9 research outputs found

    D'ya like DAGs? A Survey on Structure Learning and Causal Discovery

    Full text link
    Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships from data, we need structure discovery methods. We provide a review of background theory and a survey of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss the assumptive leap required to take us from structure to causality.Comment: 35 page

    Graphical models for de novo and pathway-based network prediction over multi-modal high-throughput biological data

    Get PDF
    It is now a standard practice in the study of complex disease to perform many high-throughput -omic experiments (genome wide SNP, copy number, mRNA and miRNA expression) on the same set of patient samples. These multi-modal data should allow researchers to form a more complete, systems-level picture of a sample, but this is only possible if they have a suitable model for integrating the data. Due to the variety of data modalities and possible combinations of data, general, flexible integration methods that will be widely applicable in many settings are desirable. In this dissertation I will present my work using graphical models for de novo structure learning of both undirected and directed sparse graphs over a mixture of Gaussian and categorical variables. Using synthetic and biological data I will show that these models are useful for both variable selection and inference. Selecting the regularization parameters is an important challenge for these models so I will also cover stability based methods for efficiently setting these parameters, and for controlling the false discovery rate of edge predictions. I will also show results from a biological application to data from metastatic melanoma patients where our methods identified a PARP1 slice site variant that is predictive of response to chemotherapy. Finally, I present work incorporating miRNA into a pathway based graphical model called PARADIGM. This extension of the model allows us to study patient-specific changes in miRNA induced silencing in cancer

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page

    Discovering causal relations and equations from data

    Get PDF
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws, and principles that are invariant, robust, and causal has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventions on the system under study. With the advent of big data and data-driven methods, the fields of causal and equation discovery have developed and accelerated progress in computer science, physics, statistics, philosophy, and many applied fields. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for data-driven causal and equation discovery, point out connections, and showcase comprehensive case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is revolutionised with the efficient exploitation of observational data and simulations, modern machine learning algorithms and the combination with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page
    corecore