s.LO at s, and latestτ(o) denote the globally latest version of
o. Then, f reshness(s) defines how recent s is with regards to the globally most recent versions
of the data it hosts:

f reshness(s) = arg min
o∈s.LO

f reshness(o, v)

Similar to the recency of a site with regards to all objects it hosts, we can define the
recency of a site with regards to a transaction t, i.e., objects accessed by t:

Definition 3.31 (Site Freshness with regards to a Transaction). Let t.LO denote the set of
objects accessed by a transaction t. The freshness of site s with regards to t is defined as follows:

f reshness(s, t) = arg min
o∈t.LO∧o∈s.LO

f reshness(o, v)

In existing DBSs, such as SimpleDB [sima], often, data freshness is defined in terms
of an upper bound of the inconsistency window (inconsistencyWindow ∈ [0, ∞[), which
defines the time frame in which sites diverge with regards to some data objects. An
inconsistencyWindow = 0 means that the state of objects at different sites are guaranteed
to represent the most recent versions. The bigger the inconsistencyWindow the lower the
freshness of outdated objects, with f reshness → 0 as inconsistencyWindow → ∞.

3.3.3 Replication Protocols

The presence of multiple object copies requires a mapping of an action to an action on a
set of physical copies. This task is commonly referred to as Replica Control (RC) [KJP10]
and is implemented by a RP.

An RP defines the mapping of actions on logical objects to actions on physical copies:

Definition 3.32 (Mapping of Actions on LOs to Actions on PCs). Let R.All(oi) =
{r(pci,1), r(pci,2), . . . , r(pci,|S|)} denote the set of read actions applied to all physical copies,
and W.All(oi) = {w(pci,1), w(pci,2), . . . , w(pci,|S|)} the set of write actions applied to all
physical copies. The concrete mapping of an action to the physical copies is defined by the RP:

r(oi)
→ P(R.All(oi))

w(oi)
→ P(W.All(oi))

Concurrency control and replica control are not orthogonal. Moreover, they can
not be isolated from other tasks, such as load balancing. The goal of load balancing
is to choose the optimal site for executing a transactions based on their load, capacity,
network distance, monetary cost, etc. Clearly, load balancing strategy interferes with
concurrency and replica control, that determine the overall consistency guarantees. For
example, assuming strong consistency requirements, transactions can be load balanced
only between sites that are up-to-date.

RPs can be classified according to where transaction are coordinated and when the
results of updates are propagated to other replica sites in the system [GHOS96]. Ac-
cording to the first parameter an RP can either be a primary copy or update-anywhere. In

3.3 Distributed Database Systems with Replication 51

the primary copy approach there is a dedicated replica site responsible for the trans-
action coordination, whereas in the update anywhere approach a transaction can be
executed at any site. According to the second parameter an RP can be eager or lazy.

In what follows we will summarize RPs based on the when parameter by consider-
ing only update-anywhere approach, which is the most challenging, but also the most
interesting approach.

Read-One-Write-All and Read-One-Write-All-Available (ROWA(A)) RPs

In the ROWA approach a read can access a single physical copy, whereas a write must
eagerly update all sites:

r(oi)
→ R.All(oi)

w(oi)
→ {{W.All(oi)}}
An eager update means that the transaction must ensure that affected set of sites

receive the updates before the result is returned to the client. In contrast to ROWA,
the ROWAA approach will eagerly update only the available sites. This means that,
sites that are not available at the time of update propagation, will receive the updates
after their recovery. This increases the availability of writes, and the cost of complex
reconciliation once the failed sites recover.

Quorum-based RPs

In quorum-based RPs, only a subset of replica sites is updated eagerly. However, the
subsets must be chosen in such a way that any two writes or a write and read on the
same data object overlap. This is known as the intersection property. For quorum-based
RPs, the intersection property is crucial as it allows a consistent decision taken by a
subset of sites on behalf of all sites [JPAK03], which, in turn, is necessary for guar-
anteeing access to most recent data. It is well known that quorum-based RPs have a
lower overhead compared to ROWA(A) for writes at the cost of increased overhead for
reads [JPAK03]. Reads must access a subset of sites that form a read quorum. Based on
timestamps that are attached to the updates, it is possible to determine the most recent
version in a read quorum, which is then also guaranteed to be globally the most recent
one due to the intersection property. The mapping of reads and writes is defined as
follows:

r(oi)
→ R(oi) ∈ P(R.All(oi)) ∧ |R(oi)| ≤ |S|
w(oi)
→ W(oi) ∈ P(W.All(oi)) ∧ |W(oi)| ≤ |S|
R(oi) ∩ W(oi) �= ∅

In context of quorum-based, RPs R(oi) denotes the read quorum (rq) of oi and W(oi)
the write quorum (wq) of oi.

Different quorum RPs have been developed, such as the Majority Quorum (MQ)
[Tho79, Gif79] or the Tree Quorum (TQ) [AE90]. All have the intersection property in
common, but they differ on the costs generated for transaction execution. Additionally,

52 3 Foundations of Transaction and Data Management

Figure 3.10: Example of quorum construction using LWTQ: rq = {s1} and wq =
{s1, s2, s5}.

they differ in the overhead generated for organizing the sites in a certain logical struc-
ture, which is a precondition for the intersection property in some protocols, and for
maintaining that structure [JPAK03]. Typically, the quorums are the same for all data
objects: given q ∈ {wq, rq}, then q(o1) = q(o2) = · · · = q(o|LO|).

Quorum RPs can be static or dynamic with regards to quorum construction. In static
protocols the quorums do not change except in cases of site failures, whereas dynamic
protocols are able to adapt the quorums to, for example, application workload.

MQ The MQ protocol is a simple quorum-based RP, in which each site s is assigned a
number of votes votes(s) ≥ 0. The quorums are then chosen in such a way so that they
exceed half of total votes [Tho79, Gif79, JPAK03]:

#votes = ∑
s∈S

votes(s)

wq = �#votes
2

�+ 1

rq = �#votes + 1
2

�

(3.6)

In the simplest form, each site has the same amount of votes, all with the same
weight. It follows that wq can be created from a majority of sites, whereas an rq by
half of the sites if |S| is even, or majority of sites if |S| is odd.

TQ In the TQ protocol, the sites are logically organized in a tree structure with a degree,
which defines the maximum number of children for each site in the tree, and height,
which defines the longest path from the tree root to a leaf node. A tree quorum q =
〈l, ch〉 is constructed by selecting the root of the tree, and adding ch children to the

3.3 Distributed Database Systems with Replication 53

, ,

, ,

: [5] : [?]

Figure 3.11: Behavior of transactions in a lazy replicated database system.

root. Then, child nodes are recursively added to each node until the depth l is reached
[AE92]. In order to guarantee the intersection property, the read (rq = 〈lr, chr〉) and
write quorums (wq = 〈lu, chu〉) must overlap. This means that the following conditions
must hold: lr + lu > h and chr + chu > degree. Moreover, two write quorums must
overlap: 2 · lu > height and 2 · chu > degree.

The Log-Write Tree Quorum (LWTQ) is a special instance of the TQ with rq =
〈1, degree〉 and wq = 〈height, 1〉 [AE92]. Using such a strategy leads to reads access-
ing a single site (root) in a failure-free environment, and updates accessing a path down
the tree. In the example depicted in Figure 3.10, a read quorum consists of the root node
(s1), whereas the write quorum may consist of s1, s2 and s5, as it must access one node at
each level. If a site that is not part of the write quorum receives an update transaction,
then it can either forward it to the root for execution, or can access the read quorum
for getting the most recent data, process the transaction and eagerly commit all sites
consisting the write quorum. According to the analysis in [JPAK03], LWTQ has best
scalability compared to other TQs.

Lazy Protocols

In lazy RPs update transactions commit only at local site. The updates to other sites are
propagated later. The decoupling of the update propagation from the transaction exe-
cution, and response delivery to the client, has considerable performance advantages
compared to eager approaches as there no network communication during the transac-
tion execution. This effect can be considerable if the sites are distributed in a wide area
network. Thus, the mapping of writes on logical objects to writes on physical copies is
defined as follows:

w(oi)
→ W.All(oi)

This behavior of propagating updates after the response has been delivered to the
client, together with the consistency demands of applications, have a considerable im-
pact on the behavior of read actions as described in the Example 3.8.

Example 3.8 (Behavior of Reads in a Lazy Replicated DBS)

Let us consider a fully replicated DBS with two sites depicted in Figure 3.11. The
update-transaction t1, which updates o1, is executed at s1 and successfully commits at
τa. The updates from s1 to s2 are propagated at τa + δ. This means that at any time point

54 3 Foundations of Transaction and Data Management

τ with τa < τ < τa + δ the sites s1 and s2 reflect different values of o1. This period is
also known as the inconsistency window. Let us assume that t2 reads o1 at s2 during the
inconsistency window. If the application is satisfied with an outdated value, then it is
sufficient to read the value of o1 at s2, and return its value to the client. However, if the
application requires access to the most recent version of o1, then t2 must access o1 also
at s1 in order to satisfy the consistency requirements.

Based on Example 3.8 we can define the mapping of a read action as follows:

r(oi)
→ R(oi) ∈ P(W.All(oi))) ∧ |R(oi)| ≤ |S|
From the above we can conclude that there are three approaches to update propaga-

tion in lazy replicated DBSs:

Push approach. Each site is responsible to pro-actively propagate updates to other sites
in the system. In the Example 3.8, s1 is responsible to propagate the t1’s updates
to s2.

Pull approach. Sites request the missing updates from other sites. In the Example 3.8,
s2 is responsible to retrieve t1’s updates from s1.

Combined approach. Is a combination of the push and the pull approach. For exam-
ple, sites may periodically propagate their updates to other sites. However, if a
transaction is executed by an outdated site, it might initiate refresh transactions
to pull the updates from the most recent sites. In the Example 3.8, s1 will periodi-
cally propagate updates to s2. As t2 is accessing data at s2 during the inconsistency
window, if it demands most recent data, then it will pull the updates from s1.

The freshness guarantees provided to applications (transactions) are determined in
the push approach by the propagation frequency. The greater its value, the smaller the
inconsistency window. In the pull approach it is the mapping of the read actions that de-
termines the freshness, whereas in the combined approach, the freshness is determined
by both, the propagation frequency and the read behavior.

3.3.4 Consistency Models for Distributed Databases with
Replication

As already defined, concurrency control and replica control determine the consistency
guarantees provided by a distributed database with replication. In what follows we will
summarize common consistency guarantees (models) for replicated databases [KA00a,
FR10].

One-Copy Serializability (1SR)

1SR was originally defined in [BHG87]. Informally, it requires that the effects of an inter-
leaved transaction execution on a replicated database is equivalent to a serial execution
on a single-copy database. Strong 1SR imposes the real-time ordering of transactions,
and is defined as follows [ZP08]:

3.3 Distributed Database Systems with Replication 55

Definition 3.33 (Strong Serializability). Schedule sch is strongly serializable iff there is some
serial schedule schs such that (a) sch ≡ schs and (b) for any two transactions ty and tz , if the
commit of ty precedes the submission of tz in real time, then ty commits before tz is started in
schs.

Example 3.9 (Real Time Ordering of Transactions)

Let us assume two transactions, namely transaction t1 that modifies the user password,
and the login transaction t2, that is initiated by the same user shortly after t1. Although
in real time t2 has been started after t1 the serialization order may correspond to t2 t1. In
that case the user would not be able to login with the new password. Such a situation
would be prohibited by Strong 1SR.

Although strong 1SR is the desirable consistency model, it is expensive and impos-
sible to achieve in a distributed database. However, as depicted in Example 3.9, in some
cases it is necessary to order certain transactions based on their real time. In [ZP08]
the authors propose to enforce real time ordering only for transactions inside the same
session. A session denotes an interactive information exchange between a client and
a system. As described in [BDF+13], a session describes a context that should persist
between transactions. A mapping of transactions to sessions can be done using labels.
All transactions having the same label are assigned to the same session, i.e., context
is shared between these transactions. The definition of strong session 1SR is as fol-
lows [ZP08]:

Definition 3.34 (Strong Session 1SR). Schedule sch is session consistent iff there is some serial
schedule schs such that (a) sch ≡ schs (i.e., sch is 1SR) and (b) for any two transactions ty and
tz that belong to the same session, if the commit of ty precedes the submission of tz in real time,
then ty commits before tz is started in schs.

Snapshot Isolation

According to the original definition of SI (Section 3.1.4) [BBG+95], a transaction ty with
a real start time rstart(ty) > commit(tz) is not guaranteed to see the ty’s updates. This is
a consequence of the fact that the start time of ty can be smaller than its real start time:
start(ty) ≤ rstart(ty).

Such an inconsistency is called transaction inversion [DS06]. Again, if we consider
Example 3.9 with the user submitting a transaction for updating the password, and
subsequently another one for login, the user may not be able to login with the second
transactions. Usual implementation in single-copy databases would choose the start
time of a transaction by considering its real start time in order to avoid transaction in-
version. In replicated databases the transaction for login may be run against a copy that
does not yet reflect the updated password, which might be the case if lazy synchroniza-
tion is used. Transaction inversion is prevented by strong SI [DS06]3:

3Strong SI is called Conventional SI in [EZP05], Global Strong SI in [DS06] and Strict SI in [SMAdM08].

56 3 Foundations of Transaction and Data Management

[]
[]

w _ []
w _ []

r [] … r []
r [] … r []

Figure 3.12: Example of causal schedule that is not serializable.

Definition 3.35 (Strong SI). A schedule sch is strong SI iff it is SI (see Definition 3.19), and if,
for every pair of committed transactions ty and tz in sch such that ty’s commit precedes the first
action of tz , start(tz) > commit(ty).

Similar to strong session 1SR, it is possible to enforce strong SI only inside a session
[DS06].

Causal Consistency

Causal consistency models order transaction actions based on the happens-before
relationship [Lam78]. If an action acy happens-before acz (acy → acz), then acz is
causally dependent on acy. Actions that are causally unrelated are called concurrent
actions (||).

Example 3.10 (Ordering of Actions based on their Causal Dependency)

Let us assume three transactions t1, t2 and t3, and two data objects o1 and o2 with initial
values of null. t1 executes a write operation on w1(o1)[5], whereas t2 reads (r2(o1)) and
updates o2 based on the read value for o1 (w2(o2)[10]). w2(o2) is causally dependent on
w1(o1), i.e., w1(o1) → w2(o2). The third transaction t3, that is started after t1 and t2 have
successfully committed, reads the values of o1 and o2: t3 = r3(o1) r3(o2).

If t3 : r3(o1)[null] r3(o2)[10], then t3 observes a causally incorrect ordering of op-
erations. Causally correct orderings would be: t3 : r3(o1)[5] r3(o2)[null] and t3 :
r3(o1)[5] r3(o2)[10].

Notice the difference compared to (conflict-) serializability: only writes with a read-
from relationship are ordered, i.e., writes with a read in-between. Two transactions
that write on the same object without a read in-between can be ordered differently at
different replica sites. The example in Figure 3.12 depicts a schedule that is causally
consistent, but not serializable as the write actions on o2 are observed in different orders
at s3 and s4.

Most existing causal correctness models capture only the explicit causality. Potential
causality, in contrast to explicit causality, considers all actions that could have influence
a certain action [Lam78, ANB+95]. For example, in social network a reply R to a user

3.3 Distributed Database Systems with Replication 57

w _ []
w _ []

r [] r

r [] r

(a) 1SR consistent DDBS

w _ []
w _ []

r [] r

r [] r

(b) Causally consistent DDBS

w _ []
w _ []

r [] r

r [] r

r [] r w

(c) Causally inconsistent DDBS

w _ []
w _ []

r [] r

r [] r … r []
r [] r w

(d) Eventually consistent DDBS

Figure 3.13: (a) Depicts an 1SR DDBS. (b) Depicts a causally consistent DDBS. As writes
of s1 and s2 are causally unrelated, s3 and s4 may observe the writes in different order.
The schedule is thus not 1SR. (c) Depicts a causally inconsistent DDBS. Although the
write at s2 is causally dependent on the write at s1, s4 observes them in the opposite
order. (d) Depicts an eventually consistent DDBS, as s4 observes the writes of 1 and s2
temporarily in the wrong order.

comment C defines an explicit causality C → R. However, R might have been also
influenced by a news in a newspaper, rumors, etc., and all this actions consist the set of
actions that have potentially influenced R.

Eventual Consistency

EC is a weak consistency model that was made popular in the context of CAP [SK09].
In [BLFS12] the authors provide a formal definition of EC which is based on the visibility
and arbitration order.

The visibility order defines the updates that are visible to a transaction, whereas
the arbitration order the relative order of the updates. It is well known that eventual
consistency can tolerate network partitions, as the arbitration order can remain partially
determined for some time after transaction commit [BLFS12].

Two approaches are well-known for the determination of the update order,
namely the Thomas’ Write Rule (TWR) [Ber99] and commutative replicated data types
[SPB+11]. By using the TWR, each transaction receives a timestamp, and each object
stores the timestamp of the last update applied to it. An update operation on an object
is only applied, if the timestamp of the update is greater than the timestamp of the last
applied update. This rule enforces that the most recent updater wins. TWR is defined
as follows [WV02]:

Definition 3.36 (Thoma’s Write Rule). Given a transaction ty with a timestamp ts(ty). For
any object o with the timestamp wts(o) modified by ty: if ts(ty) > wts(o) then action wy(o) is
processed, otherwise it is ignored.

58 3 Foundations of Transaction and Data Management

System Type Description

AP
- Available
- Tolerant to Network Partitions

CP
- Consistent
- Tolerant to Network Partitions

Table 3.5: System types according to CAP

[SPB+11] defines many convergent and commutative data types, which allow arbi-
trary ordering of operations, at anytime and anywhere.

As depicted in Figure 3.13 eventual consistency is weaker than both the serializable
consistency and causal consistency, as the ordering of conflicting updates may remain
partial for some time.

3.4 Fundamental Trade-offs in the Management of Data
in Distributed Database Systems

Distributed databases face the trade-offs captured by the CAP-theorem, which states
that any distributed system can provide two of the three properties, namely consis-
tency, availability and partition tolerance. The CAP-theorem was turned into a formal
definition and proved in [GL02]. What does it mean to sacrifice consistency or availabil-
ity? Before answering this question, it is necessary to define what a network partition
means.

Definition 3.37 (Network Partition [GL02]). In case of a network partition all messages sent
from a node [site] in one component of the partition to nodes [sites] in another component are
lost.

Network partitions are real and prevalent and cannot be negotiated when design-
ing a distributed database system, as that would mean to run on an absolutely reli-
able network [BFG+13,BDF+13,Ham10]. As a consequence, DDBS can choose between
availability and consistency. This leads to two basic types of DDBS, namely DDBS that
provide high availability, and sacrifice consistency (AP), and those that sacrifice avail-
ability for consistency (CP) (Table 3.5).

AP DDBSs

Definition 3.38 (High Availability [GL02]). A system is highly available if a client that con-
tacts a running site will eventually receive a response from that site, even in the presence of
arbitrary, indefinitely long network partitions.

From the Definition 3.38 it can be concluded that, if a site requires any sort of coordi-
nation with any of the sites in the system, then high-availability cannot be guaranteed.
Let us consider the banking example depicted in Figure 3.6. If the connection from the
ATM to the back-end fails, then striving towards high availability would mean that the

3.4 Fundamental Trade-offs in the Management of Data in DDBSs 59

client should be able to withdraw money at the cost of a possible account overdraw
(constraint violation). Surprisingly, in contrast to common believe, this is how banking
applications in reality behave [Hof, Hal10, BG13]. Banks employ other mechanisms to
compensate for negative account balances, i.e., they do not prevent inconsistencies, but
compensate them.

In [BFG+13, BDF+13] the authors provide further levels of availability which are
defined as follows:

Definition 3.39 (Sticky Availability). A system is sticky available if, whenever a client’s trans-
action is executed against a replica site that reflects all of its prior operations, the client will
eventually receive a response, even in presence of indefinitely long partitions.

Definition 3.40 (Transactional Availability). A system provides transactional availability if
a transaction can contact at least one replica site for every object it accesses, and that the trans-
action will eventually commit or internally abort. Sticky transactional availability is provided if
given sticky availability, a transaction will eventually commit or internally abort.

One of the important question is the compatibility of the consistency models with the
different availability levels. As concluded in [BFG+13, BDF+13], causal consistency is
the strongest model achievable in case of network partitions compatible with the sticky
availability level. All models that require coordination, such as those that avoid lost-
update, constraint violations, recency violations, etc., are not achievable in AP systems.

CP DDBSs

CP databases in presence of network partitions would sacrifice availability for consis-
tency. In the banking scenario in Figure 3.6, during a failed communication between
the ATM and the back-end, the user would not be able to withdraw money in order to
avoid possible constraint violations. This can happen as two clients can simultaneously
withdraw money from the same account. Notice that even with one client attached to
an account it might be that an internal bank process may regularly charge the account
for the provided bank services, and if no communication is possible from the ATM to
the back-end, then the balance may go into negative.

PACELC Trade-Offs

In [Aba12] the authors extend CAP to PACELC, which also addresses the consistency-
latency trade-off. While CAP is about failures, there are also consistency-latency trade-
offs during normal operations (Else Latency Consistency). The stronger the consistency
model, the higher is the performance penalty. The intuition is that for strong consistency
models, such as 1SR, the DDBS has to invest more resources in coordination compared
to weaker models such as eventual consistency.

The consistency/performance trade-off is not only relevant for distributed
databases, but has been well-known also in single-copy databases. This has been
one of the main reasons for providing a range of isolation levels. This trade-off how-
ever has become even more tangible with the deployment of large scale applications

60 3 Foundations of Transaction and Data Management

in the Cloud, that naturally distribute and replicate data across different data cen-
ters for scalability and availability. A coordination between sites in such a deploy-
ment would require several rounds of network communication, which, depending
on the location of the sites, may become a major performance bottleneck [BFG+13].
Usual approaches tackle with the coordination overhead by relaxing consistency
[PST+97, HP94, KS91, BO91].

Consistency-Programmability Trade-Off

Weak consistency is difficult to reason about, and it additionally imposes challenges to
application developers as they need to treat different possible failure cases [BGHS13,
BFG+12, ADE11, Ham10].

In reaction to CAP/PACELC trade-offs, many NoSQL databases have been devel-
oped that provide only eventual consistency guarantees. However, the popularity of
NoSQL databases has attracted also applications that demand stronger consistency
guarantees than eventual consistency. Such applications need to compensate missing
consistency guarantees at application level, which increases their development cost and
complexity. Recent versions of NoSQL databases provide tunable consistency, which
allows clients to specify the desired consistency guarantees at request level4. For ex-
ample, SimpleDB [sima] has introduced the consistent read feature. The default
behavior of a read request is eventually consistency, that might return a stale value for
an object. However, via a flag the user can request strongly consistent read, that returns
a result reflecting the values of all successful writes prior to the read .

Consistency-Cost Trade-Off

The higher coordination overhead required for ensuring strong consistency inherently
leads to more actions being executed, and higher resource consumption (Central Pro-
cessing Unit (CPU), Random Access Memory (RAM), etc.). In the Cloud there is a price
tag associated with each action and resource consumption. Thus, the stronger the con-
sistency model the higher the generated monetary costs [KHAK09, FS12, IH12].

Relaxed consistency models generate less cost. However, if we consider the online
shop application depicted in Figure 2.1 that uses SimpleDB is its database, books over-
sells might occur (if eventually consistent read is used). This in turn, may lead to an
overhead for the customer care and administrative (monetary) cost, as a consequence of
the inconsistencies. Clearly, the full impact of an inconsistency is difficult to be assessed
as it includes aspects such as the loss of customers.

In summary, strong consistency generates high consistency costs. Weak consistency
generates less consistency costs, but may generate many expensive inconsistencies.

4The development of data consistency has roughly undergone following phases, namely the devel-
opment of transactions as an abstraction, the development of NoSQL databases that do not provide
transactional guarantees, the development of databases with limited transactional support, such as Elas-
Tras [DEA09], G-Store [DAE10], Relational Cloud [CJP+11], introduction of adjustable consistency in
existing NoSQL databases, and the return of transactions with MegaStore [BB+11], Spanner [CD+13],
and others.

3.4 Fundamental Trade-offs in the Management of Data in DDBSs 61

BASE, CALM and ACID 2.0

As a consequence of the CAP/PACELC trade-offs described above, NoSQL databases
usually provide only BASE (Basically Available, Soft State, Eventually Consistent) guar-
antees, i.e., relax consistency for availability, as opposed to traditional ACID guarantees.

However, BASE databases increase the complexity of application development if
strong consistency is required (consistency-programmability trade-off). Recently, the
CALM (Consistency as Logical Monotonicity) has been developed, which captures pro-
grams that are consistent by design and that can be safely run on an eventually con-
sistent database [ACHM11]. The idea of CALM is to provide a theoretical ground for
checking which programs are safe to run with eventual consistency, and which not.
ACID 2.0 (Associativity, Commutativity, Idempotence and Distributed) describes a set
of design patterns that allow the implementation of safe application on top of eventu-
ally consistent databases. CRDTs (Commutative, Replicated Data Types) define a set of
standard data types that are provably eventually consistent. If correctly used, applica-
tions are guaranteed to never produce any inconsistency, i.e., safety violation.

4
Cost- and Workload-Driven Data
Management

IN THIS CHAPTER, we lay out the ground for the development of our CCQ protocols
by summarizing common concepts and models. We will start this chapter with an in-

troduction to the configuration concept for capturing the CCQ behavior, which is driven
by a cost model and the application workload. Moreover, we formalize the notion of
cost and that of the workload, and provide a detailed description of the workload predic-
tion based on Exponential Moving Average (EMA). The prediction model is common to
all CCQ protocols and provides raw data, out of which further information is derived
by each CCQ protocol based on the concrete cost model.

4.1 Introduction

The CCQ protocols are characterized by their adaptive behavior driven by the applica-
tion and infrastructure cost, as well as by the application workload. The behavior of
a CCQ protocol is defined by its configuration chosen from the set of possible configu-
rations that defines the configuration space. Each configuration from the configuration
space is able to satisfy the application requirements at different degrees and costs.

We distinguish between operational costs and penalty costs. Operational costs capture
the overhead generated for enforcing certain guarantees, such as resource consumption,
necessary processing and storage activities to be executed, impact on performance and
others. Penalty costs are application specific costs that incur as the result of a require-
ment violation, i.e., of a satisfiability lower than the desired degree. The goal of each
CCQ protocol is to choose that configuration from its configuration space that incurs
the overall minimal costs. A workload shift may necessitate a reconfiguration, i.e., a
transition from one configuration to another. A transition to another configuration may
lead to cost reduction, i.e., may generate a gain for application. However, it may also
generate transition costs, which are defined in terms of reconfiguration activities. The
CCQ protocols will consider all these different costs when choosing the optimal config-
uration.

64 4 Cost- and Workload-Driven Data Management

#sites #sites

Availability
Consistency (operational) costs

Figure 4.1: Availability and consistency costs with increasing number of sites.

In what follows, we will provide concrete examples that depict the different pos-
sible aspects that influence the CCQ configurations. We assume that the application
requirements have been validated and hence are achievable by the underlying system
as described in Section 2.2.

Example 4.1 (Data Consistency)

Let us assume that the provider of the online application described in Figure 2.1, has
defined that all data should be highly available (e.g., availability ≥ 0.99999), and that
the satisfiability of this requirement must not be violated, as its violation would incur
extremely high (possibly infinite) penalty costs. The penalty costs may be a consequence
of customer loss, loss of image, and others, and are application specific. In order to
satisfy the availability requirement, the underlying DBS must replicate the data across
different geographical locations. The higher the availability degree, the more resources
(sites) need to be deployed.

Satisfying the desired availability avoids/reduces penalty costs, but may impact the
costs of other data management properties, such as the costs of data consistency. The
more sites available, the higher the costs for strong consistency, as more messages need
to be exchanged via the network (Figure 4.1). The consistency costs can be reduced
by relaxing consistency. However, weak consistency may generate penalty costs. Both
consistency and inconsistency costs are highly dependent on the application workload
and number of available sites, which are dynamic and may change over time. Therefore,
the DBS must choose the optimal consistency by considering all parameters, and must
continuously assess its decision.

The operational costs can also be measured in terms of performance gain or loss.
In this concrete example, the number of sites is determined by the availability require-
ment. Thus, these resources are there and the application provider is charged for them.
Increasing the performance, by for exampling relaxing consistency, decreases the oper-
ational costs, as it generates a utility to the application in terms of, for example, user
satisfiability. Clearly, this is not easy quantifiable.

In summary, the configuration of the DBS, is determined by the availability require-
ment, which is mapped to a number of replica sites, and the concrete consistency level.
As application workload is dynamic the configuration choice needs to be continuously

4.1 Introduction 65

Access pattern of
Alice

Access pattern
of Bob

Workload at 9AM

Shift of
access patterns

Configuration
adaption

Access pattern of
Alice

Access pattern
of Bob

Workload at 11AM

Shift of
access patterns Access pattern

of Bob
ess pa

of B
ess pas p

Figure 4.2: Adaptation of the partitions in case of a workload shift. Alice and Bob are
end-users of the online shop. The different possible roles in context of the online shop
are defined in Section 2 (see Figure 2.1).

monitored and, if necessary, adapted. While a new configuration may generate a gain
in terms of cost reduction, the reconfiguration may also generate an overhead, which
outweighs the gain. For example, an adaptation of consistency from EC to 1SR may
generate transition costs as a consequence of site reconciliation (Section 3.3.4).

Example 4.2 (Data Replication)

In the previous example we assumed that the application provider left the decision on
the optimal consistency to the underlying DBS. Let us now assume that the application
provider, in addition to the availability requirement, specifies that 1SR must also not
be violated by defining infinite penalty costs for data inconsistency. This additional
requirement does not mean that there is no room for optimization. The DBS can choose
the most suitable 1SR protocol, or the most suitable RP by considering the application
workload. If the workload is read-only, then ROWAA is the best choice. However, in
case of an update-heavy workload a quorum protocol may be the optimal choice with
regards to performance and costs. Furthermore, it is also possible to adapt the CCP by,
for example, exchanging the pessimistic protocol with an optimistic one or vice-versa.
In this example, the concrete protocol used to implement 1SR is what determines the
configuration at runtime.

Example 4.3 (Data Partitioning)

If the following example we assume that no availability requirements whatsoever are

66 4 Cost- and Workload-Driven Data Management

specified by the application provider. This means that the data do not need to be repli-
cated. However, it defines that 1SR must be guaranteed. The main overhead of 1SR
incurs from the network communication in case of distributed update transactions, that
generates a performance penalty, and incurs high monetary cost. As no availability
requirements are defined, data can be partitioned in order to minimize or completely
avoid distributed transactions. Different partition configurations are more or less suit-
able for a given workload. The suitability is defined in terms of distributed transac-
tions, the less distributed transactions a configuration generates, the more suitable it is
for that workload. As the workload is dynamic, the configuration needs to be continu-
ously updated in order to reflect the changes in the workload. For example, given the
scenario depicted in Figure 4.2, paritioncon f1 may be the most suitable configuration for
the workload at 9am. However, if later, at 11AM the workload changes, paritioncon f1
becomes unsuitable. In this example, the active partitions determine the configuration.

A configuration adaptation may necessitate a transfer of a large amount of data be-
tween the sites. This means that a decision to reconfigure the partitions should only be
taken if the new configuration provides a significant gain.

Example 4.4 (Integrated Data Management)

During the lifetime of the online shop depicted in Figure 4.2, the provider may observe
that certain partitions are more critical in terms of availability than others. As a conse-
quence, these important partitions need to be replicated for high availability. For the
replicated partitions the DBS needs to tackle with the same challenges described in the
Examples 4.1 and 4.2. Thus, as depicted in Figurer 4.3, it can either relax the consistency
to reduce the overhead for update transactions, or enforce strong consistency (e.g., if ap-
plications demand 1SR), and choose the most appropriate RP based on the application
workload. As described in Example 4.1, the choice of the consistency model can also be
influenced based on, for example, penalty costs.

This example also depicts the dependencies between the data management proper-
ties and their impact on each-others behavior. The decision to replicate a certain parti-
tion (partition1) leads to the necessity of re-evaluating the decision on the consistency
model, and the protocol implementing the model.

Based on the examples above we can conclude the following:

1. Applications have different requirements towards the underlying DBS. A viola-
tion of one or more requirements may incur application specific penalty costs.

2. Each specific configuration generates operational costs that can be defined in terms
of activities to be executed and resources to be consumed for satisfying the appli-
cation requirements given a specific workload.

3. A reconfiguration may decrease the penalty and operational costs. However, it
might generate transition costs, which must be considered when determining the
most suitable configuration.

4.1 Introduction 67

Configuration
adaptation

Increase availability
of by %

1SR

ROWAA

Quorum

EC

Replicated

Figure 4.3: Integrated data management that jointly considers data consistency, parti-
tioning and replication.

4. The previous examples consider only a subset of SLOs and data management
properties influenced by the SLOs1. As described in Section 2.3, an integrated
data management approach should additionally consider conflicts between SLOs.
Moreover, as the different data management properties are not orthogonal it is
crucial to consider their dependencies (see Example 4.4).

4.1.1 Monetary Cost

In the Cloud, based on its pay-as-you-go cost model, each and every activity executed
and a resource consumed has a price tag associated with it. This, in contrast to tradi-
tional infrastructures, has made the monetary cost more transparent, and has led to the
cost becoming a first-class citizen in the development of applications in general, and
data management in particular [FK09].

The cost models differ between Cloud providers and types of services. AWS, for
example, charges its customer for the IaaS machine instances on hourly bases, and the
concrete price depends on the machine configuration (e.g., number of CPUs, RAM, etc.).
In addition to hardware resources, providers charge their customer also for the different
actions they execute, down to the level of single messages. If we consider AWS S32,

1The term ’data management property’ is in purpose abstract as our analysis on the granularity is
not final. For example, we can consider data management properties at the DDBS,DBS or protocol level.
A protocol can be divided into further subprotocols that consider data management properties at the
subprotocol level. For example, the query execution engine of a DBS can divided in a query planer and
query executor subprotocols, which at the same time denote specific data management properties.

2https://aws.amazon.com/de/s3/pricing/.

68 4 Cost- and Workload-Driven Data Management

Request Price
PUT, COPY, POST, or LIST $0.005 per 1, 000 requests.
GET $0.004 per 10, 000 requests.
DELETE Free.
Storage Pricing.
First 1 TB/month $0.0300 per GB.
Next 49 TB/month $0.0295 per GB.
Next 450 TB/month $0.0290 per GB.
Next 500 TB/month $0.0285 per GB.
Next 4000 TB/month $0.0280 per GB.
Next 5000 TB/month $0.0275 per GB.
Data Transfer OUT from S3 To Internet Pricing
First 1GB/month $0.000 per GB.
Up to 10 TB/month $0.090 per GB.
Next 40 TB/month $0.085 per GB.
Next 100 TB/month $0.070 per GB.
Next 350 TB/month $0.050 per GB.

Table 4.1: Amazon S3 pricing as of 2nd February 2016 for the US East Region.

clients pay a fee for the data storage and data transfer, but also a varying fee for each
Create, Read, Update and Delete (CRUD) action (see an example in Table 4.1).

With such fine-grained cost models, it is easily possible to incorporate the monetary
cost into the optimization model of data management protocols. In addition to provid-
ing the desired data guarantees, we now need also to care about the costs of the guar-
antees and explicitly strive towards optimization of the monetary costs. Clearly, this in-
creases the complexity of DBS. However, it fits well into the requirements of cost-aware
clients, which in addition to traditional metrics (response time, throughput) require the
cost in $ to be reported [FK09].

4.1.2 Configuration and Cost Model

A system is defined by the set of protocols that implement a certain (set) of data manage-
ment properties, together with the set of possible protocol configurations. The available
protocol configurations define the protocol capabilities, and the set of all available proto-
cols together with their configuration space define the system capabilities (Figure 4.4).

The set of all possible configurations defines the configuration space C (Table 4.2):

C = {con f1, con f2, con f3, . . .}
Each protocol has its configuration space (Figure 4.4), which can be depicted as a

fully connected graph CG = (N, E). The nodes of the graph denote the configurations,
and the edges denote transitions between the configurations (Figure 4.5).

Meta-protocols can be built on top of existing protocols (see CostBased-P in Fig-
ure 4.4). The configuration space of a meta-protocol includes all configurations of the

4.1 Introduction 69

Data management
property

:

{ : , : } { : , : }

{ : , : }

:
… : :

•
•
•

: { : }

System

•
•
•

Protocol Protocol Configuration

•
•
•

•
•
•

{ , }: …

,

{{:

:

:

•

Figure 4.4: Relationship between system, data management property, protocol and pro-
tocol configuration.

protocols it consists of. Moreover, multiple data management properties can be im-
plemented by a single integrated protocol (dashed box in Figure 4.4). The integrated
protocols needs to also consider dependencies between the data management proper-
ties, and will choose the optimal configuration based on a holistic model that jointly
considers the different data management properties (see Example 4.4).

Both the application workload and the requirements may change dynamically at
runtime. We assume time to be divided in periods p1, p2, ..., and will denote with Rpi

the set of requirements valid during pi, and (wloadpi) the application workload during
that period.

Each configuration satisfies the requirements to a certain degree:

∀con f ∈ C : satDegree(Rpi , wloadpi , con f) ∈ [0, 1]

A subset Csat of configurations from C may exist that provides the desired satisfia-
bility to the application requirements give a certain tolerance threshold. We assume that
all requirements can be satisfied to a certain degree, as they have already been validated
based on the interaction cycle between the client and the DBS provider (Section 2.3).

∀con f ∈ Csat : satDegree(Rpi , wloadpi , con f) ≥ 1 − threshold

The violation of a set of requirements from R by a specific configuration con f may
generate application specific penalty costs:

70 4 Cost- and Workload-Driven Data Management

Symbol Description
C Denotes the configuration space.
con f Denotes a configuration: con f ∈ C.
wload Denotes the application workload.
R Denotes the application requirements.
satDegree(R, wload, con f) Defines the satisfiability of R by the configuration

con f given the workload wload.
pCost(R, wload, con f) Denotes the penalty costs generated by the configu-

ration con f for the violation of R given the workload
wload.

opCost(R, wload, con f) Denotes the operational costs generated by the con-
figuration con f for enforcing R given the workload
wload.

resourceCost(R, wload, con f) Denotes the costs incurring from the resource con-
sumption.

activityCost(R, wload, con f) Denotes the costs incurring from the necessary activ-
ities to be executed for enforcing R given the work-
load wload.

utility(R, wload, con f) Denotes the generated utility by the configuration
con f given the workload wload.

totalCost(R, wload, con f) Denotes the total costs generated by the configuration
con f for enforcing R given the workload wload.

ĝain(Rpi , ŵload
pi

,

con f pi−1
current, con f pi

new)
Denotes the expected gain of switching from the cur-
rently active configuration con f pi−1

current to the new con-
figuration con f pi

new), given the application require-

ments Rpi and the expected workload ŵload
pi

.
b̂ene f it(Rpi , wloadpi−1 ,

ŵload
pi

, con f pi−1
current, con f pi

new)
Denotes the expected benefit of switching from the
currently active configuration con f pi−1

current to the new
configuration con f pi

new), given the application require-

ments Rpi and the expected workload ŵload
pi

.
Ŷpi Denotes the predicted time series value for period pi.
Ypi−1 Denotes the time series value at period pi−1.
θ Denotes the autoregressive coefficient.
ε Denotes the noise in the time series data.
α Denotes order of the moving average.
AP Defines the set of access patterns.
ap Defines an access pattern: ap ∈ AP .
occ(ap) Defines the number of occurrences (frequency) of ap.

Table 4.2: Configuration and cost model: symbols and notations.

pCost(Rpi , wloadpi , con f)

{
= 0 : satDegree(Rpi , wloadpi , con f) ≥ 1 − threshold
> 0 : satDegree(Rpi , wloadpi , con f) < 1 − threshold

(4.1)

4.1 Introduction 71

 (,) (,)

Figure 4.5: Configuration graph with the nodes depicting configurations and edges
transitions between configurations.

For example, a violated upper bound of a response time requirement may lead to
less sales3. The penalty costs are dependent on the unsatisfiability degree, and are ap-
plication specific. Moreover, as the requirements are not orthogonal, the violation of
one requirement may lead to an increase in satisfiability of another, or strengthen the
violation of one or more other requirements.

