66,832 research outputs found
Outlier Detection Techniques For Wireless Sensor Networks: A Survey
In the field of wireless sensor networks, measurements that
significantly deviate from the normal pattern of sensed data are
considered as outliers. The potential sources of outliers include
noise and errors, events, and malicious attacks on the network.
Traditional outlier detection techniques are not directly
applicable to wireless sensor networks due to the multivariate
nature of sensor data and specific requirements and limitations of
the wireless sensor networks. This survey provides a comprehensive
overview of existing outlier detection techniques specifically
developed for the wireless sensor networks. Additionally, it
presents a technique-based taxonomy and a decision tree to be used
as a guideline to select a technique suitable for the application
at hand based on characteristics such as data type, outlier type,
outlier degree
Outlier detection techniques for wireless sensor networks: A survey
In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree
Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks
We consider the problem of estimating the remaining useful life (RUL) of a
system or a machine from sensor data. Many approaches for RUL estimation based
on sensor data make assumptions about how machines degrade. Additionally,
sensor data from machines is noisy and often suffers from missing values in
many practical settings. We propose Embed-RUL: a novel approach for RUL
estimation from sensor data that does not rely on any degradation-trend
assumptions, is robust to noise, and handles missing values. Embed-RUL utilizes
a sequence-to-sequence model based on Recurrent Neural Networks (RNNs) to
generate embeddings for multivariate time series subsequences. The embeddings
for normal and degraded machines tend to be different, and are therefore found
to be useful for RUL estimation. We show that the embeddings capture the
overall pattern in the time series while filtering out the noise, so that the
embeddings of two machines with similar operational behavior are close to each
other, even when their sensor readings have significant and varying levels of
noise content. We perform experiments on publicly available turbofan engine
dataset and a proprietary real-world dataset, and demonstrate that Embed-RUL
outperforms the previously reported state-of-the-art on several metrics.Comment: Presented at 2nd ML for PHM Workshop at SIGKDD 2017, Halifax, Canad
Network Inference via the Time-Varying Graphical Lasso
Many important problems can be modeled as a system of interconnected
entities, where each entity is recording time-dependent observations or
measurements. In order to spot trends, detect anomalies, and interpret the
temporal dynamics of such data, it is essential to understand the relationships
between the different entities and how these relationships evolve over time. In
this paper, we introduce the time-varying graphical lasso (TVGL), a method of
inferring time-varying networks from raw time series data. We cast the problem
in terms of estimating a sparse time-varying inverse covariance matrix, which
reveals a dynamic network of interdependencies between the entities. Since
dynamic network inference is a computationally expensive task, we derive a
scalable message-passing algorithm based on the Alternating Direction Method of
Multipliers (ADMM) to solve this problem in an efficient way. We also discuss
several extensions, including a streaming algorithm to update the model and
incorporate new observations in real time. Finally, we evaluate our TVGL
algorithm on both real and synthetic datasets, obtaining interpretable results
and outperforming state-of-the-art baselines in terms of both accuracy and
scalability
A review on the influence of drinking water quality towards human health
An adequate supply of safe drinking water is one of the major prerequisites for a healthy life. Inadequate of safe drinking water produce waterborne disease and a major cause of death in many parts of the world, particularly in children. Therefore, it must be treated properly before it can be used and consumed. This chapter provides the guidelines of important parameters for drinking water standard in order to ensure the safeness of drinking water. All the selected parameters were elaborated on the effect of high concentration if human consume the drinking water directly
Real-time information processing of environmental sensor network data using Bayesian Gaussian processes
In this article, we consider the problem faced by a sensor network operator who must infer, in real time, the value of some environmental parameter that is being monitored at discrete points in space and time by a sensor network. We describe a powerful and generic approach built upon an efficient multi-output Gaussian process that facilitates this information acquisition and processing. Our algorithm allows effective inference even with minimal domain knowledge, and we further introduce a formulation of Bayesian Monte Carlo to permit the principled management of the hyperparameters introduced by our flexible models. We demonstrate how our methods can be applied in cases where the data is delayed, intermittently missing, censored, and/or correlated. We validate our approach using data collected from three networks of weather sensors and show that it yields better inference performance than both conventional independent Gaussian processes and the Kalman filter. Finally, we show that our formalism efficiently reuses previous computations by following an online update procedure as new data sequentially arrives, and that this results in a four-fold increase in computational speed in the largest cases considered
Introduction To Research Methods In The Social Sciences (SOCI 016B) Syllabus
Introduction To Research Methods In The Social Sciences course description:An overview of research methods in the social science, with an emphasis on practicing a variety of techniques/methodologies, and thinking about designing good research questions and assessing answers
- …