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7.1. INTRODUCTION

Quality of automotive stamping process is often related to quality
characteristics of automotive stamped panels. These are the panel’s
dimensional stability measured by deviations of panel’s geometrical
dimensions from the nominal design specification. Correspondingly
panel geometry is deemed as one of the attributes to variation in
stamping process other than material properties, stamping process
variables and die engineering and construction (Hammett, Baron et
al. 2000). More often that not, deviation in stamped automotive parts
are claimed as the attribute of variations in assembly dimensions
(Guzman, and Hammett 2003; Hammett, Baron, and Smith 2000;
Kuzma-Smith 2000; Yang, and Trewn 2004). This is because good
fits cannot be achieved when panels are of large variations. As such,
continuous efforts should be made in improving the quality
automotive stamping process by studying the dimensional stability
of the stamped panels.

This study embarks on a statistical process control by specifically
proposing a multivariate control chart scheme in monitoring the
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quality of stamping process of an automotive panel based on its
geometrical dimensions. The need for a multivariate approach of
control charting owes mostly to the multivariate nature of quality
variable characterizing the manufacturing process as well as product
dimension. Quality variables, namely, surface, trim, and hole
eccentricity characterize the dimensional measurement of the panel.
Even in a narrow sense, a single quality variable itself, for instance,
surface is narrated by several different measure points. Monitoring
large number of univariate control charts is almost impossible. Apart
from the multiple nature of quality variables, these variables
periodically demonstrate some form of correlation, either cross
correlation or serial correlation, or even both (Hammett et al. 2000;
Yang, and Trewn 2004). Managing separate univariate control
charts, again, would not be able to take into account the correlation
factor. A multivariate approach would, then, best serve the purpose
of quality monitoring of automotive stamping process.

72. A REVIEW OF PREVIOUS WORK ON CONTROL
CHART APPLICATION IN AUTOMOTIVE STAMPING
PROCESS

Control chart is among the mostly applied statistical process control
techniques. Control charts can actually allow companies to
determine when something unexpected occurs in their manufacturing
process. Without having this kind of information in hand, not only
problems are discovered when it is already too late but it is more
difficult to determine the cause. However, number of Malaysian
studies unveiled many of the local automotive parts manufacturing
companies find difficulties in applying statistical process control
which include control charting methods to the optimal level (Jafri,
Sha'ri, and ismail 2007; Noviyarsi, and Sha'ri 2004; Salimah 2001).
This could explain why these automotive manufacturing companies
failed to take advantage of SPC fullest benefits. Even many
manufacturing companies abroad do not understand how, for
example, control charting can provide the opportunity to identify
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unusual behavior before unacceptable products are produced (Wachs

2005).

The research activity in multivariate control charts has been
reported to be at its highest level for the past decade which reflects
increased measurement and computing ability (Woodall &
Montgomery, 1999). Large and diversified research areas on the
application of multivariate control charts in manufacturing areas are
extensively discussed in many literatures (Tracy, Mason and Young
(1992), Lowry and Montgomery (1995), Mason and Young (2002)
and the references therein). In the international arena, studies on the
application of control charts in the stamping of automotive panels
have been evident for the last two decades, gradually progress from
univariate to multivariate applications (Ceglarek 2000; Kuzma-
Smith 2000; Hammett et al. 2000; Majeske 2000; Majeske, and
Hammett 2003; Rolfe et al. 2003) although there is only a handful on
multivariate techniques in the stamping of automotive parts (Wang
1995; Yang 1996; Yang, and Trewn 2004). Other studies on
automotive part stamping demonstrate the use of principal
component analysis and some extend to another multivariate
application of experimental design. (Ceglarek 2000; Kuzma-Smith
2000)

While some literatures have opened their arms to control
charts due to its many benefits, astonishingly, some studies argue
against the need for control charting in the quality improvement of
automotive stamped parts (Guzman and Hammett, 2001, Majeske
and Hammett 2000). It was reported that there is evidence of weak
relationship between components, in particular, the non-rigid
components and their final assembly attributes. Another study
concludes that the inevitable mean shifts in stamping process are
regarded as insignificant process changes in stamping operation.
They also claim it is difficult to change the mean target value of the
automotive stamped component because manufacturers can rarely
eliminate all stamping mean shifts that typically occur between die
set-ups or after changes in material lots (Majeske, and Hammett
2000; Rolfe et al. 2003).
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Despite such protracted remarks defying control charting as
the appropriate quality improvement and monitoring tool in
automotive stamping process, this study is very much motivated
from the principle that “perfect parts make perfect assemblies”. The
correct use of control charts can actually help in convincing the
manufacturers that control charts can be effective indicators of any
process changes. The problem is many do not actually use these
charts correctly as to identify process changes as quickly possible
after the changes occur. This is the original objective of what control
charts are invented for i.e. to better understand and ultimately
improve the process (Hoerl 2000; Wachs 2005). Improved process is
stabilized process. Only with stabilized process, manufacturer may
seek to embark on other concomitant task for example tolerance
adjustment, formability and dimensional validation (Guzman, and
Hammett 2003).