Each configuration con f incurs also operational costs that are defined as follows:

opCost(Rpi , wloadpi , con f) = resourceCost(Rpi , wloadpi , con f)
+ activityCost(Rpi , wloadpi , con f)
− utility(Rpi , wloadpi , con f)

(4.2)

In Equation (4.2), resourceCost defines the costs that incur from the resource consump-
tion (e.g., the number of sites), activityCost define the costs that incur from the necessary
activities to be executed for satisfying the application requirements given wloadpi , and
utility defines the generated utility by the configuration. The utility is defined in terms
of the gain generated for the satisfiability of an implicit requirement. For example, de-
creasing latency increases user satisfiability. It can be used to reward configurations that
optimize certain implicit requirements, such as reduction of response time, and can be
helpful to steer the configuration choice if more than one configurations are available
that generate the same penalty, resource and activity costs.

Similar to the penalty costs, the satisfiability of one requirement may increase or de-
crease the operational costs for other requirements. For example, the higher the avail-
ability requirement the more resources are necessary, which also has an impact on cost

3According to Amazon, a slowdown of just one second per page request could cost them about $1.6
billion each year [Eat]. Similar results were reported by Google, which say that if their search results are
slowed down by just four tenths of a second they could loose at about 8 million searches per day [Eat].

72 4 Cost- and Workload-Driven Data Management

Figure 4.6: The green node denotes the currently active configuration; orange nodes
denote configurations of interest. Red nodes denote configurations of no interest. Tran-
sitions of interest are depicted by dark arrows.

for guaranteeing 1SR consistency. 1SR operational costs may be measured in terms of
number of messages to be exchanged over the network.

The total costs generated by a configuration con f is defined as follows:

totalCost(Rpi , wloadpi , con f) = pCost(Rpi , wloadpi , con f) + opCost(Rpi , wloadpi , con f)
(4.3)

Both application requirements and workload may change anytime. Moreover, also
the infrastructure of the Cloud provider may change together with the price model.
Any of these changes may necessitate a configuration adaptation, i.e., a transition to
another configuration. Let Rpi denote the application requirements that apply for pi,

ŵload
pi

the predicted workload for pi (we will use p̂aram to denote the expected value
of a parameter), and con f pi−1

current the currently (in pi−1) active configuration. Then, the
expected gain in adapting the configuration to con f pi

new is defined as follows:

ĝain(Rpi , ŵload
pi

, con f pi−1
current, con f pi

new) = ̂totalCost(Rpi , ŵload
pi

, con f pi−1
current)

− ̂totalCost(Rpi , ŵload
pi

, con f pi
new)

(4.4)

A reconfiguration may generate transition costs, which must also be considered. Hence,
a transition to a new configuration generates a benefit if the cost reduction outweighs
the transition costs. The expected benefit is defined as follows:

b̂ene f it(Rpi ,wloadpi−1 , ŵload
pi

, con f pi−1
current, con f pi

new) =

ĝain(Rpi , ŵload
pi

, con f pi−1
current, con f pi

new)

− tCost(wloadpi−1 , con f pi−1
current, con f pi

new)

(4.5)

4.2 Workload Monitoring and Prediction 73

The goal of an adaptive DBS is to choose that configuration that maximizes the ex-
pected benefit:

max
con f∈C

b̂ene f it(Rpi , wloadpi−1 , ŵload
pi

, con f pi−1
current, con f pi

new) (4.6)

Equation (4.6) considers only the client’s requirements towards the (Cloud) DBS
provider. However, based on the economy of scale, the Cloud provider has an incen-
tive in serving as many clients as possible, which may have conflicting requirements
(Section 2). The provider should have the flexibility to optimize globally by finding the
right balance between satisfying the requirements of all clients, and the resource usage.
In certain cases, from the provider point of view, it might be more beneficial to violate
the requirements and pay a penalty, than satisfy them.

The size of the configuration graph that considers all possible configurations would
become extremely large. In reality, only a graph of a limited size is considered, which
is defined by the concrete DBS deployment. Moreover, inside that graph, only a subset
of configurations is of interest (Figure 4.6). For example, although the deployment may
contain the capability of archiving the data, that functionality may not be of interest
for the application. The configurations of interest, i.e., the subgraph, is defined by the
application requirements.

4.2 Workload Monitoring and Prediction

The workload is one of the crucial components of our adaptive CCQ protocols. While
many parameters, such as the penalty costs, resource costs (see Section 4.1.1), are prede-
fined, the application workload is dynamic, and it determines the degree of requirement
violation and the degree of resource usage.

In what follows, we will formalize the workload concept at the degree that is suffi-
cient for the CCQ protocols.

Definition 4.1 (Workload). A workload is a set of tuples consisting of access patterns and their
occurrence (frequency) (Table 4.2):

wloadpi = AP × N+

wloadpi = {(ap1, occpi(ap1)), . . . , (apn, occpi(apn))}
ap ∈ AP

occ : ap → N+

(4.7)

AP defines the set of all possible access patterns: AP = {ap1, ap2, . . . }, and occ the
number of occurrences of an access pattern in the wload at time period pi. An access
pattern apq is a set of actions of finite size: apq = {acq,1, acq,2, . . . , acq,n} (see Section 3.1),
and defines a transaction template (cf. class in object oriented programming). Multiple
transactions can be instantiated from the same access pattern.

Actions are operations acting on a specific logical object (Section 3.1). Thus, two
actions ack and acm are equal if the following condition holds:

74 4 Cost- and Workload-Driven Data Management

ack = acm ⇐⇒ ack.op = acm.op ∧ ack.o = acm.o (4.8)

Two access patterns apq and apu are equal if they contain the same set of actions
(Example 4.5):

apq = apu ⇐⇒ (∀ac [ac ∈ apq ⇐⇒ ac ∈ apu]) (4.9)

Example 4.5 (Equal and Distinct Access Patterns)

ap1 = {r1,1(o3), r1,2(o5), r1,3(o7)}
ap2 = {r2,1(o3), r2,2(o5), r2,3(o7)}
ap3 = {r3,1(o3), w3,2(o5), r3,3(o7)}
ap4 = {r4,1(o3)}

ap1 = ap2

ap1 �= ap3 ∧ ap2 �= ap3

ap1 �= ap4 ∧ ap2 �= ap4 ∧ ap3 �= ap4

Notice that the equality of access patterns is defined in terms of a set equality. Hence,
it does not require that actions appear in the same order, and this is sufficient for the
CCQ protocols, as their models do not consider the ordering of actions. In certain cases,
however, it might be necessary to consider also the ordering of actions in an access
pattern. In that case, access patterns are defined as sequences instead of sets. As ac-
cess patterns define templates, the equality of two access patterns does not imply their
membership to the same transactions.

The workload size is defined as follows:

|wload| = ∑
ap∈wload

occ(ap) (4.10)

Two workloads wload1 and wload2 are equal if they contain the same access patterns
in the same frequency:

wload1 = wload2 ⇔
(∀ap[ap ∈ wload1 ⇔ ap ∈ wload2] ∧ occ(ap, wload1) = occ(ap, wload2))

(4.11)

4.2.1 Workload Prediction

The workload is dynamic and may change during the lifetime of an application. The
CCQ protocols follow the approach of deploying the most cost-optimal configuration

4.2 Workload Monitoring and Prediction 75

Workload
prediction

Historical
workload

Current
workload

Predicted
workload

, , . .

Figure 4.7: Workload prediction for the period pi based on historical (p1, p2, . . . pi−2),
and current workload (pi−1).

based on the expected workload for the future. For that, a workload prediction compo-
nent is needed. Its goal is to asses expected workload by considering historical (work-
load) data and current (workload) data (Figure 4.7). If the predicted workload signifi-
cantly varies from the current workload, the currently active configuration may be in-
validated, and based on the benefit, a transition to a new one may be initiated (see
Equation (4.6)).

Workload prediction consists of two main tasks, namely of the workload monitoring
also known as tracking, and the prediction model. The goal of the first task is to contin-
uously monitor the resource usage and to produce a representation of this usage data.
The prediction model will then anticipate the future workload based on the current and
historical resource usage data.

Different prediction models exist, such as EMA, Auto-Regressive Integrated Moving
Average (ARIMA), cubic splines, etc., that differ in accuracy and cost [AC06]. In the con-
text of this thesis, the workload prediction is just a tool to feed the configuration models
of the CCQ protocols for choosing a suitable configuration and is not considered as a
contribution. We decided to use EMA for predicting the workload due to its simplicity
and ability to accurately predict certain workload types [AC06]. In what follows, we
will provide an overview of time series prediction based on moving averages.

76 4 Cost- and Workload-Driven Data Management

Access
Pattern

, 5 , 2 , 3

Access
pattern

, 4 , 1 , 8 , 4

Access
pattern

, 9 , 1 , 10 , 3 , 4

p

Aggregated global
workload at

Historical
workload

Access
pattern

EMA
() , 56 , 30 , 90 , 5 { , } 3 , 2

EMA

Apply EMA

Predicted
workload for the
next period

Workload of

Workload of

Access
pattern

, 63 , 36 , 93 , 13 { , } 3 , 3

, , . .

at

at

Figure 4.8: Workload prediction with EMA.

4.2.2 Time Series Prediction

A time series is a sequence of data points measured over time [AA13]. There are two
widely used models for time series prediction, namely Autoregressive Model (AR) and
Moving Average (MA). Their combination leads to Autoregressive Moving Average
(ARMA), which are mathematical models for autocorrelation in time series, that allow
the prediction of future values based on observed values in the past [SS11]. The basic
idea is to predict future values based on one or more recent values, and/or one or more
recent values of the errors [Nau].

An ARMA(h, q) model is a combination of AR(h) and MA(q). AR(h) assumes the
predicted value Ŷpi for period pi to be a linear combination of h past values (Y):

Ŷpi = θ1 · Ypi−1 + · · ·+ θh · Ypi−h + εpi (4.12)

In Equation (4.12), Ypi−1 denotes the actual value at period pi−1, θ the autoregressive
coefficient, and εpi the noise. The noise is also known as the error or the residual.

The moving average (MA) is a model that defines time series as a moving weighted
average. The MA of order q is defined as follows:

Ŷpi = εpi + α1 · εpi−1 + · · ·+ αq · εpi−q (4.13)

In Equation (4.13), εpi−1 denotes the residual for period pi−1, and α denotes the order
of the moving average.

AR(h) and MA(q) can be combined to an ARMA(h, q) model as follows:

4.3 CCQ Configuration and Cost Model 77

Ŷpi = θ1 · Ypi−1 + · · ·+ θpi−h · Ypi−h + εpi

+ α1 · εpi−1 + · · ·+ αq · εpi−q

ε ∼ I ID(0, σ2)

(4.14)

Different values of h and q lead to different models [SS11]. ARMA(0, 1) leads to a
forecasting based on EMA, which is defined as follows:

Ŷpi = Ŷpi−1 + α · εpi−1

εpi−1 = Ypi−1 − Ŷpi−1

Ŷpi = α · Ypi−1 + (1 − α) · Ŷpi−1

(4.15)

In Equation (4.15), Ŷpi−1 denotes the predicted value for pi−1, which is based on all
previous periods, and α the smoothing factor with 0 < α < 1 . The predicted value is a
weighted average of all past values of the series, with exponentially decreasing weights
as we move back in the series. The value of α defines the decay rate of old values: a high
value of α discounts older observations faster. It means that the higher the value, the
more responsive the prediction and vice-versa. The effects of exponential smoothing
can be better seen if we replace Ŷpi−1 in Equation (4.15) with its components:

Ŷpi = α · Ypi−1 + (1 − α) · (α · Ypi−2 + (1 − α) · Ŷpi−2)

Ŷpi = α · Ypi−1 + α · (1 − α) · Ypi−2 +(1 − α)2(1 − α)2(1 − α)2 · Ŷpi−2

4.2.3 Workload Prediction with EMA

The CCQ protocols use a workload prediction model based on EMA, which is a simple
yet effective model able to accurately predict certain types of workloads [AC06].

The workload prediction based on EMA is depicted in Figure 4.8. CCQ protocols will
periodically collect the workload of each site and add them to the aggregated workload.
Once the aggregated workload has reached a specific size, as defined by a threshold,
the workload for the new interval pi is predicted, the old interval pi−1 is closed, and its
workload is added to the set of historical workloads. Notice that the historical workload
contains only the predicted workload for the last interval as the predictions are recur-
sively based on the past, i.e., a prediction for the interval pi−1 includes and is based on
the prediction of previous intervals {pi−2, ..., p1} (Equation (4.15)):

ŵloadpi = α · wloadpi−1 + (1 − α) · ̂wloadpi−1 (4.16)

4.3 CCQ Configuration and Cost Model

The configuration spaces of the CCQ protocols are depicted in Figure 4.9. Each CCQ
protocol targets the reduction of cost for certain data management properties, that are

78 4 Cost- and Workload-Driven Data Management

:

{ , }

:

CCQ Protocol

Protocol Configuration

 :

{ , }

{ , }

•
•
•

•
•
•

•
•
•

Figure 4.9: CCQ configuration space.

specified by application requirements. It is very challenging, if not impossible, to con-
sider the full spectrum of data management properties and the dependencies between
them. Therefore, the CCQ protocols make certain assumptions, which are defined as
follows.

4.3.1 C3

• The configuration space of C3 is defined by the available 〈Model, Protocol〉 combi-
nations (configurations). The Model denotes the consistency model, and Protocol
the protocol implementing that model. Each model can be implemented by more
than one protocol.

• The application provider specifies a certain availability requirement (e.g.,
availability ≥ 0.99999) that must not violated, i.e., its violation will incur infi-
nite costs. The availability requirement determines the number of replica sites
and their location. This aspect is predefined and outside the control of C3.

• The application provider defines penalty costs for the violation of consistency, i.e.,
each generated inconsistency incurs a certain penalty.

4.3 CCQ Configuration and Cost Model 79

• C3 targets the optimization of transaction costs by choosing the most suited con-
figuration given the application workload, the number of sites and their locations.
The transaction costs are determined by the inconsistency (pCost) and consistency
(opCost) costs.

• The pCost are determined by the consistency model, the workload (number of
inconsistencies), and the cost of a single inconsistency.

• The opCost are determined by the consistency model, the workload, number of
sites, and their locations.

4.3.2 Cumulus

• The configuration space of Cumulus is defined by the set of possible partitions.

• The application provider specifies that 1SR must not be violated.

• Cumulus targets the optimization of operational costs by choosing the most opti-
mal partition configuration.

• The opCost is determined by the number of distributed transactions in a workload.
Cumulus will partition the data horizontally (see Section 3.2.1), so that the number
of distributed transactions is reduced or completely avoided.

4.3.3 QuAD

• The configuration space of QuAD is defined by the set of possible quorum config-
urations.

• The application provider has specified that 1SR consistency and a certain avail-
ability level must be guaranteed, as their violation would incur infinite penalty
costs. The availability requirement applies for all data, which, as a consequence,
leads to a fully replicated DDBS.

• QuAD targets the optimization of operational costs by constructing the quorums
in such a way so that the transaction response time is reduced as far as possible.
The lower the response time the higher the generated utility for the application
(see Equation (4.2)).

• The dynamic replication, i.e., the provisioning and deprovisioning of sites either
due to load changes or site failures, is outside the control of QuAD.

4.3.4 Integrated CCQ

Although each CCQ protocol considers specific data management properties, and has
a specific configuration space, they are not independent of each other. Moreover, they
can be integrated to a meta-protocol called Integrated CCQ (I-CCQ) based on a holis-
tic model. I-CCQ considers also the dependencies between the CCQ protocols, and is

80 4 Cost- and Workload-Driven Data Management

predict

()
,

()
,

2 2

3

4

1

,. . .
Period Period

Time . . .

5

Figure 4.10: Cost and workload-driven reconfiguration.

able to fully exploit the entire CCQ configuration space. Furthermore, the configuration
space of the meta-protocol can be enhanced by incorporating further protocols, that
implement additional data management properties, or by incorporating further config-
urations into the existing protocols. In what follows we will provide two examples that
depict the behavior of the I-CCQ meta-protocol (see also Example 4.4).

Example 4.6 (I-CCQ: From Partitioned to Partially Replicated Database)

Similar to the Example 4.4, let us assume that the application does not have any avail-
ability requirements towards the DBS, and that it has only specified how much an in-
consistency would cost. As it is not necessary to provide any availability guarantees,
I-CCQ will choose to partition the data by using the capabilities of Cumulus. Based on
the predicted workload, Cumulus will determine the most optimal partition configura-
tion, which in the optimal case, will completely avoid distributed transactions.

1SR and EC generate the same costs for workloads without distributed transactions.
Thus, it is obvious that the I-CCQ will provide 1SR consistency to the application. For
that, I-CCQ will use C3 and ask it to enforce 1SR correctness. C3 has the freedom to
choose the most optimal 1SR protocol.

The application may later decide to increase the availability for certain partitions.
This decision may be based on either changed business constraints, or changed end-
user behavior. I-CCQ may use the Accordion protocol [SMA+14], that will replicate
the affected partitions. In that case, the distribution model changes from partitioned to

4.3 CCQ Configuration and Cost Model 81

partially replicated (Section 3.2.1). As now certain partitions are replicated, and as the
application has specified the cost for a single inconsistency, I-CCQ will hand-in the con-
trol for data consistency to C3 for the replicated partitions. C3 will run in the adaptive
mode, i.e., it will choose the most optimal consistency model and protocol based on the
workload, and will continuously adapt its configuration if the workload shifts.

Example 4.7 (I-CCQ: ROWAA vs. Quorum-Protocol for 1SR Consistency)

In this scenario, we assume that the application has specified the desired availability,
which leads to a fully replicated database (Section 3.2.1). Moreover, the application de-
mands 1SR as the cost for an inconsistency is extremely high, possibly infinite. I-CCQ
will forward control to C3, which will initiate the workflow for determining the optimal
configuration. As the consistency level is determined by the application, C3 will search
for the most optimal protocol based on the workload. In case of a read-heavy workload,
C3 will use ROWAA as a replication protocol. However, ROWAA generates consider-
able overhead for update transactions, as all available sites must be eagerly committed.
Therefore, at some point in time, when the proportion of the update transactions in the
workload is above a specific threshold, C3 will initiate a reconfiguration, and will switch
to a quorum-based RP, such as QuAD. QuAD is able to adjust the quorums in such a
way so that ’weak’ (e.g., slow, expensive, distant) sites, that are the main source of per-
formance degradation, are avoided from the read and commit paths of transactions.

4.3.5 CCQ Adaptive Behavior

In what follows we will provide a step-by-step description of the CCQ adaptive be-
havior. Let us assume that the configuration space consists of two configurations:
C = {con f1, con f2} (Figure 4.10), with con f1 being the active configuration at pi−1.

• In the first step, before pi−1 is finished4, the workload prediction for pi is initiated
based on the EMA model (Algorithm 1).

• In the second step, the predicted workload ŵloadpi is used as a basis for calculating
(predicting) the costs of each configuration (Equation (4.3)).

• There are two choices, namely to remain with the currently active configuration
con f1, or to switch to con f2. The decision is taken by considering the expected gain
(step three as defined by Equation (4.4)), but also the transition costs (step four as
defined by Equation (4.5)). The later is determined mainly by wloadpi−1 and the
requirements of con f2.

• If the expected gain outweighs the transition costs than, by moving to con f2, a
benefit is generated for applications (Equation (4.6)). In that case, a transition to
con f2 is initiated (step five).

4A period is finished if the size of the current workload is above a specified threshold.

82 4 Cost- and Workload-Driven Data Management

The workload prediction may impose a considerable challenge with regards to the
size of the data that needs to be transferred between the sites. The CCQ protocols use a
centralized approach in which a centralized component collects the workload data from
each site so that it can assess the future workload. The centralized component decreases
the transfer overhead compared to fully distributed workload prediction approaches,
in which each site has to send its workload to all other sites. However, the existence
of a centralized component makes the system less resilient to failures. The transfer of
the local workloads can be further reduced, or even completely avoided, by allowing
each site to asses global workload based on local data. Possible approaches include the
hypothesis testing in a fully distributed manner and statistical inference with partial
data [TSJ81, Vis93].

4.3 CCQ Configuration and Cost Model 83

Algorithm 1: Algorithm for collecting and predicting the application workload. A
workload prediction is initiated once the size of the collected workload is above a
threshold. The predicted workload is used as a basis for determining the optimal
CCQ configuration. The size of the managed data may grow with time. However,
as only those access patterns are maintained that have an occ > 0, infrequent access
patterns diminish with time and are removed from the workload.

Input: collFreq : Collection Frequency, threshold : Workload Threshold, S : Set of Sites

while true do
sleep(collFreq) ;
/* Current workload at pi−1 */
wloadpi−1 ← {} ;
foreach s ∈ S do

wloadpi−1 .add(s.getWorkload()) ;

if wloadpi−1 .size() ≥ threshold then

ŵloadpi ← predict(predict, ̂wloadpi−1 , wloadpi−1);
// The function for determining the optimal configuration is

implemented by each CCQ protocol.

determineConfiguration(ŵloadpi) ;
i ++ ;

Procedure predict(α, ̂wloadpi−1 , wloadpi−1)

foreach ap ∈ ̂wloadpi−1 do
// The lookup for an access pattern is an O(1) operation, as

each access pattern has an unique hash-code.

̂occ(ap)
pi−1 ← ̂wloadpi−1 .getOccOfAccessPattern(ap) ;

occ(ap)pi−1 ← wloadpi−1 .getOccOfAccessPattern(ap) ;
// Remove ap from the current workload, so that at the end

the access pattern that are new in the current workload
remain.

wloadpi−1 .removeAccessPattern(ap) ;
̂occ(ap)

pi ← α · occ(ap)pi−1 + (1 − α) · ̂occ(ap)
pi−1

;

if ̂occ(ap)
pi
> 0 then

ŵloadpi .add(ap, ̂occ(ap)
pi
);

// Now predict occurrence of the remaining access patterns that
are new in the current workload.

foreach ap ∈ wloadpi−1 do
occ(ap)pi−1 ← wloadpi−1 .getOccOfAccessPattern(ap) ;
/* As new patterns were not part of the last prediction,

simply take over their occurrence. */

̂occ(ap)
pi ← occ(ap)pi−1 ;

if ̂occ(ap)
pi
> 0 then

ŵloadpi .add(ap, ̂occ(ap)
pi
);

return ŵloadpi ;

5
Design of the Cost- and
Workload-driven CCQ Protocols

IN THIS CHAPTER, we will describe the design of the CCQ protocols, that target the
reduction of application costs by choosing a suitable configuration. This choice is

driven by application defined cost parameters and workload, as well as by infrastruc-
ture properties. All CCQ protocols follow the same design schema, which is defined as
follows. In the first step, specific information, such as conflicts between transactions or
number of distributed transactions, is derived from the predicted workload as required
by the configuration and cost model of the concrete protocol. In the next step, this infor-
mation, together with the cost parameters defined by the application and infrastructure
properties, are provided as input to the configuration and cost model that decides on
the cost-optimal configuration. Finally, the reconfiguration process will ensure that a
transition from one configuration to another is done in a safe manner, without violating
the system correctness.

The purpose of this chapter is to zoom-in into the configuration space of each CCQ
protocol, and describe their cost models that steer the runtime configuration with the
goal of reducing application costs.

5.1 C3: Cost and Workload-Driven Data Consistency in
the Cloud

C3 is a cost and workload-driven consistency protocol for the Cloud, that is able to ad-
just the consistency level at runtime by considering the operational – consistency, and the
penalty – inconsistency – costs. C3 is based on the consistency-cost trade-off described
in Section 3.4 (Figure 5.1). The stronger the consistency model, the higher the consis-
tency costs. Relaxing consistency decreases the operational costs, but might generate
inconsistency costs.

The consistency costs are defined in terms of resources and activities needed for
guaranteeing a certain consistency level, whereas the inconsistency costs are deter-

86 5 Design of the Cost- and Workload-driven CCQ Protocols

Eventual
consistency

1SR
consistency

No
consistency

Not
considered

Inconsistency
costs

Consistency
costs t costscoosts cos

Figure 5.1: Consistency vs. inconsistency costs. The stronger the consistency level the
lower the consistency costs and vice-versa. The inconsistency costs increase with de-
creasing consistency level.

mined by the overhead generated for compensating the effects of inconsistencies, when
relaxed consistency levels are used. The goal of C3 is, given a certain workload, to
choose that consistency level that incurs the lowest total costs, which are defined as the
sum of consistency and inconsistency costs.

C3 considers only the spectrum of consistency models that lay in the ranged defined
by EC and 1SR. All consistency models weaker than EC are of no interest despite the fact
that they generate low or no consistency costs. The main reason is their weak correct-
ness semantics, which makes them difficult to reason about. EC is the "bare minimum"
of correctness to be provided [BGHS13].

The C3 results have been published in [FS12].

5.1.1 C3 Overview

The idea of C3 is to add a cost and workload-driven layer on top of existing consistency
models and protocols implementing these models (Figure 5.2). A configuration is de-
fined by the 〈model, protocol〉 combination, which means that the configuration space
of C3 is determined by the available consistency models, and protocols implementing
these models. The combination of the C3 meta-consistency model and the C3 meta-
protocol defines a new meta-configuration (Figure 4.4). The consistency model defines
the observable correctness, whereas the protocol its implementation.

The goal of C3 is to navigate at runtime between the different configurations so that
transactions costs, given a certain workload and application defined inconsistency costs,
are minimized. Each configuration may generate different costs for a the same workload
(see Example 5.1).

Example 5.1 (Cost and Workload-driven Configuration)

In a concrete scenario the application developers may specify that the 1SR consistency
level must be enforced, in order to avoid any inconsistencies. This can be achieved by

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 87

Meta
Consistency

Model

•
•
•

•
•
•

Consistency
Models

Consistency
Protocol

1SR Proto1

1SR Proto2

SI Proto1

SI Proto2

EC Proto1

EC Proto2

Meta
Consistency

Protocol

•
•
•

SI Proto1

SI Proto2

EC Proto2

1SR Proto1

EC Proto1

C

•
•
•

Figure 5.2: Relationship between consistency models and protocols. A configuration is
determined by the 〈model, protocol〉 combination.

setting the inconsistency costs to infinity. The decision may be a consequence of busi-
ness or legal constraints. In this case, the C3 configuration space is narrowed down to
the 1SR consistency model. However, different 1SR protocols may exist, so that C3 will
start an evaluation process to determine the most appropriate protocol based on the
workload (see Negotiation Process in Section 2.3). For read-only workloads, a protocol
based on S2PL and ROWAA may be the most optimal implementation in terms of gen-
erated costs, whereas for update-heavy workloads a quorum RP may be more suitable.

The C3 configuration space can be extended by adding new configurations, i.e., com-
binations of consistency models and protocols. The provider of a configuration must
define a model for calculating the costs for a given workload. A transition from one
configuration to another configuration of the same consistency model does not generate
any costs, as configurations of the same consistency model deliver the same correctness
guarantees. Transition costs incur only during a transition between configurations of
different models. However, it is necessary to define these costs only once, as they apply
for all protocols of a consistency model. The applicability of the transition cost mod-
els to all protocols means that it should be incorporated into C3, in order to relief the
configuration providers from the burden of defining the transition costs.

In its current version, C3 implements the 1SR and EC consistency models based on
well-known protocols (Figure 5.3). It assumes a fully replicated DDBS with a set of

88 5 Design of the Cost- and Workload-driven CCQ Protocols

Meta
Consistency

Model

Consistency
Models

Consistency
Protocol

S2PL + 2PC

S2PL + TWR

Meta
Consistency

Protocol

S2PL + TWR

S2PL + 2PC

Figure 5.3: C3 Configuration Space: CC3 = {1SR, EC}.

sites at specific locations. Both, the number of sites and their location are determined
by the availability requirement of applications that must not be violated (Section 4.3).
C3 can be run in the adaptive or in the traditional mode. In the adaptive mode appli-
cation providers specify inconsistency costs and C3 will choose that configuration that
minimizes the overall costs. In the traditional mode, a certain correctness model is en-
forced. In the later case, C3 will determine the most optimal protocol that implements
the enforced consistency model.

In what follows, we will describe in detail the protocols that are used to implement
the 1SR and EC consistency models, and we will define their cost and configuration
models.

5.1.2 1SR and EC Protocol Definition

Both the 1SR and EC protocols use S2PL as a CCP. Once the shared and exclusive locks
are acquired, the transaction execution is initiated. While the protocols behave the same
with regards to the CCP, they differ when it comes to the RP. In contrast to the 1SR
protocol that uses 2PC for the eager synchronization of replica sites, EC is based on a
lazy RP (Section 3.3.3).

Transaction execution in C3 is asymmetric [JPAK03], which means that a transaction
is executed at the local site and the generated values are propagated to other sites. This
is in contrast to log-based approaches, in which the transaction logs, i.e., its actions, are
propagated. In that case, the transaction needs to be re-executed at the remote sites. The
propagated data consists of a set of triples for each of the modified object:

{〈oid, val, τ(oid)〉 , . . . }
In case of 1SR the updates are propagated during the exchange of the prepare

messages as part of 2PC, whereas in case of EC the updates are propagated through

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 89

= 3 = 3

: 1 : 3

1 2

3

Figure 5.4: Execution of transactions with the EC consistency level.

dedicated synchronization transactions. The uncoordinated transaction execution
in EC, which is a consequence of the lazy synchronization, necessitates the existence of
a mechanism that allows to agree on final values for the modified objects (see Exam-
ple 5.2).

Example 5.2 (Lazy Synchronization)

Let us consider the scenario depicted in Figure 5.4, in which two transactions t1 and t2
are executed with the EC consistency level, and both modify the same object (o1). The
final result of t1 is 2 and that of t2 is 0. Although there is a conflict between t1 and t2,
as there is no coordination during there execution, both transactions will successfully
commit. Later, as part of step 3, each site will propagate the updates to the other sites
in the system. During the synchronization, a means should be available to agree on
the final value of o1, which in this case can either be 2 or 0. Independently of the final
agreement, one of the updates will be lost.

C3 uses the TWR [Tho79,BLFS12,TTP+95] for reaching an agreement during the syn-
chronization of sites (see Definition 3.36), and guarantees that all sites will eventually
reflect the same values .

TWR requires each transaction to be assigned a system wide unique timestamp. At
transaction commit, that timestamp is attached to each modified object, which needs to
be also propagated together with the object values during the replica synchronization.
Although TWR guarantees that sites will eventually reflect the same values, it does not
ensure that the reflected state is free of inconsistencies (Example 5.3).

Example 5.3 (Inconsistencies in an Eventually Consistent Database)

Let us consider again the scenario depicted in Figure 5.4. In a DDBS that provides 1SR
transactions are serialized either as t1t2 or t2t1. In both cases the final value of o1 would
be −1. In an eventually consistent system, one of the updates would be lost. So, in
case the timestamp of t1 is higher than that of t2 the end value would be 2, and in the
opposite case it would be 0.

90 5 Design of the Cost- and Workload-driven CCQ Protocols

Symbol Description
CC3 Denotes the configuration space of C3.
totalCost(wload, CL) Denotes the total costs generated by the consistency

level CL ∈ {1SR, EC} given the specified workload
wload.

pCost(wload, CL) Denotes the inconsistency costs generated by the con-
sistency level CL given the specified workload wload.

incCost Denotes the cost of a single inconsistency.
nrInc(wload, CL) Denotes the number of inconsistencies generated by

CL given wload.
opCost(wload, CL) Denotes consistency costs generated by CL given

wload.
opCost(wload, ccpCL) Denotes the operational costs generated by the CCP

of CL.
opCost(wload, rpCL) Denotes the operational costs generated by the RP of

CL.
cost2pcmess Denotes the cost of a single 2PC message.
nrTu(wload) Denotes the number of update transactions in wload.
con f lictRate(si, sj) Denotes the w/w conflict rate between the workloads

of si and sj.
s.wactions Denotes the set of write actions executed at the site s.
s.card(o) Denotes the number of distinct transactions that exe-

cute a write action on object o at site s.
con f lictset(si, sj) Denotes the set of common objects in si and sj that are

accessed by write actions.
ĝain(ŵloadpi , CLpi−1

current, CLpi
new) Denotes the expected saving in costs when the pre-

dicted workload ŵloadpi is executed with CLpi
new com-

pared to the costs generated by CLpi−1
current.

tCost(wloadpi−1 , CLpi−1
current, CLpi

new) Denotes the costs of a transition from CLpi−1
current to

CLpi
new given the executed wloadpi−1 with CLpi−1

current.
nrModObj(wload, CL) Denotes the number of modified objects in wload by

transactions running with the CL consistency level.
b̂ene f it(wloadpi−1 , ŵloadpi ,

CLpi−1
current, CLpi

new)
Denotes the expected benefit when the predicted
workload ŵloadpi is executed with CLpi

new compared
to that of CLpi−1

current.

Table 5.1: C3 symbols and notations.

If there is constraint o1 ≥ 0 set on o1, then in case of 1SR one of the transactions
would be aborted. With EC both transactions would successfully commit, leading to,
for example, an oversell in an online shop. This oversell generates administrative cost
incurring from the business process to be executed for compensating the inconsistency
(e.g., contacting the customer and canceling the order).

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 91

Figure 5.5: Consistency costs of 1SR and EC.

5.1.3 Cost Model

In what follows we will describe the cost models for the 1SR and EC consistency models
based on the protocols described above. The list of symbols is summarized in Table 4.2
and 5.1.

The total costs of a consistency configuration CL is defined as the sum of its consis-
tency and inconsistency cost given a certain workload wload:

totalCost(wloadpi , CL) = pCost(wloadpi , CL)︸ ︷︷ ︸
inconsistency cost

+ opCost(wloadpi , CL)︸ ︷︷ ︸
consistency cost

(5.1)

The inconsistency costs are determined by the number of inconsistencies (nrInc) and
the application specific cost for one consistency (incCost):

pCost(wloadpi , CL) = incCost · nrInc(wloadpi , CL) (5.2)

As 1SR does not generate any inconsistencies, its pCost(wloadpi , 1SR) = 0. The
consistency costs capture the overhead generated in terms of resources and activities by
a certain consistency protocol given the workload wloadpi . A protocol consists of a CCP
and RP. Thus, its overall overhead is defined by the overhead of the CCP and RP:

opCost(wloadpi , CL) = opCost(wloadpi , CCPCL) + opCost(wloadpi , RPCL) (5.3)

As we described above, the 1SR and EC protocols use the S2PL as a CCP:
opCost(wloadpi , ccp1SR) = opCost(wloadpi , ccpEC). The main difference between them
lies in the generated costs for the RP (see Figure 5.5), and the inconsistency costs. In
what follows we specify the cost model for 1SR and EC, and consider only the addi-
tional overhead generated by one protocol compared to the other.

1SR Costs

The total costs generated by 1SR is defined as follows:

totalCost(wloadpi , 1SR) = opCost(wloadpi , 1SR) = opCost(wloadpi , 2pc) (5.4)

As defined by Equation (5.4), the costs generated by the 2PC also determines the
overall 1SR costs. Each 2PC message generates costs according to the pricing model
defined in Section 4.1.1:

92 5 Design of the Cost- and Workload-driven CCQ Protocols

opCost(wloadpi , 2pc) = cost2pcmess · nrTu(wloadpi) · (|S| − 1) (5.5)

Equation (5.5) defines the 2PC cost by considering the number of update transactions
(nrTu) in the workload, cost of each message (cost2pcmess), and the number of sites (no-
tice that only the number of agents accounts for the costs).

EC Costs

As EC does not use 2PC for the synchronization of replica sites, its opCost(wloadpi , EC) =
0. This, however, does not mean that EC does not generate any operational costs, as
EC also uses S2PL for the synchronization of concurrent transactions (see Figure 5.5).
We simply consider the difference in the cost components, i.e., the costs components
that are available in 1SR and not in EC. Adding new consistency models and protocols
into C3 may lead to modifications of the cost model in order to consider their cost
components.

In contrast to 1SR, transactions run with the EC consistency level may lead to incon-
sistent data (see Example 5.3). Thus, pCost(wloadpi , EC) ≥ 0 (Equation (5.2)). It follows
that the overall costs of EC are determined by the inconsistency costs given a certain
workload:

totalCost(wloadpi , EC) = pCost(wloadpi , EC) (5.6)

Calculation of EC Inconsistency Costs

C3 defines inconsistencies based on w/w conflicts that occur between transactions run-
ning with EC at different sites. More concretely, we have considered the lost-update
inconsistency that can occur as a consequence of w/w conflicts. Lost-updates occur
when the updates of one transaction overwrite the updates of another transaction (Ex-
ample 5.2). However, the number of lost updates is dependent on the ordering of trans-
actions, i.e., the choice of the last-committer as defined by the TWR (Example 5.4).

Example 5.4 (Calculation of Inconsistencies for EC Transactions)

Let us consider the scenario depicted in Figure 5.6 with the given workload at each site.
Further, let us assume that transactions executed at s1 have a higher timestamp than all
other transactions executed by s2 and s3. In that case, updates of t3 t4 and t5 will be lost
after the synchronization of the replica sites. Concretely, four updates will be overwrit-
ten by the updates of s1. Figure 5.6 depicts only write actions for reasons of readability.
C3, however, does not impose any limitations on the structure of transactions. Further-
more, as local transactions are synchronized according to the S2PL, locally at the sites
no lost-updates can occur, except in the case when a transaction contains blind writes.

Predicting the time-based ordering of transactions in a distributed system is very
challenging, if not impossible. Therefore, an approximation of the ordering is necessary.
In C3, this is done by declaring the site with the greatest workload as the last-committer.

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 93

 :

 :

 :

 :

 :

:
Figure 5.6: Calculation the number of lost-updates given a certain workload.

The decision is based on the assumption that the site with the greatest workload gen-
erates also the highest inconsistency impact on the transactions executed by other sites,
i.e., generates the highest number of lost-updates. Such an approach avoids the neces-
sity of an expensive pairwise calculation of the impact each site has on all other sites.
Thus, a site si is declared as a last-committer if the following condition holds:

si : last − committer ⇔ ∀sj ∈ S ∧ i �= j : |wload(si)| ≥
∣∣wload(sj)

∣∣ (5.7)

Based on Equation (5.7) we assume that the transactions of the site with the greatest
workload have the highest timestamp, and will be the last-committer according to the
TWR. In scenario depicted Figure 5.6, either s1 or s2 is declared as a last-committer. The
calculation of inconsistencies is then as follows.

Let con f lictRate(si, sj) denote the number of transactions executed at sj that are in
w/w conflict with those executed at si. con f lictRate(si, sj) defines at the same time the
impact of si’s transactions to those of sj, if si would be declared the last-committer ac-
cording to the TWR. The transactions of the last-committer would overwrite the updates
conducted by the transactions of at the other sites. Thus, the number of lost-updates,
i.e., inconsistencies in case of si being the last-committer is defined as follows (see Ex-
ample 5.4):

nrInc(wloadpi , EC)si = ∑
sj∈S∧j �=i

con f lictRate(si, sj) (5.8)

The conflict rate between two sites is calculated as follows (see Algorithm 2). Let
s.wactions denote the set of objects accessed by write operations at s. Further, let
s.card(o) denote the cardinality, i.e., the number of distinct transactions that execute
a write action on object o, and con f lictset(si, sj) = si.wactions ∩ sj.wactions. Then:

con f lictRate(si, sj) = ∑
o∈con f lictset(si,sj)

sj.card(o) (5.9)

For the calculation of the lost-updates only the write actions need to be considered.

94 5 Design of the Cost- and Workload-driven CCQ Protocols

Algorithm 2: Algorithm for calculating the inconsistencies given the workload of two
sites. The complexity is O(|s2.wactions|).

Input: s1.wactions : {< oid, oid.card >}, s2.wactions : {< oid, oid.card >}
Output: Number of updates lost at s2

Function calculateInconsistencies is
numberOfLostUpdates ← 0 ;
if isEmpty(s1.wactions) || isEmpty(s2.wactions) then

return numberOfLostUpdates;

foreach o ∈ s2.wactions do
// contains(o) and card(o) are O(1) operations.
if s1.wactions.contains(o) then

numberOfLostUpdates ← numberOfLostUpdates + s2.card(o);

return numberOfLostUpdates;

5.1.4 Configuration Model

In what follows we will describe the configuration model that allows C3 to determine
the most optimal configuration, and continuously adapt its configuration based on the
application workload.

