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It is now a standard practice in the study of complex disease to perform many high-throughput  

-omic experiments (genome wide SNP, copy number, mRNA and miRNA expression) on the 

same set of patient samples. These multi-modal data should allow researchers to form a more 

complete, systems-level picture of a sample, but this is only possible if they have a suitable 

model for integrating the data. Due to the variety of data modalities and possible combinations of 

data, general, flexible integration methods that will be widely applicable in many settings are 

desirable. In this dissertation I will present my work using graphical models for de novo structure 

learning of both undirected and directed sparse graphs over a mixture of Gaussian and 

categorical variables. Using synthetic and biological data I will show that these models are useful 

for both variable selection and inference. Selecting the regularization parameters is an important 

challenge for these models so I will also cover stability based methods for efficiently setting 

these parameters, and for controlling the false discovery rate of edge predictions. I will also show 

results from a biological application to data from metastatic melanoma patients where our 

methods identified a PARP1 slice site variant that is predictive of response to chemotherapy. 

Finally, I present work incorporating miRNA into a pathway based graphical model called 

PARADIGM. This extension of the model allows us to study patient-specific changes in miRNA 

induced silencing in cancer. 
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1.0  INTRODUCTION 

In the Era of Big Data researchers are presented with many new problems that standard statistical 

methods and models are not equipped to handle. The statistics and machine learning literature is 

ripe with novel approaches that may fit the needs of a given biological problem, but there are 

often hurdles to adapt these approaches to a given problem, including parameter selection, 

computational requirements, and normalization issues. This dissertation sits at the intersection of 

statistics and biology and therefore I will endeavor to present methods and models that are 

adaptable to a wide variety of biological problems and systems while presenting potential users 

with guidelines for the use of these tools.  

Integrative analysis of data of different modalities and different sources is a common task 

in biomedical research. In particular, finding relationships between continuous and categorical 

variables with several levels can be challenging as it often requires non-intuitive methods such as 

conversion of categorical variables to binary dummy variables. We explore this mixed variable 

type setting in depth in this dissertation, and present strategies for learning both undirected and 

directed graphical models over these data. 

Using directed modes to predict causal relationships between variables is especially 

desirable in the study of human disease, as we would like to be able to treat the aberrant biology 

that is causing the disease rather then the downstream variables that are merely side effects of the 

change in the causal variable. We focus on the difficult problem of predicting causality from 
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observational data here which is common for exploratory studies in modern biology. 

Relationships predicted by our models are candidates for validation in directed laboratory 

experiments. Recently, high-throughput knockdown experiments have been performed to study 

causal relationships at genomic scale. While this data is invaluable for causal modeling in 

biology, these types of experiments are still expensive and relatively new, so we aim to be 

widely applicable to the enormous body of observational data currently available. We anticipate 

that as these large-scale perturbation studies become more wide-spread they will be a valuable 

source of data for both validation of and integration with causal search algorithms. 

In this dissertation I will present several tools for integrative analysis of multiple types of 

data. Chapters 2 and 3 focus on finding networks of interactions between these multimodal data. 

Although there are large-scale databases of known interactions between DNA, RNA, protein and 

other epigenetic factors, we initially focus on de novo methods which search for interactions 

without any prior knowledge as a proof of concept, to allow for validation with prior knowledge 

and to allow for integration of variables that do not have good coverage in the literature such as 

clinical tests, patient traits, and newer biological data types. Chapter 2, adapted from an article 

we recently published (Sedgewick et al. 2016), presents work on learning undirected networks 

over mixed variable types. Chapter 3 uses the methods from chapter 2 as a starting point for 

directed causal search algorithms. In chapter 4 (adapted from (Abecassis et al. 2015)) I present 

an in depth look at a successful application of these network search algorithms to a cohort of 

patients with metastatic melanoma where we were able to identify a single nucleotide 

polymorphism (SNP) that predicts how patients will respond to treatment. Finally, in chapter 5 I 

tackle the problem of integrative network analysis from the other direction by extending 
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PARADIGM, an algorithm that depends heavily on prior knowledge of biological pathways, to 

handle a new type of data, miRNA. 
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2.0  UNDIRECTED GRAPHICAL MODELS WITH MIXED VARIABLES 