73. METHODOLOGY

The main objective of this research is to propose a control
charting scheme to check for the stability of the automotive stamping
process based on the panel’s geometrical dimension. Geometrical
dimension is used as quality variables of stamping process of this
study as process variable input settings have already been fixed.

This research specifically demonstrates the application of
multivariate statistical technique through its diagnostic features such
as combining measurements from many different characteristics and
simultaneously, analyzes the data. To achieve this, the research is
devised as follow.

e Performing the multivariate analysis of the three quality
dimensions of surface, trim and hole eccentricity. This is to study
the process characteristics based on these quality variables.

o Estimating the parameters to be used in Phase I Multivariate
Hotelling’s 7° control charting scheme. Parameter estimation
would be based on the basic production process characterization
obtained from the first objective.
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* Proposing principal component chart and variation component
chart as the diagnostic tools of the multivariate 7° control
charting
Statistical multivariate methods like factor analysis, principal

component analysis and variance component analysis are some of

the multivariate techniques to be applied here. Multivariate analysis
of the production process is best done through the help of the
appropriate software designed for these purpose. The statistical

software used are SAS JMP 8 and SYSTAT 12.

7.3.1. MULTIVARIATE HOTELLING 7° CONTROL CHART
SCHEME

Hotelling’s T multivariate control charting scheme is a proposed for
this quality study of automotive stamping process. Hotelling’s 7°
control chart is the extension of Shewhart univariate control chart.
There are two reasons opting for this scheme. F irstly, it is due the
unknown population parameters of the automotive panel.
Hotelling’s 7° control chart was originally developed for cases with
unknown population parameters as proposed by Hotelling (1947) as
cited by Cheng et al (2004) and as suggested by several others (Alt,
and Smith 1988; Cheng, Away, and Hassan 2004; Lowry, and
Montgomery 1995).

The second reason opting for Hotelling’s 7° control chart
relates to the typical outcome of a stamping process itself,
Automotive stamping process has been observed to produce large
mean shifis (Hammett, Baron, and Smith 1999). A study by
Hammett et al. (1999 reveals that stamping and die processes by
nature are not stable enough and result in not insignificant mean
shifts. Unlike the multivariate EWMA and CUSUM procedures
which are more sensitive to small and moderate shifts in the mean
vector, Hotelling’s 7° control chart is most suitable in the cases
where mean shifts are not small (Cheng et al (2004) citing
Montgomery (2005)). Thus, Hotelling’s 7° control chart suits to such
condition of automotive stamping process.
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There are two phases in establishing Hotelling’s T°
multivariate process control i.e. Phase I and Phase II. Phase I control
charting is the preliminary control charting procedure whereas Phase
II is the operational phase of process control (Yang, and Trewn
2004) (Mason, and Young 2001). Phase I control chart of this study
is where process parameters are unknown. This is the case as
multivariate control technique has never been applied before, thus,
the parameters i.e. mean vector and covariance matrix has to be
estimated. Therefore, the main focus of this study is on Phase I
control charting and Phase II control charting will not be anyway
discussed here in this study. For background readings on Phase II
control charting, a list of reference is available in a review of
literature by Willis et al. (2006) (Willis et al. 2006)

In general, control charting of Phase I is a stage of
retrospective timing where data are collected with the purpose of
setting a chart (Palm 2000), or simply, it is a chart ‘start-up’ stage.
Two main objectives of Phase I control chart are to develop a
reference sample from which the parameters are estimated and
secondly is to devise the multivariate Hotelling T* control chart to
check for the process stability.

