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Abstract It is well-known that Applications in Magnetic Particle Imaging
Polynomial interpolation on the node points of Lissajous curves using Chebyshev series is an e effective nh—r>noo Cn( f ) =0, (9)

way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a L , q 4in th N
Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible where 12 — 00 1s understood 1n the sense that max {nb N2y .y My } —r 00.

solution for this problem are spectral filtering methods acting on the coefficients of the interpolating polynomial. It f is a discontinuous and piecewise differentiable function then the decay rate of the coefficients ?
In this work, after a description of the Gibbs phenomenon in two dimensions, we present an adaptive spectral is only of first order and a Gibbs phenomenon appears. "

filtering process for the resolution of this phenomenon and for an improved approximation of the underlying .

function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial

point to the nearest discontinuity. We show the effectiveness of this filtering approach in theory, in numerical

simulations as well as in the application in Magnetic Particle Imaging. s M .
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. ] : . . . (a) Original phantom (b) Simulated reconstruction from (c) Reconstructed image after adap-
Interpolation and approximation on Lissajous curves | Lissajous sampling, see [6]. tive spectral filtering,
SSIM = 0.6653. SSIM = 0.7017

Let m = (n1,m2) € N? be a vector of relatively prime integers and e € {1,2}. We consider the
two-dimensional Lissajous curves

WV [0,20) = [<L17, A(8) = (cos(nat), cos(mt — (e — V/(2n2))) . (1 : \ : \ : \
The curve vém is called degenerate if € = 1, and non-degenerate otherwise. (b) Fouri mation of £ with Gibbs ph
ourler approximation or j wi 1DDS phenomenon. " ' "
Definition 1. The set of Lissajous node points associated to the curve vém s given by
€ {76 <en1n2) P 172 } (2) (a) Original phantom (b) Simulated reconstruction from (c) econstructed image after adaptive

We further define the following index set associated to the Lissajous nodes | Lissajous sampling, see [6]. spectral filtering.

(en) . ) ; j SSITM = 0.6155. SSIM = 0.6506

[\ =147, 5) € N n+n<1 U {(0,ena)} . (3)
c€ny  €ny .
° Work in progress

We are working on a three-dimensional extension, considering 3D Lissajous curve and applying

-.-R""--h..q_ f'ﬂf}f \\i
- H“-H f’,.-""f' '\._.
| | ~ the adaptive filtering process, which is suitable due to its tensor product structure.
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N N (a) g(z,y) = gi(z)ga(y),
N \ . r if-1/2<x<1/2, . o o o
P \ where g(z) = 0 otherwise (b) Fourier approximation of g with Gibbs phenomenon. Conclusion
N g2(y) = 10e™ . | | o | o
~ L e On this poster, we gave a short introduction to polynomial interpolation and approximation on
T e e e e e | Lissajous curves and illustrated that a Gibbs phenomenon occurs, if the underlying function is
1 1 not continuous.
(a) The degenerate curve %5’6) (b) The non-degenerate curve 755’6) Adaptlve SpeCtral ﬁlterlng
L , , , , L e We showed how this Gibbs phenomenon can be described in the framework of Fourier series
We focus on the non-degenerate case and define 2n) — span{ T;(2)T(y) : (3,]) € F<2”)}, In order to diminish the Gibbs effect and to obtain a faster convergence outside the discontinuities,
where T;(x) = cos(i arccos(x)) is the i-th Chebyshev polynomial of the first kind. We have we proceed as follows: o W: slfaolefetd ]f;l(?whadadptlve fﬂterlmg techniques developed in the one-dimensional setting can be
L . o - : £ extended to higher dimensional cases
Lemma 1. For all bivariate polynomials P satisfying (P, Topp, Torn,) = 0, k € N, the fol- e A real and even function o is called a spectral filter of order p if: &
lowing identity holds: (a) o € C’p_l(R). e We applied adaptive filtering techniques to improve the interpolation procedure in the recon-
I 1 4 I o n b) a(0) = 1 and o D(0) = 0 for 1 <[<p-1. struction process of magnetic particle images.
I L Py, ydady = BT PGS (0)r () T e
From this identity, we obtain a quadrature formula on the set LSS"’> and a unique polynomial Two well-known examples are the Lanczos filter o(n) = Smé;;n) (first order) and the raised cosine Acknowledgment
interpolant of a given function f in the space [1(21) a5 filter o(n) = %(1 + cos(mn)) (second order).
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For e =1 and m = (n,n + 1) this scheme corresponds to polynomial interpolation on the Padua e Defining
. . . . . p
points, see [3]. Using the change of variables = cos(t), y = cos(s), and expanding the index set oxn | F References
o . . p r| <1,
we can reformulate the Chebyshev series in (5) to the Fourier series ol (x) = r? —1 (10)
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where for every n € 7" For the x dependent parameter p we finally use

cn(f) = 2m) " gz f(@)en(@)da . (8) p(x) = (Nnidy (1), (Nnbda(a2))?) . (13)