The total costs of a consistency level is normalized to a range [0..1] as follows (CL ∈
{1SR, EC}):

totalCost(wloadpi , CLpi) =
totalCost(wloadpi , CLpi)

∑
CL∈CC3

totalCost(wloadpi , CL)
(5.10)

Given a currently active consistency level CLpi−1
current at pi−1 and the predicted work-

load ŵloadpi , the expected gain switching to another CLpi
new is defined as follows:

ĝain(ŵloadpi , CLpi−1
current, CLpi

new) = ̂totalCost(ŵloadpi , CLpi−1
current)

− ̂totalCost(ŵloadpi , CLpi
new)

(5.11)

As already described, a transition from one consistency level (configuration) to an-
other, may generate costs (Figure 5.7). While a transition from 1SR does not generate
transition costs, a transition from EC necessitates a reconciliation of sites, so that 1SR
transactions observe the same data independently on the site. The reconciliation is done
based on the TWR as described in Section 5.1.2. Although at some point the reconcilia-
tion would anyways take place, C3 penalizes a transition from EC to 1SR, as the forced
reconciliation may happen at an inappropriate time (e.g., when the system load is very
high). This in order to account for the possibility of the lazy protocol to choose the most
suitable timepoint for reconciliation (see Section 3.3.3). The transition costs are defined
as follows:

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 95

 (,) (,)
Figure 5.7: Transitions between consistency configurations.

tCost(wloadpi−1 , 1SR, EC) = 0

tCost(wloadpi−1 , EC, 1SR) =
nrModObj(wloadpi−1 , EC)

|LO| · exp(1−
1

load(S))

load(S) =
∑

load(s)
s inS
|S|

load(s) ∈]0, 1]

(5.12)

Equation (5.12) penalizes a transition from EC to 1SR by considering the number of
modified objects during the EC period, and the average load in the system. The penalty
would be maximized if all objects need to be updated at the maximum average load.

The consistency configuration CLpi
new generates a benefit, if its expected gain out-

weighs the transition costs from the current consistency configuration CLpi−1
current to CLpi

new.

b̂ene f it(wloadpi−1 ,ŵloadpi , CLpi−1
current, CLpi

new) =

ĝain(ŵloadpi , CLpi−1
current, CLpi

new)

− tCost(wloadpi−1 , CLpi−1
current, CLpi

new)

(5.13)

C3 is an adaptive protocol that adjusts consistency dynamically so that the benefit is
maximized:

max
CL∈{1SR,EC}

b̂ene f it(wloadpi−1 ,ŵloadpi , CLpi−1
current, CLpi

new) (5.14)

Adaptive Thresholding

In order to account for errors in the workload prediction, C3 incorporates an additional
verification step, which is based on the probability that the expected total costs of one
consistency level will be smaller/greater than the expected costs of the another consis-
tency level. A transition from the currently active consistency level to the new one is
conducted only if the following condition holds:

96 5 Design of the Cost- and Workload-driven CCQ Protocols

(1) P[(b̂ene f it(wloadpi−1 , ŵloadpi , CLpi−1
current, CLpi

new)) >

(b̂ene f it(wloadpi−1 , ŵloadpi , CLpi−1
current, CLpi−1

current))]

>

(2) P[(b̂ene f it(wloadpi−1 , ŵloadpi , CLpi−1
current, CLpi

new)) <

(b̂ene f it(wloadpi−1 , ŵloadpi , CLpi−1
current, CLpi−1

current))]

(5.15)

The first part of Equation (5.15) denotes the probability that the new configuration
generates a higher benefit compared to the old one for the expected workload. The sec-
ond part denotes the opposite, i.e., the probability that the old configuration generates a
higher benefit compared to the new configuration. If the the probability of the first part
is higher than that of the second part, then C3 will adjust the consistency configuration,
i.e., will initiate a transition to CLpi

new.
C3 assumes that the benefit generated by a consistency configuration is normally

distributed. The probability P[X < Y], with X and Y being random variables from two
different normal distributions, can be calculated as follows [Coo]:

P[X < Y] = 1 − P[X > Y]

P[X > Y] = Ψ(
μx − μy√

σ2
x + σ2

y

) (5.16)

In the Equation above, Ψ denotes the Cumulative Distribution Function (CDF) of a
normal distribution.

5.1.5 Consistency Mixes

New correctness models can be built as combinations of existing models [FS12, IH12,
KHAK09, YV02]. For example, different transactions or transaction classes can be exe-
cuted with different consistency models and/or protocols resulting in a consistency mix.

The concept of consistency mixes has been around for a while and is based on the
observation that the more inconsistencies are to be prevented the higher the overhead
for transactions [Fek05]. Existing databases, such as Oracle and MySQL, have ever since
provided a range of consistency models, also known as isolation levels. Application
developers can assign the most suitable isolation level to transactions with the goal of
finding the right balance between correctness, availability, performance and costs.

The following are possible semantics in case of consistency mixes.

1. The resulting correctness guarantees correspond to that of the strongest model in
the mix.

2. The resulting correctness guarantees correspond to that of the weakest model in
the mix.

3. The mix results in a new correctness model that needs to be formally defined to-
gether with the possible inconsistencies.

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 97

Independently on the semantics, it is desirable to define the mix-ability of consis-
tency models and protocols. This would allow C3 to consider only those consistency
configurations that are able to achieve the desired correctness. Moreover, if the mix re-
sults in a new correctness model, then C3 can consider only configurations, which lead
to an understandable semantics. In theory, models can be mixed in any arbitrary way,
which may lead to a correctness that applications cannot reason about. This is however
not the goal of C3, which does not consider any correctness below that provided by the
EC consistency model.

There is a growing research interest in providing such models. For example, in
[Fek99] the authors analyze possibilities to prove serializability when all transactions
use SI, i.e., provide correctness stronger than the model used by transactions. Along
the lines of that work, in [SW00] a set of criteria is defined with the goal of ensuring
serializability in federated databases when the sites locally use different models or pro-
tocols. The work in [Fek05] provides a theory allowing developers to assign concrete
isolation levels to transactions so that the overall correctness guarantees correspond to
a serializable execution by considering S2PL and lock-based implementation of SI.

5.1.6 Handling of Multi-Class Transaction Workloads in C3

In C3 different inconsistencies may incur different inconsistency cost (incCost). Appli-
cations can annotate transactions with the incCost, and C3 will cluster transactions in
so-called classes. A class subsumes all transactions that incur the same inconsistency
cost. For example, in an online shop, transactions that insert a new item (e.g., book)
and those that read item details, incur a different inconsistency cost than buy and pay-
ment transactions. Clustering transactions in different classes allows C3 to determine
the most suitable consistency configuration for each of the classes separately. This does
not require any change to the cost and configuration model. It just a matter of clustering
the access patterns from the workload. C3 assumes that each access pattern can exist in
exactly one class.

Handling consistency on per-class basis may lead to a situation in which different
consistency configurations apply for each of the classes. In that case, applications would
observe different correctness for each of the classes. However, usually, the classes are
not free of conflicts, i.e., the same objects may be accessed by conflicting actions of trans-
actions belonging to different classes. In that case, the classes running weak consistency
models would influence the correctness of those classes that are executed with stronger
models. Such an influence can lead to inconsistency costs generated by transactions that
run with consistency models, which do not permit any inconsistencies.

C3 avoids such situations by detecting conflicts between transactions of different
classes. In the case of (w/w) conflicts, transactions belonging to different classes will be
outsourced to a new class, and the highest inconsistency cost (incCost) will be assigned
to all transactions of which the new class consists. Its consistency configuration will
be then determined based on the usual cost and configuration model. Clearly, in the
worst case, all transaction may end up in the same single class, which corresponds to
the default C3 behavior.

98 5 Design of the Cost- and Workload-driven CCQ Protocols

5.1.7 Adaptive Behavior of C3

Algorithm 3: The Algorithm for determining the most optimal consistency configu-
ration. The determineCon f iguration function is invoked by Algorithm 1.

Input: wloadpi−1 ,ŵloadpi , CLpi−1
current

Output: Configuration for the next period

Function determineConfiguration is

maxBenefitConf ← CLpi−1
current;

maxBenefit ← 0 ;

totalCosts ← calculateTotalCosts(ŵloadpi ,CLpi−1
current) ;

foreach CLpi ∈ {C \ CLpi−1
current} do

tmpTotalCosts ← calculateTotalCosts(ŵloadpi , CLpi) ;
if tmpTotalCosts > totalCosts then

continue;

tmpTCosts ← calculateTransCosts(wloadpi−1 , ŵloadpi , CLpi−1
current, CLpi) ;

tmpBenefit ← totalCosts- tmpTotalCosts- tmpTCosts;
if tmpBenefit > maxBenefit then

maxBenefit ← tmpBenefit;
maxBenefitConf ← CLpi ;

/* The adaptive threshold is checked by the caller of the
determineCon f iguration function. */

return maxBenefitConf;

In what follows we will provide a step-by-step description of the adaptive behavior
of C3 based on the scenario depicted in Figure 4.10. The choice of the most optimal
configuration is described in Algorithm 3.

1. In the first step, before pi−1 is finished, the workload prediction for pi is initiated
(Algorithm 1).

2. In the second step, the predicted workload ŵloadpi is used as a basis for calculating
the consistency and inconsistency costs for all available configurations based on
the Equations 5.1, 5.2, and 5.3.

3. In the third step, the expected gain for the predicted workload will be calculated
by comparing the expected costs of the current configuration to that of all other
configurations (Equation 5.11).

4. In the forth step, the costs are calculated for each possible transition from the cur-
rent configuration to any other configuration (Equation 5.12).

5. The configuration that has the highest expected benefit (Equations 5.14 and 5.15)
is chosen as the active configuration for period pi.

5.1 C3: Cost and Workload-Driven Data Consistency in the Cloud 99

6. If the new configuration is not the same as the old one, then a reconfiguration is
initiated (step five), which will execute all necessary steps required by the new
configuration.

100 5 Design of the Cost- and Workload-driven CCQ Protocols

:

Cumulus
Configuration Space

•
•
•

Figure 5.8: Configuration space of Cumulus.

5.2 Cumulus: A Cost and Workload-Driven Data
Partitioning Protocol

Distributed transactions are expensive in terms of both performance and monetary cost.
This overhead can be considerable especially if strong consistency such as 1SR is re-
quired (see Section 3.4), as in that case distributed coordination over the network is
necessary. Data partitioning is an approach that considers the collocation of objects ac-
cessed together so that, in the best case, distributed transactions are completely avoided.
The simplest approach to avoid distributed transactions is to collocate all objects to the
same site. However, that would not be the most optimal approach in terms of load
distribution.

Cumulus is a cost and workload-driven data partitioning protocol that jointly ad-
dresses both the reduction of distributed transactions and load distribution. It is able,
given the expected application workload (Section 4.2.3), to derive significant access pat-
terns from that workload at runtime and partition the data so that the number of dis-
tributed transactions is reduced. Cumulus uses the horizontal partitioning approach
based on the object id (oid) as defined in Section 3.2.1.

Cumulus is tailored to applications that demand 1SR consistency and assumes that
data do not need to be replicated, and that latency is the main application concern (see
Section 4.3). Approaches such as the one defined in [SMA+14] can be used to handle
the replication of partitions if applications demand certain availability guarantees.

The Cumulus configuration space (Ccumulus) is defined by the partition sets:

Ccumulus = {PART1, . . . , PARTN}

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 101

ID Title Stock Price

1 Introduction to C++ 23 40

3 Applying UML 100 50

ID Title Stock Price

2 Professional Java 10 23

ID Title Stock Price

4 Beginning Node.JS 45 30

5 JavaScript for
Beginners

110 25

ID Title Stock Price

1 Introduction to C++ 23 40

2 Professional Java 10 23

ID Title Stock Price

4 Beginning Node.JS 45 30

ID Title Stock Price

3 Applying UML 100 50

5 JavaScript for
Beginners

110 25

ID Title Stock Price

1 Introduction to C++ 23 40

4 Beginning Node.JS 45 30

ID Title Stock Price

3 Applying UML 100 50

4 Beginning Node.JS 45 30

ID Title Stock Price

5 JavaScript for
Beginners

110 25

 (,)

 (,)

 (,)

(,) (,)

 (,)

 (,)

Figure 5.9: A sample configuration space consisting of three partition sets: Ccumulus =
{PART1, PART2, PART3}. Each partition set consists of one or more partitions as defined
in Section 3.2.1 (see Definition 3.26).

A partition set (PART) is a unique mapping of objects to partitions based on the
object id (Section 3.2.1). If we assume that there is one-to-one mapping of partitions
to sites, then |PART| = |S|. The size of the configuration space of Cumulus is deter-
mined by the number of unique mappings of objects to partitions. Given |LO| objects,
there are |PART||LO|−1 − 1 ways to distribute the objects to partitions, so that each par-
tition gets at least one object [Qia]. For example, given the objects o1 and o2 and the
partitions part1 and part2 there is one possible way to distribute the objects, namely
〈part1 : o1〉 , 〈part2 : o2〉;〈part1 : o1〉 , 〈part2 : o2〉 ≡ 〈part1 : o2〉 , 〈part2 : o1〉, as they gen-
erate the same number of distributed transactions.

The goal of Cumulus is to choose that PART from Ccumulus that minimizes the ap-
plication costs (Figures 5.8 and 5.9). The adaptability property allows Cumulus to con-
tinuously readjust the partitions, i.e., switch to another partition set, if the workload
shifts.

The Cumulus results have been published in [FMS15].

5.2.1 Data Partitioning

Distributed transactions are expensive and should be avoided [CZJM10]. In a DDBS
with replication, the percentage of distributed transactions is determined by the per-
centage of update transactions in the workload. The goal of data partitioning is to orga-
nize the data in disjoint partitions that reside in different sites so that, in the best case,

102 5 Design of the Cost- and Workload-driven CCQ Protocols

each partition can serve both read-only and update transactions locally without any
coordination with other partitions. In what follows, we briefly characterize different
requirements towards data partitioning protocols.

Distributed Transactions and Load Distribution Distributed transactions are expensive
due to the necessary commit coordination [CZJM10]. A partitioning protocol should
minimize the number of – or in the best case completely avoid– distributed transactions.
In addition to distributed transactions, a data partitioning protocol, should also avoid
so-called hotspots which are objects or partitions that are very popular. This can be done
by creating partitions, which avoid bottlenecks. Graph-based algorithms [CZJM10], for
instance, can be used to target both goals, i.e., the minimization of distributed transac-
tions and load distribution.

Rigid vs. Elastic Partitioning Elasticity is a crucial requirement for applications de-
ployed in the Cloud [Aba09]. It denotes the ability of a system to provision or de-
provision resources based on the application load. In the context of partition protocols,
the elasticity defines the ability to deploy new sites in case the available resources can
not handle the load. These additional sites can be used to create replicas for overloaded
partitions and use them for distributing the load, or a reconfiguration can be initiated
by incorporating new sites into the distribution process of partitions to sites. Both ap-
proaches can be used to address the hotspot challenge, to avoid that a partition is more
frequently accessed by transactions than others and become a bottleneck. However,
by replicating hotspots and distributing the load between sites, expensive distributed
transactions are introduced. Even though only the hotspot data objects are involved in
these distributed transactions, the performance of this approach may still degrade to
the performance of a fully replicated system due to the popularity of the hotspots. The
de-provisioning (un-deployment of sites) in case the load decreases again is equally
important to the provisioning, as unneeded resources generate unnecessary costs.

Elastic protocols, in contrast to rigid protocols, are able to provision and de-
provising sites based on the application workload by also considering the incurring
monetary costs [SMA+14].

Static vs. Adaptive Partitioning As described in Example 4.3, the workload of an ap-
plication may shift as a consequence of changed user behavior. In that case, the previ-
ously deployed partitions may suddenly become unsuitable and lead to a high ratio of
distributed transactions. Static protocols are not able to adapt at runtime, and would
require the system must be taken off-line in order to reconfigure it. However, this is
in a sharp contrast to the high availability and always-on requirements of applications
deployed in the Cloud [ADE12].

Adaptive protocols are able to reconfigure the DBS at runtime. However, care must
be taken with regards to the reconfiguration cost, but also with regards to consistency
(safety) as the reconfiguration is usually a distributed activity.

Manual vs. Automatic Partitioning Manual protocols require the involvement of a (hu-
man) expert, while automatic approaches can re-partition the data without any expert
involvement. Hybrid protocols can propose partitions that can be further refined by an
expert, or refine partitions recommended by an expert.

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 103

< >

Start

Start

Collected
Workload

Historical
workload

Workload
prediction and

analysis

Significant
Workload New PART

1

3

4

Gain?

5

SttttttartSttttttart Gain

6

(,) (,)

2

< >

Figure 5.10: Cumulus partitioning workflow.

Routing Transparency vs. Manual Site Selection Compared to a fully replicated sys-
tem, the location of data in a partitioned system is mandatory information needed to
route transactions to those sites that contain the required data. Protocols that provide
routing transparency decouple the client from the data location and give the system the
flexibility to reconfiguring the DDBS without affecting applications.

5.2.2 The Cumulus Data Partitioning Approach

Cumulus targets three main aspects that considerably impact the quality of the gener-
ated partitions, the partitioning overhead, and the correctness of the system behavior:

1. Cumulus incorporates a workload analysis approach that aims at anticipating fu-
ture access patterns for the generation of partitions to match best the expected
workload and thus reduce or completely avoid expensive distributed transactions.

2. Cumulus is based on a cost model, which targets the optimization of application
costs, and configuration model which ensures that a reconfiguration is conducted
only if it leads to a benefit, i.e., the gain outweighs the reconfiguration costs (Equa-
tion (4.5)).

104 5 Design of the Cost- and Workload-driven CCQ Protocols

3. Cumulus implements an on-the-fly and on-demand reconfiguration approach that
compared to stop-and-copy approaches [TMS+14], considerably reduces the sys-
tem unavailability (interruption duration). It exploits locking and 2PC to ensure
correctness (safety) even in case of failures and provides full routing transparency
to applications.

The partitioning workflow of Cumulus is depicted in Figure 5.10 and is defined as
follows. Once there is a significant amount of current workload collected, the workload
prediction and analysis activity is initiated. The goal of the workload prediction is to an-
ticipate the expected workload in the future, whereas the workload analysis determines
the most significant subset of access patterns in the workload that should determine the
partitions. It is difficult, if not impossible, to generate partitions that satisfy the entire
workload. Moreover, considering all access patterns, depending on the workload size,
may lead to considerable partitioning overhead, which is not inline with an online pro-
tocol. The Cumulus’ strategy is based on the idea of tailoring the partitions to those
access patterns that will occur with high frequency, as optimizing for infrequent (noisy)
patterns generates low or no benefit at all.

A new partition set is proposed based on the most significant subset of access pat-
terns. Based on the cost model which finds the right balance between reconfiguration
cost and the gain of the new configuration, Cumulus will decide if the new partitions
are to be applied. If so, it will initiate the transition to the new configuration using the
on-demand and on-the-fly approach, which is driven by user transactions (i.e., only ob-
jects that are accessed will be redistributed on the fly) such that the system interruption
remains low.

Once a decision has been reached, the entire workflow is restarted independently
on the current configuration. At workflow restart, the previously collected workload is
added to the set of historical workloads, the current workload is reset, and the workload
monitoring and collection is resumed. In what follows, we will describe in greater detail
the different steps of the workflow.

5.2.3 Workload Prediction and Analysis

In the first step of the workflow, the workload for the next period pi will be predicted
using the EMA model on the basis of the current workload that considers the entire
database. Notice that Cumulus slightly deviates with regards to the workload defi-
nition in Section 4.2, as it considers only objects and ignores the actions of the access
patterns. Equation (5.2.3) defines the equality of access patterns in Cumulus.

apq = apu ⇐⇒ (∀o [o ∈ apq ⇔ o ∈ apu])

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 105

Predicted
workload for next
period

Access
pattern

occ

, 63 , 36 , 93 , , () 11 , 13 { , } 3 , 3

Access
pattern

occ

, 63 , 36 , 93

Significant
workload for

Figure 5.11: Workload prediction and analysis.

Example 5.5 (Equal and Distinct Access Patterns in Cumulus)

ap1 = {r1,1(o3), r1,2(o5), r1,3(o7)}
ap2 = {r2,1(o3), r2,2(o5), r2,3(o7)}
ap3 = {r3,1(o3), w3,2(o5), r3,3(o7)}
ap4 = {r4,1(o3)}

ap1 = ap2 = ap3

ap1 �= ap4 ∧ ap2 �= ap4 ∧ ap3 �= ap4

As depicted in Example 5.5, in contrast to the definition in Section 4.2, two access
patterns are equal if they access the same set of objects independently on the operations
that act on the objects. However, since distributed transactions that include writes imply
the usage of 2PC, read and write actions do not generate the same costs. Considering the
operations in addition to the objects would allow for a more fine-grained optimization
at the price of increased graph size, as in that case the graph nodes represent actions
and not objects. Two actions r(o) and w(o) would be represented by two graph nodes,
instead of one in Cumulus. In the worst case the size of the graph increases by a factor
of two, i.e., from |wload.LO| nodes to 2 · |wload.LO|, with wload.LO denoting the set of
objects in the workload. The worst case incurs if each object is accessed by a write action,
as we assume that a read action always precedes a write action. Therefore, Cumulus
neglects the operations to reduce the partitioning overhead, which correlates with graph
size.

106 5 Design of the Cost- and Workload-driven CCQ Protocols

 :

Figure 5.12: Workload graph.

The smoothing property of EMA is crucial for the adaptive behavior of Cumulus,
as high frequency access patterns that were added as part of previously triggered re-
partitioning activities would remain indefinitely in the workload if no smoothing was
applied. Over time, they might superimpose and dominate the current and expected ac-
cess patterns and would behave similar to noisy transactions, preventing the system to
adapt to shifting access patterns. A naïve approach would be to construct the workload
from scratch each time a partitioning is triggered. However, this memory-less approach
would disallow the system to recognize long-term access patterns, and would lead to
a highly unstable system that will steadily re-partition in reaction to short-term access
pattern changes.

In the second step, the workload analysis is initiated, which applies a high-pass fil-
ter to the predicted frequencies with the goal of removing infrequent (noisy) patterns
from the workload. The filter only preserves access patterns that have a predicted fre-
quency above a certain threshold (Figure 5.11). Each access pattern from the predicted
workload represents a constraint to the problem of determining the optimal partition
configuration. On one hand, the more constraints are available, the more difficult it is to
satisfy all of them leading to a sub-optimal partition configuration. On the other hand,
optimizing for noisy transactions does not generate any benefit for future transactions.
The choice of the applied filter can alter the partitioning behavior significantly. The
more aggressive the high pass filter is tuned, the more stable already established pat-
terns will be. On the other hand, new patterns will need a significant frequency before
they are recognized. It is thus advised to tune the filter according to the expected access
pattern, i.e., a high threshold for stable patterns and a lower threshold for volatile access
patterns.

The resulting significant workload is maintained as a graph, similar to the approach
presented in [CZJM10]. The graph consists of nodes that denote data objects, and edges
between oi and oj if both objects are accessed by the same transaction (Figure 5.12). Edge
weights improve the partition step by giving a higher weight to re-occurring transaction
edges. The problem of finding the optimal partition configuration is thus equivalent to
the problem of finding optimal graph partitions, and this can be done by graph par-
titioning libraries such as Metis [KK98]. The configuration space is exploited by the
graph algorithm, i.e., the configurations are implicit in that case. The algorithm will

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 107

(a) Partitions leading to a site becoming a bot-
tleneck

(b) Partitions that avoid bottlenecks

Figure 5.13: The impact of considering all database objects vs. workload objects only to
the quality of the generated partitions.

simply propose the best configuration1, and Cumulus will decide based on its cost and
configuration model if there is a benefit in moving to that proposed configuration.

Since Cumulus takes into account only objects from the significant workload when
determining the partitions, objects not available in the workload are stripped to the
available sites based on a round-robin approach. This is done to avoid problems that
would occur when considering all database objects when constructing the workload
graph. If the set of workload objects is restricted to a subset of the entire database
objects, then the resulting graph will contain a low edge to node ratio and many nodes
will have no connections at all. In this case, the graph partitioning may lead to all
graph nodes corresponding to data objects being located at one site and the rest will
be randomly distributed to the other sites. This approach will lead to a low ratio of
distributed transactions. However, it is likely to create hotspots (Figure 5.13).

5.2.4 Cost Model

As already described, the task of Cumulus is to choose those partitions that reduce the
number of distributed transactions with the goal of satisfying application requirements
towards performance. Although not the primary concern of Cumulus, the activities
for coordinating a distributed transaction can be mapped to monetary costs. In that
case, Cumulus would target the reduction of monetary costs. In what follows, we will
describe the cost model of Cumulus. The list of symbols is summarized in Table 5.2.

The total costs of a partition configuration are defined by the operational cost, as no
penalty cost can occur in Cumulus. The reason is that Cumulus targets the optimization
of an implicit requirement, such as the performance impact of distributed transactions.

totalCost(wloadpi , PART) = opCost(wloadpi , PART) (5.17)

1The problem of finding an optimal graph partition is NP-complete. Thus, the "best" corresponds to
an approximate solution based on the heuristics used by the graph algorithm.

108 5 Design of the Cost- and Workload-driven CCQ Protocols

Symbol Description
totalCost(wload, PART) Denotes the total costs generated by the partition

configuration PART ∈ Ccumulus given the specified
workload wload.

opCost(wload, PART) Denotes operational costs generated by PART
given wload.

ĝain(ŵloadpi , PARTpi−1
current, PARTpi

new Denotes the expected saving in costs when the pre-
dicted workload ŵloadpi is executed with PARTpi

new
compared to the costs generated by PARTpi−1

current.
tCost(wloadpi−1 , PARTpi−1

current, PARTpi
new) Denotes the costs of a transition from PARTpi−1

current
to PARTpi

new given the executed wloadpi−1 with
PARTpi−1

current.
DTxns(wload, PART) Denotes the set of distributed transactions given

the workload wload and partition configuration
PART.

costDTxn Denotes the cost of a distributed transaction.
dCost(wload, PART) Denotes the costs of distributed transactions given

the workload wload and partition configuration
PART.

dCost(t, PART) Denotes the cost of distributed transaction t given
configuration PART.

dDeg(t, PART) Denotes the distribution degree of transaction t
given PART.

#accPartitions(t, PART) Denotes the number of accessed partitions by t
given PART.

maxDDeg(PART) Denotes the maximum distribution degree given
PART.

tCost(wloadpi−1 , PARTpi−1
current, PARTpi

new) Denotes the transition costs given the workload
wloadpi−1 , current configuration PARTpi−1

current, and
the new configuration PARTpi

new.
otM Denotes the set of objects to be relocated as conse-

quence of a transition to a new configuration.
relocCost Denotes the cost for the relocation of a single ob-

ject.
b̂ene f it(wloadpi−1 , ŵloadpi ,

PARTpi−1
current, PARTpi

new)
Denotes the expected benefit when the predicted
workload ŵloadpi is executed with PARTpi

new com-
pared to that of PARTpi−1

current.

Table 5.2: Cumulus symbols and notations.

The operational cost are determined by the number of distributed transactions
(Equation (5.18)):

opCost(wloadpi , PART) = dCost(wloadpi , PART)

dCost(wloadpi , PART) = ∑t∈DTxns
t dCost(t, dDeg(t, PART))

∑t∈wloadpi
t dCost(t, maxDDeg(PART))

(5.18)

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 109

In Equation (5.18), DTxns denotes the set of distributed transactions given the work-
load wloadpi and configuration PART, and dCost(t, maxDDeg(PART)) the cost of the
distributed transaction t. The denominator of the fraction is used to normalize the cost
by simply summing up the cost of all transactions in the workload with the highest
possible distribution degree.

Cumulus assumes that distributed transactions need to execute more activities than
non-distributed transactions, and are thus more expensive. The cost of a distributed
transaction is influenced by and increases in non-linear manner with its distribution
degree:

dCost(t, PART) =
(

dDeg(t, PART)
maxDDeg(PART)

)2

· costDTxn

dDeg(t, PART) = #accPartitions(t, PART)− 1
maxDDeg(PART) = |PART| − 1 with |PART| > 1

(5.19)

In Equation (5.19), dDeg(t, PART) denotes the distribution degree of t which is deter-
mined by the number of accessed partitions #accPartitions, maxDDeg(PART) denotes
the maximal possible distribution degree, and costDTxn is fixed cost for a distributed
transaction.

5.2.5 Configuration Model

The expected gain of adapting the configuration from the currently active one
(PARTpi−1

current) to a new one (PARTpi
new) given the expected workload ŵloadpi is defined as

follows:

ĝain(ŵloadpi , PARTpi−1
current, PARTpi

new) = ̂totalCost(ŵloadpi , PARTpi−1
current)−

̂totalCost(ŵloadpi , PARTpi
new)

(5.20)

The gain is measured in terms of reduction in distributed transactions, and is consid-
erably impacted by the quality of the generated partition configuration, i.e., how well
the configuration matches the workload, and the lifetime of the configuration (stabil-
ity). By including a workload analysis based on exponential smoothing and high-pass
filtering, Cumulus considerably improves both the quality and the stability of the con-
figuration.

A transition from the current partition configuration to a new one generates costs,
which incur from the necessity of relocating objects and are defined as follows:

tCost(wloadpi−1 , PARTpi−1
current, PARTpi

new) =
∑o∈OtM relocCost(o)
∑o∈LO relocCost(o)

(5.21)

OtM in Equation (5.21) denotes the set of objects to be relocated given the work-
load wloadpi−1 , currently active configuration PARTpi−1

current and the new configuration
PARTpi

new; relocCost denotes the relocation cost for a single object.

110 5 Design of the Cost- and Workload-driven CCQ Protocols

A transition to the new configuration PARTpi
new generates a benefit if the expected

gain outweighs the transition costs to PARTpi
new:

b̂ene f it(wloadpi−1 , ŵload
pi

,PARTpi−1
current, PARTpi

new) =

ĝain(ŵload
pi

, PARTpi−1
current, PARTpi

new)−
tCost(wloadpi−1 , PARTpi−1

current, PARTpi
new)

(5.22)

The new configuration is applied if the expected benefit is above a certain threshold
th:

b̂ene f it(wloadpi−1 , ŵload
pi

, PARTpi−1
current, PARTpi

new) > th (5.23)

In here, the choice of the threshold parameter th is crucial. A high threshold increases
the life-cycle of a configuration and may lead to a high loss as there is a high tolerance to
distributed transactions. A low threshold leads to frequent reconfigurations and might
lead to transition costs that outweigh the gain. In future work, we plan to incorporate a
machine learning-based approach into Cumulus to determine the optimal value of th.

5.2.6 Handling of Inserts and Deletes

Insert and delete actions2 need a special treatment by a partitioning protocol. In Cumu-
lus, delete operations are sent to the site containing the object to be deleted. A delete
transaction is split into sub-transactions containing a batch of deletes for each site con-
taining objects to be deleted. The atomicity guarantees are preserved for a transaction
by using 2PC for all sub-transactions. If a delete transaction commits, the routing in-
formation needs to be updated. A delete transaction executed during a reconfiguration
will additionally remove the objects from the set of objects to be relocated. Insert op-
erations impose a challenge with regards to the most optimal location (site) of the new
objects, as no access patterns are known at the insert time. The goals of the partitioning,
namely the collocation of objects and load distribution, should also apply to newly in-
serted objects. Cumulus does not follow the collocation goal but is mainly focused on
evenly distributing inserted objects across sites. It postpones object collocation to the
next reconfiguration event. The even distribution of inserted objects to sites can be im-
plemented using a round-robin approach. However, this requires a centralized instance
for maintaining the next site for the insert. In Cumulus, each site can locally decide on
where to next insert objects, by choosing a site from all available sites, all with equal
probability.

5.2.7 Adaptive Behavior of Cumulus

In what follows we will provide a step-by-step description of the adaptive behavior
of Cumulus based on the scenario depicted in Figure 5.10 (see also Figure 4.10). The
mapping of the application workload to a graph and the choice of the most optimal
partition configuration are described in Algorithm 4.

2An insert action is a write action that inserts a new object, whereas a delete action is a write action
that sets an existing object to NULL.

5.2 Cumulus: A Cost and Workload-Driven Data Partitioning Protocol 111

1. In the first and second step, before pi−1 is finished, the workload prediction for pi
is initiated (Algorithm 1).

2. The predicted workload ŵloadpi from the second step is used as a basis for deter-
mining the significant access patterns (step three). The resulting significant work-
load is used for the generation of the workload graph as described in Section 5.2.3.
The problem of finding the most optimal partition configuration is mapped to a
graph partitioning problem [CZJM10].

3. In the fourth step, a new configuration is proposed. The expected gain of the new
configuration will be calculated by comparing the expected costs of the current
configuration to that of the proposed configuration by the graph partitioning al-
gorithm (Equation 5.20).

4. If the proposed configuration generates a benefit (Equation 5.23), by also consid-
ering the transition costs (Equation 5.21), then a reconfiguration is initiated (step
five), which will execute all necessary steps required by the new configuration.

112 5 Design of the Cost- and Workload-driven CCQ Protocols

Algorithm 4: The Algorithm for determining the most optimal configuration. The
determineCon f iguration function is invoked by Algorithm 1.

Input: wloadpi−1 ,ŵloadpi , PARTpi−1
current

Output: Configuration for the next period

Function determineConfiguration is
Graph : g ← {};
maxBenefitConf ← PARTpi−1

current;
/* Calculate the total costs for the predicted workload based

on the current configuration. */

totalCosts ← calculateTotalCosts(ŵloadpi ,PARTpi−1
current) ;

foreach ap ∈ ŵloadpi do
foreach o ∈ ap.LO do

if ¬ g.contains(o) then
g.addNode(o)

ap.LO ← ap.LO \o ;
/* Add edges from o to all other objects of access

pattern ap. */
g.addEdge(o,ap.LO) ;

/* The graph partition algorithm determines the optimal
partition for the workload */

PARTpi
new ← graphPartition(g) ;

tmpTotalCosts ← calculateTotalCosts(ŵloadpi , PARTpi
new) ;

if tmpTotalCosts < totalCosts then

tmpTCosts ← calculateTransCosts(wloadpi−1 , ŵloadpi , PARTpi−1
current,

PARTpi
new) ;

tmpBenefit ← totalCosts- tmpTotalCosts- tmpTCosts;
if tmpBenefit > th then

maxBenefitConf ← PARTpi
new;

return maxBenefitConf;

5.3 QuAD: Cost and Workload-Driven Quorum
Protocol

QuAD is a cost and workload-driven quorum protocol that constructs the site quorums
by considering the load of the sites and their network distance. It is based on the ob-
servation that not only the size of the quorums determines the overall performance, but
also the properties of the sites constituting the quorums. The ’weakest’ sites of a quo-
rum are the limiting factor to performance, as they need to be accessed by transaction
for reading (read-path) and writing (commit-path) the data. Avoiding such weak sites
from the read and commit paths of transactions decreases their overhead and increases
the system performance [SFS15].

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 113

:

QuAD
Configuration Space

•
•
•

Figure 5.14: Configuration space of QuAD.

The configuration space of QuAD is determined by the quorum definition for each
of the sites consisting the DDBS (Figure 5.14):

CQuAD = {QUORUM1, QUORUM2, . . . , QUORUMN}
A concrete QuAD configuration (QUORUM) is determined by the definition of the

quorums for each of the sites (Figure 5.15):

QUORUM :
{

quorums(s1), quorums(s2), . . . , quorums(s|S|)
}

The set of quorums of a site s is determined by its read and write quorum:

quorums(s) : {rq(s), wq(s)}
rq(s), wq(s) ⊆ S

QuAD can adjust the quorum configuration at runtime if the properties of the sites
change, in case of site failures or if new sites join the system. The later might be, for
example, the consequence of an increased availability level. As defined in Section 4.3,
QuAD is tailored to applications that demand 1SR consistency on top a of a fully repli-
cated DDBS.

The QuAD results have been published in [FS13] and [SFS15].

5.3.1 Quorum-based Protocols

As described in Section 3.3.3, the goal of quorum protocols is to reduce the overhead
for update transactions as only a subset of sites is eagerly committed. Committing a
subset of sites, instead of all of them, reduces the number of messages in the system
and the load generated at the sites. However, to guarantee 1SR consistency, reads must

114 5 Design of the Cost- and Workload-driven CCQ Protocols

 (,)

: < = = , = = , = = >

 (,)

 (,)

: < = = , = = , = = >

: < = = , = = , = = >

 (,)

 (,)

(,)

Figure 5.15: A sample configuration space consisting of three quorum configurations:
CQuAD = {QUORUM1, QUORUM2, QUORUM3}. A quorum configuration is defined
by the quorums of each of the three sites. An arrow from one site to another defines an
includes-in-quorum relationship.

also access a subset of sites and this, in contrast to the ROWAA approach, increases the
overhead for the reads [KJP10, JPAK03].

The size of the quorums, i.e., the number of sites accessed by read-only and up-
date transactions, is not the only determining factor for the overall performance. The
properties of the sites consisting the quorums, such as their load, capacity, costs and
the distance between them, are crucial for the satisfying the application requirements
towards performance.

The life-cycle of transactions in quorum-based RPs that provide 1SR consistency is
depicted in Figures 5.16a and 5.16b. In the first step, each transaction will acquire a
unique timestamp from the TimestampManager. The timestamp is crucial in order to
guarantee transactions access to the most recent data. In the second step, transactions
will acquire (shared or exclusive) locks for all objects accessed according to the S2PL
(see Section 3.1.5). Read-only transactions will access the read quorum by reading the
values of the objects at every site that is part of the quorum (step 3), and construct the
final result by taking those values that have the highest commit timestamp (step 4).
At commit (step 5), a read-only transaction will release the locks (step 6) and send the
response to the client (step 7).

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 115

: read-only
transaction

Lock Manager Timestamp Manager

1 2

3

4

5

6

7

(a) Read-only transaction

: update
transaction

Timestamp Manager

1

3

4

5

Lock Manager

2
6

7

(b) Update transaction

Figure 5.16: Lifecycle of transactions in quorum-based protocols.

Update transactions must also first update the local versions at the executing site
(step 3) before the processing of the transaction can be started (step 4). During the
commit (step 5) the new values are first propagated to all sites consisting the write
quorum of the coordinating site (s1). After that, the locks are released(step 6), and the
response is delivered to the client (step 7).

5.3.2 The QuAD Approach to Quorum-based Replication

The goal of QuAD is to construct the quorums in such a way so that ’weak’ replica
sites are avoided from the read and commit path of transactions (step 3 in Figure 5.16a,
steps 3 and 5 in Figure 5.16b), where ’weak’ can have different meanings, such as slow
and distant, but also expensive. QuAD considers the load of the sites and their dis-
tance, i.e., RTT, when determining the quorums. The reduction of the read and commit
overhead has a considerable impact on the overall performance [SFS15]. Additionally,
QuAD seeks a possibly balanced assignment of sites to quorums, since if some sites are
frequently included in the quorums, they become a bottleneck [SFS15].

QuAD is an adaptive protocol that is able to react to changes in the system, such as
increased load at sites, new sites joining the system or site failures, and consequently,
adapt its quorums to reflect these changes. In what follows, we will provide the details
of the quorum construction in QuAD. The list of symbols is summarized in Table 5.3.

Construction of Quorums in QuAD

The QuAD quorum construction is motivated by the κ-centers problem [BKP93, KS00]:
given a set of n cities and a distance between them, the goal is to build κ warehouses so
that the maximum distance of a city to a warehouse is minimized.

The same analogy can be used to describe the QuAD strategy. QuAD chooses the
κ-strongest sites to become core sites (CS ∈ P(S)), and the rest forms the set of slave sites
(SL = S \CS). The strength of a site is determined by its score. The quorum construction
process is then as follows (Figure 5.17):

116 5 Design of the Cost- and Workload-driven CCQ Protocols

Symbol Description
CS Denotes the set of core sites.
cs Denotes a core site: cs ∈ CS.
κ Denotes the number of core sites: |CS| = κ.
SL Denotes the set of slave sites.
sl Denotes a slave site: sl ∈ SL.
CQr Denotes the core sites that are part of the read quo-

rum of another core site.
CQw Denotes the core sites that are part of the write quo-

rum of another core site.
SQr Denotes the core sites that are part of the read quo-

rum of a slave site.
SQw Denotes the core sites that are part of the write quo-

rum of a slave site.
crq(cs) Denotes the read quorum of the core site cs.
cwq(cs) Denotes the write quorum of the core site cs.
srq(sl) Denotes the read quorum of the slave site sl.
swq(sl) Denotes the write quorum of the slave site sl.
load(s) Denotes the load of the site s.
rtt(s) Denotes the RTT of s to all other sites.
wload Denotes the weight of the load score.
wrtt Denotes the weight of the RTT score.
loadsc(s) Denotes the load score of site s.
rttsc(s) Denotes the RTT score of site s.
totalCost(wload, QUORUM) Denotes the total costs generated by the quorum con-

figuration given the specified workload wload.
opCost(wload, QUORUM) Denotes operational costs generated by QUORUM

given wload.
ĝain(ŵloadpi ,QUORUMpi−1

current,

QUORUMpi
new

Denotes the expected saving in costs when the
predicted workload ŵloadpi is executed with
QUORUMpi

new compared to the costs generated by
QUORUMpi−1

current.
tCost(wloadpi−1 ,QUORUMpi−1

current,

QUORUMpi
new)

Denotes the costs of a transition from
QUORUMpi−1

current to QUORUMpi
new given the exe-

cuted wloadpi−1 with QUORUMpi−1
current.

b̂ene f it(wloadpi−1 , ŵloadpi ,

QUORUMpi−1
current,

QUORUMpi
new)

Denotes the expected benefit when the predicted
workload ŵloadpi is executed with QUORUMpi

new
compared to that of QUORUMpi−1

current.
PromoSL Denotes the set of slave sites that are promoted to core

sites during a reconfiguration.
updateCost(s) Denotes the costs of updating the site s.