7.3.1.1. Sampling Design

Sampling of automotive panels in this study is designed so that the
data set collected in such a manner that variations within a subgroup
reflects common variations only, while any significant variations
between subgroups reflects special causes (Shefik 1998). The
sampling method chosen is rational subgrouping. This method
represents data collected over a short period of time under essentially
identical condition of material, tool setting, environmental condition,
etc. There are two basic reasons opting for a rational sub-grouping
scheme. First, averages or mean values can detect process shifts
more quickly than individual measurements. The second reason is
averages from a stable process tend to follow a normal distribution,
hence, it easy to estimate the control limits (Wachs 2005). Normality
and independence are two fundamental assumptions in developing
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control charts (Bersimis et al. 2005). By employing rational

subgrouping, the process can be assumed to follow normal -
distribution (Wachs 2005). The recommended number of subgroup is

from 20 to 30 subgroups of size 4 and 5 (Montgomery 2005; Ryan

2000) and multiple production runs are suggested for better pooled

estimate of a long term variation (Guzman, and Hammett 2003).

7.3.1.2. Data Preparation

This pre-processing task includes detection of problems in data by
screening and cleaning the data. Possible problems in data likely to
arise are the presence of multicollinearity and autocorrelation and
outliers (Mason, and Young 2001). Diagram 7.1. illustrates the
process of identifying problems in data.

Identifying Problems in Data

/\

Collinearity Effects Autocorrelati;n Effects
Detection & Removal Detection

\/

Outliers Detection
Purging Process

A
Construct Final Reference Sample

Diagram 7.1 Guidelines for Identifying Problems in Data set.
(adapted from (Mason, and Young 2001))

In a multivariate analysis, collinearities pose a problem as it can
have effect on the performance of 7° statistics. Collinearities can
result in singular or near singular covariance matrix, where as, 7°
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statistics formula is based on a covariance matrix which is non-
singular (Mason, and Young 2001). Principal component analysis
(PCA) is a useful multivariate statistical technique in identifying
collinearities. To identify the presence of collinearities,
eigenstructure of correlation matrix is used to estimate condition
index (Mason, and Young 2001). Condition index of size greater
than 30 implies a problem of severe collinearities and some variables
must be removed.

Checking for presence of autocorrelation is part of validating
the identical and independent distribution assumption of control
charting. Some presence of autocorrelation is a more realistic
situation in automotive stamped panel data as process variables in
many manufacturing background are often characterized as
autocorrelated (Kalgonda, and Kulkarni 2004; Reynolds, and Lu
1997; Woodall, and Montgomery 1999). This is, particularly the case
in stamped automotive panel data (Yang, and Trewn 2004).

As the goal of Phase I is to identify multivariate outliers, the
estimated control limits must be sufficiently accurate for the Phase II
process monitoring. Outlier detection problem of data preparation
stage is essentially the same as statistical purging of outlier or
unusual observations in Phase I (Mason, and Young 2001) and it is
part developing a reference sample (Yang, and Trewn 2004). The
process of outlier detection is discussed separately in the ensuing
subsection.

- 7.3.1.3. Dimensional Reduction of Panel Geometry

Due to the multivariate nature of dimensional measurement
of automotive panel, large number of measure points must be
reduced for parsimonious analysis (Gnanadesikan, 1977).
Dimensional reduction is also needed to meet certain mathematical
‘requisite’ of multivariate methods. The general rule of thumb in
applying multivariate methods is multivariate methods do not work
if number of observations, #, is less than number of variables, p. This
is because if p < n, neither the inverse covariance matrix Y nor its
estimate S can be computed (Mason, and Young 2001). So, sample
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size n must exceeds number of variables, p, or in this case the quality
variables. Dimensional measure points of the automotive panel must
be further reduced to meet ‘n > p’ criteria.

Principal Component Analysis (PCA) and Factor Analysis
(FA) can be used for reducing dimension (Y: ang, and Trewn 2004).
These two multivariate statistical methods are profoundly powerful
in extracting smaller number of factors which account for most
variation in the large amount of multivariate data. PCA also serve a
technique to identify variables belonging to the same factor based on
variability. This technique is factor analysis. In this case, factor
analysis aim to describe the set of quality variables in terms of a
smaller number of factors. In a quality study of stamping process
where mean deviation and variation is of major interest, PCA and
Factor Analysis methods can be regard as most appropriate.

