44 research outputs found

    Trivariate polynomial approximation on Lissajous curves

    Get PDF
    We study Lissajous curves in the 3-cube, that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications could arise in the framework of Lissajous sampling for MPI (Magnetic Particle Imaging)

    Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case

    Full text link
    In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank 11 and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature.Comment: 26 pages, 6 figures, 1 tabl

    Polynomial Meshes: Computation and Approximation

    Get PDF
    We present the software package WAM, written in Matlab, that generates Weakly Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d polynomial least squares and interpolation on compact sets with various geometries. Possible applications range from data fitting to high-order methods for PDEs

    Spectral filtering for the resolution of the Gibbs phenomenon in MPI applications

    Get PDF
    open3Polynomial interpolation on the node points of Lissajous curves using Chebyshev series is an e effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible solution for this problem are spectral filtering methods acting on the coefficients of the interpolating polynomial. In this work, after a description of the Gibbs phenomenon in two dimensions, we present an adaptive spectral filtering process for the resolution of this phenomenon and for an improved approximation of the underlying function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity. We show the effectiveness of this filtering approach in theory, in numerical simulations as well as in the application in Magnetic Particle Imaging.openDe Marchi, Stefano; Erb, Wolfgang; Marchetti, Francesco.DE MARCHI, Stefano; Erb, Wolfgang; Marchetti, Francesc

    Spectral filtering for the reduction of the Gibbs phenomenon of polynomial approximation methods on Lissajous curves with applications in MPI

    Get PDF
    Polynomial interpolation and approximation methods on sampling points along Lissajous curves using Chebyshev series is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible solution for this problem are spectral filtering methods acting on the coefficients of the approximating polynomial. In this work, after a description of the Gibbs phenomenon and classical filtering techniques in one and several dimensions, we present an adaptive spectral filtering process for the resolution of this phenomenon and for an improved approximation of the underlying function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity. We show the effectiveness of this filtering approach in theory, in numerical simulations as well as in the application in Magnetic Particle Imaging

    Trivariate polynomial approximation on Lissajous curves

    Get PDF
    We study Lissajous curves in the 3-cube that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications could arise in theframework of Lissajous sampling for MPI (Magnetic Particle Imaging)
    corecore