Table 5.3: QuAD symbols and notations.

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 117

== ,

=

= =,=

=
() = ,

== ,

Core
sites

Slave
sites

Figure 5.17: QuAD quorum configuration.

1. Each core site will create quorums – denoted as core quorums – that consist of core
sites only. A core read quorum (crq) consists of the majority of core sites, whereas
a core write quorum (cwq) consists of all core sites.

2. Each slave site will construct its quorums – denoted as slave quorums – by including
the majority of core sites. Slave quorums always consist the majority of core sites
and both the read and write quorums are the same (srq = swq). Hence, a quorum
might not include the majority of all sites, but at least the majority of core sites.

3. The quorums of a site apply for all transactions executed by that site, i.e., the
quorums are not chosen on a per transaction basis.

4. Each site includes itself in its read and write quorum.

The lifecycle of transactions in QuAD is similar to that depicted in Figures 5.16a
and 5.16b (Example 5.6). The role of the sites and the quorum construction strategy is
what changes in QuAD. The construction strategy is based on the idea that core sites
communicate with core sites only, but never with a slave site. The reason for this is that
’strong’ sites do not slow down each other. Thus, there is a bi-directional communica-
tion between core sites, and only a unidirectional communication between slave sites
and core sites, i.e., a slave site can access a core site, but never vice-versa. The roles of
the sites are not static and may change if site properties, such as the load, change. This
may necessitate an adaptation of quorums, which may lead to old cores being demoted
to slaves, and slaves being promoted to core sites.

Example 5.6 (Transaction Execution in QuAD)

In what follows we will describe the transaction execution in QuAD based on the sce-
nario depicted in Figure 5.17. A transaction may be received by a core site or by a slave
site.

118 5 Design of the Cost- and Workload-driven CCQ Protocols

1. In the first case, a read-only transaction t is submitted to the core site s2. Since
rq(s2) = {s2, s4}, t needs to access the data objects at s2 and s4, i.e., at the majority
of core sites. It will construct the final response by taking those values that have
the highest commit timestamp.

2. In the second case, an update transaction t is submitted to s2. Transaction t will get
the most recent data by contacting the sites that consist the rq(s2). In the next step,
t is executed and new values for the objects are produced, which are then eagerly
committed to the sites that consist the write quorum (wq(s2) = {s2, s4, s5}), i.e., all
(available) core sites.

3. In the third case, a read-only transaction is submitted to the slave site s1. Its read
quorum consists of the majority of core sites: rq(s1) = {s1, s2, s4}. Thus, the final
response is constructed by reading the values locally and at s2 and s4 (the majority
of core sites), and taking those values that have the highest timestamp.

4. In the fourth case, an update transaction is submitted to s1. The execution process
is similar to the case when an update transaction is executed by a core site, except
that now only the majority of core sites is eagerly updated: wq(s1) = {s1, s2, s4}.

Based on Example 5.6 we can derive two main task for the quorum construction in
QuAD. First, it is necessary to define a scoring model that assign scores to sites. The
score of a site determines its strength, i.e., its role (core or slave). And second, a model
is necessary that defines the assignment of slaves to cores, i.e., that determines the slave
quorums. The model should not only consider the score of the sites when assigning
slaves to cores but should also strive for a balanced assignment. Core sites with a high
score may attract too many slaves and may thus become a bottleneck, and degrade the
performance of the entire system.

Site Score

The score of a site si is based on its load load(si), and its distance rtt(si) to other sites.
Let CN denote the distance matrix:

0 rtt(1, 2) rtt(1, |S|)

rtt(i, 1) 0 rtt(i, |S|)

rtt(|S|, 1) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(5.24)

In Equation (5.24), rtt(i, j) denotes the RTT between si and sj and rtt(i, j) = rtt(j, i).
The ith row of CN defines the RTT of si to all other sites in the system: rtt(si) =
[CN(i, 1), · · · , CN(i, |S|)]. The score of a site is defined as follows:

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 119

(,)

(,) (,) (,) (,) (,)(,) (,)

Figure 5.18: Graph and matrix representation of the assignment problem.

score(si) = wrtt · rttsc(si) + wload · loadsc(si)

rttsc(si), loadsc(si) ∈ [0, 1]
(5.25)

rttsc(si) = 1 − ‖rtt(si)‖
max
∀sk∈S

(‖rtt(sk)‖)

loadsc(si) = 1 − load(si)

max
∀sk∈S

(load(sk))

(5.26)

Based on the Equation (5.25), the κ sites that have the highest scores are chosen to
become core sites. Initially, as no load data are available from the sites, each one will
get the same load score. This means that the RTT will be the determining factor for the
score of the sites. In case all sites get the same score, the κ-sites will be chosen randomly.

Determining the Quorums of Core Sites

The choice of the number of core sites has a considerable impact on the overall per-
formance of QuAD. It is also crucial for the availability of QuAD, as the core sites are
included in quorums of both core sites and slave sites (see Figure 5.17). The lower the
number of core sites, the lower the availability of QuAD, and the lower the commit and
read overhead. However, the load balancing capabilities also decrease with decreasing
number of core sites. With κ, it is possible to simulate the behavior of different existing
approaches, such as ROWAA. If, for example, all sites are core sites (κ = S), then the
cwq will include all available sites (cwq = CS = S). Consequently, it would be safe
from a consistency point of view to access a single site in case of read-only transactions
(crq(cs) = cs), which corresponds to the lifecycle of transactions in ROWAA.

The read quorum of each core sites consists of the majority of core sites, and the write
quorum consist of all core sites:

crq(cs) = cs ∪ (CQr ⊆ CS) ⇒ |CQr| = � |CS|
2

�
cwq(cs) = CS

(5.27)

Determining the Quorums of Slave Sites

Each slave site will choose the majority of core sites as part of its quorums, and the read
and write quorums are equal:

120 5 Design of the Cost- and Workload-driven CCQ Protocols

swq(sl) = srq(sl) = sl ∪ (SQ ⊆ CS) ⇒ |SQ| = � |CS|
2

�+ 1 (5.28)

Selecting the majority of the cores is crucial to ensure the intersection property be-
tween quorums of the slave sites, as there is no communication between the slave sites.
The main question is however how to determine the quorums of the slaves, i.e., the sub-
set of core sites that a slave site will be attached to so that the cost is minimized? There
are two main issues here. First, we need to consider the cost of assigning a slave site
to a subset of core sites so that in overall we minimize the average cost. Second, if we
include the same core site in too many quorums, then that site will become a bottleneck
and degrade the overall performance. This means that we need to update the costs each
time we assign a slave site as the cost of the core sites will increase with every slave site
attached to them.

Determining the slave quorums corresponds to the assignment problem [Kuh10,
Mun57], which is defined as follows. Let WO denote the set of workers, and J the
set of jobs. The goal is now to assign the jobs to the workers so that the overall cost is
minimized:

min
|J|
∑

j
cost(wo, j) (5.29)

The assignment problem is best modeled as a directed graph G = (WO, J; E) with
WO denoting the worker-vertices, J the job-vertices, and with edge e ∈ E having a non-
negative weight cost(wo, j), which denotes the cost for assigning j to wo (Figure 5.18).
The assignment problem can be solved using the Hungarian algorithm, which has a
complexity of O(n3) with n = max(|W| , |J|) [Mun57].

The same analogy can be used to determine the slave quorums. For that, we need to
perform two steps:

1. We need to define the cost model for assigning slaves to core sites as defined in
Equation (5.29). The cost model should consider the load of the cores and the
distance of the slaves to the core sites.

2. The original definition of the assignment problem considers a one-to-one assign-
ment (Figure 5.18) of jobs to workers, whereas in QuAD a slave is assigned to a
subset of core sites. Hence, we need to map the one-to-one assignment to a one-
to-many assignment (Example 5.7).

Example 5.7 (Assignment of Slaves to Core Sites)

In the scenario depicted in Figure 5.17, s1 and s3 denote the slave sites, and s2, s4 and
s5 the core sites. In order to guarantee the intersection property between s1 and s3, they
must include the majority of cores in their quorums. In this case the slave quorums

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 121

consist of each slave and two of the core sites, i.e., there are three different assignments
of slaves to quorums:

srq(s1) = swq(s1)
→ {s1 ∪ SQ1, s1 ∪ SQ2, s1 ∪ SQ3}
srq(s3) = swq(s3)
→ {s3 ∪ SQ1, s3 ∪ SQ2, s3 ∪ SQ3}

SQ1 = {s2, s4}
SQ2 = {s2, s5}
SQ3 = {s4, s5}
SQ = {SQ1, SQ2, SQ3}

There are |SQ| =
(|CS|
� |CS|

2 �+ 1

)
majority subsets of core sites, and |SQ||SL| possible

assignments of slaves to core sites.

In order to cope with the one-to-one mapping that is assumed by the assignment
algorithm, we need to combine the cost of individual core sites to a single cost value.
Let SQ denote a majority of core sites to which a slave site sli needs to be assigned.
The costs of assigning sli to individual core sites (cost(sli, csj), · · · , cost(sli, cs|SQ|) are
known and combined to a single value using the max function. In what follows we use
cost(sli, SQ) to denote the cost of constructing a quorum consisting of the slave site sli
and the core sites in SQ. Let w1, w2, w3 ∈ R+, then the cost cost(sli, SQ) for assigning sli
to SQ is defined as follows:

cost(sli, SQ) = w1 · commCost(sli, SQ)

+w2 · loadCost(sli, SQ)

+w3 · balancingPen(sli, SQ)

(5.30)

Equation (5.30) jointly considers communication and load costs when assigning
slaves to core sites. Moreover, in order to avoid that certain core sites become a bot-
tleneck, their costs are continuously increased with each slave site assigned to them
(balancingPen). The cost components are defined as follows (load(s) denotes the nor-
malized load of site s):

loadCost(sli, SQ) = load(sli) · max
∀csj∈SQ

(load(csj))

load(s) =
load(s)

max
∀sk∈S

(load(sk))

(5.31)

commCost(sli, SQ) =

max
∀csj∈SQ

rtt(sli, csj)

max
∀sk,sm∈S∧k �=m

rtt(sk, sm)
(5.32)

Equations 5.31 and 5.32 define the costs for assigning a slave to core sites by consid-
ering the slave load, the load of the core sites, and the distance of the slave to the core

122 5 Design of the Cost- and Workload-driven CCQ Protocols

sites consisting SQ. It is crucial to not only consider the load of the core sites, but also
that of the slave to be assigned, as the performance impact at the cores is also influenced
by the slave load.

balancingPen(sli, SQ) = exp(countSL(SQ)+1−|SL|) (5.33)

In Equation (5.33), balancingPen is used to increase the cost of SQ with increasing
number of slaves that have been assigned to SQ. It fulfills the purpose of possibly even
assignment of slaves to core sites, as in case certain core sites are included more fre-
quently in the quorums, then they may become a bottleneck [SFS15]. countSL(SQ) de-
fines the number of slave sites that have already been assigned to SQ. The balancingPen
function will never become zero, and will get the maximum value of 1 if all slave sites
are assigned to SQ, i.e., to the same core quorum. Such a scenario would lead to SQ
becoming a bottleneck and degrading the overall performance.

5.3.3 Cost Model

As described in Section 4.3, QuAD aims at reducing operational costs by reducing trans-
action response time. The lower the response time the higher the generated utility for
applications (see Equation 4.2). Therefore, the total costs in QuAD are determined by
the operational costs:

totalCost(wloadpi , QUORUM) = opCost(wloadpi , QUORUM) (5.34)

The operational cost of QuAD are defined based on the score of a certain quorum
configuration:

opCost(wloadpi , QUORUM) = 1 − exp
(1− 1

score(wloadpi ,QUORUM)
)

score(wloadpi , QUORUM) ∈]0, 1]
(5.35)

In Equation (5.35), score(QUORUM) denotes the overall average score over all quo-
rums and is defined as follows:

score(wloadpi , QUORUM) =

∑
q∈QUORUM

score(wloadpi , q)

|QUORUM| (5.36)

The score of a quorum q is calculated as follows:

score(wloadpi , q) = ∏
s∈q

score(wloadpi , s) (5.37)

As the average score of the quorums goes to zero, the operational costs go to maxi-
mum:

lim
score(wloadpi ,QUORUM)→0

opCost(wloadpi , QUORUM) = 1. (5.38)

Thus, it pays off to construct the quorums in such a way so that their score is maxi-
mized, as that will minimize the operational costs.

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 123

5.3.4 Configuration Model

The expected gain of adapting the quorum configuration from the currently active
QUORUMpi−1

current to a new configuration QUORUMpi
new, for the predicted workload

ŵload
pi

is defined as follows:

ĝain(ŵload
pi

, QUORUMpi−1
current, QUORUMpi

new) = ̂totalCost(ŵload
pi

, QUORUMpi−1
current)−

̂totalCost(ŵload
pi

, QUORUMpi
new)

(5.39)
QuAD is a dynamic quorum-based protocol, in which the status of sites and their

properties are continuously monitored. The following cases may trigger a reconfigura-
tion of quorums:

• Changes in the site properties. For example, the load of sites may change, which
may invalidate the quorums. QuAD’s load prediction is based on the model de-
scribed in Section 4.2, which provides sufficient information for determining a
suitable configuration. As we assume non-mobile sites, the RTT between should
remain roughly constant. Thus, QuAD will not monitor the RTT, but only the load
of the sites.

• Site failures might need to be addressed by QuAD by adapting its configuration.
For example, if some core sites fail, then the quorums of the affected slave site
need to be adapted.

• Joining of new sites, which be the case if failed sites recover, or new sites are de-
ployed in reaction to increasing availability demands of applications.

Any transition from the currently active may generate costs especially if the new
configuration promotes slaves to core sites. Each slave site to be promoted must update
its objects by contacting current core sites.

tCost(wloadpi−1 , QUORUMpi−1
current, QUORUMpi

new) = ∏
sl∈PromoSL

updateCost(wloadpi−1 , sl)

updateCost(wloadpi−1 , sl) =
#objectsToUpdate

|LO|
(5.40)

In Equation (5.40), PromoSL denotes the set of slaves that are promoted to core sites,
and updateCost(wloadpi−1 , sl) denotes the cost of updating the slave site sl that is pro-
moted to a core site.

A reconfiguration is initiated only if the expected gain outweighs the transition costs
by a certain threshold th:

b̂ene f it(wloadpi−1 , ŵload
pi

,QUORUMpi−1
current, QUORUMpi

new) =

ĝain(ŵload
pi

, QUORUMpi−1
current, QUORUMpi

new)−
tCost(wloadpi−1 , QUORUMpi−1

current, QUORUMpi
new) > th

(5.41)

124 5 Design of the Cost- and Workload-driven CCQ Protocols

Algorithm 5: The Algorithm for determining the most optimal quorum configura-
tion. The determineCon f iguration function is invoked by Algorithm 1.

Input: S, wloadpi−1 ,ŵloadpi , QUORUMpi−1
current, κ, RTT

Output: Configuration for the next period

Function determineConfiguration is

maxBenefitConf ← QUORUMpi−1
current;

totalCosts ← calculateTotalCosts(ŵloadpi ,QUORUMpi−1
current) ;

CS ← determineCores(κ, S) ;

QUORUMpi
new ← determineQuorums(ŵloadpi , CS, κ,RTT) ;

tmpTotalCosts ← calculateTotalCosts(ŵloadpi , QUORUMpi
new) ;

if tmpTotalCosts < totalCosts then

tmpTCosts ← calculateTransCosts(wloadpi−1 , ŵloadpi , QUORUMpi−1
current,

QUORUMpi
new) ;

tmpBenefit ← totalCosts- tmpTotalCosts- tmpTCosts;
if tmpBenefit > th then

maxBenefitConf ← QUORUMpi
new;

return maxBenefitConf;

Algorithm 6: The Algorithm for determining the core sites. The determineCores
function is invoked by Algorithm 5.

Input: S, κ
Output: Set of core sites CS

Function determineCores is
CoreSites ← {} ;
foreach s ∈ S do

determineScore(s) ;

sortSitesByScore(S,DESCENDING) ;
// determine the core sites (CS)
CoreSites.addAll(S.getElements(1, κ)) ;
return CoreSites ;

5.3.5 Adaptive Behavior of QuAD

In what follows we will provide a step-by-step description of the adaptive behavior of
QuAD based on the scenario depicted in Figure 4.10. The choice of the most optimal
quorum configuration is described in Algorithm 5.

1. In the first step, before pi−1 is finished, the workload prediction for pi is initiated
(Algorithm 1).

2. In the second step, the predicted workload for each of the sites is used to calculate
their score (Section 5), and determine the core sites. Next, the quorums for each of
the sites are defined based on the models described in the Sections 5.3.2 and 5.3.2.

5.3 QuAD: Cost and Workload-Driven Quorum Protocol 125

Algorithm 7: The Algorithm for determining the quorums. The determineQuorums
function is invoked by Algorithm 5.

Input: ŵloadpi , S, CS,RTT
Output: Quorum configuration

Function determineQuorums is
QUORUM ← {} ;
// Determine the quorums of core sites
foreach cs ∈ CS do

cwq(cs) ← CS ;
crq(cs) ← getMajorityRandomly(CS) ;
quorum(cs) ← {cwq(cs), crq(cs)} ;
QUORUM.add(quorum(cs)) ;

// Constructs all possible majority subsets from the set of
core sites - see Example 5.7. SQ = {SQ1, ...}.

SQ ← constructMajoritySubsets(CS) ;
// See Equation (5.30)
aggregateCosts(SQ) ;
SL ← S \ CS ;
/* Use the Hungarian Algorithm to assign the slaves (SL) to

quorums consisting of core sites SQ [SW11]. The function
Hungarian returs the list of read and write quorums for each
slave site (srq, swq). */

QUORUM.addAll(hungarian(ŵloadpi ,SQ, SL, w1, w2, w3,RTT)) ;
return QUORUM ;

3. The proposed quorum configuration is used to determine the gain and the transfer
costs (steps three and four) based on the Equations 5.35, 5.39 and 5.40.

4. If the proposed quorum configuration generates a benefit (Equation 5.41), by also
considering the transition costs, then a reconfiguration is initiated (step five),
which will execute all necessary steps required by the new configuration.

5.3.6 Intersection Property

Theorem 5.1. (Intersection property of quorums in QuAD) Given a set of sites S. QuAD
will construct quorums in such a way so that each read quorum will intersect with each write
quorum, and any two write quorums will intersect with each other (Algorithm 5).

Proof. Let cwq(csi) denote the write quorum of a core site csi, and crq(csi) denote the
read quorum of csi. The write quorum of csi consists of all core sites, whereas its read
quorum from the majority of sites. It is trivial to prove that the cwq(csi) intersects with
the cwq(csj) of any other core site csj, and crq(csi) will intersect with the cwq(csj) of any
other csj: ∀csj ∈ CS, i �= j : |cwq(csi)|+ |cwq(csj)| > κ and |crq(csi)|+ |cwq(csj)| > κ.

Next we need to prove that any slave quorum (read and write quorums are the same)
will intersect with any slave quorum, and with any core read and write quorum.

126 5 Design of the Cost- and Workload-driven CCQ Protocols

Let sq(sli) = srq(sli) = swq(sli) denote the quorums of the slave sli. As each slave
site will create quorums consisting of the majority of core sites it follows that, for any
two slave sites sli and slj with i �= j: sq(sli) ∩ sq(slj) �= ∅.

The slave quorum sq(sli) will intersect with any cwq(csj) and crq(csj) as |sq(sli)|+
|cwq(csj)| > κ and |sq(sli)|+ |crq(csj)| > κ. �

5.4 Summary

In this chapter, we have described the concepts of our CCQ protocols, which can dynam-
ically adjust their configuration based on realistic cost models and application work-
load. Moreover, we have discussed in detail their cost and configuration models that
steer the dynamic adaptation, and ensure that the adaptation costs do not outweigh
their gain. This control mechanism avoids frequent and unnecessary reconfigurations,
which in long term would not generate any benefit to applications.

The CCQ protocols allow for a flexible and seamless enlargement of their configu-
ration spaces. Enlarging the configuration space of a CCQ protocol also increase its op-
timization capabilities. However, at the price of increased overhead, which is in sharp
contrast to the requirements of dynamically adaptable protocols.

6
CCQ Implementation

IN THIS CHAPTER, we describe the implementation details of the workload and cost-
driven CCQ protocols introduced in the previous chapters. We will summarize the

functionality common to all CCQ protocols and the modules implementing this com-
mon functionality. For each CCQ protocol, we will describe its specific implementation,
and the way it reuses (inherits) common functionality. Moreover, we provide a detailed
discussion of the online reconfiguration approaches that allow the CCQ protocols to
adapt dynamically the behavior without violating their correctness. The chapter con-
cludes with the overview of the software stack of the modules and the CCQ deployment
architecture.

6.1 System Overview

Each CCQ protocol is implemented as a module. A module1 is the aggregation of opera-
tions and data for providing a self-contained functionality [PB93]. Modules have well-
defined interfaces and a set of parameters that influence their behavior. As depicted in
Figure 6.1, a module can consist of (sub-) modules and can use the functionality pro-
vided by other modules.

We distinguish between common and dedicated modules. The former provide com-
mon functionality, whereas the later provide functionality that is tailored to the needs
of a specific CCQ protocol. A dedicated module can reuse and extend the functionality
provided by common modules. A CCQ system consists of a set of sites that host the
modules, and optionally the data (Figure 6.2).

As described in Chapter 5, the CCQ protocols have the following properties in com-
mon. First, they use the same 1SR implementation that is based on S2PL and 2PC. Sec-

1There is a slight difference between a module and a service. A module usually denotes a piece of soft-
ware that is part of another software. A service in contrast, can provide its functionality independently.
The term Service is used when the functionality is provided and accessed through a network [MZ]. De-
spite this difference, in the context of our discussion, we will stick to the term module, that will denote a
piece of software that is part of another software, or that provides an independent functionality accessible
through a network.

128 6 CCQ Implementation

Module

Interface

offers

Parameters

has

has uses

Figure 6.1: Modules and their properties.

ond, they need to collect, manage and analyze meta-data at runtime. Third, they need
to predict the workload based on the collected meta-data from each of the sites consist-
ing the DDBS. And fourth, based on the predicted workload and other parameters, each
CCQ protocol needs to decide on the best configuration at runtime and reconfigure the
system if the configuration is to be adapted.

Based on these properties, we have identified a set of modules that provide common
functionality, which can be further specialized or reused by concrete CCQ modules.
In what follows, we will describe the functionality provided by the common modules,
which are depicted in Figure 6.3.

TimestampManager

The TimestampManager provides the functionality for assigning system-wide
unique timestamps to transactions. A timestamp is defined as follows: τ =
currentTimeInMs.ipaddress, with currentTimeInMs denoting the current time in mil-
liseconds retrieved from the underlying operating system at the site, and ipaddress
denoting the Internet Protocol (IP) address of a site. The comparison rule for two
timestamps is defined as follows:

τ1 < τ2 ⇔ τ1.currentTimeInMs < τ2.currentTimeInMs
∨ τ1.currentTimeInMs = τ2.currentTimeInMs ∧ τ1.ipaddress < τ2.ipaddress

2PCManager

The 2PCManager is responsible for the execution of 2PC messages. It consists of a First
In, First Out (FIFO) queue for managing the messages, and a thread pool for their exe-
cution (Figure 6.5). One of the 2PCManagers involved is declared being the coordinator
for the processing of a particular distributed transaction. For example, the 2PCMan-
ager which has initiated a global transaction can be chosen as coordinator. All other
2PCManagers are called agents. The role also defines the information that a 2PCMan-
ager needs to store for each transaction on a persistent storage as defined by the 2PC
protocol [BHG87].

6.1 System Overview 129

Data
Storage

CCQ
TransactionManager

DataAccess
Manager

2PC
Manager

Data
Storage

CCQ
TransactionManager

DataAccess
Manager

2PC
Manager

Timestamp
Manager

Lock
Manager

Configuration
Manager

Workload
Manager

Metadata
Manager

Figure 6.2: CCQ system overview.

We have implemented a multicast-like approach sending 2PC messages to the
agents. This means that a number of threads are started, one for each of the agents,
which send the messages to the agents concurrently and collect their responses. The
evaluation of the responses and the decision on the transaction faith is taken once all
responses are available. Thus, the slowest agent determines the overall duration of the
2PC coordination.

LockManager

The LockManager module implements the S2PL functionality, i.e., it provides operations
for locking and unlocking a set of objects based on the S2PL rules. The locked objects
and the ids of transactions holding the locks are stored in a Hashtable that guarantees
O(1) lookup. As transactions need to predeclare their read and write sets, the Lock-
Manager has all necessary information to acquire the locks based on the all or nothing
principle. This means that a transaction either has successfully acquired all locks or
none. The lock requests can be operated in the blocking mode, i.e., a request is set in
the wait-state if the locks could not be acquired, or in the timeout mode, in which the
request will fail if all locks could not be acquired withing the specified timeout.

DataAccessManager

The goal of the DataAccessManager is to encapsulate the access to the underlying
database, so that support for different databases languages (e.g., Structured Query Lan-
guage (SQL), N1QL [Cou], UnQL [BFS00] and others) can be added seamlessly in form

130 6 CCQ Implementation

Transaction
Manager

DataAccess
Manager

Timestamp
Manager 2PCManager

Metadata
Manager

Workload
Manager

Configuration
Manager

 Cumulus

DataAccess
Manager

Configuration
Managerg

uses

extends

Common Modules

LockManager

CCQ Modules

Figure 6.3: Common and dedicated modules.

of modules that implement the mapping of the generic API to the specific database lan-
guage.

TransactionManager

The TransactionManager is responsible for the management of the entire transaction life-
cycle. It contains a FIFO queue to which incoming transactions are added and a thread
pool that continuously pulls transactions from the queue and executes them (Figure 6.5).
The execution steps are as follows:

1. For each transaction it receives the TransactionManager will contact the Timestamp-
Manager and request a unique timestamp for the transaction.

2. The read and write sets of a transaction are extracted, and the lock request contain-
ing all actions is forwarded to the LockManager. If the same object is accessed by a
read and write operation inside the same transaction, then only the write action is
forwarded, i.e., only an exclusive lock needs to be acquired for that object.

3. The transaction processing, i.e., the processing of each action, is initiated once all
locks are successfully acquired, which includes reading object values and generate
new ones. For that, the TransactionManager can communicate with the DataAccess-
Manager and other TransactionManagers. The latter is, for example, necessary in
QuAD as a quorum of sites need to be accessed to guarantee access to most re-
cent data. Thus, the concrete processing behavior may be overridden by the CCQ
protocols.

6.1 System Overview 131

Transaction
Manager

Transaction

Manager

Cumulus
Transaction

Manager

QuAd
Transaction

Manager

Manag

(a) Transaction Managers

Configuration
Manager

Consistency

Manager

Cumulus
Partition
Manager

QuAd
Quorum
Manager

Manag

(b) Configuration Managers

Figure 6.4: Extension of the common functionality by the specific CCQ (sub-)modules.

4. Once the processing is done, the transaction needs to be committed. A read-only
transaction can immediately commit without any further coordination with the
rest of the system, and can release the locks. For update transactions, the default
behavior is to commit eagerly all available sites (ROWAA). However, this behavior
may be overridden by the CCQ protocols (Figure 6.4).

WorkloadManager

A daemon will periodically collect the workload from the TransactionManagers at a fre-
quency defined by a parameter; that can also be changed at runtime (Algorithm 1). The
WorkloadManager will store the collected workload, and the predict expected workload
based on EMA as described in Section 4.2. Moreover, it will continuously compare the
predicted values with the occurred ones in order to optimize the prediction parameters.

The workload is managed in a Hashtable with the access pattern denoting the keys,
and their occurrences the values. Each access pattern has a hash code 2, so looking
up for the existence of the same access pattern in the table is a O(1) operation. The
particular CCQ protocols may derive further information from the predicted workload
that is necessary to determine the optimal configuration.

MetadataManager

The MetadataManager is responsible for the collection and management of system-wide
metadata, such as available sites, the RTT between them, site failures and others. The
metadata is continuously retrieved by a daemon from the underlying system and man-
aged in a Hashtable. The size of metadata is small and does not grow with time, as new
data will replace old one. The TransactionManagers at the sites are the primary contact
of the MetadataManager for retrieving the metadata.

ConfigurationManager

The ConfigurationManager retrieves the predicted workload from the WorkloadManager
and the metadata from the MetadataManager to determine the optimal configuration
based on the cost and configuration model of the particular CCQ protocols. Thus, the

2Equal access patterns must have the same hash code.

132 6 CCQ Implementation

Execution Threads

Enqueue
message Dequeue

message

Response

Figure 6.5: Thread pool for the execution of messages at the TransactionManager and
2PCManager

behavior of the ConfigurationManager is determined by the particular CCQ protocol (Fig-
ure 6.4).

6.2 CCQ Modules

In what follows, we will describe the implementation of CCQ specific modules, that
either implement entirely new functionality, or reuse common functionality and extend
it where necessary.

6.2.1 C3 TransactionManager

The TransactionManager is responsible for the execution of transactions based on the
currently active consistency model. It uses the functionality provided by the generic
TransactionManager and extends it with two different execution modes, namely the 1SR
and EC mode. In contrast to the 1SR mode, in which all available sites are eagerly
committed, during the EC mode update transactions will only commit at the local site
(Figure 6.6).

As described in Section 6.3.1, if there is a switch from the EC to the 1SR consistency
level, sites must first reconcile. The reconciliation process requires the propagation of
the most recent values to all sites in the system, which then decide on the winning
value based on TWR. To speed up the reconciliation process, each C3 TransactionManager
caches all modified objects executed by EC transactions in the DO, which contains the id
of the modified object, its value and the timestamp of the last modification. The DO is
used either for the periodical propagation of updates to other sites by the propagation
daemon, or for the forced reconciliation in case of a switch from the EC to the 1SR mode
(Section 5.1).

In any case, each TransactionManager will multicast its DO to all other sites, receive
DOs from other sites and merge the received ones with the local DO. If the resulting DO
is not empty, refresh transactions will be initiated that will proactively fetch the data
from the other sites using a batch-based approach.

6.2 CCQ Modules 133

Coordinator

Transaction
Manager

(Coordinator)
Coordinator

Transaction
Manager
(Agent)

Coordinator

Data
Access

Manager
Coordinator

Data
Access

Manager
Coordinator

Timestamp
Manager

execute(t)

Coordinator
Lock

Manager

acquireLocks(RS(t),WS(t))

Figure 6.6: Execution of a transaction in C3 with the EC consistency model.

6.2.2 C3 ConsistencyManager

The C3 ConsistencyManager is responsible for analyzing the workload and predicting
the inconsistency, as well as the consistency costs based on the model described in Sec-
tion 5.1. It will choose that consistency level (configuration) that incurs the minimal
overall costs by also considering the transition costs from the existing consistency level
to the new one (Algorithm 3). The ConsistencyManager is responsible for the initiation
and the coordination of the reconfiguration process described in Section 5.1. For that, it
uses the interface provided by the TransactionManager.

As described in Section 5.1, C3 needs to extract the w/w conflicts between sites to pre-
dict the expected inconsistencies, and with that the expected inconsistency costs. Cur-
rently, the conflict detection between access patterns is based on a brute-force approach
by comparing access patterns action by action. Using more sophisticated approaches,
such a hash-based set intersection algorithms would lead to considerable improvement
in the runtime of the conflict detection [DK11]. This aspect is considered as part of
future work.

134 6 CCQ Implementation

Coordinator

Transaction
Manager
(Agent)

Coordinator

Transaction
Manager

(Coordinator)
Coordinator

2PC
Manager

Coordinator
2PC

Manager
Coordinator

Routing
Manager

execute(t)

Coordinator
Lock

Manager

If isUpdate(t): run2PC

Figure 6.7: Execution of transactions in Cumulus. We have omitted the DataAccessMan-
ager due to space reasons.

6.2.3 Cumulus TransactionManager

In Cumulus, both read-only and update transactions may be distributed, which is inher-
ent to all partitioned DBSs. In a case of distributed read-transaction, the TransactionMan-
ager will collocate all operations that can be served locally into a local sub-transaction
at the coordinating site; the rest will be greedily distributed as sub-transactions to the
sites at which the accessed objects are located. Greedy means in this case that sub-
transactions are generated with the maximum number of objects. Distributed update
transactions occur as soon as the transaction accesses objects from different partitions,
or during the migration of objects (Section 5.2). To preserve ordering of operations in-
side the same transaction, all objects accessed by the transaction will be collected at the
coordinating site, the transaction will get executed and the generated results will be
written back to the corresponding sites (Figure 6.7).

6.2.4 Cumulus PartitionManager

The PartitionManager module is responsible for analyzing the workload, deriving the
significant workload and for generating partitions that best matches the workload (Al-
gorithm 4). With regards to the workload prediction, as described in Section 5.2.3, Cu-
mulus neglects the actions and considers only the objects, i.e., it does not differentiate
between read and write operations. The PartitionManager handles this aspect. It feeds

6.2 CCQ Modules 135

Coordinator

Transaction
Manager

(Participant)
Coordinator

Transaction
Manager

(Coordinator)
Coordinator

2PC
Manager

Coordinator
2PC

Manager
Coordinator

Timestamp
Manager

execute(t)

Coordinator
Lock

Manager

If isUpdate(t): run2PC

Read and Write
Quorum

Figure 6.8: Execution of a transaction in QuAD. We have omitted the DataAccessManager
due to space reasons. The two TransactionManagers define the read and write quorums.

the PartitionEngine submodule with the workload data, and retrieves the most suitable
partitions for the given workload.

6.2.5 Cumulus RoutingManager

In contrast to a fully replicated DBS, in a partitioned database, the management of the
routing information is crucial as the data is available only at a subset of sites. Cumulus
provides full routing transparency to clients by allowing them to connect to any site in
the system and submit transactions to it. All routing information is managed internally
in the system and completely hidden from the client.

The behavior of the RoutingManager is as follows. The site, i.e., the TransactionMan-
ager, that receives a transaction will forward it to any of the sites that contain objects
accessed by the transaction and that site will become the coordinator of the transaction.
It is well possible to declare the receiving site to become a coordinator even if it does
not contain any of the objects accessed by the transaction. However, such an approach
is not optimal from the data transfer point of view, as the coordinating site must receive

136 6 CCQ Implementation

all objects, execute transactions locally and throw away the data. The routing strategy
of Cumulus is based on the idea that it is cheaper to transfer transactions than objects.

If clients send randomly transactions to sites, in the worst-case there is an additional
forward step required. In that case, the transaction is a remote-transaction as it needs
to be forwarded to another site. The probability of a transaction becoming a remote
one is 1 − |Srel |

|S| , with Srel denoting the set of sites containing any object accessed by the
transaction.

The distribution degree of transactions is however not mainly determined by the
routing strategy, but by the quality of the partitions. In a case of an additional forward
step, one might choose the optimal approach with regards to the number of objects
transferred in the system by sending the transaction to the site containing the greatest
subset of objects accessed by the transactions. Such an approach would have a worst-
case complexity of O(|S| ∗ m) with m being the transaction size. The optimal strategy
would reduce the bandwidth consumption as the number of objects transferred would
be smaller compared to the naïve approach (assuming same object size). Consider that,
if |S| >> m then the complexity is reduced to that of naïve approach routing. The prob-
lem with sending transactions to the optimal replica is that a tight coupling between
server and client is necessary, as the partition configuration needs to be known by the
client.

6.2.6 QuAD TransactionManager

The behavior of the common TransactionManager needs a slight modification, as now
each read must be executed by the read quorum of the coordinating site, and update
transactions must eagerly update the sites of the write quorum (Figure 6.8). If a read re-
trieves multiple values for the same object, only that value is taken that has the highest
timestamp. Thus, a read must retrieve not only the value, but also the commit times-
tamp of the object.

6.2.7 QuAD QuorumManager

The QuorumManager is for determining the quorums for each of the sites based on the
cost model defined in Section 5.3.3 (Algorithm 5). For that, it needs access to the pre-
dicted workload and the metadata, such as the available sites and the RTT between
them. With regards to the workload, it only requires the expected number of transac-
tions for each of the sites.

If the quorums need to be adapted, and if adaptation includes promotion of slave
sites to cores, the QuorumManager will initiate and coordinate the entire reconfiguration
process, as well as the site reconciliation as described in Section 6.3.3.

6.3 CCQ Online Reconfiguration

As already described, a change in the application or infrastructure properties may lead
to the necessity of adapting the configuration. The transition to a new configuration

6.3 CCQ Online Reconfiguration 137

is known as online reconfiguration, which, as opposed to the offline configuration, can
be done without ”shutting down” the system. Common to all CCQ protocols is the
requirement that the sites consisting the system must be consistent with regards to the
active configuration. This property, known as one-copy view, means that no site may
take a decision on its own, i.e., sites do not have any autonomy with regards to the
active configuration; and that at any point in time, each site behaves in accordance to
the same single configuration to which all sites have agreed upon.

A reconfiguration is a distributed activity as it involves coordination between multi-
ple sites in a DDBS. Hence, a distributed coordination protocol, such as 2PC, is necessary
to guarantee one-copy view on the active configuration.

During a reconfiguration process, sites may fail. Moreover, site failures may be the
reason for initiating a reconfiguration, because they impact the characteristics of the
underlying infrastructure. Therefore, a means of detecting failures is necessary.

CCQ protocols assume a crash-recovery failure model, in which sites behave correctly
(according to their specification), at some point may crash and then recover [CGR11].
This is in sharp contrast to the byzantine model, in which sites may misbehave (deviate
from their specification).

In CCQ, site failures can be detected via timeouts. A dedicated site in the system may
be responsible for periodically sending ping requests, or any site may detect a failure
based on user transactions. For example, one site s1 may forward transactions to another
site s2 (e.g., in a partitioned database), and if s2 does not respond, s1 inform all other
sites about the failure. The basic assumption is that if a site does not respond during a
specified timeout, it is assumed that it has crashed. A failed site may later recover, and
may require participating again in the system. However, as the site might not be up-
to-date with regards to both configuration and application data, it must first reconcile.
To properly handle such case, we distinguish between a recovered and operational site. A
site is in a recovered state if it is able to respond to ping requests, but is not yet able to
participate in the execution of transactions. The reconciliation consists of activities for
bringing application data to a consistent state, but also moving to the currently active
configuration. The later includes all activities for acquiring the necessary meta-data
related to the active configuration (e.g., the current consistency configuration in C3).

6.3.1 C3 Reconfiguration

The reconfiguration process must ensure that all sites have the same view on the con-
sistency level for the workload, and also for each transaction class in case of multi-class
transactions.

The one-copy view on the active configuration is ensured using an approach based
on 2PL and 2PC as the reconfiguration is a distributed activity. The ConsistencyManager
is responsible for coordinating the reconfiguration process, which works as follows:

• In the case of a switch from 1SR to EC, the reconfiguration process consists of only
notifying the sites about the new consistency level by the ConsistencyManager (Fig-
ure 6.9). This is done by sending a prepare message to all TransactionManagers
that includes the new consistency level. In response to the prepare message,
the TransactionManagers will set a lock locally. All incoming transactions after

138 6 CCQ Implementation

Coordinator
Consistency

Manager
Coordinator

Transaction
Manager Coordinator

Transaction
Manager

Preparation
phase

Commit
phase

Uncertainty
period

Uncertainty
period

set lock
set lock

release
lock release

lock

If commit
set consistency to EC If commit

set consistency to EC

Figure 6.9: Reconfiguration to the EC consistency level.

the lock has been set, will be added to a wait queue. Once the currently running
transactions have finished their execution, the consistency level is adjusted and the
prepare-ack message is set to the ConsistencyManager. If all sites send positive
votes, ConsistencyManager will send a commit, otherwise an abort. In the reaction
to the decision, sites will release the locks and resume transaction execution with
the new consistency (EC) levels in case of a commit, or with the old ones in the
event of an abort (1SR).