7.3.1.4. Outlier Detection

The 7° statistic approach is applied to detect the multivariate
outliers as T° statistic will be used repeatedly in this study (Mason,
and Young 2001). Other classic multivariate outlier detecting
technique are Mahalanobis distance (Rousseeuw, and Zomeren
1990). T° statistics of subgrouped data computed can be defined as
the statistical distance between the observation vector and the sample
mean vector, and it is compared to the upper control limit UCL of
the 7° control chart (Chou, Mason, and Young 1999). With &
subgroups of multivariate observations for each of the p variables
where each subgroup has n measurement data, the subgroup average,
covariance matrices, grand mean vector and pooled covariance
matrix are computed. The 72 for each subgroup is also computed

using the formula given as
T =nE@E-3'S'@-% ... (1]
This 7,} for each subgroup is compared with the upper control limit
of the following formula
UCL = knfn—_]f:;i: 14 a,pJn-k-p+1
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T* control chart has only an upper control limit. If the computed
T, exceeds UCL, then the corresponding subgroup is deleted for it is
considered as an outlier and this subgroup should not be used to
estimate the parameters of the control chart. Type I error a = 0.001
(Mason, and Young 2001) is applied for the process of purging
outliers.

7.3.1.5. Construction of Reference Sample and Parameter
Estimation

Unknown population parameters of Phase I is estimated from a
reference sample that belong to an ‘in-control’ process (Mason, and
Young 2001) that subsamples that are ‘out-of-control’ must be
discarded. Deleting out-of-control subsamples is an iterative process
as this continues until the process in brought into a state of
statistically in-control where no more outliers are detected. Once this
is achieved, the control chart is used to define what is meant by a
state of statistical in-control. This step is similar to the approach
using 7° statistics to detect outliers.

Once a reference sample is obtained, parameters are and used
to compute the baseline control limit. Using these parameters, Phase
I charts are used for retrospectively testing whether a process was in
control when the first subgroups were being drawn (Bersimis et al.
2005; Montgomery 2005; Ryan 2000). In general, Phase I chart is
. similar to a hypothesis that tests whether all of the data come from
an in-control process (Champ, and Jones 2004).

74. IDENTIFYING CAUSES OF VARIATION

In this study, Hotelling’s T> multivariate control chart is applied as
the process control tool to check on stability of process. However,
there are two basic problems in using 7° based control chart. The
first problem is values plotted in control chart are not original values
because these are the T° statistics values. Secondly, whenever the
statistics exceeds the control limits, it does not enlighten which
variable that actually causes the out of control situation. A possible



A Multivariate Control Chart Scheme... 155

way to overcome the second problem is by plotting the values of
every individual variable on separate charts alongside the 7° based
control chart to enable one monitoring the individual variables when
ever T° is out of control. However, this approach may not be
effective as there are cases where out of control are not due to
excessive variations of an individual variable but caused by the
change in the covariance or correlation structure. As such, by
looking at one particular variable at a time does not help in detecting
the root cause of the problem. Principal component chart and
variation mode chart offer some solutions to this (Yang, and Trewn
2004). Principal component chart and variation mode chart can be
used in conjuction to Hotelling’s T?> multivariate control chart as
process diagnosis.

7.4.1. Principal Component Chart

Principal component charts are used in conjunction to Hotelling 7°
chart as the supplementary charts. Any assignable causes are
identified from these principal component charts are studied together
with the Hotelling 7° control chart plotted earlier. Panel dimensional
measurements may indicate variation but the source must be
identified from the components adding to variations in the
dimensional measurement. PCA has the ability to identify major
component which contribute to most variations (Jackson, 1980;
Montgomery, 2005) in real geometrical shape (Yang, and Trewn
2004). The important advantages of PCA are linear combination of
its variables are not related to one another and only a few number of
components that may capture most of the variability in the data set.
As such, not all of the principal components are needed in analyzing
variations. Yang and Trewn (2004) use the principal component
chart on correlation. In this study however, the accompanying
principal component chart to be introduced in based on covariance.
The number of principal component to be chosen is based on
how much the cumulative percentage variation can be explained by
these principal components. Principal component score are
computed for each sub-sample in the reference sample. Based on
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these scores, the principal component chart is graphed. This will be
explained in greater detail under the section on application of control
chart.

7.4.2. Variation mode chart
Variation mode chart by Yang (1996) has been demonstrated as an
effective tool for interpreting geometrical variation form of
automotive panels (Yang, and Trewn 2004). Variation mode chart is
a special PCA procedure developed for dimensional measurement
data. With the purpose of identifying major components that account
for most of the variation in the real geometrical shape, variation
mode approach fit into a multivariate analysis for quality variables
like surface, trim and hole variables of this study. The variation
mode chart is devised such that the interval represented by p +3¢
contains 99.73% of the observations in a normal distribution. This
approach achieves the setting procedures of estimating control limits
of the standard Shewart control chart. The general idea of
geometrical variation mode is that the total dimensional variation of
the data set of one measure point is equal to the summation of the
total variances of the geometrical variation modes. ‘Mode’ in this
scheme is simply a component in the PCA procedure. The variation
mode chart consists of a centerline, variation extent limit 1 (VEL,)
and variation extent limit 2 (VEL,) that resembles the respective
mean, upper limit and control limit of the standard Shewart control
chart. In this form of dimensional variation analysis, the centerline is
E(u) = (0,...,0). Variation extent limits 1 and 2 are