Mixed graphical models (MGMs) are graphical models learned over a combination of continuous 

and discrete variables. These models provide both a network structure and a parameterized joint 

probability density over these heterogeneous variables, which are common in biomedical 

datasets. The network structure reveals the direct associations between variables and the joint 

probability density allows one to ask arbitrary probabilistic questions on the data. This 

information can be used for feature selection, classification and other important tasks. We 

studied the properties of MGM learning and applications of MGMs to high-dimensional data 

(biological and simulated). Our results show that MGMs reliably uncover the underlying 

undirected graph structure, and, when used for classification, their performance is comparable to 

popular univariate methods (lasso regression and support vector machines). We also show that 

imposing separate sparsity penalties for edges connecting different types of variables 

significantly improves edge recovery performance. To choose these sparsity parameters, we 

propose an efficient model selection method based on an existing method, stability approach to 

regularization selection (StARS). We call this approach Stable Edge-specific Penalty Selection 

(StEPS). MGMs produced by StEPS outperform models selected using standard techniques 

(including AIC, BIC and cross-validation) in edge recovery. In addition, our method uses a 

heuristic search that is linear in size of the sparsity value search space as opposed to the cubic 

grid search required by other model selection methods. An MGM learned over mRNA 
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expression and clinical data from the Lung Genomics Research Consortium correctly recovered 

connections between the diagnosis of obstructive or interstitial lung disease, two diagnostic 

breathing tests, and cigarette smoking history. Our model also suggested biologically relevant 

mRNA markers that are linked to these three clinical variables. 

2.1 BACKGROUND 

Integrating biomedical datasets from different data streams (e.g., -omics, clinical) and of 

different types (continuous, discrete) is of utmost importance and has become an analysis 

bottleneck in biomedical research. Ideally, one would like to be able to uncover all direct 

associations between variables and/or perform feature selection and classification tasks using all 

data. The first task can reveal disease mechanisms and the second can be used to select variables 

characteristic of disease status, therapy outcome or any other variable of clinical importance. 

Graphical models have been used in the past for both of these tasks, but they are often limited to 

datasets with discrete-only or continuous-only variables. Traditional univariate approaches for 

feature selection exist as well, but they also often operate on a single data type. In addition, due 

to the high dimensionality and co-linearity of biological data, markers selected by these standard 

feature selection algorithms can be unstable and lack biological relevance (Abeel et al. 2010), a 

problem that has recently been addressed directly (Huang et al. 2014). Many existing models that 

do integrate different data types make heavy use of prior knowledge (Sedgewick et al. 2013; 

Wang et al. 2013) and as such are not easily extendable to clinical and other data that are not 

well studied. As a result, although numerous biomedical data sets exist with genomic, 



6 

transcriptomic, epigenetic and phenotypic data for each sample, a general framework for 

integrative analysis of these heterogeneous data is lacking.  

In this chapter, we study several strategies for learning the structure of graphical models 

over mixed data types (discrete and continuous) to produce statistically and biologically 

meaningful predictive models. We measure the performance of these strategies in synthetic data 

(via true edge recovery) and biological data (via functional enrichment and performance on 

classification tasks). 

The major contributions of this work are threefold. First, we apply an MGM, proposed by 

Lee and Hastie (Lee and Hastie 2013), to simulated and biological datasets. These datasets have 

higher dimensionality and are derived from more complicated network structures than datasets 

used in previous work with this model. Second, we propose the use of a separate sparsity penalty 

for each edge type in the MGM, which significantly improves performance. Third, to assist with 

setting the sparsity parameters we use a heuristic search, StEPS, based on an existing model 

selection method (StARS) (Liu et al. 2010), that outperforms standard methods.  

2.1.1 Prior work 

Graphical models are a natural tool for decoding the complex structure of heterogeneous data 

and allow for integration of many data types. They learn a network of statistical dependencies 

subject to a joint probability distribution over the data. Mixed graphical models (MGMs) are 

graphical models learned over a mixture of continuous and discrete features.  

A fully specified conditional Gaussian MGM, as characterized by Lauritzen & Wermuth 

(Lauritzen and Wermuth 1989), would require different continuous distribution parameters for 

every possible setting of the discrete variables. Restricting ourselves to “homogeneous” models, 



7 

which use a common covariance matrix for continuous variables independent of the discrete 

variable values, is therefore necessary to avoid trying to learn a parameter space that is 

exponential in the number of variables. Similar to pairwise Markov Random Fields over only 

discrete variables, the main hurdle to the calculation of likelihood in MGMs is calculation of the 

partition function. This computation is intractable with a large number of discrete variables 

because it requires summing over all possible discrete variable settings. Two approaches to get 

around this partition function calculation are: (1) learn separate regressions of each variable 

given all of the others (Fellinghauer and Bühlmann 2011; Chen et al. 2014; Yang et al. 2014), 

and (2) maximize a tractable pseudolikelihood function instead of the actual likelihood (Lee and 

Hastie 2013). 