• If there is an adaptation of the consistency level from EC to 1SR, then a reconcili-
ation of sites is necessary to allow 1SR transactions to run on a consolidated data
state. As already described, the reconciliation does not mean that already exist-
ing inconsistencies that were added by EC transactions are removed, but that 1SR
transactions are guaranteed to get the most recent state independently of the site
they are executed. In its current version, C3 implements a stop-and-copy approach
for the reconciliation of the sites. We have developed an on-the-fly and on-demand
approach for the site reconciliation that can be found in the Appendix A. How-
ever, it is currently not implemented as part of C3. The reconfiguration process
differs from the process when consistency is adjusted to EC only in the activities
that are executed before the prepare-ack message is send to ConsistencyManager
(Figure 6.10). Now, each site will start one single distributed transaction that is co-
ordinated with 2PC for pushing all modified objects by EC transactions to all other

6.3 CCQ Online Reconfiguration 139

Site1 Site2

Update
objects

Figure 6.10: Site reconciliation: s1 (coordinator) pushes its modified Objects to s2. The
pushed data contain the timestamp for each modified object that allows the sites to
decide on the winning values based on TWR.

sites. If the distributed push transaction fails at one site, then that site will vote
negatively. As a consequence the reconfiguration process is aborted; otherwise,
the reconfiguration is committed.

6.3.2 Cumulus Reconfiguration

In step 4 of the workflow depicted in Figure 5.10, new partitions are proposed, which
will be applied if they generate a benefit (Equation (5.22)). As a consequence, the system
must accordingly be reconfigured.

The reconfiguration process in Cumulus consists of the migration of data objects to
the new locations (sites) and the update of the routing information. Two aspects need
to be treated with care to guarantee proper behavior. First, the reconfiguration should
be synchronized with the execution of user transactions. Second, the distributed recon-
figuration should be atomic even in the presence of failures as in contrary, different sites
may have different views on the partition configuration, and this may lead to unneces-
sary and expensive forwarding activities of transactions to supposed locations. In the
worst case, more than one site might become responsible for an object which might lead
to inconsistent data (Figure 6.11). This last aspect is critical and should be avoided as
Cumulus must ensure 1SR correctness to applications.

140 6 CCQ Implementation

=

=

: [] : []

Figure 6.11: Data inconsistencies as the consequence of both sites considering them-
selves responsible for o1.

Cumulus implements an on-the-fly and on-demand reconfiguration approach (Algo-
rithm 8), which works as follows. Once, in step 5 of the workflow (Figure 5.10), a
new partition configuration has been generated, it is sent to all TransactionManagers.
Based on the received configuration, the TransactionManagers locally calculate a change-
set consisting of triples 〈oid, currLoc, newLoc〉 which encompasses the id oid of the object
oi to be migrated, its current location (currLoc), and the new location (newLoc), i.e., the
TransactionManager that will be responsible for the object after the reconfiguration. The
PartitionManager coordinates the entire reconfiguration process as follows (Figure 6.12):

1. In the first step, the PartitionManager will send a prepare message containing the
new configuration to all available TransactionManagers. The message denotes at the
same time the reconfiguration incentive.

2. The TransactionManagers that receive the prepare message will locally set a lock
and, after the successful lock, add all incoming transactions to a wait queue. The
new change-set will be calculated and merged with the old change-set once the
execution of currently running transactions has finished. This is necessary due
to the on-the-fly and on-demand reconfiguration which may lead to situations in
which some of the objects from the previous reconfiguration events have not been
migrated to the designated locations. A merge does not immediately delete the
old change-set. It will be deleted, i.e., replaced by the merged set only at commit.

A successful merge denotes the end of the preparation phase which is indicated
by a prepare-ackmessage sent to the PartitionManager. To avoid different views
on the configuration, the PartitionManager will collect the prepare-ackmessages
from the TransactionManagers and send a commit once all sites have positively
voted. Clearly, during this phase, the sites are uncertain and may block in case of
failures, which is an inherent property of 2PC.

3. If a TransactionManager receives a commit, it will set the new merged change-set as
its active set, will release the lock and resume transaction execution. Otherwise,
it will discard the change-set and continue transaction execution using the old
change-set.

6.3 CCQ Online Reconfiguration 141

Coordinator
Partition
Manager

Coordinator
Transaction

Manager Coordinator
Transaction

Manager

Uncertainty
period

Uncertainty
period

set lock

calculate
change-set

set lock

calculate
change-set

release
lock release

lock

If commit:
apply new change-set If commit:

apply new change-set

Coordinator
Routing

Manager

If commit:
update
routing

information

Uncertainty
period

Figure 6.12: Cumulus reconfiguration.

Change-Set Handling

As objects are migrated only when accessed by transactions (on-demand), a mechanism
has to be in place to handle the case of non-migrated objects during subsequent recon-
figuration events. This can be done easily: if an object is still present in the old change-
set, the current location of the object will be the location specified there and not the
one in the new configuration. Thus, the change-set takes over the current location but
updates the target location with the new location from the new partition configuration.
This allows postponing the migration of an object even across different reconfiguration
events.

The overhead introduced by the migration step in the on-the-fly approach results
from distributed write transactions across all sites which either have the up-to-date
data or need to update their data. Thus, all transactions which migrate data will be
distributed update transactions, regardless of their true nature. As the migration must
only take place once, this overhead will decrease over time.

Figure 6.13 depicts an example of merging the old and new change-set at s1. As
it can be seen, the newLoc of the new change-set will replace the newLoc of the old
change-set. All entries with currLoc = newLoc in the new change-set are not added
to the merged set. Clearly, it is possible to execute the reconfiguration by first moving
objects to the designated locations based on the old change-set and then calculating the

142 6 CCQ Implementation

Change-set of based on the new configuration

Change-set of based on the old configuration

Merged changed-set for

Figure 6.13: Merging of old and new change-sets.

new one. However, such an approach would lead to many objects being moved around
and would increase the overhead of the reconfiguration.

Transaction Execution during the Reconfiguration

Once a site has calculated and applied its change-set, each transaction to be executed
must consult the change-set unless it is empty before it is executed. The goal is to mi-
grate objects to the correct locations by appending a distributed write action for each
read action, and by transforming a write action to a distributed write action (Algo-
rithm 8). If the same object is accessed inside the same transactions by both, a read and
write action, then only the write action will be transformed to a distributed write. After
a successful migration, the objects will be removed from the change-set and the routing
information will get updated.

Algorithm 8: On-the-fly and on-demand reconfiguration driven by user transactions.

Function t: Transaction is
if ¬ isChangeSetEmpty (cs) then

foreach o ∈ getSet(t) ∧ cs.contains(o) ∧ cs.currLoc(o) <> cs.newLoc(o) do
if o ∈ getWriteSet (t) then

setIsWriteDistributed (o, TRUE) ;
else

appendDistributedWriteForObject (t, o) ;

Failure Handling

In case a site fails then the data hosted at that site is not available and all transactions
accessing that data will be aborted. Sites can also fail during the reconfiguration and the
only critical point, in which the system may become unavailable if a site fails, is during
the uncertainty phase.

6.3 CCQ Online Reconfiguration 143

Once the new change-sets have been calculated, then during a migration of objects
from one site to another, the target site may fail. In that case, the distributed write
will fail, and so the change-set update will fail. The transaction will not be aborted but
restarted and served from the local data. Once the failed site recovers, the migration
will be restarted.

If a failed site did not receive the new configuration, at recovery it must first contact
the PartitionManager and request the current configuration. If the current configura-
tion does not match the local configuration, the site must calculate the new change-set,
merge it with old one, and only after having executed these steps successfully can be-
come operational.

On-Demand vs. Stop-and-Copy Reconfiguration

As already described, the Cumulus’ on-demand approach incurs an overhead for sin-
gle user transaction. However, compared to the stop and copy approach [EAT+15], it
has considerable advantages for the overall availability, as it avoids situations in which
high arrival rate of transactions fill-in the wait queues and lead to an explosion in re-
sponse time and possible system instability [LZGS84]. In the stop and copy approach,
the system remains unavailable during the entire reconfiguration, as all objects will be
migrated to the new locations. This increases the lock duration at the sites, during which
the transactions will be added to a wait queue. It needs some time after the reconfigu-
ration for the response time of the transactions to stabilize, especially if the arrival rate
of transactions during this phase is very high.

The reconfiguration process can be extended to consider additional aspects such as
the overall load of the system. In high load situations it might be more beneficial to
postpone the reconfiguration, as, although it might be advantageous with regards to the
reduction of distributed transactions, the additional steps may destabilize the system.
We consider this aspect as part of future work.

6.3.3 QuAD Reconfiguration

The reconfiguration process in QuAD consists of the quorum configuration, and the
optional update of slave sites. It is crucial that the reconfiguration process is done in
consistent manner, as otherwise the consistency of data may be violated. Two aspects
need to be treated with care. First, all sites should have a consistent view on the quo-
rums to avoid that the intersection property is violated and with that also the consis-
tency of data provided to transactions. Second, as described above, the role of the sites
may change, i.e., slave sites may be promoted to cores and cores demoted to slaves. It
must be ensured that promoted slave sites reconcile to provide transactions access to
consistent data.

Safe Reconfiguration

Let us assume the scenario depicted in Figure 6.14, which depicts the current and tar-
geted quorum configuration. If the reconfiguration is done in an unsafe manner, then

144 6 CCQ Implementation

Current configuration Target configuration

Intermediate configuration

Promote: ,
Demote: ,

Core sites Core sites

Core sites

Core sites

Figure 6.14: Inconsistent online reconfiguration.

certain sites may observe intermediate configurations, and this may violate the inter-
section property and thus consistency guarantees. In the concrete scenario, the inter-
mediate quorum configuration leads to a situation in which s1 considers its quorums to
consist still of s2 and s3. This might lead to a situation in which transactions executed
at s1 and s2 do not receives the newest updates from s1, which is a clear violation of the
1SR consistency model.

QuAD implements a stop-and-copy approach based on 2PC that is coordinated by
the QuorumManager. The reconfiguration works as follows (Figure 6.15):

1. In the first step, the QuorumManager will send a prepare message to all Trans-
actionManagers containing the new quorum configurations. This step denotes the
incentive for reconfiguring the quorums.

2. Once a site receives the new configurations, it will set a lock, and add after that
all incoming transaction to a wait queue. Once the execution of currently running
transactions has been finished, each site will apply its new quorum. If a slave site
becomes a core site, it must reconcile, and respond with prepare-ack only after
a successful reconciliation. If for any reason a slave site fails to reconcile it must
negatively (prepare-no) respond to the QuorumManager.

3. QuorumManager will collect all answers, and send the decision to the sites, which
is in response to that will release the locks and resume transaction execute. The
new configuration is set to active, only if all sites vote with yes, otherwise the
old configuration remains active. This means that although the slaves execute

6.3 CCQ Online Reconfiguration 145

Coordinator
QuAD

Manager
CoordinatorSite1 CoordinatorSite2

Preparation
phase

Commit
phase

Uncertainty
period

Uncertainty
period

set lock
set lock

release
lock release

lock

If this.role == slave
update data If this.role == slave

update data

If commit
Apply new conf If commit

Apply new conf

Figure 6.15: QuAD reconfiguration.

expensive update actions, it might be that they remain in the old role. From the
correctness point of view this does not harm. However, it generates unnecessary
costs. QuAD will tackle with this issue as part of future work.

Site Reconciliation

We distinguish between site reconciliation during the promotion/demotion without
failures in reaction to changes in the site properties, and during the promotion of one
or more slave sites to core sites in reaction to core site failures. The reconciliation is an
activity that is executed as part of the reconfiguration workflow after setting the lock
and before sending the vote message to the QuorumManager (Figure 6.15).

Each site in QuAD manages a difference object (DO) that contains the latest timestamp
for each object that has been modified since the last quorum reconfiguration. The DO
of a site sj is a set of tuples: DO(sj) = {〈oida , τ(oida)〉 , · · · , 〈oidz , τ(oidz)〉}, with oida
denoting the id of the object oa, and τ(oida) its latest commit timestamp. Notice that the
DO is maintained in memory and does not need to fulfill any durability constraints as
its content can be reconstructed from the application data.

First, consider the promotion of slaves to cores as a reaction to load changes depicted
in Figure 6.16. The demoted core sites s2 and s3 will multicast their DOs to slave site s1
that is to be promoted to a core site. s1 will merge the received DOs with its local DO as
follows:

146 6 CCQ Implementation

 1455619800

 1455619835
:

 1455619895

 1455619910

 1455619550

 1455620150

:
:

 Site Id

 1455619895

 1455619835

 1455619910

 1455620150

 :

Figure 6.16: QuAD: Merging of DOs at s1.

• Add each object available in one of the DOs to the merged DO together with its
timestamp and the id of the site to which the DO belongs.

• If an object with the same object id is contained multiple times in the merged DO,
then keep only the entry with the highest timestamp, and drop out the others.

• Remove all entries with the site id equal to the local site id.

Once the DOs have been merged and cleaned-up, s1 will initiate a reconciliation
with the goal of updating the objects contained in the merged DO. QuAD supports
the stop-and-copy approach, in which the promoted slave will send a batch request to
the demoted core site for pulling all objects in the merged DO that have the id of that
demoted core site. Once a slave has successfully updated its data, it will send a positive
vote to the QuorumManager (Figure 6.15) and reset its DO. The QuorumManager will take
a commit decision only when all slaves to be promoted have sent positive votes. This
approach of updating all data has the drawback that it decreases system availability
due to a possibility high update overhead, especially if the set of data that has been
modified between two reconfiguration events is big. However, once the reconfiguration
has finished, the system is ready to serve transactions based on the new quorums. We
plan to implement an on-the-fly approach that will only pull those objects accessed by
transactions on demand [EDAE11, EAT+15].

In the case of core site failures, the corresponding number of slave sites will be pro-
moted to cores sites. Since the failed core sites contain the data updated by the slaves,
and these core sites have failed, the slave site to be promoted need to synchronize with
all slave sites. This ensures that site to be promoted contains the data of all slaves. How-
ever, we need to ensure that it also contains the core site data. It is sufficient that they
synchronize with a single core site, as the core writes behave according to the write-all
approach. If also slaves have simultaneously failed, then the promoted slave site must
synchronize with the majority of cores.

6.4 Software Stack of Modules and the Deployment Architecture 147

OS

JRE

Module

Web Service I/F

Figure 6.17: The software stack of modules.

QuAD tolerates up to |CS| − 1 simultaneous core sites failures, with CS denoting
the set of core sites, under the assumption that no slave site fails at the same time. It
remains available if the majority of cores is available independently on the number of
failed slave sites.

In the case of slave site failure, QuAD will not take any immediate actions as any-
ways the quorums will be adapted during the next reconfiguration period. From the
viewpoint of QuAD, a failed slave site is simply reduced processing capacity and has
no further impact to the overall guarantees. However, core site failures reduce the avail-
ability of the system. Currently, QuAD will try to keep the number of core sites by pro-
moting slave sites to cores. It is clear that if no sites are available for a promotion that
QuAD cannot provide the desired availability. We assume a system model in which the
creation or deletion of sites is outside the QuAD control, and is steered by dynamic and
cost based replication protocols such as the one defined in [BPA10].

Sites Joining

If a new site joins the system, it will become a slave and will be assigned to a quorum
consisting of core sites according to the cost matrix that was created during the last
quorum construction. The recalculation of quorums is postponed to the next reconfigu-
ration period, as then enough information might be available for determining the score
of the sites. However, if the site joins immediately before the new period starts, then it
is still not possible to determine its score so that it will remain a slave. QuAD requires
each site to run at least one period before it is considered for the scoring, otherwise it
will be labeled as a slave.

148 6 CCQ Implementation

Data Storage

2PC

Manager

 Manager
 Manager

…

Figure 6.18: Deployment architecture.

6.4 Software Stack of Modules and the Deployment
Architecture

The modules are implemented using the Java programming language, and each of the
modules provides a Web Service Interface (Figure 6.17).

A CCQ deployment consists of a set of sites3 that host the TransactionManager mod-
ules and the storage for managing the application data, and a set of helper sites that
provide functionality usually accessed only withing the DBS, such as the LockManager
or TimestampManager. Helper sites may also contain a persistent storage for manag-
ing their metadata. For example, the LockManager may store the mapping of locks to
transactions persistently to support recovery in case of failures. Modules that are de-
ployed at different sites communicate with each other via Simple Object Access Pro-
tocol (SOAP) over Hypertext Transfer Protocol (HTTP). The modular architecture and
the Web Service interface provided by the modules allow for different physical deploy-
ments. Thus, it is possible to deploy each single module on a different site and access it
via SOAP/HTTP, but also to collocate different modules to a single site. In the later case,
modules would communicate via local operation invocations (Figure 6.18). The central-
ized deployment of modules avoids coordination between them, which is in sharp con-
trast to a distributed deployment. In the later case, the coordination overhead, which is
a consequence of the transparency demands (e.g., one-copy view) that applications have
towards a DBS, may have a significant impact to the overall performance. This impact is
strengthened even further if one considers the overhead introduced by the SOAP/HTTP

3In general term a site does not map to a machine, but simply defines the boundaries to the function-
ality that belongs together. However, in context of our discussion a site is a synonym for a machine.

6.4 Software Stack of Modules and the Deployment Architecture 149

protocol regarding bandwidth consumption. Despite its high network overhead com-
pared to low-level communication protocols, such as sockets, SOAP/HTTP hides the
low-level communication details from the programmer and decouples the communica-
tion between the modules from the underlying implementation environment.

7
CCQ Evaluation

IN THIS CHAPTER, we describe the experimental results that validate the concepts of
the CCQ protocols. First, we summarize the main concepts of TPCC and EC2, which

are the main building blocks of our experiments. The former defines basis of the data
model that is used by the experiments and the later provides the computing resources
for running the experiments. Moreover, we specify the basic experimental setting that
applies to the evaluations of all CCQ protocols. Second, we provide definitions that ap-
ply to the evaluation of a specific protocol together with a concrete specification for each
experiment. And third, we summarize main results and provide a critical discussion on
possible extensions for the experiments.

The goal of the C3 evaluations is to examine the saving in monetary costs when a
workload is run with C3 compared to the costs generated when the same workload is
run with the predefined and fixed 1SR and EC consistency levels. We will define a set of
workloads that differ in terms of inconsistency and consistency costs, and compare C3

to 1SR and EC. Furthermore, we will also define workloads consisting of different trans-
action classes, and evaluate the ability of C3 to determine the most cost-efficient consis-
tency level for each of the transactions classes inside the same workload. In overall, C3

should lead to a considerable cost improvement compared to 1SR and EC. The adaptive
adjustment of consistency at runtime should also lead to a performance speedup com-
pared to 1SR. The response time of transactions when executed with EC define the lower
bound that can not be further improved, and usually, if C3 is deployed with the goal of
saving costs, it will in overall incur higher overhead for transactions compared to EC.
However, if the performance is the primary goal, then, by setting inconsistency cost to
zero, C3 will execute all transactions with the EC consistency model. In that case, as
C3 will not perform any workload analysis, it should only generate minimal additional
overhead compared to EC, which mainly incurs from the collection and management of
meta data.

The purpose of Cumulus is to avoid or reduce distributed transactions by generating
partitions tailored to the application workload. Workload analysis, i.e., the separation
of significant from the noisy patterns, plays a crucial role for both, the quality of the
partitions and the processing overhead generated for the definition of the partitions.
In order to evaluate the importance of workload analysis, and the ability of Cumulus

152 7 CCQ Evaluation

Company

Warehouse 1 Warehouse …

District 1 District 2 District 10

1 2 3 … 3k 30k … …

Customers

…

Figure 7.1: Relationships between warehouses, districts and customers in TPCC.

to detect significant patterns in a workload, we will define a set of workloads with a
varying noise in them. We will then run these workloads with Cumulus, and a similar
graph-based partition protocol that considers the entire workload, i.e., does not pre-
process the workload. Cumulus should considerably outperform the approach without
workload analysis in terms of distributed transaction. This can be explained by the fact
that noise represents access patterns that will occur infrequently in the future. Thus,
partitions tailored to noisy patterns will generate only low benefit for future workloads.
The adaptive behavior of Cumulus will be evaluated using the a set of workloads that
differ in terms of significant patterns. We will exchange the workloads at runtime, and
expect Cumulus to detect changes in the significant patterns and correspondingly adapt
its partition configuration.

For the evaluation of QuAD, we will simulate single-data and multi-date center de-
ployments with varying site properties, and compare the performance gain of QuAD’s
approach for constructing quorums to approaches that neglect the site characteristics.
We expect QuAD to considerably outperform the other approaches, as it strives towards
avoiding weak sites from the read and commit paths of transactions. It is not the num-
ber of sites consisting a quorum that limits the performance, but the load and network
distance between the sites. Without a proper control mechanism, such as the one in-
cluded in QuAD, when quorums are defined, a set of very powerful core sites may be
included in far too many quorums and become the performance bottleneck. We will
compare the balanced quorum construction approach of QuAD to a version that does
not consider the balancing, and expect the balanced approach to become more advan-
tageous as the system load increases. Similar to C3 and Cumulus, we will evaluate the
adaptive behavior of QuAD by modifying the site properties at runtime, and compare
the results to those of a static QuAD that does not adapt the quorums. We expect the
benefit of adaptiveness to be higher than its cost leading in an overall performance gain
for the applications.

7.1 TPCC 153

7.1 TPCC

The TPCC benchmark models a wholesale supplier, that manages and sells items. A
wholesale supplier has a number of geographically distributed sales districts and ware-
houses (Figure 7.1). Each warehouse maintains specified stock of items sold by the com-
pany, and each district serves a number of customers [TPP]. The TPCC data model con-
sists of nine database tables, namely Warehouse, District, Stock, Item, Customer,
Order, History, New-Order and Order-Line.

The TPCC benchmark models a wholesale supplier, that manages and sells items.
A wholesale supplier has a number of geographically distributed sales districts and
warehouses (Figure 7.1). Each warehouse maintains specified stock of items sold by
the company, and each district serves a number of customers [TPP]. The TPCC data
model consists of nine database tables, namely Warehouse, District, Stock, Item,
Customer, Order, History, New-Order and Order-Line.

TPCC specifies following transaction types with their frequencies specified in paren-
thesis [TPP, TPK+13]:

• NewOrder (45%): it inserts a new order into the database.

• Payment (43%): it makes a payment on an existing order.

• OrderStatus (4%): it checks the shipping status of an order.

• Delivery (4%): it selects the oldest undelivered order for each warehouse and
sets them to shipped.

• StockItem (4%): it joins order items with their stock entries for reporting pur-
poses.

For the purpose of our experiments we have implemented additional transaction
mixes that allow us a more fine-grained analysis of the CCQ protocols. The predefined
frequency of the TPCC transactions is used as basis to determine their frequencies in the
new mixes, which are defined as follows:

• Read-only mix consists of OrderStatus and StockItem transactions.

• Write-only mix consists of NewOrder, Payment and Delivery transactions.

• RW8020 mix consists of 80% read-only and 20% update transactions.

• RW5050 mix consists of 50% read-only and 50% update transactions.

7.2 AWS EC2: Amazon Elastic Compute Cloud

EC2 is Amazon’s IaaS that provides virtual computing resources known as instances
[Ama]. An Amazon Machine Image (AMI) is a template that contains all pre-configured
software, such as the operating system, database, application server and others, that can

154 7 CCQ Evaluation

Test
Coordinator

Test Client

…

System Under Test (SUT)

1

2

3

T

4

Figure 7.2: Overview of the test infrastructure setup.

be used to lunch EC2 instances. An instance type defines the hardware configuration,
and hence the cost that customers pay on the hourly basis. Multiple instances of the
same type lunched from the same AMI may exist. They would all share the same hard-
ware and software configuration.

Amazon hosts its resources in multiple geographic locations known as regions. Re-
gions are isolated from each other, and per default AWS does not replicate resources
across regions. A region is composed of multiple Availability Zones (AZs) that are iso-
lated from each other and connected through low latency links. This allows applications
to run their instances in multiple AZs, and benefit in terms of availability from their iso-
lation with almost no performance penalty due to the high-speed links between them. It
is clear that replicating resources in different AZs does not provide the same availability
guarantee as the replication in different regions, as if a region goes down, then all AZs
within that region also become unavailable. Moreover, if the application needs to serve
requests from the different regions, client proximity can only be satisfied if resources are
also replicated at the region closest to the client. An AMI always belongs to a region,
whereas instances belong to an AZs inside the same region as the AMI that was used to
lunch the instances.

7.3 Basic Experimental Setting

All evaluations use the same workload prediction model based on EMA as described in
Section 4.2.3. The choice of the smoothing factor α is is essential for accurately predict-
ing the workload. In order to determine the most suitable value for α, we apply Equa-
tion (4.16) using α ∈ {0.1, 0.2, ..., 0.9}, and then use that value of α that has the lowest
overall Mean Absolute Deviation (MAD). Other approaches, such as expectation maxi-

7.3 Basic Experimental Setting 155

Parameter Description
#site Defines the number of sites in the system.
r/w ratio Defines the ratio of read and update transac-

tions in the workload.
#accesspatterns Defines the number of different access pat-

terns.
noiseLevel Defines the percentage of noisy transactions

in the workload.
#workers Defines the number of worker threads that

generate transactions.

Table 7.1: Basic setup parameters.

mization and maximum likelihood [HS98], for determining the best value of α are con-
sidered part of a future work.

The infrastructure for running the experiments is created by the TestCoordinator,
which receives the definition of the experiment to be executed in the form of Extensible
Markup Language (XML) files (Figure 7.2). The configuration file contains basically
the values for the parameters defined in Table 7.1. An example configuration file is
provided in the Appendix B.

The TestCoordinator will deploy a number of sites as defined by the #sites (Step
2 in Figure 7.2). Each site consists of an Apache Derby database version 1.9.1.0 for man-
aging the application data, and an Apache Tomcat application server version 7.0.32 for
managing the CCQ modules. The deployment of a site includes the population of the
Derby database with the TPCC data, and the deployment of CCQ modules. The deploy-
ment architecture is depicted in Figure 7.3. As shown there, the deployment consists
of a set of sites that are composed of the TransactionManager, 2PCManager, DataAccess-
Manager and the Derby storage for managing the data. The helper modules are de-
ployed to dedicated helper sites, and are accessed only by the TransactionManagers over
SOAP/HTTP.

The TPCC data model is defined by the following parameters. There is one whole-
sale supplier that has 10 districts. Each district serves 300 customers, i.e., in total there
are 3′000 customers. The number of stock entries is set to 10’000.

The TestCoordinator will also create the TestClient and provide it with the
necessary setup parameters that determine the workload (Step 2 in Figure 7.2). The
TestClient runs on a separate machine then the SUT. It initiates a number of work-
ers threads (#workers) that generate the desired workload by considering the specified
noiseLevel and r/w mix (Step 3 in Figure 7.2). The parameter values are varied based
on the purpose of concrete experiments. Each worker either creates a transaction from
scratch, or retrieves one from a predefined pool of transactions, submits it for execution
at a specific site, and waits for its response before submitting the next transaction.

156 7 CCQ Evaluation

 Manager Manager

…

Transaction
Manager

Data Storage

2PC

Manager

g
Transaction

Manager

Data Storage

2PC

Manager

g

 Manager
Configuration Manager Manager

Figure 7.3: Deployment architecture used in the evaluations. The orange modules de-
note placeholders that are replaced during the deployment with concrete CCQ modules
as described in Section 6.

All experiments are conducted in the AWS EC2 environment1. We have used
c1.medium2 as a machine type deployed in the eu-west3 region, which is located in
Ireland. A c1.medium EC2 machine consists of two virtual CPU and has a capacity of
1.7GiB RAM and 350GB of disk storage. c1.medium instances yield only a medium
network performance, which is not exactly quantified, but some unofficial measures
indicate a network bandwidth of 1Gb/s within the same availability zone [Ama].

Once a running experiment is finished, the TestCoordinator will download the
results using the File Transfer Protocol (FTP) (Step 4 in Figure 7.2), destroy the infras-
tructure, and recreate it from scratch before starting the next experiment. This ensures
that results are not affected by any side effects, such as available calculations from the
last experiment or any locked resources, that would distort the results of the subsequent
experiment.

7.4 C3 Evaluation Results

The main goal of the C3 evaluations is the assessment of costs generated when a certain
workload is executed with C3. We compare these costs to the costs generated when the
same workload is executed using a fixed consistency level, namely 1SR and EC, which
form the evaluation baseline. More concretely, we have evaluated following aspects.
First, we show the ability of C3 to choose the most cost-efficient consistency model based
on application workload and application specific inconsistency costs. Second, we show

1http://aws.amazon.com/de/ec2/
2http://aws.amazon.com/de/ec2/previous-generation/
3http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ using-regions-availability-zones.html

7.4 C3 Evaluation Results 157

the sensitivity of C3 to consistency and inconsistency costs. For that, we run the same
workload with varying consistency and inconsistency costs. And third, we evaluate the
ability of C3 to handle more than one class of transactions, each class being defined by
its specific inconsistency cost, and compare the generated costs to the baseline costs.

7.4.1 Definition of Transactions

For the evaluation of C3 we have defined the following update transactions, which al-
low us to steer the generation of inconsistencies.

1. Buy transactions for buying items. It will assign the id of the customer to the item
to be bought. It allows as to simulate the lost-update inconsistencies, which occur
if more than one customer buys the same item. We assume that there is only one
item in the stock.

2. Update details transaction that update the details of an item. If more than one
transaction updates the details of the same item, then a lost-update occurs.

We have adapted the original TPCC model to implement the C3 aforementioned trans-
actions.

7.4.2 Cost-driven Consistency

The first series of experiments compares the cost and performance of C3 for varying
workloads given specific consistency and inconsistency costs to that of 1SR and EC. The
SUT consists of eight sites (#sites = 8). For each of the sites, 10 workers are created
that will continuously generate transactions from a site-specific pool of transactions,
and submit them for execution to that designated site. The selection of transactions
from the pool is done randomly. The site-specific pools are disjoint, i.e., do not contain
any common transaction. Furthermore, we have defined a common pool of read-only
and buy transactions with a r/w = 0.5/0.5, and a varying number of common workers,
again assigned to a specific site, which will pull transactions from the common pool,
and submit them to their own site. The goal of the common pool is to generate in-
consistencies between the sites. Each run lasts for 300 seconds, and continuously logs
statistics in a Comma Separated Values (CSV) file. After the current run is finished,
the number of common workers is increased, and the next run is initiated. For this set
of experiments, the consistency cost (i.e., the cost for executing a transaction with 1SR –
cost2pcmess in Equation (5.5)) is set to 0.01, and the cost for a single inconsistency (incCost
in Equation (5.2)) to 0.03.

Expected Results

As the number of common workers increases, the number of inconsistencies should in-
crease, and with that, also the inconsistency costs. We expect the EC consistency model
to be the model of choice for C3, as long as the number of inconsistencies remains low.
However, the increase in number of common workers, should also lead to an increase in

158 7 CCQ Evaluation

(a) Average response time of transactions (b) Overall costs

Figure 7.4: Cost and response time of transactions for different consistency models with
a varying workload.

inconsistency cost, and at some point it should be cheaper to switch to 1SR. C3 should
outperform the baselines in terms of cost. Moreover, the adjustment of consistency level
should also in overall lead to a considerably better transactions response time compared
to that of 1SR.

Experimental Results

The evaluation results are depicted in Figure 7.4. As shown in Figure 7.4a, initially, C3

will execute transactions with the EC consistency level as the expected inconsistency
costs of EC are lower than the consistency cost of 1SR. However, as the load increases,
the inconsistencies also increase. Starting with 60 common workers, C3 will switch to
1SR, which is clearly visible in the increase of response time. With regards to the cost
(Figure 7.4b), EC exhibits zero inconsistency cost and 1SR zero consistency cost. As C3

adjust the consistency level at runtime, both consistency and inconsistency costs incur.
However, compared to the baselines, C3 incurs 20% − 25% less cost in total.

7.4.3 Sensitivity of C3 to consistency and inconsistency cost

This series of experiments compares the generated cost for a workload when the con-
sistency (cost2pcmess in Equation (5.5)) and inconsistency cost (incCost in Equation (5.2))
are varied. This corresponds to the case, in which, either the Cloud provider adapts the
cost of its resources, or the application provider adapts the cost for compensating an
inconsistency. The goal is to show the ability of C3 to account for these adaptations, and
to correspondingly adjust the consistency level. For this experiment, we have used the
same setup as defined in Section 7.4.2, except that the load remains constant, i.e., the
number of common workers does not increase, as the goal is to analyze the sensibility
of C3 to consistency and inconsistency cost.

7.4 C3 Evaluation Results 159

(a) Overall costs (b) Average response time of transactions

Figure 7.5: Cost and response time of transactions for different consistency levels with
varying inconsistency cost.

(a) 1SR consistency level (b) EC consistency level

(c) C3 consistency cevel

Figure 7.6: Cost behavior of the different consistency levels with varying inconsistency
costs.

Expected Results

We expect C3 to adjust the consistency at runtime based on the incurring inconsistency
and consistency costs. In terms of generated monetary costs, C3 should outperform,

160 7 CCQ Evaluation

(a) Overall costs (b) Average response time of transactions

Figure 7.7: Costs and response time of transactions for different consistency models
with varying consistency cost.

both, the 1SR and EC consistency level. The response time of transactions executed
with C3 should lie between that of 1SR and EC.

Experimental Results

The experimental results when incCost is varied are depicted in Figures 7.5 and 7.6, and
the results for a varying cost2pcmess are depicted in the Figures 7.7 and 7.8. As shown
there, C3 generates in overall 15% − 35% (see Figure 7.5) less cost for varying inconsis-
tency cost compared to 1SR and EC, and 28%− 40% (see Figure 7.7) less cost for varying
consistency cost. With regards to the response time, C3 decreases the average response
time of transactions by a factor of 1.5 compared to 1SR in the varying inconsistency cost
experiment, and by a factor of 1.7 in the varying consistency cost experiment.

As shown in the Figures 7.6 and 7.8, C3 will execute transactions with the cheapest
consistency level, and adjust consistency once this is not the case anymore. Notice that
the overall cost of an application, when executed with 1SR, is determined by the consis-
tency cost, whereas when executed with EC by the inconsistency cost. In the case of C3

both, consistency and inconsistency cost may occur.

7.4.4 Workload with Multi-Class Transactions

The goal of this experiment is to depict the ability of C3 to detect and handle multi-
class transaction workloads. As described in Section 5.1, common to all transactions of
the same class is their inconsistency cost, i.e., they all generate the same overhead for
the compensation of their inconsistencies. For this experiment, we have generated two
common pools of transactions (r/w = 0.5/0.5). The update portion of the first pool
consists of buy transactions and that of the second pool of update details transac-
tions. Inside the same pool, update transactions are annotated with the same class and
assigned the same inconsistency cost. A buy transaction has incCost = $0.03, whereas
an update details transaction incCost = $0.001. The common pools are disjoint as
the purpose of this experiment is mainly to asses the overall monetary cost, and not

7.4 C3 Evaluation Results 161

(a) 1SR consistency level (b) EC consistency level

(c) C3 consistency level

Figure 7.8: Cost behavior of different consistency levels with varying consistency cost.

(a) Overall costs (b) Average response time of transactions

Figure 7.9: Costs and response time of transactions for a workload consisting of multi-
class transactions.

the handling of transaction mixes with regards to the conflicts. Two sets of common
workers are created, each of the size of forty, that will pull transactions from one of the
common pools, and submit them to the sites in a round-robin manner.

162 7 CCQ Evaluation

Expected Results

We expect C3 to detect the two classes of transactions based on their annotations, and
extract their incCost. Moreover, C3 should predict the expected cost for each of the
classes and choose the most suitable consistency level for each class. C3 should outper-
form in terms of monetary cost both fixed consistency levels, as minimizing the cost for
each class also minimizes the overall cost. Furthermore, it should improve the average
response time of transactions compared to 1SR.

Experimental Results

The results of this experiment are depicted in Figure 7.9. As shown there, C3 generates
less monetary cost compared to the baselines. The difference compared to the EC were
rather small, as we have used a low inconsistency cost. However, compared to 1SR,
C3 generates almost 50% less cost in total. C3 also leads to a decrease of response time
compared to 1SR by almost 37%. This is explained one hand by the fact that C3 exe-
cutes many transactions with EC as that is the cost-effective consistency due to the low
inconsistency cost, and on the other hand, due to the lower load generated by these EC
transactions. Although there are no conflicts between the transactions of the common
pools, the impact of the lower processing load is tangible in the overall performance.
In case of conflicts, the impact of missing 2PC overhead would lead to an even higher
performance gain, as shortening the lifetime of transactions (by removing the 2PC com-
ponent) would decrease the lock duration, and with that, the resource contention.

7.4.5 C3 Adaptiveness

In this experiment, we will assess the ability of C3 to continuously adjust consistency
level based on the workload given specific consistency and inconsistency costs. For
that, we have created a set of transaction pools, consisting of update transactions only,
that have different characteristics with regards to the number of inconsistencies. It is
the pool size that controls the number of inconsistencies: the smaller the pool size, the
higher the probability that the same transaction is submitted to different sites, and with
that the higher the probability for inconsistencies. Both, cost2pcmess and incCost are set
to $0.01. A set of workers will continuously pool transactions from the current pool and
submit them for execution. Each run is proceeded by a warm-up phase, which allows
C3 to gather data for the cost prediction. Workers will run for a specific duration, after
which they will switch to another pool. Notice that the number of workers, i.e., the load
remains constant. Each switch to another pool is proceeded by a warm-up phase, that
does not appear in the statistics.

Expected Results

We expect C3 to detect workload switches, predict the expected cost, and adjust the
consistency level accordingly.

7.4 C3 Evaluation Results 163

(a) Consistency costs of transactions (b) Response time of transactions

Figure 7.10: Consistency costs of transactions using C3’s adaptive consistency.

Experimental Results

The experimental results are depicted in Figure 7.10. As shown there, C3 is able to detect
workload changes and adapt consistency level at runtime. Two adjustments are visible
in Figure 7.10, one from 1SR to EC and the other one in vice-versa. These two switches
are also clearly visible in the response time of transactions depicted in Figure 7.10b.
In this experiment, the reconfiguration overhead is determined by the communication
overhead of the ConsistencyManager with the TransactionsManagers at the sites, that need
to be informed about the new consistency level.

7.4.6 Summary

The conducted experiments show the ability of C3 to adjust consistency at runtime.
C3 is able to handle different workload types by executing transactions with the most
cost-effective consistency. Furthermore, it is multi-class aware, and it is able to extract
costs on a per-class basis, and by that adjust consistency for each of the different classes
separately. The reconfiguration process of C3 ensures a safe adjustment of consistency
at runtime and incorporates a reconciliation mechanism that applies when consistency
is adjusted from EC to 1SR. Although it currently relies on manual intervention for
removing existing inconsistencies, it nevertheless ensures that all sites have the same
view on the data.

C3 can be considered as an isolation level for NoSQL databases. It can, however, be
also run in a mode that enforces a certain consistency level by setting the consistency or
inconsistency cost to infinity. Its modular architecture allows for a seamless implemen-
tation of further consistency levels. Moreover, as it is implemented at the middleware
layer, it can be used on top of different existing DBSs.

164 7 CCQ Evaluation

7.5 Cumulus Evaluation Results

The objective of the evaluation of Cumulus is threefold. First, we show the impact of
distributed transactions on the overall system performance. For this, we compare Cu-
mulus with a fully replicated system that uses the ROWAA approach. Second, we show
the effects of the Cumulus workload analysis described in Section 5.2 on the quality
of the resulting partition configuration. This is done by comparing Cumulus with a
graph-based partitioning approach, such as Schism [CZJM10], that does not consider
workload analysis. Third, we compare the on-the-fly and on-demand reconfiguration
of Cumulus to a stop-and-copy approach [EDAE11]. Moreover, we compare Cumulus
to a static protocol in order to depict the necessity of adapting to workload shifts.

7.5.1 ROWAA vs. Cumulus

The first series of experiments compares ROWAA with Cumulus in terms of distributed
transactions and depicts the impact of distributed transactions to overall system perfor-
mance. We have conducted three types of experiments for comparing the performance
of Cumulus to that of ROWAA:

1. We have varied the r/w ratio in order to depict its impact on the percentage of dis-
tributed transactions, and also to depict the impact of the distributed transactions
to performance. For that, we have created a predefined pool of 200 read-only and
update transactions. The workers (#workers = 10) will pull transactions from that
pool according to the desired r/w ratio and submit them for execution. For each
r/w ratio, Cumulus needs two runs. The first run is a warm-up phase for gath-
ering the workload statistics that are necessary for creating a suitable partition
configuration. The warm-up phase is not necessary for ROWAA. In the second
run, the quality of the partitions is assessed.