VEL(w) = Bay V4, ...,3a,7VA) N k)

VELx(w) = (-3ay\hy, ....-3a,\A)  ....[4]
ay; is the eigenvector of mode j for variable 1, and A; is the
eigenvalue of mode j. Using the computed VELs, variation mode
chart is graphed for each component. While principal component
chart indicate which component contribute as the source of variation
signaled by the multivariate Hotelling’s 7° chart, variation mode
chart serve to trace the point(s) that account for most variation in that
component. An empirical study on the proposed Phase I multivariate
control charting and its supplementary charts follow next.
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7.5. EMPIRICAL STUDY OF A MALAYSIAN PLANT

This research project on statistical quality control and improvement
focuses on the stamping process of a selected automotive panel,
Reinforced Rear Floor Left Side Member (PW835685), a non rigid
panel that forms the underbody substructure of automotive body-in-
white of a national sedan model. This research is undertaken in a
local automotive stamping plant specializes in the design,
engineering and manufacturing of dies and ‘moulds apart from
producing automotive parts such as car roof, bonnet, fender, door
and body panels. The panel is shown in Diagram 7.2. below.

Diagram 7.2. Reinforced Rear Floor Left Side Member (PW835685)

As documented by the company, the quality definition of the
stamped automotive panel (termed as the panel onwards) is the
quality characteristic that describe the panel. The quality
characteristics are the position of a flange surface dimensions, the
length of trim edges and hole eccentricity (or sometimes termed as
hole axial). These are the geometrical dimension of the panel
categorized into three main dimensional variable namely surface,
trim and hole location. The dimensional measurement are continuous
variables measuring the deviation from the target mean value of zero
measured in unit millimeter (mm). All the quality variables have the
nominal value of zero and their specification limits are all within
limits of 0.5 mm. For didactic reasons, each of the quality attribute
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measurement of the panels is outlined and their respective notations
are as below:
SPi = gap between panel’s flange and jig’s surface
TP; = measurement lengthwise from the panel’s flange end
to the trim line on the jig
HX; = the axial length from panel hole circumference and
its reference line on the jig in X- direction
HY, = the axial length from panel hole circumference and
its reference line on the jig in Y- direction
i is the number of respective measure point on the panel. There are
35 surface measure points, 35 trim measure points and 12 locations
of hole X- and Y-direction eccentricity. The stamping process
involves multiple die operations in a series of presses in Line G.
Four different operations take place in Line G, namely OP10, OP20,
OP30 and OP40.

OP10 OP20 OP30 OP40

Diagram7.3. Stamping Operation of Part PW825685/688 on Line G

Drawing processes OP10 takes place at point G1, where most of the
shaping and forming is done. Draw dies create the part shape by
controlling sheet metal flow from a de-stack feeder into a cavity and
over the forming punch. OP20, involves two operations of trimming
and piercing. Two robotic equipments help loading and controlling
the semi-finished parts from point G1 to feed into the die at point G2
where trimming and piercing operation take place. Piercing is the
metal cutting operation that produced the special-shapes hole in the
formed part. OP30 is called flanging operation. A flanging die wipes
the metal between a punch and a lower die section to create flanges.
During the final operation OP40, the formed part undergoes cam-
cutting and cam-piercing process.
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In this study of the stamping process where parameters are unknown
the scheme proposed is 7° control chart based on rational subgroups.
The process parameters are estimated from some 28 initial subgroups
of size 5 taken from four different production shifts totaling to 105
completed panels.

7.5.1. Variable Selection Analysis

In many other automotive stamping manufacturing plants,
sophisticated measuring systems and automated data acquisition
technologies supports dimensional measurement of automotive
panels. In this manufacturing environment, the measuring work is
automatically performed through Co-ordinated Measuring Machine
(CMM). For this company, however, automotive panel dimensional
measurement work is carried out manually. The measuring work is
conducted manually using hard checking fixtures and measuring
equipments. A caliper is used to measure punched hole X- and Y-
direction and taper gauge is used to measure deviations in surface
and trim.