Performing separate regressions is a common approach to the MGM learning problem. 

This class of methods learns a conditional distribution for each node given the rest. Examples of 

this strategy include estimation of the sparse inverse covariance matrix of a multivariate 

Gaussian by Meinshausen and Bühlmann (Meinshausen and Buehlmann 2006), and estimation of 

mixed variable networks via random forests (Fellinghauer and Bühlmann 2011) or exponential 

families (Chen et al. 2014; Yang et al. 2014). Alternatively, the pseudolikelihood, proposed by 

Besag (Besag 1975), is a consistent estimator of the likelihood, and is defined as the product of 

the conditional distributions of each node given the rest. Both of these approaches thus avoid 

calculation of the partition function for the joint distribution by substituting the conditional 

distributions of each node into the optimization problem. Separate regressions offer flexibility 

and are easily parallelized, but in both the continuous (Friedman et al. 2008) and mixed cases 

(Lee and Hastie 2013) estimating the parameters by maximizing the likelihood or 

pseudolikelihood, respectively, has the advantage of better empirical performance. Because of 
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this we chose the focus our efforts on the MGM learning approach via pseudolikelihood, as 

proposed in Lee and Hastie (Lee and Hastie 2013).  

Although Lee and Hastie do not test their algorithm on high-dimensional data, we find 

that their model is well suited for high-dimensional learning due to their inclusion of a sparsity 

penalty on the parameters. An important issue that we ran into in our experiments was that the 

model would often select too many continuous-continuous edges and too few edges involving 

discrete variables. This is likely a combination of the phenomenon observed in (Chen et al. 2014) 

where linear regressions have better edge prediction performance than logistic regression 

between the same nodes and the fact that Lee and Hastie use the same sparsity penalty on all 

edges regardless of the type(s) of nodes they connect. Lee and Hastie use a weighting scheme to 

take into account discrete variables with differing numbers of categories, but this does not solve 

this problem. Therefore, in this paper we introduce a new regularization method for the Lee and 

Hastie’s model that uses a different penalty for each type of edge: continuous-continuous, 

continuous-discrete, and discrete-discrete. In addition, because this approach creates more 

parameters for the user to set, we present an edge stability based method for selecting the three 

sparsity parameters. We call the combination of using separate sparsity penalties with our 

heuristic search Stable Edge-specific Penalty Selection (StEPS). 



9 

2.2 METHODS 

2.2.1 Mixed Graphical Models 

Lee and Hastie (Lee and Hastie 2013) parameterize a mixed graphical model over p Gaussian 

variables, x, and q categorical variables, y, as a pairwise Markov Random Field. Here we briefly 

summarize their model: 

!(!,!,!) ∝ exp − 12!!"!!!!
!

!!!

!

!!!
+ !!!!

!

!!!
+ !!" !! !!

!

!!!

!

!!!
+ !!"(!! ,!!)

!

!!!

!

!!!
 

In this model !!" represents the interaction between two continuous variables, !! and !!, 

!!" !!  is a vector of parameters that correspond to the interaction between the continuous 

variable !! and the categorical variable !! indexed by the levels (i.e. categories) of the variable 

!!, and !!"(!! ,!!), is a matrix of parameters indexed by the levels of the categorical variables 

!!, and !!. In the continuous only case, this model reduces to a multivariate Gaussian model 

where the !!" parameters are entries in the precision matrix. In the categorical only case, this 

model is the popular pairwise Markov random field with potentials given !!"(!! ,!!); and it 

could parameterize an Ising model as in the binary-only case, for example. Thus the model 

serves as a generalization of two popular uni-modal models to the multi-modal regime. 

In order to avoid the computational expense of calculating the partition function of this 

model, Lee and Hastie optimize the negative log pseudolikelihood, which is:  

! ! !,!) =  − log ! !! !\!,!;! −  log! !! !,!\!;  !)
!

!!!

!

!!!
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where !\! is short hand for the set of all !! where ! ≠ !. To ensure a sparse model, ! is 

minimized with respect to a sparsity penalty, !: 

minimize! ! Θ +  ! !!"
!!!