2. We have conducted a sizeup [CST+10] experiment, in which, given the r/w =
50%/50%, #workers is continuously increased and the average response time is
measured. For that, we have used the pool of transactions defined in the previous
experiment. The goal is to show that the higher the load, the higher the impact
of distributed transactions to the performance due to the high lock contention.
The experiment should depict that it pays-off to invest resources in reducing or
avoiding distributed transactions.

3. We have varied the #sites to depict that the load distribution and the collocation of
objects are two competing goals. For this experiment, #workers = 10 and r/w =
50%/50%, whereas the number of sites is varied.

Expected Results

Distributed transactions are expensive and incur an overhead due to the necessity of
network communication. This additional overhead may considerably impact the over-
all performance as it increases the duration in which resources have to be kept. While in

7.5 Cumulus Evaluation Results 165

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

0
10

20
30

40
50

60
70

80
90

100

13 12 13 12 14 13 13 13 13 13 12

Ratio of update transactions in the workload

%
of

di
st

ri
bu

te
d

tr
an

sa
ct

io
ns ROWAA

Cumulus

Figure 7.11: Percentage of distributed transactions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120
101

45.2

29
20.1 16.3 13.7 11.8 9.7 8.9 7.9 7.2

34.4 32.6 32.2 31.5 31 30.6 28.2 29 28.1 26.7 27.1

Ratio of update transactions in the workload

T
hr

ou
gh

pu
t[

tr
x/

se
c]

ROWAA
Cumulus

Figure 7.12: Transaction throughput.

ROWAA the percentage of distributed transactions is determined by the r/w ratio, the
percentage of distributed transactions in Cumulus is determined by the quality of the
partitions, and we expected it to be lower and, in the best case, independent of the r/w
ratio. The reduction of distributed transactions in Cumulus should also lead to a con-
siderable decrease of response time and increase of throughput compared to ROWAA.

As part of the introduction, we described two of the main goals of a partitioning
algorithm, namely collocation of objects and even load distribution. The issue of load
distribution can be tackled using two strategies. First, use existing sites and trigger
repartitioning so that the load remains evenly distributed, which is of no help if the ca-
pacity limit of the existing sites is reached. Second, add additional sites and incorporate
them into the partitioning process. However, load distribution and collocation are two
competing goals; we expect an increase of distributed transactions with the increasing
number of sites that are considered during the data partitioning.

166 7 CCQ Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

Ratio of update transactions in the workload

A
v.

re
sp

on
se

ti
m

e
[m

s] ROWAA 2PL
ROWAA 2PC

Replicated ROWAA
Cumulus 2PL
Cumulus 2PC

Cumulus Processing

Figure 7.13: Response time of transactions.

0 20 40 60 80 100 120
0

500

1,000

1,500

2,000

2,500

Number of Workers

A
v.

re
sp

on
se

ti
m

e
[m

s]

Av. Response Time

Av. 2PC-Duration

Av. 2PL-Duration

(a) Cumulus

0 20 40 60 80 100 120
0

500

1,000

1,500

2,000

2,500

Number of Workers

A
v.

re
sp

on
se

ti
m

e
[m

s]
Av. Response Time

Av. 2PC

Av. 2PL

(b) ROWAA

Figure 7.14: Comparing Cumulus with ROWAA based on a sizeup test.

Experimental Results

Impact of the Ratio of Update Transactions in the Workload to the Percentage of Dis-
tributed Transactions The experimental results are depicted in the Figures 7.11, 7.13
and 7.12. The results for Cumulus correspond to measurements during the evaluation
phase, i.e., in the second run after the warm-up phase.

As shown in Figure 7.11, the percentage of distributed transactions in Cumulus re-
mains more or less constant. This is in sharp contrast to the percentage of distributed
transactions that occur in ROWAA, which increases with an increasing ratio of up-
date transactions in the workload. This nicely shows that Cumulus remains agnostic
to the percentage of update transactions in the transaction mix. The impact of dis-
tributed transactions to the system performance is depicted in Figures 7.12 and 7.13.
As shown there, an increased number of distributed transactions leads to a decrease in
the throughput and implies high response times.

ROWAA performs better only for a read-only workload, which corresponds to the
expectations, as in Cumulus read-only transactions may also be distributed. This is

7.5 Cumulus Evaluation Results 167

1 2 4 6 8
0

20

40

60

80

100

0

50 50 50 50

0 1
5

11

22

Number of Sites

%
of

D
is

tr
ib

ut
ed

Tr
an

sa
ct

io
ns ROWAA

Cumulus

Figure 7.15: Percentage of distributed transactions with increasing number of sites.

a consequence of the Cumulus behavior that also considers load distribution, which
implies object distribution.

Figure 7.13 depicts the overhead generated by each of the transaction components,
namely processing, S2PL, and 2PC. The overall response time is the sum of the duration
of each of these three components. The results show that the overall response time in
the ROWAA setting is dominated by 2PC overhead especially for workloads with high
update ratio.

Latency vs. Throughput Figure 7.14 depicts the average response time of transactions
together with the overhead generated by the locking and commit phases as the load
(#worker) increases. The results show that the response time of transactions in ROWAA
increases much faster compared to Cumulus when the throughput increases. In case of
ROWAA, the commit coordination costs are higher compared to Cumulus due to the
higher number of distributed transactions (compare the 2PC overhead). This, in turn,
leads to higher resource contention as locks need to be kept longer in case of ROWAA.
With increasing workload, the contention becomes even stronger and thus significantly
impacts the average response time.

Collocation vs. Load Distribution The results of this experiment are shown in Fig-
ure 7.15. As it can be seen, the more sites are added, the less collocation can be achieved,
i.e., the number of distributed transactions increases with the increasing number of sites.

In summary, in a fully replicated system such as ROWAA, if strong consistency is
required, the percentage of distributed transactions is determined by the ratio of up-
date transactions in the workload. However, as data is fully replicated transactions are
not bound to certain sites, and thus, they can be executed at any site. From the load
balancing point of view, this is the ideal case. By partitioning the data, it is possible
to influence the number of distributed transactions. However, that limits the load bal-
ancing capabilities as transactions are bound to specific sites. Thus, in order to provide
scalability, both the number of distributed transactions and load distribution should be
optimized by the partition protocol.

168 7 CCQ Evaluation

If we decompose 1SR transactions to the different components, namely the process-
ing, locking (S2PL) and 2PC components, and map the optimization of Cumulus to
these components, then we can conclude the following. Cumulus reduces the process-
ing overhead by balancing the load, and the 2PC overhead by collocating objects that are
frequently accessed together. These optimizations considerably impact the S2PL costs,
which is known to be the limiting factor to the system throughput [BN96]. Thus, it pays
off to ”shorten” transaction lifetime and finish them as fast as possible.

7.5.2 Impact of the Workload Analysis on the Quality of the
Partitions

This set of experiments evaluates the impact of workload analysis, described in Sec-
tion 5.2, on the quality of the generated partition configuration. Filtering out noisy
access patterns from the workload is crucial for avoiding the generation of a configura-
tion that does generate no or low benefit for the workload. Moreover, the fewer patterns
are considered, the lower the generated overhead when searching for a suitable config-
uration.

The experiment is set up as follows. We have defined two pools of access patterns,
namely a pool containing significant patterns, i.e., patterns with a high occurrence, and
another pool that contains patterns with a low frequency – denoted as noisy patterns.
The transaction workers (#workers = 10) will generate a workload as a combination of
the significant and noisy patterns based on the desired ratio of noise, which is varied
for each experiment. For this experiment #sites = 4.

Another important feature of the Cumulus workload analysis is that only the objects
accessed within the significant access patterns are used to determine the partition con-
figuration – this is in contrast to similar approaches that incorporate all existing data
objects into the generation of the partitions. We have conducted a sizeup (#workers is
varied) test to depict the performance impact of the improved object (load) distribution
to sites by Cumulus.

Expected Results

Cumulus incorporates a threshold-based workload analysis that can extract significant
access patterns and generate a configuration that is tailored to the needs of the signifi-
cant patterns, as that generates the highest benefit in terms of reduction in distributed
transactions. Our expectations towards the results are thatCumulus can distinguish
between significant and noisy pattern, and that it will generate a configuration that out-
performs the approach without workload analysis. Moreover, the improvement should
hold for different noise ratios up to the point in which no significant patterns can be
extracted from the workload.

The Cumulus approach of considering only those objects accessed by the significant
patterns during the generation of the configuration should avoid cases in which a cer-
tain site becomes a bottleneck (see Section 5.2). The performance advantage of Cumulus
should increase as the load increases.

7.5 Cumulus Evaluation Results 169

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

4.8 7.5 10.2
16.2 13.5 16.9 19.9 21.7

29.2
39.2

70.8

3.5 3.6 4.8 4.3 1.9 4.6 8.2
13.4

21.7

40.3

74.1

Percentage of noise in the workload

%
of

D
is

tr
ib

ut
ed

Tr
an

sa
ct

io
ns Without workload-analysis

Cumulus

Figure 7.16: Percentage of distributed transactions.

Experimental Results

Figures 7.16 and 7.17 depict the results of the experiment. As shown there, the workload
analysis of Cumulus outperforms in terms of quality the approach that does not analyze
the workload. This improvement in the quality is reflected in the considerable lower
percentage of distributed transactions in case of Cumulus. It is clear that if the noise
level is very high (e.g., 100%), then, as no characteristic access patterns exist, workload
analysis cannot lead to any improvement.

Figures 7.18a and 7.18b depict the performance results of three different partition
approaches, namely the Cumulus approach that considers only objects that occur in the
significant workload to determine the partitions (SUBSET), an approach in which all
objects are used (ALL), and a hash-based approach as a control mechanism. As shown
in the results, the Cumulus approach yields the best performance compared to the other
two approaches, mainly due to the better load balancing. The ALL approach yields a
0% distributed transaction rate, which is expected as it better collocates objects accessed
together. This rate was between 4% and 10% for Cumulus and over 90% for the hash-
based approach. Hence, the better performance of Cumulus (SUBSET) comes from the
better load balancing capability compared to the ALL approach, especially from the
avoidance of hot spots. This shows that an important criterion for the overall system
performance is to find a good trade-off between load balancing and minimization of
distributed transactions; concentrating only on one aspect does not automatically lead
to better system performance.

7.5.3 Adaptive Partitioning

Cumulus is an adaptive partitioning protocol, able to react dynamically to access pat-
tern changes at runtime, and adjust its configuration to reflect these changes. As de-
scribed in Section 6.3.2, Cumulus implements an on-the-fly and on-demand (OFD-R)
reconfiguration approach, that, in contrast to the stop-and-copy approach (SC-R), in-
curs lower system unavailability. The goal of this experiment is to compare the runtime

170 7 CCQ Evaluation

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

56 56 74 93 85 93 100 127
195 216

484

35 46 51 47 39 57 60 81
122

209

369

Percentage of noise in the workload

R
es

po
ns

e
Ti

m
e

[m
s]

Without workload-analysis
Cumulus

Figure 7.17: Impact of workload analysis on the percentage of distributed transactions.

0 20 40 60 80 100 120
0

1,000

2,000

3,000

4,000

5,000

6,000

Number of Workers

R
es

po
ns

e
Ti

m
e

[m
s]

ALL SUBSET Hash-Based

(a) Response time of transactions

0 20 40 60 80 100 120
0

50

100

150

200

250

Number of Workers

Th
ro

ug
hp

ut
[t

rx
/s

]
ALL SUBSET Hash-Based

(b) Transaction throughput

Figure 7.18: Comparison of the different partitioning approaches.

behavior of both approaches. Moreover, the experiment shows the ability of Cumulus
to detect changes in the workload and consequently adapt the configuration.

We have run two types of experiments with the goal of assessing the runtime adap-
tive behavior of Cumulus.

1. The first experiment compares the OFD-R approach to the SC-R reconfiguration.
We have implemented the SC-R approach into Cumulus and have added the pos-
sibility to define at runtime which of the reconfiguration approaches should be
used by Cumulus. This experiment is run twice, once for each of the two modes
using the same single pool of access patterns. There is no warm-up phase as the
goal is to show the adaptive behavior. Cumulus runs for a certain period of time,
extracts the access patterns and then triggers a reconfiguration in the specified
mode.

2. The second experiment evaluates the ability of Cumulus to adapt the configura-
tion in reaction to changes in the workload. For this experiment, we have used
different pools of access patterns and switch at runtime between them in order to
simulate workload changes.

7.5 Cumulus Evaluation Results 171

0 20 40 60 80 100 120
0

2,000

4,000

6,000

8,000

Time [s]

R
es

po
ne

-T
im

e
[m

s]

Total Response Time
Processing Time

Figure 7.19: Stop-and-copy reconfiguration.

Both experiments use the following setup parameters: #sites = 4, #workers = 50,
and r/w = 0.5/0.5.

Expected Results

We expect the OFD-R approach to lead to a lower system unavailability during the re-
configuration, which, in contrast to the SC-R approach, migrates objects only when ac-
cessed by user transactions. With regards to the adaptive behavior, we expect Cumulus
to detect workload changes and timely adapt its configuration to the new workload.

Experimental Results

Runtime behavior of the Reconfiguration Figure 7.19 depicts the response time behav-
ior of transactions using the SC-R approach, and Figure 7.20 the response time using
the OFD-R approach. As it can be seen, the SC-R approach generates a huge spike in
the response time, which is then stabilized once the reconfiguration is completed. Dur-
ing the reconfiguration, all incoming transactions are added to a wait-queue, and their
execution is deferred. Depending on the number of the objects to be migrated, the stop
and copy approach may lead to a considerable system unavailability that may destabi-
lize the system, especially during high arrival rates as the wait-queue may be filled in
completely.

In the case of the OFD-R approach, the immediate impact of reconfiguration is lower.
However, there is an overhead incurring for individual transactions, as the effort for
the reconfiguration of the objects they access will be added to these transactions. This
overhead is visible in the higher response time compared to the SC-R approach after the
reconfiguration. The overhead for individual transactions will decrease as after some
time the reconfiguration will be completed.

Adaptive Behavior of Cumulus Figure 7.21 the behavior of Cumulus during the work-
load shifts and shows its ability to detect them and timely react by adapting its configu-

172 7 CCQ Evaluation

0 20 40 60 80 100 120 140 160 180 200 220 240
0

1,000

2,000

3,000

4,000

5,000

6,000

Time [s]

R
es

po
ne

-T
im

e
[m

s]

Total Response Time
Processing Time

Figure 7.20: On-the-fly and on-demand reconfiguration.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

Time [s]

%
of

D
is

tr
ib

ut
ed

Tr
an

sa
ct

io
ns

Adaptive behevaior of Cumulus

Figure 7.21: Percentage of distributed transactions over time with shifting access pat-
terns.

ration. The four workload shifts are clearly visible, during which, there is a considerable
increase in the percentage of distributed transactions. The percentage of distributed
transactions decreases once Cumulus has adapted its configuration. This is sharp con-
trast to static partition protocols, in which the spike of distributed transactions would
remain. Hence, in the presence of dynamically changing access patterns, Cumulus out-
performs static approaches that can only be optimized for an initial access pattern but
become suboptimal as the workload evolves.

7.5.4 Summary

In summary, the conducted experiments show that distributed transactions are expen-
sive (due to commit coordination) and thus should be avoided. Data partitioning, if
done properly, can considerably decrease the percentage of distributed transactions and

7.6 QuAD Evaluation Results 173

can thus impact the overall system performance. This is shown in a comparison of Cu-
mulus with a fully replicated system configuration (ROWAA) where distributed update
transactions cannot be avoided at all.

Workload analysis is of high importance for the quality of the generated partitions.
However, distributed transactions are not the only source of overhead. It is crucial to
avoid hot spots in the system as they decrease overall system performance. Cumulus,
therefore, combines the avoidance of hot spots with the attempt to minimize distributed
transactions. As access patterns of applications deployed in the Cloud are dynamic and
may change over time, a partitioning protocol should be adaptive and, at the same time,
should incur minimal reconfiguration overhead. Frequent reconfiguration events that
do not provide sufficient gain should not take place as the cost of adaptiveness may
overweight its advantage. Cumulus assess the gain of a reconfiguration before actually
initiating it.

7.6 QuAD Evaluation Results

The goals of the QuAD evaluations are as follows. First, we show the importance of
considering site properties when constructing the quorums. For that we have used a
version of the MQ protocol, that neglects site properties, and depict the impact of that
strategy on the overall performance. Second, we compare the performance of QuAD to
that of MQ using round-robin and random quorum construction strategies, in a single-
data and a multi-data center settings. Third, we compare the different construction
strategies of QuAD and show their impact on the overall performance. And fourth, we
analyze the necessity of adapting the quorums if site properties change at runtime and
show that QuAD can adapt its quorums.

We have run two different types of experiments, depending on the concrete purpose,
namely a sizeup and speedup test as described in [CST+10]. In the sizeup experiment,
an initial number of 10 worker threads will be started and submit transactions for 30
seconds, and after that collect the statistics and increase the number of workers by 10,
until the maximum of 150 workers is reached. Each sizeup experiment runs for 450
seconds and is repeated 10 times.

The goal of the speedup test is to analyze the performance improvement of QuAD
compared to other approaches. The speedup is calculated as follows: speedup =
resptime(other−approach)

resptime(QuAD)
, and there is an improvement if speedup > 1. During a speedup

experiment, the load remains constant, i.e., #workers does not change.

7.6.1 Impact of Site Properties on Performance

The goal of the quorum protocols is to reduce the overhead for update transactions as
only a subset of sites is eagerly committed. This reduces the number of synchronization
messages in the system and the load generated at the sites. However, to guarantee
strong consistency, reads must also access a subset of sites, and this –in contrast to the
ROWAA approach– increases the overhead for the reads. In Cloud environments, it is
essential that quorums consider the properties of the available sites. In order to show the

174 7 CCQ Evaluation

Figure 7.22: MQ: Transaction overhead with varying r/w ratio.

(a) Varying RTT (b) Varying load

Figure 7.23: Transaction overhead in MQ for a workload consisting of update transac-
tions only.

necessity of considering site properties, such as their RTT and load, when constructing
the quorums, we have conducted two experiments on the basis of the MQ protocol with
#sites = 4.

In the first experiment, a test client with a single worker thread generates transac-
tions for 450 seconds based on a specific transaction mix. These transactions are then
submitted for execution to a dedicated site, which initially constructs a majority quorum
by randomly picking from available sites.

In the second experiment, we have varied the RTT4 and the load of a certain site. We
ensured that the modified site is included in the read and write quorums.

Expected Results

When all sites have the same properties, we expect the transaction mix to be the deter-
mining factor for the performance. The more update transactions the workload contains
the higher the probability of conflicts due to 2PL, which is known to be the limiting

4We used the netem tool to increase the RTT at a certain site: www.linuxfoundation.org/
collaborate/workgroups/networking/netem.

7.6 QuAD Evaluation Results 175

factor for the transaction throughput [BN96]. Moreover, update transactions incur an
overhead for the 2PC, which additionally increases the lifetime of transactions and by
that also the conflict probability (2PL overhead).

In a deployment in which sites differ in terms of their properties, we expect that the
weakest site become the bottleneck and degrades the entire performance.

Experimental Results

Figure 7.22 shows the overhead per transaction when all sites have the same properties
(i.e., the load of the sites and the RTT between sites is the same) for a varying r/w ratio.
As shown there, with the increase of the update ratio in the workload, the 2PC costs also
increase. The overhead generated by S2PL remains constant as there are no concurrent
transactions. The goal was mainly to depict 2PC overhead. In summary, in the case
of all sites having the same properties, the workload mixes determines the transaction
overhead.

In Figure 7.23 we have depicted the results for a workload consisting of update trans-
actions only. The increase of the RTT or load at one of the sites that is included in all
read and write quorums has a considerable impact on the 2PC overhead. This is a con-
sequence of the site being part of each commit path, and thereby slowing down the
2PC processing (in Figure 7.23a and Figure 7.23b, latency corresponds to the additional
overhead generated compared to the latency when rtt = 0 and latency = 0). Thus, it
is crucial to constructing the quorums in such a way so that the weak sites are avoided
from the read and commit paths of transactions.

7.6.2 QuAD vs. MQ

In the next series of experiments, we compare the performance of QuAD to that of
the MQ that uses round-robin (MQ-RR) and random (MQ-RA) approaches for quorum
construction. For that, we have run a sizeup test in a single-data center and a multi-data
center setting. The worker threads (#workers = [10 : 10 : 150]) will submit transactions
to sites according to the desired r/w ratio. We run the experiments using four, eight and
sixteen sites, with a subset of sites denoting the core sites.

In the single-data center environment, the load is the determining factor for the per-
formance, as the network distance between the sites is negligible. The distribution of
worker threads to sites determines the load generated at the sites, and by that their
score. For the evaluation with four sites, one of the sites will get 40% of the overall
load, the second one 30%, the third one 20% and the last one the remaining 10%. In the
evaluation with eight sites, distribution is as follows: 30%, 15%, 15%, 10%, 10% and the
remaining 20% are evenly distributed to the rest of the sites. The distribution of load in
the case with 16 sites is similar to that with eight sites. The core sites are determined
based on the model defined in Section 5.3.

The goal of the multi-data center deployment is to evaluate the impact of RTT on the
overall performance. Therefore, we have increased the RTT between three sites (with
ratio of 4:2:1), so that the communication between them corresponds to the communi-
cation between sites located at three different data centers. As the load of all sites is the

176 7 CCQ Evaluation

(a) 4 sites; κ = 2 (b) 8 sites; κ = 2

(c) 8 sites; κ = 4 (d) 8 sites; κ = 8

(e) 16 sites; κ = 8

Figure 7.24: Overall response time of transactions with varying site load (single-data
center setting).

same (which is achieved by distributing transactions to sites in a round-robin approach),
the RTT will be the determining factor for the construction of quorums.

We will also report the result for the QuAD-inversed, in which the weaker the site,
the higher its score, simply for reasons of comparison.

7.6 QuAD Evaluation Results 177

(a) 4 sites; κ = 2 (b) 8 sites; κ = 4

Figure 7.25: Sizeup: QuAD vs. other quorum protocols for r/w = 50%/50% (single-
data center setting).

Expected Results

In a DDBS with varying site properties, we expect QuAD to exploit the advantages of its
optimization model that considers the site properties when constructing the quorums.
By avoiding weak sites from the read and commit paths of transactions, QuAD should
considerably outperform the MQ protocol in terms of performance. This expectation
applies to the single-data and multi-data center environments.

Experimental Results

Single-Data Center Figure 7.24 depicts the overall averaged response time of transac-
tions in the sizeup test, and Figure 7.25 shows the response time behavior of transactions
with increasing #workers. Based on the depicted results we can conclude that QuAD
considerably outperforms both MQ approaches, namely the MQ-RR and MQ-RA, that
neglect site properties when constructing the quorums. For update-heavy workloads,
QuAD leads to a decrease of response time by more than 50%. The main reason is that
quorums are constructed in such a way, so that weak sites are possibly avoided. The
properties of the site that received the transactions should be the limiting factor and not
the properties of the sites consisting the quorums.

However, it is clear that QuAD, similar to other quorum protocols, have a higher
overhead for reads compared to ROWAA. We run a simple speedup test for comparing
the performance of QuAD to that of ROWAA for a read-only workload with all sites
having same properties. The average response of ROWAA was about 0.08 seconds,
and that of QuAD about 0.2 seconds, which means that using ROWAA for read-only
workloads leads to a speedup of 2.5.

Multi-Data Center The experimental results for the multi-data center setup are de-
picted in Figure 7.26. From the results, we can conclude that QuAD significantly out-
performs other approaches especially for update-heavy workloads by decreasing the
average response time nearly by a factor of 3. The consideration of RTT is more signif-
icant especially for update-heavy workloads as they are mainly network bound due to

178 7 CCQ Evaluation

(a) 4 sites; κ = 2 (b) 8 sites; κ = 4

(c) 16 sites; κ = 8

Figure 7.26: Varying RTT (multi-data center setting).

R² = 0.9702

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10

2P
L

[s
]

2PC [s]

Figure 7.27: Correlation between the 2PC and S2PL overhead [SFS15].

the heavy 2PC communication. Note that as we use SOAP over HTTP for the commu-
nication between sites, the RTT is a crucial factor to the overall performance.

In [SFS15], which compares the performance of different replica protocols, we re-
ported that an increase of the RTT by a factor of 20 − 40 doubles the 2PC costs. This
has a considerable impact on the overall performance as there is a strong correlation
between the 2PC and S2PL costs, especially for update-heavy workloads (Figure 7.27).

7.6 QuAD Evaluation Results 179

7.6.3 QuAD Quorum Construction Strategies

The goal of the following experiments is to compare the QuAD quorum construction
strategy to strategies that neglect one or more parameters from Equation 5.30. For that
purpose we have run the following experiments:

1. We have compared the QuAD strategy of assigning slaves to core quorums which
jointly considers both the load and the RTT to strategies that either only consider
the load or the RTT5. For this evaluation, #sites = 4 with κ = 3. This means
that a single slave site needs to choose between three possible core quorums. In
this evaluation the load remains the same, i.e., #workers remains constant. All
transactions are submitted to the slave site.

2. When assigning the slaves to core quorums, QuAD tries to balance the assignment
as much as possible to avoid that certain core quorums, and with that certain core
sites, become a bottleneck if to many slaves are assigned to them. We have also
compared the balanced assignment of slaves to cores with the unbalanced assign-
ment based on a sizeup test.

3. One of the crucial aspects in QuAD is the choice of κ as it impacts both its perfor-
mance and availability. We have also evaluated the impact of κ to the overall per-
formance based on a sizeup experiment with #sites = 8 and a varying κ. The goal
of this experiment was to show the trade-off between the availability, which in-
creases with increasing number of κ sites, and the optimization capabilities, which
may rapidly decrease if the properties of the sites are similar. Note that the de-
crease strongly depends on the site properties. If a subset of sites is significantly
better than the rest, then there might even be an advantage in increasing the num-
ber of core sites (selected from this subset), as the more core sites available the
more choices there are for assigning the slaves which, in turn, may be advanta-
geous from a load balancing point of view. However, if there are many weak sites,
the higher the number of cores the more weak sites are to be included. In this
experiment, two sites were quite strong sites, and the rest was weak.

Expected Results

The QuAD strategy that jointly considers load and RTT when assigning slaves to cores
should outperform strategies that neglect one of the two parameters. However, certain
workload types may, for example, be network bound, and some others latency bound.
In these cases it is more advantageous to optimize the load and RTT weights to consider
these properties. As the QuAD’ default assignment strategy gives equal weights, in the
case of the aforementioned workloads, we expect it to perform worse compared to those
strategies that consider only the load or the RTT.

Avoiding bottlenecks, i.e., sites that are more frequently accessed in the quorums
than others, is crucial for the overall performance. We expect the balanced assignment

5This is achieved by specifying a zero weight for the load or RTT in Equation 5.30.

180 7 CCQ Evaluation

(a) QuAD vs. load only (b) QuAD vs. RTT only (Large load at a
core site)

(c) QuAD vs. RTT only (Medium load at a
core site)

(d) QuAD vs. RTT only (Low load at a core
site)

Figure 7.28: Comparison of strategies for the assignment of slaves to core sites.

of QuAD to provide an overall better performance compared to the non-balanced strat-
egy. Furthermore, this improvement should become even more tangible as the load
increases.

With regards to the impact of κ to the performance, if the DDBS consists of mostly
weak sites, a large value of κ means that many of these weak sites need to be included
in the quorums. In that case, we expect a high value of κ to be a disadvantage in terms
of performance.

Experimental Results

QuAD vs. Load only In the first experiment, we compare QuAD to an assignment
which considers only the latency (QuAD-LA) when assigning the slave site to the cores.
The latency at a site is determined by its load. The core site with the smallest load has
the greater distance to the slave, and as the load of the cores increases, the distance de-
creases by the same factor. QuAD-LA chooses the core quorum that has the minimum
maximum load, and assigns the slave to that quorum, whereas QuAD chooses that
quorum that has the lowest cost by jointly considering the load and RTT. As depicted in
Figure 7.28a, QuAD outperforms QuAD-LO for all r/w ratios. The performance advan-

7.6 QuAD Evaluation Results 181

(a) Readonly (b) RW8020

(c) RW5050

Figure 7.29: Balanced vs. unbalanced assignment of slaves to core sites for varying r/w
ratio.

tage of QuAD is considerable for update-heavy workloads as they are mostly network
bound.

QuAD vs. RTT only In the second experiment, we compare QuAD to an assignment
which only considers RTT (QuAD-RTT). The core site with the smallest RTT has the
highest load, and as the RTT of the cores to the slave increases, their load decreases. We
conduct three different experiments which differ in the load generated at the weakest
core site from the load point of view. The first evaluation generates a load that cor-
responds to an average latency of 2, 500[ms], the second to 500[ms] and the third one
to an average latency of 100[ms]. For the high load evaluation, QuAD outperforms
the QuAD-RTT (Figure 7.28b). However, as the load of the weakest core site becomes
smaller, the performance of QuAD-RTT gets better and it outperforms the performance
of QuAD (Figures 7.28c and 7.28d). The reason is that in our SOAP/HTTP-based imple-
mentation, the network should have a higher weight compared to the load. Currently,
in QuAD the weights can be configured by a user. However, it is planned to relieve
the user from the burden of determining the appropriate weights by incorporating a
machine learning approach to automatically determine the optimal weights.

Balanced vs. Unbalanced Assignment of Slaves to Cores The results of the compar-
ison of the QuAD balanced strategy of assigning slaves to quorums to a non-balanced

182 7 CCQ Evaluation

Figure 7.30: Varying κ (8 sites).

version are depicted in Figure 7.29. As the results show, as the load increases, the unbal-
anced version in which certain core quorums have more slaves assigned to them, will
not only become bottlenecks from the point of view of the slave sites, but also transac-
tions executed by them will be impacted by the high load generated from the slaves,
so that the entire performance will degrade. The balanced version of QuAD leads to a
decrease in response time between 20% − 30% compared to the non-balanced version.

Impact of κ to Performance The results of this evaluation are depicted in Figure 7.30.
As the results show, the increase in the number of cores leads to a decrease of perfor-
mance. κ determine the size of the quorums, and the smaller its value the higher the
probability that the weak core sites are bypassed during the construction of quorums.
If all sites are core sites, then the behavior of QuAD is similar to that of ROWAA for up-
date transactions. It is well known that ROWAA has no choices whatsoever to optimize
the commit of update transactions as all available sites are part of the commit path.

In addition to the availability and performance, the choice of κ also influences the
monetary cost of applications. The size of quorums strongly correlates to the κ value:
the higher the κ value the bigger the quorum size and thus the number of messages that
have to be exchanged between the sites. As each message incurs a monetary overhead
in the Cloud, the more messages are exchanged the higher the overall application cost.

7.6.4 Quorum Reconfiguration

In the following two experiments, we evaluate the ability of QuAD to adapt the quo-
rums in reaction to changes of site properties. In the first experiment, the load of a core
and a slave site are swapped, i.e., the core site gets the load of the slave site and vice
versa, whereas in the second experiment, we increase the load at one of the core sites to
a level that is between the load of the two slave sites.

Expected Results

We expect QuAD to adapt its quorums by promoting slaves to cores, and demoting
cores to slaves. This adaption should be clearly visible in the response time of transac-
tions.

7.7 Discussion 183

(a) Swapping load of a core and a slave site (b) Increasing load at one core site

Figure 7.31: QuAD adaptive behavior.

Experimental Results

The experimental results of the first experiment are depicted in Figure 7.31a and the
results of the second experiment in Figure 7.31b6.

For the first experiment, the results show clearly that QuAD reacts to the load swap
and adapts the quorums. Compared to the non-adaptive quorum, this leads to a stabi-
lization of the latency to the level before the change in the load. The same applies for
the second experiment, with the difference that the latency will remain at a higher level
after the adaption of quorums, as the load of the slave site that is promoted to a core
does not decrease.

7.6.5 Summary

In summary, the conducted experiment show that the size of the quorums is not the
only factor that determines the overhead in quorum-based replication. The properties
of the sites are at least equally, if not more important, and should become first class
citizens during the quorum construction. QuAD incorporates an advanced quorum
strategy based on the κ-centers model, which, as shown by the experimental results,
considerably outperforms (up to 50% gain in performance) approaches that neglect site
properties. Moreover, QuAD considers also a balanced quorum construction by avoid-
ing bottlenecks as far as possible. A strong site that is included in too many quorums
will degrade the overall performance. Furthermore, QuAD is able to adapt the quorums
at runtime if there is a significant change in the workload.

7.7 Discussion

The thorough experiments we have conducted prove that it is not only feasible but also
necessary to build data management protocols that are able to adapt their behavior at
runtime. Our CCQ protocols, by considering application workload and deployment

6Note that we initiate the adaption at different point is time to avoid an overlap in the charts.

184 7 CCQ Evaluation

characteristics, can lead to considerable savings in monetary cost and increase in per-
formance.

Nevertheless, the adaptive models can benefit from extended evaluations in a real
application deployment; that would run for a longer period of time. That would allow
us to gain insights on more realistic access patterns, which can be useful to optimize
further the reconfiguration approaches that we have implemented. As the online recon-
figuration is one of the crucial components that determines the price of adaptiveness, it
pays off to further optimize it, by, for example, considering the overall load of the sys-
tem. If the load is too high, then the reconfiguration may be postponed, and resumed
once the load decreases below a specific threshold.

The generated overhead is closely related to the reconfiguration period. The longer
the period, the more activities need to be executed during the reconfiguration. Although
the system may benefit by postponing a reconfiguration, that might lead to an overhead
that overweights its gain. Thus, the optimal point in time for the reconfiguration is
dependent on different parameters that need to be further evaluated.

Workload prediction is at the core of the CCQ protocols. Currently, we used time se-
ries prediction mainly due to their simplicity and low processing overhead. Addition-
ally, they provided predictions of sufficient accuracy for our purpose. There are more
advanced prediction models that can better tackle with workload skew and highly dy-
namic workloads, which is a typical characteristic of the applications deployed in the
Cloud. However, they also generate more overhead, which may become an obstacle for
adaptive protocols. The deployment in a real application together with a thorough eval-
uation of different prediction models would make it possible to identify those models
that find the right balance between accuracy and acceptable overhead.

The CCQ protocols need to collect, manage and process system meta data to take a
decision on a suitable configuration. All these activities generate additional overhead
that is not explicitly quantified by current evaluations. We argue that the CCQ pro-
tocols can benefit from specific experiments that help to precisely asses the additional
overhead and provide insightful information on eliminating the sources of that over-
head.

8
Related Work

In this chapter, we summarize related work in the field of distributed data manage-
ment. The chapter is structured in five sections. In the first section, we discuss general
approaches and directions in the distributed management of data. The second section
discusses related work in the context of modular DBSs. In the third section, we sum-
marize related work in the field of data consistency for distributed databases together
with a detailed description of approaches targeting cost-based consistency. The fourth
section discusses related work for data partitioning with a focus on adaptive protocols.
The fifth and final section discusses related data replication approaches.

8.1 Distributed Data Management

The development of distributed data management research has been mainly driven by
the fundamental trade-offs captured by CAP/PACELC. The rise of companies, such as
Google, Yahoo!, Facebook, and others, that started providing applications over the In-
ternet, and the ever growing popularity of these applications, have led to a dramatical
shift in the requirements towards database systems. These applications are character-
ized by a huge number of users and their high availability (possibly 24/7) and scalabil-
ity demands.

The Cloud paradigm, with its pay-as-you-go cost model and virtually infinite scal-
ability, has reduced the barrier for the development and deployment of large-scale ap-
plications, that were difficult or even impossible in traditional infrastructures due to
the necessary upfront investment. These applications are characterized by a highly dy-
namic workload, which requires from the DBSs the ability to adapt to the varying load.

Relational Database Management System (RDBMS) have long been the database
of choice in a traditional enterprise setting. While they can scale up, RDBMS are
not suitable when it comes to horizontal scalability (scale out) on commodity hard-
ware [ADE12]. Scale up is not an appropriate choice for applications deployed in the
Cloud. While the dynamic nature of these applications demands adaption with possi-
bly no delay, scale up requires hardware modifications, which considerably increases
the reaction time.

186 8 Related Work

Many of the aforementioned companies developed own DBSs that provide high
availability, and are able to scale out on a commodity hardware. Examples include
Bigtable [CDG+06], Pnuts [CRS+08], [LM10], and others.

The huge success of this first generation of NoSQL databases, which were mainly tai-
lored to satisfy the needs of their creators, gave a rise to the development of a plethora of
open source NoSQL databases, such as key-value databases (Redis [Car13], Voldemort
[SKG+12], Riak [Klo10]), document databases (SimpleDB [Simb], CouchDB [ALS10],
MongoDB [CD10]), and graph databases (Neo4J [Web12], OrientDB [Ori]).

Peer-to-Peer (P2P) data management systems have become quite popular mainly in
the context of file sharing applications. They differ from traditional DDBSs in the degree
of heterogeneity and autonomy of sites, as well as in the volatility of the system [ÖV11].
In a P2P DBS sites can join and leave the system at any time. Early P2P systems, such
as Gnutella [Gnu], Kazaa [Kaz], Napster [Nap], CAN [RFH+01] and Chord [SMK+01],
mainly focused on avoiding censorship and fast query processing.

Recent P2P systems also focus on providing rich query language similar to SQL for
relational databases. The main difficulty in providing high-level query language is the
unavailability of a centralized schema. Some approaches consider schema mapping on
the fly during query processing [OST03], some others rely on the existence of super
peers that provide schema description [NSS03]. Transaction management in P2P sys-
tems with replication remains an open issue [VP04].

8.2 Policy-based and Modular Data Management

Traditional (relational) DBSs were developed with the goal of supporting different ap-
plication types that have diverging requirements. However, this approach, known as
”one size fits all”, has failed to satisfy the demands of emerging application types, such
as large scale web applications, social networks, and others. In [SÇ05, Sto08] the au-
thors provide a thorough analysis of why the ”one size fits all’ approach is no longer
applicable to the database market. They conclude that new types of specialized DBSs
will evolve, a trend observable in the NoSQL movement, tailored to the requirements
of a specific type of application. This conclusion is not new and has been long ago
observed in the mismatch between the requirements of Online Analytical Processing
(OLAP) and OLTP applications towards the DBSs. As described in [Fre95] traditional
DBMS architectures do not work well for data warehouse applications (OLAP) as their
optimizations target OLTP workloads.

The PolarDBMS’ approach fits very well in the context of this movement that goes
away from the ”one size fits all” approach. However, from the software engineer-
ing point of view, PolarDBMS follows the approach of having a thin DBMS frame-
work, responsible for the management of modules implementing a certain data man-
agement protocol, instead of having a zoo of different specialized DBSs. Additionally,
PolarDBMS treats the client as first class citizens by giving it the possibility to directly
influence the DBS composition through a fully transparent interaction cycle as described
in Section 2.2.

8.3 Workload Prediction 187

If we consider, for example, NoSQL databases, such as SimpleDB [Simb] or Ora-
cle NoSQL [orab], which initially provided only weak consistency to applications, they
have recently included strong consistency and allow applications choosing the appro-
priate consistency model. PolarDBMS, in contrast,s will autonomously decide and con-
tinuously adapt the provided guarantees, and the protocols implementing those guar-
antees by considering the full set of application requirements and workload. Each dif-
ferent PolarDBMS composition corresponds to what [SÇ05, Sto08] calls a ”specialized
engine”.

OctopusDB [DJ11] is a DBS that allows to choose a suitable data model, depending
on the application characteristics. The data model is however only a subset of data man-
agement properties considered by PolarDBMS. [KKL+10] introduces Cloudy, which,
similar to PolarDBMS, is based on a modular architecture that enables its customization
based on a concrete application scenario. In contrast to PolarDBMS it largely ignores
the definition of requirements based on SLAs. [GSS+13] proposes an architecture based
on co-design of the DBMS and operating systems, which allows the design of both by
considering each other’s requirements.