Variable selection analysis serve to reduce the panel’s dimensional
measurement, hence can avoid overwhelming analysis of all
numerous measurements. Some background information is used to
select variables that should be included for the quality study of
stamping process. This approach is expressed as the exclusion of
quality features before experiment is used (Gnanadesikan 1977). In
this case, the first background information is the Critical-to-quality
(CTQs). With the help of the engineer and the quality team member,
the CTQs are identified as the points which lie on the area where the
panel is matched or termed as ‘married’ to other parts. The second
background information leading to further reduction in number of
measure points is based on exclusion of features by specific
judgment (Gnanadesikan 1977). As suggested by the quality
engineer, only 10 points from the CTQs are selected for surface and
trim variables based on different formability modes on different
locations of a panel.
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7.5.2. Preparing data for Multivariate Analysis

Data collected are screened for any possible problems.
Eigenstructures of Principal Component Analysis (PCA) on
correlation matrix are used to compute condition index (Mason, and
Young 2001) to check on collinearities. Results of these condition
index show values much lower than 30 indicating no collinearities
exist in the covariance matrix of the quality variables.

Autocorrelation functions of variables produced by SAS
JMP8 indicate some presence of autocorrelation. The values,
however, are fairly low and insignificant. Majority of quality
measure points of the quality variables show autocorrelation
functions of less than 0.4 at lag 1. So, the data set is said to be not
affected by autocorrelation (Woodall 2000). Low level of
autocorrelation of this sample data could possibly due to subsamples
of panels which are sampled from different production runs (
Reynolds & Lu, 1997).

Multivariate outlier detection is a vital stage in Phase I
control chart. But before the purging process takes place, the term
outliers must be defined. Ryan (2000) cites Rousseeuw and van
Zomeren (1990) discuss the difficulty of defining the term outlier.
Specification limits of +0.5 mm are as documented by the company.
But since the panel is a non-rigid panel, an ‘acceptable limit’ is of
+1.0 mm is defined for this study. Having defined this, outliers are
those readings measured more than 1.0 mm or less than -1.0 mm.
Those observations falls within this range of measurement (+0.5
mm) but are remotely located from the data swarm will not be
considered as outliers. In locating outliers at this data cleaning stage,
simple graphical technique of ‘box plots of each individual point
measurement are produced. Of the three quality dimensions, box
plots of SP17, TP12 and TP28 are revealed as outliers due to their
large deviations from the nominal value 0. These three point
- variables are, then, dropped and not included in Phase I control
charting. The actual process of outlier deletion will take place in the
later session. Diagram 7.4 depicts boxplot for surface data.
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Diagram 7.4. Box plot for surface data depicts S17 as outlier.

It is noteworthy to examine the possible causes contributing
to the existence of outliers. In this study, inaccurate sampling time,
storage of the panel, and error in measurement reading and recording
are the possible causes of outliers. Storage could be the contributing
factor because panels sampled from different runs are stacked onto
one another. This condition may put force on the lower panels and
consequently contribute to inaccurate readings of surface
measurement. But storage factor will not in any way effect trim and
hole eccentricity measurement reading. Existence of outliers could
also be due to error in measurement reading and recording. Here,
data are recorded manually on check sheets and not by electronic
recording. Error in dimensional measurement reading is likely to
occur for this task is very work intensive and strenuous in nature.
This is not the case in many other automotive stamping plants where
measuring systems are supported by the measuring machine (CMM).

7.5.3. Reducing Geometrical Dimension

Variable selection based on judgments has reduced measure points to
10 for each trim and surface. At the data cleaning stage, SP17, TP12
and TP28 are dropped for they are detected as outliers. The
‘mathematics’ of multivariate methods require the number of
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variables, p to be more than number of observations, n. As sampling
design employed is rational subgroup of size 5, the quality variables
must be further reduced to only 4 measure points for surface and
trim quality variables. Dimensional reduction is performed for the
second time through factor analysis of PCA. SAS JMPS is used for
this purpose as this software allows the option of using principal
components as initial factors. All PCA analyses were carried out
through varimax rotation with Kaiser normalization.