 +  !!" !
!,!

+  !!" !
!!!

 

where Θ is a shorthand for all of the model parameters. The parameter matrices ! and ! are 

symmetric, so only half of each matrix is penalized. Lee and Hastie use an accelerated proximal 

gradient method to solve this optimization problem. 

A standard way of handling a categorical variable with L levels is to convert the variable 

to L-1 indicator variables where the last level is encoded by setting all indicators to zero, this is 

necessary to ensure the linear independence of variables in the regression problem. This can lead 

to some ambiguity about the choice of the last level and how to interpret the regression 

coefficients. In contrast, Lee and Hastie’s MGM approach uses L indicator variables (i.e. the 

elements of !!" !!  and !!"(!! ,!!)) to improve interpretability of the model, and enforces a 

group penalty to ensure the indicator coefficients sum to zero. 

To perform our experiments we adapted the Matlab code provided by Lee and Hastie 

(available at http://web.stanford.edu/~jdl17/learningmgm.html). 

2.2.2 Separate Sparsity Penalties 

Our main modification to the Lee and Hastie model itself is that we use different sparsity 

penalties for the three edge types: edges connecting two continuous nodes (cc), edges connecting 

a continuous and discrete node (cd) and edges connecting two discrete nodes (dd). With these 

penalties, the new optimization problem becomes: 
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minimize! ! Θ +  !!! !!"
!!!

 +  !!" !!" !
!,!

+  !!! !!" !
!!!

 

2.2.3 Methods for Model Selection 

K-fold cross-validation (CV) (Efron 1982) splits the data into K subsets and holds each set out 

once for validation while training on the rest. We use K=5 and average the negative log-

pseudolikelihood of the test sets given the trained models.  

The Akaike information criterion (AIC) (Akaike 1998) and Bayes information criterion 

(BIC) (Schwarz 1978) are model selection methods that optimize the likelihood of a model based 

on a penalty on the size of the model represented by degrees of freedom. To calculate the AIC 

and BIC, we substitute the pseudolikelihood for the likelihood and we define the degrees of 

freedom of the learned network as follows.  

In the standard lasso problem, the degrees of freedom is simply the number of non-zero 

regression coefficients (Zou et al. 2007). So, in the continuous case, the degrees of freedom of a 

graphical lasso model is the number of edges in the learned network. In the mixed case, edges 

incident to discrete variables have additional coefficients corresponding to each level of the 

variable. Lee and Hastie’s MGM uses group penalties on the edge vectors, !, and matrices, !, to 

ensure that all dimensions sum to zero. So, in the model, an edge between two continuous 

variables adds one degree of freedom, and edge between a continuous variable and a categorical 

variable with L levels adds L-1 degrees of freedom, and an edge between two discrete variables 

with Li and Lj levels adds (Li – 1)(Lj  - 1) degrees of freedom.  

We compare these model selection methods to an oracle selection method. For the oracle 

model, we select the sparsity parameters that minimize the number of false positives and false 
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negatives between the estimated graph and the true graph. While we do not know the true graph 

in practice and none of the other methods use the true graph, this method shows us the best 

possible model selection performance under our experimental conditions. 

AIC, BIC, and CV all require calculating the pseudolikelihood from a learned model so 

to optimize over separate sparsity penalties for each edge type, we perform a cubic grid search of 

!!!, !!", and !!! over . 64, .32, .16, .08, .04 . 

2.2.4 Stability for Model Selection 

Here we briefly present the StARS procedure (Liu et al. 2010) reformulated in terms of ! rather 

than ! =  1 ! as was originally described. Given a dataset with n samples, StARS draws N 

subsamples of size b without replacement from the set of !!  possible subsamples. An MGM 

network is learned for each subsample over a user specified set of values and a single sparsity 

parameter, !. The adjacency matrices from these learned models are used to calculate , !!"(!), 

the fraction of subsample networks that predict an edge from node s to node t. Using this value 

we can then calculate edge instability, !!"(!) = 2!!"(!)(1−  !!" ! ), which is the empirical 

probability of any two subsample graphs disagreeing on each possible edge at each value of !. 

Liu et al define total instability of the graph, !(!), as the average of !!"(!) over all edges: 

!(!) =  !!"(!)!!!
!!!
!