In [GFW+14] and [GBR14] the authors propose a unified Representational State
Transfer (REST) interface for the access to NoSQL databases offered through the web
(e.g., S3, Riak, etc.). The interface abstracts the different properties of these NoSQL
databases, such as data consistency guarantees, data models, query languages, etc. The
unified API is a perfect fit for PolarDBMS and would largely simplify the challenges re-
lated to the support of a wide range of different databases by PolarDBMS. Moreover, the
authors propose a modular middleware called Orestres that provides an implementation
of core database concepts, such as schema management or authentication, as modules.
As these modules are accessible via a REST API, they can be easily incorporated into
PolarDBMS, which, by that, is further decoupled from database specific functionality.
Furthermore, this is in line with the goal of PolarDBMS to not only exchange database
functionality at runtime, but even entire databases.

8.3 Workload Prediction

Load prediction is at the core of adaptive data management protocols, as it allows them
to anticipate future workload and to adapt their behavior accordingly. For example,
based on the predicted workload it is possible to determine the number of necessary
sites so that certain SLOs are not violated.

Different prediction models exist that differ in terms of accuracy and cost. As these
two goals are in conflict, it is crucial to find the right balance between them. The cost is
especially a critical factor for adaptive systems, as high costs mean low flexibility.

The work in [AC06] provide a thorough analysis of the prediction accuracy and
adaptability for different load predictors, such as simple moving averages, EMA and
non-linear models, such as cubic splines. They conclude that EMA is the most accurate
prediction model, at the cost of lower reactivity to load variations compared to cubic
splines.

188 8 Related Work

In [MCJM13] the authors provide a series of prediction models for resource utiliza-
tion in OLTP workloads. The models are built offline based on collected logs during
system operation. They have developed two types of models, namely black box and
white box models. The former are based on statistical regression and assess future per-
formance based on historical data, whereas the later consider major database compo-
nents, such as the RAM, CPU, lock contention, and others, to provide more accurate
predictions. The main difference between the two models is that black box models are
more general but also less effective on unseen data.

In [ADAB11] the authors propose a new approach for estimating the query com-
pletion time for batch workloads by considering the interaction, i.e., the dependencies,
between the queries. The presented approach samples the space of possible query mixes
and fits statistical models to the observed performance and sampled queries.

In [GKD+09] a tool is presented, that is able to predict for short- and long-running
queries. Short running queries have typically an execution duration of some millisec-
onds, whereas long-running queries may take up to some hours of execution time. The
prediction tool can be used to determine the system size in terms of resources that is
needed to execute a workload given a specific response time constraint. Moreover, it
can also be used for capacity planning, i.e., given an expected workload, the tool pro-
vides a means to decide whether the system should be scaled up or down. The tool is
trained with a set of real customer and commercial synthetic workloads. For the pre-
diction model, the authors have used the canonical correlation analysis, which is an
extension of the principal component analysis.

[DÇPU11] presents a model for estimating the impact of concurrency on query per-
formance for OLAP workloads. Concretely, they describe a predictor that is able to
determine when each OLAP query from a set of concurrently running queries will fin-
ish its execution. The predictor is based on a linear regression model that considers the
I/O and CPU overhead to predict the query latency.

[HGR09] proposes a workload classification approach, which reduces the analysis
overhead for DBS workloads by clustering similar workload events into classes. Its
online nature makes the approach a perfect fit for the workload analysis of the CCQ
protocols, which is considered one of the major sources of overhead.

8.4 Data Consistency

Data consistency remains an open and attractive research challenge. The goal of the
research is on one hand the definition of new consistency models for emerging appli-
cation types, and on the other hand, the design of low-cost protocols implementing a
certain consistency model.

The trade-offs captured by CAP/PACELC have lead to a plethora of protocols that
provide strong consistency, such as 1SR or SI, and incorporate different optimization
with the goal of reducing the transaction overhead. The research in this area was pi-
oneered by the protocols described in [KA00a, KA00b], which provide 1SR guarantees
for replicated DBSs using efficient group communication. Their development is based
on the observation that distributed commit protocols are expensive and generate con-

8.4 Data Consistency 189

siderable performance penalty. Along the same lines, in [KPF+13] the authors propose
Multi-Data Center Consistency (MDCC), a new distributed commit protocol, that guar-
antees strong consistency for geo-replicated data. MDCC is more fault tolerant and
generates lower message overhead compared to 2PC. It is crucial to reduce message
overhead, as in geo-replicated databases the network latency is the main limiting factor
to performance [BFG+13, BDF+13].

Google’s Spanner, which was motivated by frequent complaints of BigTable clients
due to its relaxed consistency model, is a highly scalable distributed database that pro-
vides strong 1SR [CD+13]. Spanner’s implementation of strong 1SR is based on S2PL
and Paxos for the synchronous replication. It uses the novel True Time that assigns com-
mit timestamp to transactions in a scalable way. Based on the timestamps it is possible to
order globally transactions. Moreover, Spanner allows the implementation of lock-free
read-only transactions, which has a considerable impact on the overall performance.
F1, which stores data of Google’s advertisement business, was one the first customers
of Spanner [SOE+12].

Many commercial databases, such as Oracle [Cor] and MySql [MyS], also include
weak models and allow clients to choose the appropriate one at the application level,
as a consequence of the consistency-latency trade-off. This is in sharp contrast to the
aforementioned approaches, which incorporate the optimizations at the protocol level
without affecting the strong guarantees. However, if the large deployment of those
databases is taken into account, then one can conclude that not every application re-
quires strong consistency. As described in [BDF+13], which surveyed the provided con-
sistency levels of eighteen popular databases, only three of those databases provided
serializability as a default model, and eight did not provide that choice at all. It means
that weak consistency has been there for quite a while and deployed in commercial
applications.Weak models experienced a revival with the invent of the Cloud, which
considerably decreased the barrier for the development of large-scale applications that
demand always-on guarantees and low latency [ADE12].

Different weaker models than serializability have been proposed, such as 1SR
[DS06, EZP05, BBG+95], causal consistency [BFG+12, BSW04, BGHS13, LFKA11], and
EC [BLFS12]. Weak models reduce the performance overhead, and are compatible
with the high availability requirements. However, at the cost of the semantics (un-
derstandability). As we described in Section 3.4, there is programmability-consistency
trade-off, which has a high impact on the development and maintenance cost of appli-
cations [Ham10, BSW04, BGHS13].

Several approaches have been introduced that deal with the issue of avoiding the
inconsistencies of a specific consistency model with a low or no overhead at all. For ex-
ample, [FLO+05] defines a theory which allows arranging concurrent transaction so that
the well-known SI anomalies are avoided, i.e., the resulting effects correspond to a seri-
alizable execution. Along the same lines of [FLO+05], in [CRF08] the authors present a
new protocol on the basis of an existing SI implementation that is able to detect and pre-
vent possible anomalies at runtime (read and write skew), by retaining the performance
advantages of SI, i.e., reads and writes do not block each other.

[BFF+14] defines a formal framework that is able to decide if coordination is nec-
essary for providing serializable execution of transactions, as coordination is the main

190 8 Related Work

bottleneck even in single-copy DBSs. It does so by analyzing application defined invari-
ants, such as integrity constraints, and enforces coordination only if there a possibility
of violating the invariants.

In the context of data replication, the serializable generalized snapshot isolation
(SGSI) protocol presented in [BHEF11b] allows the DBS to provide 1SR global guaran-
tees when each replica site provides only SI locally. SGSI incorporates a certifier which is
responsible for certifying the read and write sets of transactions with the goal of avoid-
ing SI inconsistencies so that overall 1SR correctness is provided. SGSI can extract the
read and write sets of transactions by applying automatic query transformation, and as
they conclude, only the read set certification is necessary for avoiding the SI inconsis-
tencies, which in contrast to common believe.

[SWWW99] defines an algorithm that provides strong 1SR guarantees in federated
DBSs where sites provide strong SI locally. The approach enforces a global total order
of transactions by controlling their execution order at each site.

In [TvS07b] the authors analyze the different layers (modules) of data consistency
protocols and the interactions between the layers. Mainly, they analyze the concurrency
control, atomic commitment, and consistent replication. Based on their analysis, they
propose the transactional system called TAPIR, that provides strict serializable transac-
tion execution. The novelty of TAPIR lies in the usage of a weakly consistent replication
protocol, and is based on the observation that it is not necessary to enforce consistency
at each layer of a data consistency protocol. This observation and the design of TAPIR
are completely in line with the modular design of C3. While TAPIR sticks to one con-
sistency model, C3 can adjust the consistency at runtime based on a cost model, and
can choose the most suitable consistency implementation. From the perspective of C3,
TAPIR is a protocol that implements strict serializability. Thus, it would be taken into
consideration during the search for the most optimal protocol if strict serializability is
to be enforced.

8.5 Tunable and Adjustable Consistency

The development of the abstraction provided to application developers has roughly
undergone following phases, namely the development of transactions as an abstraction,
the development of NoSQL databases that initially did not provide any transactional
guarantees, the development of databases with limited transactional support, such as
ElasTras [DEA09], G-Store [DAE10], Relational Cloud, and the return of transactions
with MegaStore, Spanner, and others. As we already described the main motivation that
led to the development of Spanner was the lack of transactional support by BigTable,
which forced developers to code around a lack of transactions [CD+13].

This programmability-consistency trade-off has been the main factor why NoSQL
databases in the recent versions, have added support for stronger consistency models.
This development is in line with what traditional databases such as Oracle and MySQL
have ever since supported, namely a range of different consistency (isolation) models
[BDF+13]. However, all have in common that the user is responsible for assigning the
appropriate consistency model to the requests (transactions).

8.6 Data Partitioning 191

Adjustable consistency is a new term coined to describe consistency approaches that
adjust both, the model and protocol implementing the model, at runtime automatically
without any user intervention based on application requirements and workload.

[YV02] defines application-independent metrics for quantifying inconsistencies (nu-
merical error, order error, and staleness). They present algorithms, included in their
middleware called TACT, to bound each of the three metrics. TACT effectively bal-
ances the latency and semantics trade-off, by providing better performance compared
to strong consistency, and stronger semantics compared to weak consistency.

In [KHAK09] the authors present an adjustable and cost-based consistency proto-
col, which is based on the assumption that not all data of an application need the same
consistency guarantees. The approach introduces a consistency rationing model, which
categorizes data in three different categories: A, B, and C. The A category contains data
which require 1SR. The C category data are handled with session consistency, whereas
B category data is handled with adaptive consistency. Adaptive consistency means that
the consistency level changes between 1SR and Session Consistency at runtime depend-
ing on the specific policy defined at data level (annotation of the schema).

In [Sch01] a first approach is described to cost-based concurrency control that con-
siders the cost of single operations for choosing the most suitable CCP. However, in
contrast to our C3 it does not consider any infrastructure-related costs for enforcing a
selected CCP.

The work in [SKJ16] defines a high-level language called Quelea that standardizes
the interface to eventually consistent data stores. Quelea aims at closing the chasm
between the high-level consistency requirements of applications, and low-level tunable
consistency levels. C3 fits very will in this context as it allows applications to steer
consistency based on costs, and reliefs the developers from the low-level details of the
different consistency levels.

8.6 Data Partitioning

Several approaches have addressed the optimal placement of partitions with the goal of
reducing expensive distributed transactions and evenly distributing the load [CZJM10,
JD11, CLW02, CI93, NR89].

An optimal partition schema should completely avoid distributed transaction and
should result in a shared-nothing scenario, in which each site of a DDBSs can com-
pletely execute transactions locally without any coordination with the other sites. Al-
though hypothetical, shared-nothing databases are subject to virtually unlimited scale
out [Sto86].

Schism [CZJM10] is a graph-based partition approach that was incorporated into Re-
lational Cloud [CJP+11]. Similar to Cumulus, Schism represents the application work-
load as graph and partitions the graph to determine the schema. However, in contrast
to Cumulus it does not consider workload analysis, which proved to be crucial not only
for the schema quality, but also for the generated overhead. In contras to Cumulus,
Schism is not able to adapt the schema (configuration) at runtime.

192 8 Related Work

Autostore is a fully dynamic partitioning approach that contains that is similar to
Cumulus in some regards as it also contains a workload prediction and is able to adapt
the partition schema at runtime. Cumulus goes, however, one step further by also in-
corporating an on-demand reconfiguration, which does not only decrease the overhead
for transactions, but it also provides higher availability compared to similar reconfigu-
ration approaches.

In [BCD+11] propose Cloud SQL Server, which uses Microsoft SQL Server as its core,
to provide scale-out guarantees to web applications. This combination of the ability to
scale-out with a familiar programming model provided by the relational SQL Server is
of considerable advantage to applications. The scale-out is achieved using data parti-
tioning on a shared-nothing architecture. However, Cloud SQL Server puts strict con-
straints on the application data and provides only restricted transaction semantics in
order to avoid distributed transactions.

ElasTras [DEA09] supports both a manual mode (based on a domain expert) and an
autonomous mode for hash-based partitioning. It supports only so-called minitransac-
tions which have a very rigid structure consisting of compare, read, and write opera-
tions which have to be executed in exactly that order [AMS+07]. The structure of mini-
transactions allows to piggyback their execution onto the first phase of 2PC. Compared
to traditional transactions, which require two rounds of messages just to commit, mini-
transactions can be executed within the 2PC protocols. Cumulus, in contrast, provides
full Atomicity, Consistency (ACID) support without limiting the size and structure of
transactions.

Accordion [SMA+14] provides an elastic partitioning protocol which is particularly
beneficial for the Cloud. It targets the optimal mapping of partitions to sites by consid-
ering the affinity of partitions, i.e., the frequency in which they are accessed together
by transactions, and the capacity. Moreover, Accordion scales-out dynamically if the
workload increases, and can scale-in to save costs if the workload decreases. The com-
bination of Cumulus with Accordion would be the first step towards an integrated data
management protocol as defined in Example 4.4, with the former defining the partition
schema, and the latter the optimal mapping of partitions to sites.

The online reconfiguration is one the main sources of overhead in adaptive proto-
cols, and there has been considerable research effort conducted in developing low over-
head approaches under the term of live migration. In [BCM+12] the authors describe
Slacker, that tackles the issue of minimizing the effect of the live migration to queries. It
does so by throttling the migration rate of data in order to minimize interference.

Squall [EAT+15] is another reconfiguration approach for partitioned databases that
has some commonalities with Cumulus. The main difference is that Cumulus’ reconfig-
uration, driven by user transactions, will lock only the objects to be migrated, whereas
Squall will lock entire partitions. The granularity of lock has a considerable impact to
the transaction concurrency and thus to the overall performance.

[EDAE11] presents Zephyr, an approach that combines on-demand pull and asyn-
chronous push for the live migration of data in shared nothing databases with sup-
port for scale-out and scale-in. It is a considerable improvement compared to other
approaches, that either incur a long interruption or must abort transactions during the

8.7 Data Replication 193

migration period. Zephyr will only abort transactions that update the index structure.
Cumulus, in contrast, will never abort transactions for the reason of the migration.

8.7 Data Replication

Replication of data serves two main purposes, namely to provide high availability by
redundancy, and to distribute the load of read-only transactions. However, as already
described, for update transactions data replication generates considerable overhead if
strong consistency is a demand. This overhead is defined in terms of synchronization
messages that need to be exchanged in order to keep the replicas up to date. As the
synchronization requires network communication, it becomes the determining factor to
performance in case of geo-replicated DBSs [BDF+13, SFS15].

Different replication protocols have been proposed in literature which mainly dif-
fer in the number of sites that are eagerly updated. While ROWA(A) protocols ea-
gerly update all or all available sites, quorum protocols update only a subset of sites
[JPAK03, KJP10, TT95]. This reduces the overhead for update transactions at increased
cost for read-only transactions. Quorum protocols differ in the size of quorums, and the
overhead generated for determining and maintaining the quorums.

In the MQ protocol, each site gets a nonnegative number of votes. The quorums are
chosen in such a way so that they exceed half of the available votes. The tree-based
quorum protocol defined in [AE90] organizes the sites in a tree structure. The read and
write quorums are chosen based on predefined rules that guarantee the intersection
property. However, the maintenance cost get rapidly increase in mobile environments
as the tree must continuously be adapted to changing environment. Grid quorums
organize the sites in a grid and exploit the properties of that structure to reduce the size
of the quorums. For example, the rectangle protocol defined in [CAA90], organizes s
sites in a grid of r rows and c columns, and defines that a read quorum consists of the
sites of one column, whereas a write quorum must access one column and at least one
site from the other quorums. A grid is optimal with regards to the size of quorums if
it is a square (r = c) [JPAK03]. There are further grid protocols, such the ones defined
in [KRS93] and [PW97], that either target the reduction of quorums size or the increase
of availability.

Most of the existing quorum protocols are static, i.e., the quorums are fixed a priori
and do not change. [JM87] defines a dynamic quorum protocol, in which the number
of sites necessary to consist a quorum is defined as a function of up-to-date sites. The
quorum is continuously adapted without any manual intervention. In [BGS86] policies
for dynamic assignment of votes to sites are defined with the goal of increasing system
availability and resilience to failures. Moreover, the votes are continuously adapted in
case of failures. This is especially important in case of network partitions, as it allows to
form majorities so that (a part of) the system remains available.

The number of sites that are accessed as part of read and write quorums is not the
only aspect to be considered in order to overcome the PACELC trade-offs. Their prop-
erties, such as their cost, load, capacity and the network distance between them must be
first-class citizens during the quorum construction [SFS15]. QuAD considers a subset

194 8 Related Work

of these properties add is able to continuously adapt the quorums if these properties
change. It does not only demonstrate the feasibility of adaptive quorum protocols, but
also the necessity and high relevance of clever strategies for the definition on quorums
based on site properties.

In [VS09], the authors propose a replication protocol for managing replicated data in
Grids. They distinguish between updateable sites for executing of update transactions,
and read-only sites for executing read-only transactions. While an update-transaction
will eagerly commit all updateable sites, the updates to read-only sites is done in two
modus, namely in the pull and push mode. In former, refresh transactions are initiated
by a read-only site to pull versions of data to satisfy freshness demands of read-only
transactions, whereas in the latter the updates are proactively propagated to read-only
sites by considering their load. QuAD is a multi-master approach that does not put any
restrictions on which site can execute which type of transactions.

The PDBREP protocol defined in [ATS+05] also distinguishes between read-only and
updatable sites similar to the approach in [VS09]. However, PDBREP supports differ-
ent data distribution models, from full replication to partial replication and partitioned
data.

Lazy propagation algorithms differ in set of parameters they consider in their opti-
mization model. [SS05] provides a survey of existing lazy propagation approaches, and
describes a set of parameters for their classifications, such as conflict handling, consis-
tency guarantees, propagation strategies, number of writers (single-master vs. multi-
master), synchronization technique (push vs. pull), etc.

In general, there is a trade-off between propagation speed, performance, and avail-
ability [WRBK02]. Approaches, such as the ones defined in [PS00, RBSS02, BFG+06,
GK85, PL91] tackle with these issue by allowing transactions to define explicitly their
freshness requirements and adapt the synchronization process in order to fulfill these
requirements (e.g., by reducing the propagation delay).

With regards to conflict detection and resolution, systems such as Bayou [TTP+95]
and Coda [KS91] introduce the concept of a semantic conflict, which exploits the
domain-knowledge of applications for an automatic detection and resolution of con-
flicts. It allows applications to specify the notion of conflicts (e.g., two users book the
same room for different meetings that overlap in time) together with a resolution policy
(e.g., moving one of the meetings to another free room).

The Mariposa system described [SAS+96] defines a replication protocol for process-
ing queries based on an economical model. Each query has budget assigned to it, which
depends on its importance. Sites can bid to execute a query or parts of it. Furthermore,
the placement of replicas is also done dynamically steered by the economical model in
which sites may sell or buy copies in order to maximize profit.

Similar to Mariposa, Skute, a self-organized replication protocol defined in [BPA10],
introduces an economic model, which trades the replication (storage and maintenance)
costs for the utility a replica provides to user queries. Skute is able to adapt dynamically
to query load by finding the optimal location of replicas with regards to their popularity
and client proximity.

9
Conclusions and Outlook

IN THIS CHAPTER, we conclude our contributions and point out to directions for future
work that can further enhance our contributions.

9.1 Summary

In this thesis, we have presented our vision towards our policy based and modular Po-
larDBMS, that is able to extract application requirements from SLAs and determine that
configuration that best satisfies the specified set of requirements. PolarDBMS is moti-
vated by the fundamental trade-offs faced by distributed data management, by the ever
increasing variety of application types, that have diverging requirements towards the
data management, and by the dynamic behavior of both applications and the infras-
tructures that host these applications.

Our bottom-up approach towards the realization of the PolarDBMS’ vision has re-
sulted in a set of novel cost and workload-driven protocols that can adapt their behavior
at runtime with the goal of always being in a best possible state with regards to the ap-
plication requirements.

C3 is based on the observation that applications typically do not care about the exact
consistency guarantees, as their main goal is to minimize costs, which can incur do to
constraint violations when using a weak consistency model and by excessive usage of
Cloud resources in case of strong consistency. C3 makes the monetary costs a first class
citizen of data consistency and by that reliefs application developers from the burden
of exactly determining which consistency to be used. Anyways, a decision taken at
development time would be based on data that rapidly becomes outdated, and will thus
not represent the optimal decision. Application providers have knowledge on what it
means in terms of costs to compensate a violated constraint. This inconsistency cost is
the only parameter required by C3 in order to determine the optimal consistency and
autonomously adapt consistency at runtime based on the workload.

Cumulus and QuAD are tailored to applications that demand 1SR consistency, and
both target the optimization of performance under different availability constraints.
While Cumulus is suited for applications whose main concern is performance, and that

196 9 Conclusions and Outlook

neglect availability aspects, QuAD optimizes performance given a fully replicated DBS.
QuAD is one of the first protocols to consider properties of the sites consisting the DBS
when defining the quorums. Contrary to usual approaches that mainly target the reduc-
tion of quorum size, QuAD’ primary goal is to avoid weak sites from read and commit
paths of transactions as they are the main source of performance degradation.

All protocols have their adaptive behavior in common, a property crucial for ap-
plications deployed in the Cloud. The availability of applications to a huge number
of users worldwide puts additional challenges to data management, and demands low
overhead adaptiveness. Adaptive protocols based on a short term gain lead to a system
that is continuously occupied with expensive reconfigurations, and that does not pro-
vide any utility to applications. Our protocols incorporate a cost model that trades the
cost of adapting the behavior to its gain.

The CCQ protocols have been subject to a series of thorough qualitative and quan-
titative evaluations in a real Cloud environment. The evaluations demonstrate the fea-
sibility of our concepts and that they lead to considerable gain in cost and performance
for applications. Moreover, we have shown that the adaptive behavior of our protocols
incurs only a minimal overhead for applications, and that it guarantees safety to appli-
cations even in presence of failures. Both properties make our CCQ protocols applicable
for practical cases.

9.2 Future Work

When it comes to future work, we propose following directions for each of our contri-
butions, as well as their integration into a cohesive whole.

9.2.1 C3

When it comes to possible extensions of C3, we suggest the incorporation of further
consistency models and protocols, that would enlarge the configuration space, and by
that provide more configuration options. The current version of the cost model neglects
failures. It is however well known that failures might have a considerable impact on
the 2PC cost. For example, in the case of site failures, the termination protocol might
be necessary in order to avoid blocking. It is well known that the termination protocol
generates considerable cost [BHG87]. Even without the termination protocol, if a site
does not respond, the coordinator might need to resend messages. Thus, the cost model
should be extended to consider also failures.

Transactions of different sizes differ in the cost they generate. For example, the AWS
S3 cost model (see Section 4.1.1) charges clients (transactions) for each action, but also
based on the objects read or written by the actions. The extension of the C3 model to
consider the transaction size would lead to the cost being captured at an even finer-
grained level, and by that, provide an even more realistic view on costs.

The handling of multi-class transaction workloads remains an open challenge. In C3

the classes are determined by their inconsistency costs, and the goal of C3 is to choose
for each class that consistency level that incurs the lowest cost. Other approaches, such

9.2 Future Work 197

the one described in [Fek05], assign isolation levels to transactions, which in C3 terms
corresponds to the definition of classes, so that a certain consistency level is guaranteed.
Depending on the workload, there might be more than one possible assignments of
isolation levels that achieve the same consistency level. In that case, the cost would
be another parameter that would influence the decision on which assignment should
be chosen. Although [Fek05] considers only a limited set of consistency models and
protocols, we argue that its combination with C3 would provide further optimization
possibilities from the cost and performance point of view. Moreover, the applications
would get understandable and well-known consistency guarantees.

9.2.2 Cumulus

The Cumulus workflow for choosing an appropriate partition schema is steered by a
number of parameters. Some of them, such as the frequency threshold that is during
the workload analysis, currently need to be manually defined by the user. It means
that the decision taken at deployment time for such a critical parameter may not be
inline with application behavior at runtime. Moreover, the threshold needs to be con-
tinuously adapted to the application workload. For example, its value can increase or
decrease based on the stability (volatility of the access patterns), the more stable the
patterns the higher the threshold and vice-versa. The Cumulus workload analysis may
in general benefit from a machine learning approach that determines optimal values for
the different parameters.

Data partitioning does not provide any availability guarantees whatsoever. If a parti-
tion fails, the data hosted by that partition become unavailable. It is certainly interesting
to enhance Cumulus with the ability to dynamically replicate certain partitions based on
availability requirements. The mapping of partitions to sites and the site placement are
one of the most challenging yet interesting aspects to be considered [SMA+14, BPA10].

9.2.3 QuAD

In its current version, QuAD considers the load of the sites and the network distance
between them measured in terms of RTT to determine the quorums. It assumes that
all sites have equal capacity, which is a realistic assumption for a wide range of OLTP
applications. However, in context of PolarDBMS, the properties of the underlying in-
frastructure may also be determined by the application requirements, which may, for
example, lead to certain sites being more resilient to failures and more powerful in terms
of processing capacity. These aspects should also be considered during the quorum con-
struction.

Similar to C3 and Cumulus, QuAD also currently requires from the application the
definition of some parameters, κ being the most important one. It is a critical parameter,
as it has a considerable impact on the performance, availability and cost. The choice of
the optimal κ is not trivial as it is highly dependent on the site properties, application
workload and application requirements towards availability. Therefore, we plan to in-
corporate a machine learning approach to determine the optimal κ by considering all
aforementioned aspects.

198 9 Conclusions and Outlook

9.2.4 Integrated Data Management Protocols

The CCQ protocols are just an initial step towards the realization of the PolarDBMS
vision. In context of PolarDBMS there are different aspects of interest, such as the def-
inition of the policy language, the transformation of high-level SLAs to the policy lan-
guage, and the definition of the most suitable configuration by considering all specified
requirements in a multi-tenant environment. We have followed a bottom-up approach
by first developing a set of protocols that currently are considered in isolation. As we
discussed in Examples 4.4 and 4.6, the next step would be the definition of a comprehen-
sive model for the I-CCQ protocol, that would integrate data consistency, partitioning,
and replication protocols by jointly considering the different application requirements.

The I-CCQ protocol may use Cumulus to partition the data in order to satisfy the
performance requirements of the application. Later, it might replicate a subset of data
either due to an increased performance demand or stronger availability requirements.
As soon as data objects are replicated, the I-CCQ protocol faces additional challenges
related to the choice of the optimal consistency level and protocol, if the choice is not
predefined by the application. In this case, C3 can take over the task of choosing that
consistency level and/or protocol that generates the lowest overhead in terms of mon-
etary cost and performance.

In the approach described above, I-CCQ is a meta-protocol, which uses the capa-
bilities of the CCQ protocols to choose the most optimal configuration given certain
predefined requirements. However, applications may hand over full control to I-CCQ
by specifying penalty costs for the violation of the different requirements, such as the
availability, latency and consistency. In that case, I-CCQ will choose that configuration,
which leads to the lowest overall penalty costs, by exploring the configuration space
that is defined by different availability degrees and consistency models, and implemen-
tation thereof.

The CCQ protocols consider only a subset of data management properties. How-
ever, data management has also other very important properties, like for example data
security, data models, data integration, just to mention a few, that can be steered based
on cost and application workload. The analysis and the integration of these additional
properties increases the problem space and introduces additional dependencies that
need to be considered.

9.2.5 Distributed Meta-data Management and Autonomous Decision
Making

The CCQ protocols would benefit from a distributed meta-data management in terms of
resilience to failures, as the availability of meta-data is crucial for choosing the optimal
configuration. High availability comes at a cost and generates considerable communi-
cation overhead in case the sites need to exchange meta-data. This is the case if all sites
must take a consistent decision. Incorporating models that allow each site to decisions
based on partial data would reduce this overhead, as in that case only a minimal or
no communication between sites will occur. However, in that case, different sites may
reflect different decisions, which might not be suitable for every application scenario.

9.2 Future Work 199

9.2.6 The Cost of the Optimization

The CCQ protocols are based on the idea of incorporating an adaptive optimization
model for reducing the overhead for transactions with the goal of satisfying applica-
tion requirements. However, there is a cost for the optimization, which incurs due to
the additional (meta-) data that needs to be collected, managed and processed. The
generated overhead is also determined by the desired accuracy of the information (e.g.,
workload) that is derived from that data, and the configuration space. There are differ-
ent approaches to tackle this issue ranging from the development of sophisticated yet
low overhead machine learning algorithms, low-level programming optimizations, to
giving the control to the client, so that it can trade between the cost and the degree of
optimization.

A
C3 On-the-Fly and On-Demand
Reconfiguration

As described in Section 6.3.1, currently C3 implements a stop-and-copy approach for
the site reconciliation during the reconfiguration from EC to 1SR. The stop-and-copy
approach has the nice property that once the reconfiguration is finished no further over-
head incurs for the user transactions, which is in sharp contrast to the on-the-fly and on-
demand approach. However, depending on the number of transactions executed with
EC and the number of objects modified by EC transaction, the overhead generated by
the stop-and-copy reconfiguration may have a considerable impact on the system avail-
ability. In what follows we will describe a possible implementation of an on-the-fly and
on-demand approach.

The consistency information that is attached to the modified objects as part of the
stop-and-copy approach can be reused to implement the on-the-fly and on-demand rec-
onciliation approach. During the reconfiguration, the ConsistencyManager needs to col-
lect the so called change-set, which contains all modified objects. The change-set is only
relevant during a switch from EC to 1SR, and thus contains only objects modified by EC
transactions. An entry in the change-set consists of the object id and the timestamp of its
last update (Figure A.1). The ConsistencyManager will forward the collected change-sets
to all TransactionManagers, which will merge them and add the location that contains
the most recent value for each of the modified objects. All objects that are already up-
to-date at the local site are deleted from the merged change-set. Each transaction that
is executed by a specific site must check if any of its accessed objects are included in
the change-set. If so, distributed refresh transactions are initiated that will retrieve the
most recent values for the objects accessed by the user transactions from the remote
sites. The refresh transactions are coordinated by the 2PC with the local site playing
the role of the coordinator and the remote sites that of the agents. If any refresh transac-
tion fails, the user transaction must be aborted, as in that case 1SR consistency cannot
guaranteed. Each successfully refreshed object is removed from the change-set. If an
update-transaction commits it will eagerly commit all sites, which leads to an implicit
refresh of the remote sites. This means that at the commit of an update-transaction each
site will remove any modified object from its change-set. Outdated objects may remain

202 A C3 On-the-Fly and On-Demand Reconfiguration

 1459543050

 1459802250
Change-set of

Change-set of

Merged changed-set at

 1459715850

 1456864650

 Location

 1459715850

 1459802250

Figure A.1: Change-set of s1 and s2 consisting of objects modified by EC transactions
and the resulting merged change-set at s1 that includes the site containing the most
recent value for each object. The entry for o3 is deleted from the merged change-set as
s1 is up-to-date with regards to o3.

in the change-set during subsequent reconfiguration events, which is a consequence of
the on-the-fly and on-demand refresh of objects. This means that the existing merged
change-set at each site needs to be merged with new change-sets that will be received
from the ConsistencyManager in case of a switch from EC to 1SR. The mechanism is simi-
lar to what we described above, expect that now also the existing (if not empty) merged
change-set needs to be considered, which will result in a new merged change-set that
will replace the exiting one.

B
Test Definition File

Listing B.1: Example of a QuAD Test Configuration File
1 <?xml version=" 1 . 0 " encoding="UTF−8" standalone=" yes " ?>
2 <ns 2 :T e s t Co n f i g ur a t i o n xmlns:ns2=" h t t p : //ClouTing . dbis . cs . unibas . ch/"

testName=" quad4−2k−assigned−l a t e n c y ">
3 <environment defaultAwsAmi=" ami−07d2f f70 " defaultAwsInstanceType=" c1

. medium" defaultTomcatVersion=" 7 . 0 . 3 2 " numberOfReplicas=" 4 ">
4 <node name=" Repl ica 1 +5 " i s A c c e s s R e p l i c a =" t rue ">
5 <module />
6 <eazy responseLatency=" [5 , 5] " />
7 </node>
8 <node name=" Repl ica 2 +10 ">
9 <module />

10 <eazy responseLatency=" [9 , 1 1] " />
11 </node>
12 <node name=" Repl ica 3 +250 ">
13 <module />
14 <eazy responseLatency=" [2 2 5 , 2 7 5] " />
15 </node>
16 <node name=" Repl ica 4 +500 ">
17 <module />
18 <eazy responseLatency=" [4 5 0 , 5 5 0] " />
19 </node>
20

21 <node name="Quad Manager ">
22 <module />
23 <eazymanager s t r a t e g y ="QUAD_ASSIGNED">
24 <quad numberOfKSites=" 2 " scoreType="LATENCY" />
25 </eazymanager>
26 </node>
27 <node name=" Metadata Manager ">
28 <module />
29 <metadata />
30 </node>
31 <node name=" Lock Manager ">
32 <module />
33 <lock />
34 </node>

204 B Test Definition File

35 <node name=" Timestamp Manager ">
36 <module />
37 <timestamp />
38 </node>
39

40 <node name=" C l i e n t " i s C l i e n t =" t rue " />
41 </environment>
42

43 < c l i e n t defaultNumberOfTestRuns=" 1 " waitXSecondsBeforeExecuting=" 30 "
>

44 <tpcc id="BM_1−10" workloadType=" rw1000 " workerRangeMin=" 10 "
workerRangeMax=" 150 " singleRunDuration=" 30 "
workerIncrementStepSize=" 10 " a c c e s s R e p l i c a =" roundrobin "
resul tFolderNamePostf ix=" " />

45 <tpcc id="BM_3−82" workloadType=" rw8020 " workerRangeMin=" 10 "
workerRangeMax=" 150 " singleRunDuration=" 30 "
workerIncrementStepSize=" 10 " a c c e s s R e p l i c a =" roundrobin "
resul tFolderNamePostf ix=" " />

46 <tpcc id="BM_6−55" workloadType=" rw5050 " workerRangeMin=" 10 "
workerRangeMax=" 150 " singleRunDuration=" 30 "
workerIncrementStepSize=" 10 " a c c e s s R e p l i c a =" roundrobin "
resul tFolderNamePostf ix=" " />

47 <tpcc id="BM_11−01" workloadType=" rw0100 " workerRangeMin=" 10 "
workerRangeMax=" 150 " singleRunDuration=" 30 "
workerIncrementStepSize=" 10 " a c c e s s R e p l i c a =" roundrobin "
resul tFolderNamePostf ix=" " />

48 </ c l i e n t >
49 </ns2 :Tes tConf igura t ion>

Acronyms

Acronym Description
1SR One-Copy Serializability
2PC Two-Phase Commit
2PL Two-Phase Locking
3PC Three-Phase Commit

AaaS Archiving-as-a-Service
ACID Atomicity, Consistency
AMI Amazon Machine Image
API Application Programming Interface
AR Autoregressive Model
ARIMA Auto-Regressive Integrated Moving Average
ARMA Autoregressive Moving Average
AWS Amazon Web Services
AZ Availability Zone

B2PL Basic Two-Phase Locking

C2PL Conservative Two-Phase Locking
CC Concurrency Control
CCM Concurrency Control Model
CCP Concurrency Control Protocol
CCQ C3, Cumulus, QuAD
CDF Cumulative Distribution Function
COCSR Commit Order-Preserving Conflict Serializable
CPU Central Processing Unit
CRUD Create, Read, Update and Delete
CSR Conflict Serializable
CSV Comma Separated Values

DaaS Data-as-a-Service
DB Database
DBMS Database Management System
DBS Database System
DDBS Ditributed Database System

EC Eventual Consistency
EC2 Elastic Compute Cloud
EMA Exponential Moving Average

206 Acronyms

Acronym Description
FIFO First In, First Out
FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service
IP Internet Protocol

LWTQ Log-Write Tree Quorum

MA Moving Average
MAD Mean Absolute Deviation
MoVDB Monoversion Database
MQ Majority Quorum
MuVDB Multiversion Database

NoSQL Not only SQL

OCSR Order-Preserving Conflict Serializable
OLAP Online Analytical Processing
OLTP Online Transaction Processing
OWD One-Way Delay

P2P Peer-to-Peer
PaaS Platform-as-a-Service

RAM Random Access Memory
RC Replica Control
RDBMS Relational Database Management System
REST Representational State Transfer
ROWA Read-One-Write-All
ROWAA Read-One-Write-All-Available
RP Replica Protocol
RTT Round-Trip Time

S2PL Strict Two-Phase Locking
SaaS Software-as-a-Service
SI Snapshot Isolation
SLA Service Level Agreement
SLG Service Level Guarantee
SLO Service Level Objective
SOA Service Oriented Architectures
SOAP Simple Object Access Protocol
SQL Structured Query Language

Acronyms 207

Acronym Description
SS2PL Strickt Strong Two-Phase Locking

ToC Terms and Conditions
TPCC Transaction Processing Performance Council
TQ Tree Quorum
TWR Thomas’ Write Rule

XML Extensible Markup Language

Bibliography

[AA13] Ratnadip Adhikari and R. K. Agrawal. An introductory study on time
series modeling and forecasting. CoRR, abs/1302.6613, 2013.

[Aba09] Daniel J. Abadi. Data management in the cloud: Limitations and oppor-
tunities. IEEE Data Eng. Bull., 32(1):3–12, 2009.

[Aba12] Daniel Abadi. Consistency tradeoffs in modern distributed database sys-
tem design: CAP is only part of the story. IEEE Computer, 45(2):37–42,
2012.

[AC06] Mauro Andreolini and Sara Casolari. Load prediction models in web-
based systems. In Proceedings of the 1st International Conference on Perfor-
mance Evaluation Methodolgies and Tools, VALUETOOLS 2006, Pisa, Italy, Oc-
tober 11-13, 2006, page 27, 2006.

[ACHM11] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Mar-
czak. Consistency analysis in bloom: a CALM and collected approach.
In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, pages 249–260,
2011.

[ADAB11] Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu.
Predicting completion times of batch query workloads using interaction-
aware models and simulation. In EDBT 2011, 14th International Conference
on Extending Database Technology, Uppsala, Sweden, March 21-24, 2011, Pro-
ceedings, pages 449–460, 2011.

[ADE11] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud
computing: current state and future opportunities. In EDBT 2011, 14th
International Conference on Extending Database Technology, Uppsala, Sweden,
March 21-24, 2011, Proceedings, pages 530–533, 2011.

[ADE12] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Data Management
in the Cloud: Challenges and Opportunities. Synthesis Lectures on Data Man-
agement. Morgan & Claypool Publishers, 2012.

[Ady99] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions. PhD thesis, 1999. AAI0800775.

[AE90] Divyakant Agrawal and Amr El Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data. In 16th International Con-
ference on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland,
Australia, Proceedings., pages 243–254, 1990.

[AE92] Divyakant Agrawal and Amr El Abbadi. The generalized tree quorum
protocol: An efficient approach for managing replicated data. ACM Trans.
Database Syst., 17(4):689–717, 1992.

210 BIBLIOGRAPHY

[AEM+13] Divyakant Agrawal, Amr El Abbadi, Hatem A. Mahmoud, Faisal Nawab,
and Kenneth Salem. Managing geo-replicated data in multi-datacenters.
In Databases in Networked Information Systems - 8th International Workshop,
DNIS 2013, Aizu-Wakamatsu, Japan, March 25-27, 2013. Proceedings, pages
23–43. 2013.

[ALO00] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized isolation
level definitions. In ICDE, pages 67–78, 2000.

[ALS10] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB - The Definitive
Guide: Time to Relax. O’Reilly, 2010.

[Ama] Amazon. AWS EC2 User Guide. http://tinyurl.com/zh8za5y. On-
line; accessed on March, 3, 2016.

[AMS+07] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Alistair C.
Veitch, and Christos T. Karamanolis. Sinfonia: a new paradigm for build-
ing scalable distributed systems. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington,
USA, October 14-17, 2007, pages 159–174, 2007.

[ANB+95] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and
Phillip W. Hutto. Causal memory: Definitions, implementation, and pro-
gramming. Distributed Computing, 9(1):37–49, 1995.