The general rule is the number of eigenvalues greater than
unity should suggest the number of factor components accountable
for the variation in the data set (Manly 2005). These are factors
contributing to most variation. Extract of the reports display two to
four eigenvalues greater than unity as shown in Diagram 7.6.(surface
and trim). But the selection of point variables would only be made
based on two factor components because the objective of selection at
this stage is only reducing number of points for control charting

purposes.
Selected surface

DD NDO A WN

1.4361 17.852 40.139
11208 14.004 \

09544  11.830 \ 66.073
10747

07652  9.565 86.384
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Diagram 7.6. Eigenvalues of PCA for quality variables
The other important result of PCA is factor analysis. Factor
loadings of factor analysis determine the variable assigned to most
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variation as explained by the factor. Variables with high factor
loadings (0.50 or more) indicate the variable is related to that factor
component. Three different reports are produced for the three quality
variables. Factor loadings of the three PCAs are used to finally select
the surface and trim variables for control charting scheme. Only the
four variables with high factor loadings are considered while those
variables with low loadings are discarded from the selection list. The
four measure points selected for control charting purposes are SP9,
SP12, SP26, SP30 for surface feature and TP1, TP9, TP26 and TP32
for trim feature. Table 7.3. lists the measure points finally selected
by factor analysis.

Surface SP9 SP12 SP26 SP30
Trim TP1 TP TP26 TP32
Hole X-direction HX4 HX5 HX6
Hole Y-direction HY4 HYS HY6

Table 7.3. The selected measure points for control charting scheme
7.5.4. PhaseI Control Chart

The multivariate outlier analysis of the quality variables is
made based on the subgroup analysis, thus, the presence of outliers is
observed from 28 subgrouped observations, not from 105 individual
observations. In the outlier deletion approach, T° statistics of all
subgrouped observations in the data set is computed using equation
[1]. For @ = 0.001, the upper control limit (UCL) is computed by
equation [2]. From Pass 1 (term used by Mason & Young, 2001)
observation subgrouped vectors whose T° values are less than or
equal to the upper control limit (UCL) will remain in the data set, but
if observation vector is found to have to value greater than the UCL,
it will be discarded from the data set. The set of data then goes
through a second pass with the new estimated mean vector and
covariance matrix and the iterative process begins. Any outliers
detected will be removed and the process is repeated until a
homogeneous set of observations is obtained. Separate outlier
analysis is performed for each quality feature. '
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For descriptive purpose, only the purging process of 28
subgrouped surface data is briefly explained below. Pass 1 of
purging process result in 7 subgroup outliers exceeding the upper
control limit of 32.01. Afier discarding the seven outliers, the second
pass does not produce any more outliers with UCL of 33.67.
Diagram 7.7. below exhibits the Hotelling’s 7° control charts for
outlier purging process with UCL calculated at o = 0.001.

Pass 1 Pass 2
ucL=33.87
1204 304
- /\ g
- AAIV ”.
[ [
04 [re
w0y 104
bt WI U I \ ke
H u » B 2 s 10 " 20
SubBmpl
Subgroup Outliers — 1, 18, 19, 22, 24, 26, 27. No subgrouped outlier detected

Diagram 7.7. Purging the outliers of surface data

Similar multivariate outlier analysis is performed on 28
subgrouped data of trim and hole. 8 outliers of trim data are detected
at Pass 1 while all 7° statistics of subgroup means are way below the
UCL at Pass 2. Multivariate outlier analysis on hole data set only
purge out two subgroups outlier on two separate passes and no more
outliers detected at the third pass. Detecting for outliers is of
paramount importance that failure to discard them will affect the
parameter estimation of control chart for monitoring purposes at
Phase II. The homogeneous set of data would be the reference
sample for Phase II control charting. After discarding the outliers,
the set of data variables are used for parameter estimation which is
automatically computed by the software. These are the baseline
parameters for computing the control limit of Phase II control chart
for the actual process monitoring operation.

7.5.5. Principal component chart

Principal component analysis (PCA) on covariance matrix is applied
in this study because the original variables i.e. all the dimensional



component (PCA2).
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measurements have the same meanings and are in the same unit
(millimeter) (Yang, and Trewn 2004). PCA on covariance matrix is
run on the ‘cleaned’ subgroup data. To illustrate this process, the
final set of selected surface data (SP9, SP12, SP26 and SP30) with a
total of 105 panels from four different production runs is utilized.
The JMP8 outcome of PCA on covariance matrix for the data is
shown as in Diagram 7.7. This printout displays the eigenvalues and
eigenvectors of the sample covariance matrix. The percentage of
cigenvalue for the principal component numbered 1 (PCA1) shows
that 51.1% of variation is explained by the first principal component
while 23.9% of the variation is explained by the second principal

Eigenvalue Percent

00536 51.129

0.0251 23.932

00155 '14.754

0.0107  10.184
Eigenvectors ’
SP9 -0.06504 247240 228113 8.46870
§P12 038464 571946 0.21957 -3.99477
SP26 236990 -1.00720 6.43%09 -1.73040
SP30 3.58939  0.00690 -4.23362 1.72403