. Very low values of ! will result in very dense but stable graph, which is not 

desirable. To avoid this, StARS monotonizes the instability: !(!) = sup!!! !(!) and selects 

! = inf ! ∶  ! ! ≤ !  where ! is a user defined threshold (called ! in (Liu et al. 2010)). In 

other words, starting with a large value of ! that produces an empty graph, we reduce ! until the 

total instability hits the given threshold.  
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2.2.5 Stable Edge-specific Penalty Selection (StEPS) 

We modified the StARS procedure to accommodate selection of separate ! for each edge type. 

We now define the total instability over each edge type instead of the entire graph: !!!(!) =

 !!"(!)!!
!
!

, !!"(!) =  !!"!" (!)
!" , !!!(!) =  !!"(!)!!

!
!

. Given these separate estimates of total 

instability, we then perform the rest of the StARS algorithm for !!!, !!", and !!! independently. 

This approach does not require any additional model learning, the only extra computations in this 

approach compared to the standard, single penalty StARS are the additional averages, which are 

trivial to calculate. Because the subsample network learning uses the single penalty MGM, this 

procedure is linear in the size of the parameter search space. Based on the suggestions in (Liu et 

al. 2010), and the default parameters in the R implementation of StARS (Zhao et al. 2012), we 

use ! = 20, ! = 10 !, and ! =  .05. 

2.2.6 Simulated Network Data 

We generated 20 scale-free networks of 100 variables each, based on the framework of Bollobás 

et al (Bollobás et al. 2003) but ignoring edge direction. So, given a number of nodes to connect, 

we start with an edge between two nodes and the rest of the nodes unconnected, we iteratively 

add edges until all nodes are connected. At each edge addition, we connect two non-zero degree 

nodes with probability .3; and we connect a node i with degree 0 to a node j with non-zero 

degree with probability 0.7. In each case, the non-zero degree nodes are selected randomly with 

probability proportional to their degree: !"#$""(!)
!"#$""(!)! ∈!

. 
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For each network we simulated two datasets of 500 samples with 50 continuous and 50 

categorical variables. Each categorical variable had 4 levels. The parameters in one dataset were 

set so that discrete-continuous and discrete-discrete edges had approximately linear interactions, 

while the other dataset did not have this constraint. Each edge, from node s to node t is given a 

weight, wst, drawn uniformly from [.5, .8]. For continuous-continuous edges we chose a sign 

with even probability and set !!" =  !!" or !!" =  −!!". To ensure the ! matrix is positive 

definite, we set the diagonal elements the largest value of the sum of the absolute value of the 

edge weights over each node. For continuous-discrete edges, in the linear dataset we set 

!!" = −!,−.5!, .5!,!  (so if the levels of a discrete variable are coded as adjacent integers it 

can be treated as a continuous variable and will have a linear relationship with neighboring 

nodes) and in the non-linear data we set !!" = !"#$ −!,−.5!, .5!,! , where perm is a 

random permutation of the elements in the vector. For discrete-discrete edges we set the diagonal 

of !!" !! ,!!  to wst and the rest to -wst, while in the non-linear data we randomly set one 

parameter in each column and row to wst and the rest to -wst.. 

2.2.7 Lung Chronic Disease Data 

The Lung Genomics Research Consortium (LGRC) contains multiple genomic datasets and 

clinical variables for two chronic lung diseases: chronic obstructive pulmonary disease (COPD) 

and interstitial lung disease (IDL). We used two data types from LGRC: gene expression profiles 

(15,261 probes) and clinical data for 457 patients (COPD N=215; ILD N=242). To expedite the 

execution time and avoid sample size problems, we only used the 530 most variant expression 

probes and 8 clinical variables: age, height, weight, forced expiratory volume in one second 

(FEV1), forced vital capacity (FVC), gender, cigarette history, and diagnosis (COPD or ILD). 
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Age, height, weight and the spirometry variables (FEV1 and FVC) were divided into tertiles. 

Diagnosis was used for classification experiments.  

2.2.8 Graph Estimation Performance 

Non-zero MGM edge parameters correspond to a prediction of the presence of that edge. For 

edges with multiple parameters, (i.e. !!" !!  and !!" !! ,!! ) if any of the parameters are non-

zero we predict the edge is present. We use accuracy, precision and recall to evaluate edge 

recovery in our predicted graphs: precision is the ratio of true edge predictions to all edge 

predictions; recall is the ratio of true edge predictions to all edges in the true graph; accuracy is 

the ratio of true predictions to all predictions (in this case true prediction includes the correct 

predictions of the presence or absence of an edge); and the F1 score is the harmonic mean of 

precision and recall. In addition we consider the Matthews’ correlation coefficient (MCC) 

(Matthews 1975) which provides a correlation between the presence of edges in the true and 

predicted graphs. MCC is formulation of Pearson’s correlation for two binary variables so values 

of 1 correspond to perfect agreement between the variables, -1 to all disagreements, and 0 to 

random guessing. This measure is robust to unbalanced nature of the problem where in the true, 

sparse graph edge absence is much more frequent than edge presence. 