[app] App Engine. https://cloud.google.com/appengine/. Online; ac-
cessed on February, 2, 2016.

[Asl11] Matthew Aslett. How will the database incumbents respond to nosql and
newsql. San Francisco, The, 451:1–5, 2011.

[ATS+05] Fuat Akal, Can Türker, Hans-Jörg Schek, Yuri Breitbart, Torsten Grabs,
and Lourens Veen. Fine-grained replication and scheduling with freshness
and correctness guarantees. In Proceedings of the 31st International Confer-
ence on Very Large Data Bases, Trondheim, Norway, August 30 - September 2,
2005, pages 565–576, 2005.

[awsa] Amazon EC2. http://aws.amazon.com/de/ec2/. Online; accessed
06-January-2015.

[awsb] Amazon Elastic Beanstalk. http://aws.amazon.com/de/
elasticbeanstalk/. Online; accessed on February, 2, 2016.

[azu] Microsoft Azure Virtual Machines. http://azure.microsoft.com/
en-us/services/virtual-machines/. Online; accessed on Febru-
ary, 2, 2016.

[BB+11] Jason Baker, Chris Bond, et al. Megastore: Providing scalable, highly avail-
able storage for interactive services. In CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011,
Online Proceedings, pages 223–234, 2011.

[BBG+95] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels.

BIBLIOGRAPHY 211

In Proceedings of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, San Jose, California, May 22-25, 1995., pages 1–10, 1995.

[BCD+11] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan,
Gopal Kakivaya, David B. Lomet, Ramesh Manne, Lev Novik, and Tomas
Talius. Adapting microsoft SQL server for cloud computing. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April 11-
16, 2011, Hannover, Germany, pages 1255–1263, 2011.

[BCM+12] Sean Kenneth Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüs, and
Prashant J. Shenoy. "cut me some slack": latency-aware live migration for
databases. In 15th International Conference on Extending Database Technology,
EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceedings, pages 432–443,
2012.

[BD] Phil Bernstein and Sudipto Das. Rethinking Consistency: A survey of
synchronization techniques for replicated distributed databases. http:
//tinyurl.com/jrlo756. Online; accessed on February, 29, 2016.

[BDF+13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Highly available transactions: Virtues and limita-
tions. PVLDB, 7(3):181–192, 2013.

[Ber99] Philip A. Bernstein. Review - A majority consensus approach to concur-
rency control for multiple copy databases. ACM SIGMOD Digital Review,
1, 1999.

[BFF+14] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Coordination avoidance in database systems.
PVLDB, 8(3):185–196, 2014.

[BFG+06] Philip A. Bernstein, Alan Fekete, Hongfei Guo, Raghu Ramakrishnan, and
Pradeep Tamma. Relaxed-currency serializability for middle-tier caching
and replication. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, pages 599–
610, 2006.

[BFG+12] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Sto-
ica. The potential dangers of causal consistency and an explicit solution.
In ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, Oc-
tober 14-17, 2012, page 22, 2012.

[BFG+13] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Sto-
ica. Hat, not CAP: towards highly available transactions. In 14th Workshop
on Hot Topics in Operating Systems, HotOS XIV, Santa Ana Pueblo, New Mex-
ico, USA, May 13-15, 2013, 2013.

[BFS00] Peter Buneman, Mary F. Fernandez, and Dan Suciu. Unql: A query lan-
guage and algebra for semistructured data based on structural recursion.
VLDB J., 9(1):76–110, 2000.

212 BIBLIOGRAPHY

[BG84] Philip A. Bernstein and Nathan Goodman. An algorithm for concurrency
control and recovery in replicated distributed databases. ACM Trans.
Database Syst., 9(4):596–615, 1984.

[BG13] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, ex-
tensions, and beyond. Commun. ACM, 56(5):55–63, 2013.

[BGHS13] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on
causal consistency. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 761–772, 2013.

[BGS86] Daniel Barbará, Hector Garcia-Molina, and Annemarie Spauster. Policies
for dynamic vote reassignment. In Proceedings of the 6th International Con-
ference on Distributed Computing Systems, Cambridge, Massachusetts, USA,
May 19-13, 1986, pages 37–44, 1986.

[BHEF11a] Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, and Alan Fekete. One-
copy serializability with snapshot isolation under the hood. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 625–636, 2011.

[BHEF11b] Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, and Alan Fekete. One-
copy serializability with snapshot isolation under the hood. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 625–636, 2011.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[Bir12] Kenneth . Birman. Guide to Reliable Distributed Systems - Building High-
Assurance Applications and Cloud-Hosted Services. Texts in Computer Sci-
ence. Springer, 2012.

[BKP93] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network
centers. J. Algorithms, 15(3):385–415, 1993.

[BLFS12] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv.
Eventually consistent transactions. In Programming Languages and Systems
- 21st European Symposium on Programming, ESOP 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, pages 67–86, 2012.

[BN96] Philip A. Bernstein and Eric Newcomer. Principles of Transaction Processing
for Systems Professionals. Morgan Kaufmann, 1996.

[BO91] Mary Baker and John Ousterhout. Availability in the sprite distributed file
system. SIGOPS Oper. Syst. Rev., 25(2):95–98, April 1991.

[BPA10] Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. A self-
organized, fault-tolerant and scalable replication scheme for cloud stor-
age. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11, 2010, pages 205–216, 2010.

BIBLIOGRAPHY 213

[BS15a] Filip-Martin Brinkmann and Heiko Schuldt. Towards archiving-as-a-
service: A distributed index for the cost-effective access to replicated
multi-version data. In Proceedings of the 19th International Database Engi-
neering & Applications Symposium, Yokohama, Japan, July 13-15, 2015, pages
81–89, 2015.

[BS15b] Filip-Martin Brinkmann and Heiko Schuldt. Towards archiving-as-a-
service: A distributed index for the cost-effective access to replicated
multi-version data. In Proceedings of the 19th International Database Engi-
neering & Applications Symposium, Yokohama, Japan, July 13-15, 2015, pages
81–89, 2015.

[BSW79] Philip A. Bernstein, David W. Shipman, and Wing S. Wong. Formal as-
pects of serializability in database concurrency control. IEEE Trans. Soft-
ware Eng., 5(3):203–216, 1979.

[BSW04] Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. From ses-
sion causality to causal consistency. In 12th Euromicro Workshop on Parallel,
Distributed and Network-Based Processing (PDP 2004), 11-13 February 2004,
A Coruna, Spain, pages 152–158, 2004.

[CAA90] Shun Yan Cheung, Mostafa H. Ammar, and Mustaque Ahamad. The grid
protocol: A high performance scheme for maintaining replicated data. In
Proceedings of the Sixth International Conference on Data Engineering, February
5-9, 1990, Los Angeles, California, USA, pages 438–445, 1990.

[Car13] Josiah L Carlson. Redis in Action. Manning Publications Co., 2013.

[Cas] Apache Cassandra. http://incubator.apache.org/cassandra/.
Online; accessed on February, 2, 2016.

[CD10] Kristina Chodorow and Michael Dirolf. MongoDB - The Definitive Guide:
Powerful and Scalable Data Storage. O’Reilly, 2010.

[CD+13] James C. Corbett, Jeffrey Dean, et al. Spanner: Google’s globally dis-
tributed database. ACM Trans. Comput. Syst., 31(3):8, 2013.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and
Robert Gruber. Bigtable: A distributed storage system for structured data
(awarded best paper!). In 7th Symposium on Operating Systems Design and
Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, pages 205–218,
2006.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction
to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011.

[CI93] Wesley W. Chu and Ion Tim Ieong. A transaction-based approach to verti-
cal partitioning for relational database systems. IEEE Trans. Software Eng.,
19(8):804–812, 1993.

[CJP+11] Carlo Curino, Evan P. C. Jones, Raluca A. Popa, Nirmesh Malviya, Eugene
Wu, Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich. Rela-
tional cloud: a database service for the cloud. In CIDR 2011, Fifth Biennial

214 BIBLIOGRAPHY

Conference on Innovative Data Systems Research, Asilomar, CA, USA, January
9-12, 2011, Online Proceedings, pages 235–240, 2011.

[CLW02] Chun Hung Cheng, Wing-Kin Lee, and Kam-Fai Wong. A genetic
algorithm-based clustering approach for database partitioning. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 32(3):215–230, 2002.

[Coo] John Cook. Random Inequalities. http://tinyurl.com/h78x2ns.
Online; accessed on February, 2, 2016.

[Cor] Corporation. Data Concurrency and Consistency (10g Relese 1).

[Cou] Couchbase. Querying with N1QL. http://www.couchbase.com/
n1ql. Online; accessed on February, 29, 2016.

[CRF08] Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable iso-
lation for snapshot databases. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 729–738, 2008.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. PNUTS: yahoo!’s hosted data serving platform. vol-
ume 1, pages 1277–1288, 2008.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indi-
anapolis, Indiana, USA, June 10-11, 2010, pages 143–154, 2010.

[CZJM10] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism:
a workload-driven approach to database replication and partitioning.
PVLDB, 3(1):48–57, 2010.

[DAE10] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, pages 163–174, 2010.

[DÇPU11] Jennie Duggan, Ugur Çetintemel, Olga Papaemmanouil, and Eli Upfal.
Performance prediction for concurrent database workloads. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 337–348, 2011.

[Dea] Jeff Dean. Designs, Lessons and Advice from Build-
ing Large Distributed Systems. LADIS 2009 keynote:
http://www.cs.cornell.edu/projects/ladis2009/talks/deankeynote-
ladis2009.pdf. Online; accessed on February, 2, 2016.

[DEA09] Sudipto Das, Amr El Abbadi, and Divyakant Agrawal. Elastras: An elastic
transactional data store in the cloud. In Workshop on Hot Topics in Cloud
Computing, HotCloud’09, San Diego, CA, USA, June 15, 2009, 2009.

BIBLIOGRAPHY 215

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,
October 14-17, 2007, pages 205–220, 2007.

[DJ11] Jens Dittrich and Alekh Jindal. Towards a one size fits all database archi-
tecture. In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, pages
195–198, 2011.

[DK75] Frank DeRemer and Hans Kron. Programming-in-the large versus
programming-in-the-small. In Proceedings of the International Conference on
Reliable Software, pages 114–121, New York, NY, USA, 1975. ACM.

[DK11] Bolin Ding and Arnd Christian König. Fast set intersection in memory.
PVLDB, 4(4):255–266, 2011.

[d’O77] Cecilia R d’Oliveira. An analysis of computer decentralization. Technical
report, Technical Memo TM-90, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Mass. 7, 1977.

[DS06] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with
snapshot isolation. In Proceedings of the 32nd International Conference on
Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 715–726,
2006.

[Eat] Kit Eato. How one second could cost Amazon $1.6 billion in sales. http:
//tinyurl.com/cxcfle3. Online; accessed on February, 2, 2016.

[EAT+15] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant
Agrawal, and Amr El Abbadi. Squall: Fine-grained live reconfiguration
for partitioned main memory databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victo-
ria, Australia, May 31 - June 4, 2015, pages 299–313, 2015.

[EDAE11] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
Zephyr: live migration in shared nothing databases for elastic cloud plat-
forms. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 301–
312, 2011.

[EZP05] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database repli-
cation using generalized snapshot isolation. In 24th IEEE Symposium on
Reliable Distributed Systems (SRDS 2005),26-28 October 2005, Orlando, FL,
USA, pages 73–84, 2005.

[FBS14] Ilir Fetai, Filip-M. Brinkmann, and Heiko Schuldt. Polardbms: Towards a
cost-effective and policy-based data management in the cloud. In Work-
shops Proceedings of the 30th International Conference on Data Engineering

216 BIBLIOGRAPHY

Workshops, ICDE 2014, Chicago, IL, USA, March 31 - April 4, 2014, pages
170–177, 2014.

[Fek99] Alain Fekete. Serializability and snapshot isolation. In Proceedings of Aus-
tralian Database Conference. Australian Computer Society, 1999.

[Fek05] Alan Fekete. Allocating isolation levels to transactions. In Proceedings of
the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 13-15, 2005, Baltimore, Maryland, USA, pages 206–
215, 2005.

[FJB09] Shel Finkelstein, Dean Jacobs, and Rainer Brendle. Principles for inconsis-
tency. In CIDR 2009, Fourth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings, 2009.

[FK09] Daniela Florescu and Donald Kossmann. Rethinking cost and perfor-
mance of database systems. SIGMOD Record, 38(1):43–48, 2009.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil,
and Dennis Shasha. Making snapshot isolation serializable. ACM Trans.
Database Syst., 30(2):492–528, 2005.

[FMS15] Ilir Fetai, Damian Murezzan, and Heiko Schuldt. Workload-driven adap-
tive data partitioning and distribution - the cumulus approach. In 2015
IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA,
USA, October 29 - November 1, 2015, pages 1688–1697, 2015.

[fou] Foursquare. https://de.foursquare.com/. Online; accessed on
February, 2, 2016.

[FR10] Alan David Fekete and Krithi Ramamritham. Consistency models for
replicated data. In Replication: Theory and Practice, pages 1–17. 2010.

[Fre95] Clark D. French. "one size fits all" database architectures do not work for
DDS. In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, May 22-25, 1995., pages 449–450,
1995.

[FS12] Ilir Fetai and Heiko Schuldt. Cost-based data consistency in a data-as-a-
service cloud environment. In 2012 IEEE Fifth International Conference on
Cloud Computing, Honolulu, HI, USA, June 24-29, 2012, pages 526–533, 2012.

[FS13] Ilir Fetai and Heiko Schuldt. SO-1SR: towards a self-optimizing one-copy
serializability protocol for data management in the cloud. In Proceedings
of the fifth international workshop on Cloud data management, CloudDB 2013,
San Francisco, California, USA, October 28, 2013, pages 11–18, 2013.

[GBR14] Felix Gessert, Florian Bucklers, and Norbert Ritter. Orestes: A scalable
database-as-a-service architecture for low latency. In Workshops Proceed-
ings of the 30th International Conference on Data Engineering Workshops, ICDE
2014, Chicago, IL, USA, March 31 - April 4, 2014, pages 215–222, 2014.

[GD01] Andreas Geppert and Klaus R. Dittrich. Component database systems:
Introduction, foundations, and overview. In Compontent Database Systems,
pages 1–28. 2001.

BIBLIOGRAPHY 217

[GFW+14] Felix Gessert, Steffen Friedrich, Wolfram Wingerath, Michael
Schaarschmidt, and Norbert Ritter. Towards a scalable and unified
REST API for cloud data stores. In 44. Jahrestagung der Gesellschaft für
Informatik, Informatik 2014, Big Data - Komplexität meistern, 22.-26. September
2014 in Stuttgart, Deutschland, pages 723–734, 2014.

[GG09] Robert L. Grossman and Yunhong Gu. On the varieties of clouds for data
intensive computing. IEEE Data Eng. Bull., 32(1):44–50, 2009.

[GHOS96] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996., pages 173–182, 1996.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proceedings of
the Seventh Symposium on Operating System Principles, SOSP 1979, Asilo-
mar Conference Grounds, Pacific Grove, California, USA, 10-12, December 1979,
pages 150–162, 1979.

[GK85] Dieter Gawlick and David Kinkade. Varieties of concurrency control in
IMS/VS fast path. IEEE Database Eng. Bull., 8(2):3–10, 1985.

[GKD+09] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener,
Armando Fox, Michael I. Jordan, and David A. Patterson. Predicting mul-
tiple metrics for queries: Better decisions enabled by machine learning.
In Proceedings of the 25th International Conference on Data Engineering, ICDE
2009, March 29 2009 - April 2 2009, Shanghai, China, pages 592–603, 2009.

[GL02] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, 2006.

[Gnu] Gnutella. Gnutella. http://www.gnutellaforums.com/. Online; ac-
cessed on February, 12, 2016.

[Goo] Google. Google Apps. https://www.google.com/work/apps/
business/. Online; accessed on February, 2, 2016.

[Gra81] Jim Gray. The transaction concept: Virtues and limitations (invited paper).
In Very Large Data Bases, 7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings, pages 144–154, 1981.

[GSS+13] Jana Giceva, Tudor-Ioan Salomie, Adrian Schüpbach, Gustavo Alonso,
and Timothy Roscoe. COD: database / operating system co-design. In
CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online Proceedings, 2013.

[Hal10] Code Hale. You can’t sacrifice partition tolerance. http://tinyurl.
com/j9fhfnj, 2010. Online; accessed on February, 2, 2016.

218 BIBLIOGRAPHY

[Ham10] James Hamilton. I love eventual consistency but... http://bit.ly/
hamilton-eventual, 2010. Online; accessed on February, 2, 2016.

[HGR09] Marc Holze, Claas Gaidies, and Norbert Ritter. Consistent on-line classi-
fication of dbs workload events. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, CIKM 2009, Hong Kong, China,
November 2-6, 2009, pages 1641–1644, 2009.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory, 2nd
edition. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2010.

[Hof] Todd Hoff. Myth: Eric Brewer On Why Banks Are BASE Not ACID - Avail-
ability Is Revenue. http://tinyurl.com/bpgrh3s. Online; accessed
on February, 2, 2016.

[HP94] John S. Heidemann and Gerald J. Popek. File-system development with
stackable layers. ACM Trans. Comput. Syst., 12(1):58–89, February 1994.

[HS98] JW Harris and H Stocker. Maximum likelihood method. Handbook of Math-
ematics and Computational Science, 1:824, 1998.

[IH12] Fetai I. and Schuldt H. Cost-based adaptive concurrency control in the
cloud. Technical report, University of Basel, February 2012.

[ins] Instagram. https://instagram.com/. Online; accessed on February,
2, 2016.

[JD11] Alekh Jindal and Jens Dittrich. Relax and let the database do the parti-
tioning online. In Enabling Real-Time Business Intelligence - 5th International
Workshop, BIRTE 2011, Held at the 37th International Conference on Very Large
Databases, VLDB 2011, Seattle, WA, USA, September 2, 2011, Revised Selected
Papers, pages 65–80, 2011.

[JG77] James B. Rothnie Jr. and Nathan Goodman. A survey of research and
development in distributed database management. In Proceedings of the
Third International Conference on Very Large Data Bases, October 6-8, 1977,
Tokyo, Japan., pages 48–62, 1977.

[JM87] Sushil Jajodia and David Mutchler. Dynamic voting. In Proceedings of the
Association for Computing Machinery Special Interest Group on Management
of Data 1987 Annual Conference, San Francisco, California, May 27-29, 1987,
pages 227–238, 1987.

[JPAK03] Ricardo Jiménez-Peris, Marta Patiño-Martínez, Gustavo Alonso, and Bet-
tina Kemme. Are quorums an alternative for data replication? ACM Trans.
Database Syst., 28(3):257–294, 2003.

[KA00a] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent:
Postgres-r, A new way to implement database replication. In VLDB 2000,
Proceedings of 26th International Conference on Very Large Data Bases, Septem-
ber 10-14, 2000, Cairo, Egypt, pages 134–143, 2000.

BIBLIOGRAPHY 219

[KA00b] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent:
Postgres-r, A new way to implement database replication. In VLDB 2000,
Proceedings of 26th International Conference on Very Large Data Bases, Septem-
ber 10-14, 2000, Cairo, Egypt, pages 134–143, 2000.

[Kaz] Kazaa. Kazaa. http://www.kazaa.com/. Online; accessed on Febru-
ary, 12, 2016.

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.
Consistency rationing in the cloud: Pay only when it matters. PVLDB,
2(1):253–264, 2009.

[KJP10] Bettina Kemme, Ricardo Jiménez-Peris, and Marta Patiño-Martínez.
Database Replication. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2010.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Scientific Computing,
20(1):359–392, 1998.

[KK10] Donald Kossmann and Tim Kraska. Data management in the cloud:
Promises, state-of-the-art, and open questions. Datenbank-Spektrum,
10(3):121–129, 2010.

[KKL+10] Donald Kossmann, Tim Kraska, Simon Loesing, Stephan Merkli, Raman
Mittal, and Flavio Pfaffhauser. Cloudy: A modular cloud storage system.
PVLDB, 3(2):1533–1536, 2010.

[KL02] Alexander Keller and Heiko Ludwig. Defining and monitoring service-
level agreements for dynamic e-business. In Proceedings of the 16th Confer-
ence on Systems Administration (LISA 2002), Philadelphia, PA, November 3-8,
2002, pages 189–204, 2002.

[Klo10] Rusty Klophaus. Riak core: building distributed applications without
shared state. In ACM SIGPLAN Commercial Users of Functional Program-
ming, page 14. ACM, 2010.

[KPF+13] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. MDCC: multi-data center consistency. In Eighth Eurosys Conference
2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013, pages 113–126,
2013.

[KRS93] Akhil Kumar, Michael Rabinovich, and Rakesh K. Sinha. A performance
study of general grid structures for replicated data. In Proceedings of the
13th International Conference on Distributed Computing Systems, Pittsburgh,
Pennsylvania, USA, May 25-28, 1993, pages 178–185, 1993.

[KS91] James J. Kistler and M. Satyanarayanan. Disconnected operation in the
coda file system. SIGOPS Oper. Syst. Rev., 25(5):213–225, September 1991.

[KS00] Samir Khuller and Yoram J. Sussmann. The capacitated K-center problem.
SIAM J. Discrete Math., 13(3):403–418, 2000.

220 BIBLIOGRAPHY

[Kuh10] Harold W. Kuhn. The hungarian method for the assignment problem. In
50 Years of Integer Programming 1958-2008 - From the Early Years to the State-
of-the-Art, pages 29–47. 2010.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[Lam02] Leslie Lamport. Paxos made simple, fast, and byzantine. In Procedings of
the 6th International Conference on Principles of Distributed Systems. OPODIS
2002, Reims, France, December 11-13, 2002, pages 7–9, 2002.

[LFKA11] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. An-
dersen. Don’t settle for eventual: scalable causal consistency for wide-area
storage with COPS. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011,
pages 401–416, 2011.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. Operating Systems Review, 44(2):35–40, 2010.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative system performance - computer system analysis using
queueing network models. Prentice Hall, 1984.

[MCJM13] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. Per-
formance and resource modeling in highly-concurrent OLTP workloads.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 301–
312, 2013.

[McW08] David T McWherter. Sharing DBMS among Multiple Users while Providing
Performance Isolation: Analysis and Implementation. ProQuest, 2008.

[MD88] Mark S. Miller and Eric K. Drexler. Markets and computation: Agoric open
systems. In Bernardo A. Huberman, editor, The Ecology of Computation.
North-Holland, Amsterdam, 1988.

[Mel00] Jim Melton. Understanding the New SQL: A Complete Guide, Second Edition,
Volume I. Morgan Kaufmann, 2000.

[Mon] MongoDB. http://www.mongodb.org/. Online; accessed on February,
2, 2016.

[Mun57] James Munkres. Algorithms for the assignment and transportation prob-
lems. Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38,
1957.

[MyS] MySQL. https://www.mysql.com/. Online; accessed on February, 2,
2016.

[MZ] Barbara Mutinelli and Sylvia Zwettler. What’s behind these terms? http:
//tinyurl.com/h7ugmb6. Online; accessed on February, 29, 2016.

[Nap] Napster. Napster. http://www.napster.com/. Online; accessed on
February, 12, 2016.

BIBLIOGRAPHY 221

[Nau] Robert F. Nau. ARIMA models for time series forecasting. http://
tinyurl.com/gsgd5hm. Online; accessed on February 11, 2016.

[NR89] Shamkant B. Navathe and Minyoung Ra. Vertical partitioning for database
design: A graphical algorithm. In Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, Portland, Oregon, May 31 -
June 2, 1989., pages 440–450, 1989.

[NSS03] Wolfgang Nejdl, Wolf Siberski, and Michael Sintek. Design issues and
challenges for rdf-and schema-based peer-to-peer systems. ACM SIG-
MOD Record, 32(3):41–46, 2003.

[oraa] Oracle 10g Data Concurrency and Consistency. http://tinyurl.com/
zfuwmn9. Online; accessed on February, 2, 2016.

[orab] Oracle NoSQL Consistency. http://www.oracle.
com/technetwork/database/nosqldb/overview/
nosql-transactions-497227.html. Online; accessed on February,
2, 2016.

[Ori] OrientDB. OrientDB Manual. http://tinyurl.com/jyj3rd3. Online;
accessed on February, 2, 2016.

[OST03] Beng Chin Ooi, Yanfeng Shu, and Kian-Lee Tan. Relational data sharing in
peer-based data management systems. SIGMOD Record, 32(3):59–64, 2003.

[ÖV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems, Third Edition. Springer, 2011.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26(4):631–653, 1979.

[PB93] Gustav Pomberger and Günther Blaschek. Software Engineering - Prototyp-
ing und objektorientierte Software-Entwicklung. Hanser, 1993.

[PL91] Calton Pu and Avraham Leff. Replica control in distributed systems: An
asynchronous approach. In Proceedings of the 1991 ACM SIGMOD Interna-
tional Conference on Management of Data, Denver, Colorado, May 29-31, 1991.,
pages 377–386, 1991.

[PS00] Esther Pacitti and Eric Simon. Update propagation strategies to improve
freshness in lazy master replicated databases. VLDB J., 8(3-4):305–318,
2000.

[PST+97] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and
Alan J. Demers. Flexible update propagation for weakly consistent repli-
cation. pages 288–301, 1997.

[PW97] David Peleg and Avishai Wool. Crumbling walls: A class of practical and
efficient quorum systems. Distributed Computing, 10(2):87–97, 1997.

[Qia] Shawn Qian. Enumerative Combinatorics. http://tinyurl.com/
h5q8c9w. Online; accessed on February, 29, 2016.

222 BIBLIOGRAPHY

[RBSS02] Uwe Röhm, Klemens Böhm, Hans-Jörg Schek, and Heiko Schuldt. FAS - A
freshness-sensitive coordination middleware for a cluster of OLAP com-
ponents. In VLDB 2002, Proceedings of 28th International Conference on Very
Large Data Bases, August 20-23, 2002, Hong Kong, China, pages 754–765,
2002.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and
Scott Shenker. A scalable content-addressable network. In SIGCOMM,
pages 161–172, 2001.

[Sal] Salesforce. Bring your CRM to the future. https://www.salesforce.
com/crm/. Online; accessed on February, 2, 2016.

[SAS+96] Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker,
and Andrew Yu. Data replication in mariposa. In Proceedings of the Twelfth
International Conference on Data Engineering, February 26 - March 1, 1996,
New Orleans, Louisiana, pages 485–494, 1996.

[SÇ05] Michael Stonebraker and Ugur Çetintemel. "one size fits all": An idea
whose time has come and gone (abstract). In Proceedings of the 21st Inter-
national Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo,
Japan, pages 2–11, 2005.

[Sch01] Heiko Schuldt. Process locking: A protocol based on ordered shared locks
for the execution of transactional processes. In Proceedings of the Twentieth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, May 21-23, 2001, Santa Barbara, California, USA, 2001.

[SF12] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to
the Emerging World of Polyglot Persistence. Addison-Wesley Professional,
1st edition, 2012.

[SFS15] Alexander Stiemer, Ilir Fetai, and Heiko Schuldt. Comparison of eager and
quorum-based replication in a cloud environment. In 2015 IEEE Interna-
tional Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October
29 - November 1, 2015, pages 1738–1748, 2015.

[sima] SimpleDB Consistency. http://docs.aws.amazon.
com/AmazonSimpleDB/latest/DeveloperGuide/
ConsistencySummary.html. Online; accessed on February, 2,
2016.

[Simb] Amazon SimpleDB. http://aws.amazon.com/de/simpledb/. On-
line; accessed on February, 2, 2016.

[siP] Serializable Isolation versus True Serializability. http://tinyurl.com/
zpr8eaf. Online; accessed on February, 2, 2016.

[SK09] Marc Shapiro and Bettina Kemme. Eventual consistency. In Encyclopedia
of Database Systems, pages 1071–1072. 2009.

[Ske81] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data, Ann Arbor,
Michigan, April 29 - May 1, 1981, pages 133–142, 1981.

BIBLIOGRAPHY 223

[SKG+12] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and
Sam Shah. Serving large-scale batch computed data with project volde-
mort. In Proceedings of the 10th USENIX conference on File and Storage Tech-
nologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012, page 18, 2012.

[SKJ16] K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Rep-
resentation without taxation: A uniform, low-overhead, and high-level
interface to eventually consistent key-value stores. IEEE Data Eng. Bull.,
39(1):52–64, 2016.

[SKS05] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts, 5th Edition. McGraw-Hill Book Company, 2005.

[SMA+14] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem,
Taha Rafiq, and Umar Farooq Minhas. Accordion: Elastic scalabil-
ity for database systems supporting distributed transactions. PVLDB,
7(12):1035–1046, 2014.

[SMAdM08] Raúl Salinas-Monteagudo, Francesc D. Muñoz-Escoí, José Enrique
Armendáriz-Iñigo, and José Ramón González de Mendívil. A perfor-
mance evaluation of g-bound with a consistency protocol supporting mul-
tiple isolation levels. In On the Move to Meaningful Internet Systems: OTM
2008 Workshops, OTM Confederated International Workshops and Posters, ADI,
AWeSoMe, COMBEK, EI2N, IWSSA, MONET, OnToContent + QSI, ORM,
PerSys, RDDS, SEMELS, and SWWS 2008, Monterrey, Mexico, November 9-
14, 2008. Proceedings, pages 914–923, 2008.

[SMK+01] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM, pages 149–160, 2001.

[SOE+12] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart
Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner,
et al. F1: the fault-tolerant distributed rdbms supporting google’s ad busi-
ness. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 777–778. ACM, 2012.

[SPB+11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski, et al.
A comprehensive study of convergent and commutative replicated data
types. 2011.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput.
Surv., 37(1):42–81, 2005.

[SS11] RobertH. Shumway and DavidS. Stoffer. Arima models. In Time Series
Analysis and Its Applications, Springer Texts in Statistics, pages 83–171.
Springer New York, 2011.

[Sto86] Michael Stonebraker. The case for shared nothing. IEEE Database Eng.
Bull., 9(1):4–9, 1986.

[Sto08] Michael Stonebraker. Technical perspective - one size fits all: an idea
whose time has come and gone. Commun. ACM, 51(12):76, 2008.

224 BIBLIOGRAPHY

[SW00] Ralf Schenkel and Gerhard Weikum. Integrating snapshot isolation into
transactional federation. In Cooperative Information Systems, 7th Interna-
tional Conference, CoopIS 2000, Eilat, Israel, September 6-8, 2000, Proceedings,
pages 90–101, 2000.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-
Wesley, 2011.

[SWWW99] Ralf Schenkel, Gerhard Weikum, Norbert Weißenberg, and Xuequn Wu.
Federated transaction management with snapshot isolation. In Transac-
tions and Database Dynamics, Eight International Workshop on Foundations
of Models and Languages for Data and Objects, Schloß Dagstuhl, Germany,
September 27-30, 1999, Selected Papers, pages 1–25, 1999.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979.

[TMS+14] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-
store: Fine-grained elastic partitioning for distributed transaction process-
ing. PVLDB, 8(3):245–256, 2014.

[TPK+13] Pinar Tözün, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anas-
tasia Ailamaki. From A to E: analyzing tpc’s OLTP benchmarks: the obso-
lete, the ubiquitous, the unexplored. In Joint 2013 EDBT/ICDT Conferences,
EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 17–28, 2013.

[TPP] TPPC Benchmark. http://www.tpc.org/tpcc/. ONLINE; accessed
January-2015.

[TSJ81] Robert R Tenney and Nils R Sandell Jr. Detection with distributed sensors.
IEEE Transactions on Aerospace Electronic Systems, 17:501–510, 1981.

[TT95] Peter Triantafillou and David J. Taylor. The location based paradigm for
replication: Achieving efficiency and availability in distributed systems.
IEEE Trans. Software Eng., 21(1):1–18, 1995.

[TTP+95] Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers, Mike
Spreitzer, and Carl Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. In Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, SOSP 1995, Copper Mountain Re-
sort, Colorado, USA, December 3-6, 1995, pages 172–183, 1995.

[TvS07a] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - prin-
ciples and paradigms (2. ed.). Pearson Education, 2007.

[TvS07b] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - prin-
ciples and paradigms (2. ed.). 2007.

[Vis93] Ramanarayanan Viswanathan. A note on distributed estimation and suf-
ficiency. IEEE Transactions on Information Theory, 39(5):1765–1767, 1993.

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

BIBLIOGRAPHY 225

[VP04] Patrick Valduriez and Esther Pacitti. Data management in large-scale P2P
systems. In High Performance Computing for Computational Science - VEC-
PAR 2004, 6th International Conference, Valencia, Spain, June 28-30, 2004, Re-
vised Selected and Invited Papers, pages 104–118, 2004.

[VS09] Laura Cristiana Voicu and Heiko Schuldt. How replicated data manage-
ment in the cloud can benefit from a data grid protocol: the re: Gridit
approach. In Proceedings of the First International CIKM Workshop on Cloud
Data Management, CloudDb 2009, Hong Kong, China, November 2, 2009,
pages 45–48, 2009.

[W+74] W. Wulf et al. HYDRA: the Kernel of a Multiprocessor Operating System.
Commun. ACM, 1974.

[Web12] Jim Webber. A programmatic introduction to neo4j. In Conference on Sys-
tems, Programming, and Applications: Software for Humanity, SPLASH ’12,
Tucson, AZ, USA, October 21-25, 2012, pages 217–218, 2012.

[WRBK02] An-I Wang, Peter L. Reiher, Rajive L. Bagrodia, and Geoffrey H. Kuen-
ning. Understanding the behavior of the conflict-rate metric in optimistic
peer replication. In 13th International Workshop on Database and Expert Sys-
tems Applications (DEXA 2002), 2-6 September 2002, Aix-en-Provence, France,
pages 757–764, 2002.

[WTK+08] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David
Kramer, and Wolfgang Karl. Scientific cloud computing: Early definition
and experience. In 10th IEEE International Conference on High Performance
Computing and Communications, HPCC 2008, 25-27 Sept. 2008, Dalian, China,
pages 825–830, 2008.

[WV02] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[YSY09] Fan Yang, Jayavel Shanmugasundaram, and Ramana Yerneni. A scalable
data platform for a large number of small applications. In CIDR 2009,
Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2009, Online Proceedings, 2009.

[YV02] Haifeng Yu and Amin Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM Trans. Comput.
Syst., 20(3):239–282, 2002.

[ZP08] Vaide Zuikeviciute and Fernando Pedone. Correctness criteria for
database replication: Theoretical and practical aspects. In On the Move
to Meaningful Internet Systems: OTM 2008, OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Monterrey,
Mexico, November 9-14, 2008, Proceedings, Part I, pages 639–656, 2008.

Index

Symbols | A | C | D | E | G | H | I | M
| N | O | P | Q | R | S | T | V | W

Symbols

C3 xii, xiii, 9, 10, 78–81, 85–89, 92, 94–98,
133, 137, 138, 151, 152, 156–160, 162, 163,
190, 191, 195–198
1SR 4, 6, 7, 20, 22, 54–56, 59, 65, 66, 72,
79–81, 86–92, 94, 95, 100, 113, 114, 127, 132,
137–139, 144, 195
2PC 6, 7, 88, 90–92, 104, 105, 127–129, 137,
138, 140, 144, 178
2PL 7, 36, 37, 47, 137

A

availability 18–22, 40, 64–66
AWS 67

C

CAP 3, 5, 21, 25, 29, 57–61
CCQ 9, 13, 14, 16, 19, 23, 63, 64, 73–75, 77–
82, 85, 126–128, 137, 148, 196, 198, 199
Commit Order-Preserving Conflict Seri-
alizable (COCSR) 31, 32, 37
Concurrency Control (CC) 28, 29, 37

serializability 29, 30
Concurrency Control Model (CCM) 29,
30, 35, 47
Concurrency Control Protocol (CCP) 28–
30, 36, 65, 88, 90, 91, 191

Basic Two-Phase Locking (B2PL) 36, 37
Conservative Two-Phase Locking
(C2PL) 37
optimistic 36
pessimistic 36
Strict Strong Two-Phase Locking
(SS2PL) 37
Strict Two-Phase Locking (S2PL) 37, 87,
88, 91, 92, 97, 114, 127, 178

configuration 63–66, 68, 86
Conflict Serializable (CSR) 31, 32
consistency 29, 40, 64, 66, 85, 86, 100

cost 85
model 66

cost-driven 4
Cumulus xiii, 11, 79, 80, 100, 101, 103–107,
109, 110, 134–136, 139, 140, 151, 152, 164–
173, 191–193, 195, 197, 198

D

data 25, 28
freshness 25
model 25
object 25
partitioning 42, 100

allocation 43
horizontal 42, 43, 100
hybrid 42, 43
vertical 42, 43

replication 41, 42, 44
database 25, 28, 40

action 26–31, 33, 34, 50
conflict 31
termination 27

operation 25, 26
read 26
write 26, 27

state 25, 28
DB 2
DBMS 2, 13, 36, 40
DBS 2–5, 17, 18, 20, 22, 29, 36, 40, 44, 46,
48, 64–68, 73, 102, 135, 148
DDBS 3, 4, 40, 41, 44, 47–49, 58, 59, 67, 79,
89, 101, 103, 113, 128, 137, 148

E

EC 5, 20, 57, 65, 80, 86–92, 94, 95, 97, 132,
137, 138
economy of scale 2

230 Index

elasticity 2, 3, 102
Exponential Moving Average (EMA) 63,
75, 77, 81, 104, 106

G

guarantee costs 4

H

Hypertext Transfer Protocol (HTTP) 148,
149, 178

I

IaaS 67
inconsistency 29, 49, 85, 86

cost 85

M

Monoversion Database 33
Multiversion Database 33

N

NewSQL 17
NoSQL 5, 17, 18, 60, 61

O

oltp 6
operational 63, 64, 66, 71, 72, 107, 108

cost 63, 64, 66, 71, 72, 107, 108
Order-Preserving Conflict Serializable
(OCSR) 31, 32

P

PACELC 25, 29, 59–61
partition xi, 65, 66
paxos 6
pay-as-you-go 1, 4, 206
penalty 4, 63–66, 69, 71, 73, 107

cost 4, 63–66, 69, 71, 73
PolarDBMS 13, 15, 16, 19, 21, 22
policy 19, 20

Q

QuAD xiii, 11, 12, 79, 81, 112, 113, 115,
117–120, 122–125, 135, 143–147, 152, 173,
175–177, 179–183, 195–197
quorum 65, 79, 87

MQ 51, 193
TQ 51, 52

R

Replica Control (RC) 50
Replica Protocol (RP) 21, 50–53, 65, 87, 88,
90, 91, 114

eager 51
lazy 53

ROWA 7, 51
ROWAA 7, 13, 21, 51, 65, 81, 87, 114, 119,
164–167, 173

S

scale-out 2
scale-up 2
Service Level Agreement (SLA) 15, 17, 19,
198
Service Level Guarantee (SLG) 15, 19, 22,
23
Service Level Objective (SLO) 19–23, 67
SI 4, 29, 35, 47, 55, 56, 97
Simple Object Access Protocol (SOAP)
148, 149, 178

T

Terms and Conditions (ToC) 17
Thomas’ Write Rule (TWR) 57, 89, 92–94,
132
Three-Phase Commit Protocol (3PC) 46
TPCC 14
transaction 25–31, 33, 34, 44–46, 49, 66, 88–
90, 92–94, 96, 97, 100, 103, 107

ACID 27, 28, 49
atomicity 27, 28
concurrency 29
consistency 27, 28
distributed 100, 103, 107
durability 27, 28
history 29, 30, 33, 34

Index 231

isolation 27, 28
read set 27
read-only 27, 28
schedule 29–32, 34, 36, 37
serial 28–30
update 27
write set 27

transition 29, 63, 66
cost 63, 66

V

version 33, 34

W

workload 21, 22, 28, 63–66, 73–75, 77, 82,
86, 87, 91–95, 97, 100, 109

monitoring 75
prediction 75, 77

Curriculum Vitae

Ilir Fetai

August 21, 1980 Born in Cellopek, Tetovo, R. Macedonia
Son of Menduale and Imer
Citizen of Switzerland

1987–1991 Primary School, Cellopek/Tetovo, R. Macedonia

1991–1995 Secondary School, Cellopek/Tetovo, R. Macedonia

1995–1999 High School, Tetovo, R. Macedonia

1999–2004 Bachelor of Science in Computer Science
University of Applied Sciences, Bern, Switzerland

2008–2011 Master of Science in Computer Science
University of Basel, Basel, Switzerland

2011–2016 Research and teaching assistant in the group of Prof.Heiko Schuldt
Database and Information Systems, University of Basel, Switzerland

