4 research outputs found

    Multivariate sensor data analysis for oil refineries and multi-mode identification of system behavior in real-time

    Get PDF
    Large-scale oil refineries are equipped with mission-critical heavy machinery (boilers, engines, turbines, and so on) and are continuously monitored by thousands of sensors for process efficiency, environmental safety, and predictive maintenance purposes. However, sensors themselves are also prone to errors and failure. The quality of data received from these sensors should be verified before being used in system modeling. There is a need for reliable methods and systems that can provide data validation and reconciliation in real-time with high accuracy. In this paper, we develop a novel method for real-time data validation, gross error detection and classification over multivariate sensor data streams. The validated and high-quality data obtained from these processes is used for pattern analysis and modeling of industrial plants. We obtain sensor data from the power and petrochemical plants of an oil refinery and analyze them using various time-series modeling and data mining techniques that we integrate into a complex event processing engine. Next, we study the computational performance implications of the proposed methods and uncover regimes where they are sustainable over fast streams of sensor data. Finally, we detect shifts among steady-states of data, which represent systems' multiple operating modes and identify the time when a model reconstruction is required using DBSCAN clustering algorithm.Turkish Petroleum Refineries Inc. (TUPRAS) RD CenterPublisher versio

    Case study of Block 1, Highland Towers Condominium collapsed in Taman Hillview, Ulu Klang, Selangor, Malaysia on 11th December 1993

    Get PDF
    Landslide has become the primary focus in slope engineering as the case increases. Most landslides are resulted from an unknown confluence, and most occur on slopes created by humanity. Highland Towers were built between 1976 and 1979, and its occupants were primarily first and middle-class people. There is a steep hill behind the three blocks. The main draws here are the natural scenery and panoramic vista of Kuala Lumpur. This case study investigates what factors led to Block 1, Highland Towers condominium’s collapse on 11th December 1993 at 1.35 p.m. using reliability analysis approaches and human fault impact factors. The Block 1 collapse is caused by an unstable pile foundation. The engineers incorrectly estimated the horizontal load design, causing surcharge loads to be created by the downhill forward movement when the rotating retrogressive slide happens. However, several precautions may be taken to protect the building structures from landslide. It is common knowledge that structural reliability analysis yields failure probabilities that are not considered for human faults. Inadequate drainage, collapse of retaining wall, and rail piling foundation are all plausible explanations for this landslide initiation. Thus, combining structural and human reliability analysis are recommended to mitigate landslide, including slope hazards

    Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets

    Get PDF
    This paper proposes a novel approach to optimize the main energy consumptions of heavy oil refining industries (ORI) in response to electricity price uncertainties. The whole industrial sub-processes of the ORI are modeled mathematically to investigate the joint power-heat flexibility potentials of the industry. To model the refinery processes, an input/output flow-based model is proposed for five main refining units. Moreover, the role of storage tanks capacity in the power system flexibility is investigated. To hedge against the electricity price uncertainty, an uncertain bound for the wholesale electricity price is addressed. To optimize the industrial processes, a dual robust mixed-integer quadratic program (R-MIQP) is adopted; therefore, the ORI’s operational strategies are determined under the worst-case realization of the electricity price uncertainty. Finally, the suggested approach is implemented in the south-west sector of the Iran Energy Market that suffers from a lack of electricity in hot days of summer. The simulation results confirm that the proposed framework ensures industrial demand flexibility to the external grids when a power shortage occurs. The approach not only provides demand flexibility to the power system, but also minimizes the operation cost of the industries

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable
    corecore