2.2.9 Functional Enrichment and Classification 

For evaluation of the performance of various MGMs and other models on real data we used 

functional enrichment analysis of external databases and classification analysis over specific 

variables in the network, including disease diagnosis (for clinical datasets).  
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Gene annotations were retrieved from the Gene Ontology (GO) database (Consortium 

2015) and we used the hypergeometric test to determine if sets of selected genes were 

overrepresented for any of these annotations (i.e. more occurrences of a given annotation were 

observed than we would expect from randomly selected genes). 

Given the parameters learned from training data, !!"#$%, we make predictions on any 

categorical variable, !!"#$%!, in a testing dataset given the rest of the variables by selecting the 

category minimizes the negative log pseudolikelihood of the test data given the trained model:  

!!"#$%! = !"#$%&!!"#$%!  ! (!!"#$%; !!"#! ,!!"#!\!"#$%! ,!!"#$%! = !!"#$%!) 

We use this approach to predict lung disease diagnosis in a test dataset with an MGM 

trained with a training dataset.  

We used 8-fold cross validation to determine the optimal classification settings of ! for 

MGM and Lasso, and which kernel to use for support vector machines (SVMs). We used the 

built-in Matlab implementations of Lasso and SVMs for these experiments. 
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2.3 RESULTS 

2.3.1 Separate Sparsities versus Single Sparsity Parameter 

 

Figure 2.1 Example adjacency matrices predicted by an MGM, with sparsity selected using the oracle. a. Single 

sparsity penalty ! =  .19 b. Split sparsity penalties !!! =  .64, !!" =  .19, !!! =  .13 

 

We applied Lee and Hastie’s method for learning an MGM to datasets simulated from a scale-

free network. Initial experiments found that using a single sparsity penalty for all edge types 

produced many false positive continuous-continuous edge predictions, while missing many true 

discrete-discrete edges.  We first present an example of this behavior on a single dataset of 500 

samples over 50 four-level discrete variables and 50 continuous variables generated from a scale 

free network structure. Figure 2.1a shows the adjacency predictions of the learned MGM 

compared to the true graph using a ! selected by the oracle to minimize the number of edges 

present in one graph but not the other. This observation leads us to introduce separate sparsity 

penalties for each edge type. Figure 2.1b shows the adjacencies learned by an MGM with 
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separate sparsity penalties for each edge type. For the sparsity parameters, the oracle searched 

over a range of 13 values evenly spaced on a log scale from .08 to .64.  

Figure 2.2 shows the Matthews correlation of the edge predictions over the range of 

sparsity parameters, both overall and separated by edge type. For this example dataset, edge 

recovery of discrete-discrete edges had the highest MCC at ! =  .13 while correlation of 

recovery of continuous-discrete edges was maximized at ! =  .19 and continuous-continuous 

edges at ! =  .64. 

 

Figure 2.2 Matthews correlation between edge predictions and the true graph versus sparsity for the example dataset 

from Fig. 2.1. Calculated for each edge type, cc for continuous-continuous, cd for continuous-discrete, dd for 

discrete-discrete, and over all edge predictions. 

 

Selecting an optimal value for a single ! can be challenging, and the addition of two more 

sparsity parameters made it necessary to develop an efficient selection strategy. Other methods 

with multiple sparsity parameters search over a grid of models learned on all possible 
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combinations of the parameters (Zhang and Kim 2014), but for our model the complexity of this 

selection would be cubic in the number of parameter values tested. Many model selection 

methods rely on calculating some likelihood over the training data, and it is not clear how to 

divide up this calculation by edge type. We do expect the presence of edges to remain relatively 

constant for a given edge sparsity parameter setting, so we extended a recent subsampling 

technique for model selection, StARS (Liu et al. 2010), to select three edge-type specific sparsity 

penalties by assuming independence between edge types. This assumption allows for a linear 

rather than cubic search over possible sparsity parameters. Thus, our method, StEPS, selects 

three sparsity penalties for Lee and Hastie’s MGM learning using a modified StARS approach 

for subsampling over different edge types. 