Note: Eigenvectors were divided by square root of eigenvalues.
Diagram 7.8. PCA on covariance for surface

Based on the eigenvalues and eigenvectors of the PCA on
covariances of subgrouped data, PCA charts are developed to find
the causes of variation Component 1 or 2. Using these principal
component values are the scores, two principal component charts are
plotted at o = 0.0027. These charts are shown in Diagram 7.9.
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Diagram 7.9. Principal Component Chart of Prin] and Prin2

For interpreting purposes, it is best to keep both Hotelling 7>
control chart and the principal component chart together. Each
principal component is associated with a special type of correlated
variation. Hence, any subsample that is out-of-control and has a very
high principal component score on a component, this would be the
extreme case for the cause of variation. The other case would be
when an observation is found to be out-of-control in the Hotelling 7°
chart but is in control in each of the principal component chart, this
simply indicate that the known principal component cannot be used
to explain the variation for which further investigation may be
needed.

7.5.6. Variation mode chart — Final Selected Surface

Eigenstructures of PCA output produced for principal
component chart is used to plot variation mode chart. Principal
components 1 and 2 each explain more than 70% of total variation of
the final selected surface points. The eigenvalues of the first and
second component are 0.0536 and 0.0251 respectively Eigenvectors
of these surface points are utilized to estimate the VEL1 and VEL2
of both principal components 1 and 2 using equation [3] and [4].The
center line of this dimensional variation is E(w;) = (0,...,0).

VEL, (mod e1) = (0.0294,-0.0105, 0.1248, 0.5428,..., 0.3948)

VEL, (mod e1) = (-0.0294,0.0105, - 0.1248, - 0.5428,...,0.3948)

The values of the two variation extent limits are exhibited in
Table 7.3. Values of variation extend limits are used to plot two
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variation mode charts for the first principal component is illustrated
as Table 7.3.

Mode (PC) 1 Mode (PC) 2
VEL1 VEL2 VEL1 VEL2
SP3 -0.0454 0.0454 1.1751 -1.1751
SP12 0.2672 -0.2672 2.7184 -2.7184
SP26 1.6460 -1.6460 -0.4787 0.4787
SP30 0.0673 -0.0673 0.4606 -0.4606

Table 7.3. Variation extent limit (VEL) for Mode 1 and 2

With 51% of the total variation in the surface of the panel is
explained by Mode 1, SP26 has the highest VEL values. This may
indicates large variations of surface panel contributed by SP26 can
be explained by the first component. Similarly, large variation exists
in SP12 is identified from its large VEL of Mode 2, suggesting the
cause of variation is from component 2. These variation mode charts,
however, do not explain for variation of SP9 and SP30. The
variation mode charts 1 and 2 are illustrated in Diagram 7.10.

Variaion Mode Chast (Mode 1) VaiaionMode Chart (Mode 2)
Final Sefected Sudace Selected Final Susface

Diagram 7.10. Variation mode charts of PCA1 and PCA2 for final selected surface
measure points

When new subgroups data is drawn, Phase II multivariate
Hotelling T° control chart can be plotted based on the parameter
estimated from Phase I. Supplementary principal component charts
can be plotted to analyze any signal produced by the T° control chart.
Principal component chart help to diagnose the source of variation
from signaling out-of-control condition in the respective component
chart. For instance, if Principal Component chart (PC1) signal out-
of-control condition, Component 1 could be the attribute of variation
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in the process. Variation mode chart of a component can further
rectify specific location on the panel from where variation has
occurred.

8. CONCLUSION AND FURTHER DIRECTION

With the multivariate nature of manufacturing data, multivariate
statistical techniques and quality monitoring of automotive stamping
process is actually inseparable. In this study, Phase I Multivariate
Hotelling’s 7° control chart is presented for quality monitoring of
automotive stamping process based on panel’s dimensional
measurement. Phase I control chart is utterly important as it ensure
the effectiveness of Phase II control chart where the actual process
control operation goes on board. Principal component chart and
variation mode chart are the other two multivariate techniques
proposed as the analysis and diagnosis tools to process control and
monitoring. Phase II of multivariate control chart of automotive
stamping process is the most appropriate future direction to this
research. Local automotive stamping plants must embark on
sophisticated measuring systems and automated data acquisition
technologies to support dimensional measurement of automotive
panels. Only with the availability of good and sufficient data,
research on effective automotive stamping process monitoring can
be set in motion.
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