2.3.2 StEPS Outperforms Other Methods for Model Selection  

Table 2.1 Comparison of model selection methods. Mean (and standard error) of classification performance over 20 

datasets simulated from scale-free networks. The entry for the method that performs best (excluding the oracle) in 

each category is bolded. AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; CV: cross-

validation; Oracle: best possible prediction performance (maximize accuracy using true graph). 

Methods Precision Recall F1-score Matthews CC Accuracy 

AIC 0.1104 (0.002) 0.9698 (0.004) 0.1982 (0.003) 0.2882 (0.003) 0.7952 (0.003) 

BIC 0.4588 (0.028) 0.8633 (0.007) 0.5890 (0.025) 0.6098 (0.022) 0.9652 (0.004) 

CV 0.1530 (0.003) 0.9694 (0.004) 0.2640 (0.005) 0.3539 (0.004) 0.8587 (0.003) 

Oracle 0.9149 (0.015) 0.7868 (0.021) 0.8397 (0.009) 0.8416 (0.008) 0.9923 (0.000) 

StARS – 1 ! 0.8988 (0.018) 0.4993 (0.010) 0.6408 (0.011) 0.6632 (0.011) 0.9854 (0.001) 

StEPS – 3 ! 0.9159 (0.014) 0.6720 (0.009) 0.7731 (0.007) 0.7787 (0.007) 0.9897 (0.000) 
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Table 2.1 Summarizes graph prediction results for MGMs trained using sparsity penalties 

chosen with different model selection procedures over the 20 simulated non-linear datasets. 

Oracle, AIC, BIC, and CV evaluated models over a three dimensional grid of all possible 

combinations of !!! , !!" , !!! ∈ . 64, .32, .16, .08, .04 . For StARS, models were trained using a 

single sparsity penalty over the same range of values, and then either a single ! was selected 

based on the average instability over all edges or !!! , !!" and !!! were selected based on the 

average instability of each edge type.  

Our results show that AIC, BIC and CV produce overly dense models in the high-

dimensional setting. Even when restricted to the single sparsity model, StARS significantly 

outperforms these traditional model selection methods. These results agree with what Liu et al 

observed in their model selection experiments with the graphical lasso (Liu et al. 2010). In 

addition, our modification of StARS with separate sparsities outperforms StARS with a single 

sparsity. Neither StARS model selection with 3 penalties nor the oracle model selection output a 

model where all three sparsities were equal in any of these experiments. Both methods always set 

!!! =  .16 while the other parameters were always in the set  .64, .32, .16 . These results 

confirm the effectiveness of separating the MGM sparsity penalty into three ! values.  

The original StARS procedure uses a subsampled dataset to make final edge predictions 

because the instability calculations are made on subsamples. We found, however, that in all cases 

the final edge prediction performance is higher if we use all samples compared to predictions 

from a model using a subsampled dataset. This improved performance is observed for all three 

metrics: accuracy, MCC, and F1. So, for all results presented below we used all samples to learn 

the MGM and make edge predictions with StARS selected sparsities. 
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It is important to note that because our method, StEPS, selects each sparsity parameter 

independently, it incorrectly assumes that the instability of each edge type is independent of the 

parameters of the other edge types. Without this assumption, we would have to perform stability 

experiments on all combinations of the sparsity parameters. To test if this assumption is reducing 

the edge recovery performance of StEPS, we ran StARS on the non-linear datasets using all 125 

possible settings of λ!!, λ!", λ!! ∈ . 64, .45,   .32, .23, .16 . This search space was chosen 

because all of the values selected by the Oracle or either of the other StARS methods fell in the 

set . 64, .32, .16  and additional intermediate values were needed to compare the relative 

performance of these methods. Although StARS occasionally selected values of .64 and .16 

which are on the boundary of this test range, we did not include higher or lower values because 

.32 was selected most of the time, and the cubic growth made it expensive to search over more 

than 5 penalty values. This experiment posed a new problem of how to monotonize and select 

the total instability over three dimensions rather than one. In addition, this experiment showed 

that the number of predicted edges in the graph does not always increase when one of the ! 

parameters decreases, even when the other two are held constant. We found that simply choosing 

the model with monotonized total instability closest to the user-specified ! threshold produced 

poor results. Taking into account the number of edges predicted across all subsamples for each 

parameter setting, as described below, was essential to producing usable results. 

We first looked at the total instability of the whole graph with all edge types pooled 

together, !!"" λ!!, λ!", λ!! . We monotonized this 3-dimensional matrix across each dimension: 

!!"" λ!!, λ!", λ!! =  sup!!!,!!",!!!!!!,!!,!!  !(!!, !!, !!) and selected the setting of λ!!, λ!", λ!! 

that produced subsampled networks with the most edges such that  !!"" λ!!, λ!", λ!! ≤ ! =

 .05. Surprisingly, this approach performed worse than StEPS on all measures. MCC, for 
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example, was significantly worse (mean of .845 for the heuristic versus .718 for this method, t-

test p = 1.4e-4). We found that the networks produced by this method were too dense in the 

continuous-continuous edges and too sparse in continuous-discrete edges (results not shown). 

This is the result of averaging the instability of all edge types: the selected models were too 

stable for some edge types and too unstable for other types. To fix this, we separated the 

instability as before into !!! λ!!, λ!", λ!! , !!" λ!!, λ!", λ!!  and !!! λ!!, λ!", λ!! , and 

monotonized as before. Then we choose λ!!, λ!", λ!! that produced networks with the most edges 

such that !"#(!!! λ!!, λ!", λ!! ,!!" λ!!, λ!", λ!! ,!!! λ!!, λ!", λ!! ) ≤ ! =  .05. On 17 of the 

20 datasets tested, this approach selected the same sparsity parameters as our proposed linear 

parameter search method. For the three runs where the two methods selected different 

parameters, the cubic search made better choices than the heuristic. Averaging over all runs the 

cubic search performed better than the heuristic but these results are not significant (e.g., mean 

MCC for the cubic search was .850 versus .845 for StEPS, p = 0.56). These results indicate that 

the independence assumption made by our heuristic is reasonable and that StEPS performs only 

slightly worse than a more theoretically sound cubic search while requiring much less 

computation. 

2.3.3 Comparison to SCGGM 

An important potential application of MGMs is in identifying expression quantitative trait loci 

(eQTLs) based on the predicted dependencies between single nucleotide polymorphisms (SNPs) 

and mRNA expression. The sparse conditional Gaussian graphical model (SCGGM) (Zhang and 

Kim 2014) is a method that addresses this problem specifically. Like many methods for finding 

eQTLs, the SCGGM assumes a linear relationship between the number of variant alleles and the 
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mRNA expression level. Thus, the SCGGM is not technically a mixed graphical model because 

it treats the SNP allele counts as continuous variables. Another difference is that SCGGM does 

not predict discrete-discrete edges, which is also common among methods for finding eQTLs. 

Like StEPS, SCGGM also adopts a strategy of using a separate sparsity penalty for each edge 

type. SCGGM uses cross-validation to search over a two dimensional grid of parameter values in 

order to optimize prediction of continuous values given the discrete values.  

 

Figure 2.3 Comparison of edge recovery performance of MGM and SCGGM on continuous-continuous (cc), 

continuous-discrete (cd) and both edge types. Matthews correlation is averaged over 20 simulated datasets with 

linear continuous-discrete interactions and 20 datasets  with non-linear interactions with error bars ± one standard 

error. Sparsity parameters for both methods selected by StEPS. Figure created in collaboration with Ivy Shi. 

 

First, we examined how our stability method can be used in SCGGM parameter selection 

instead of cross validation on our synthetic data and we found that StEPS resulted in 

significantly higher MCC (p < .01) for recovery of both continuous-continuous and continuous-
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discrete edge types. To perform a comparison between MGM and SCGGM edge predictions we 

used two sets of 20 mixed datasets generated from the same set of 20 scale-free networks but 

with parameters that resulted in either linear or non-linear interactions between discrete and 

continuous variables. Figure 2.3 shows the results of this experiment with StEPS selected 

sparsity parameters. As expected, MGM learning performed similarly on the linear and non-

linear datasets because it does not assume linearity. The SCGGM had similar performance on 

continuous-continuous edge recovery with both datasets, but significantly worse performance on 

continuous-discrete edge recovery in the data with non-linear cd interactions, which resulted in 

worse overall performance in that setting. 

For these tests we found that when allowing the selection of (different) edge type specific 

sparsity penalties, SCGGM chose the same penalty for the cc and cd edges in 36 out of the 40 

datasets; and StEPS chose the same penalty for the cc and cd edges in 38 out of the 40 datasets, 

but a different dd penalty in all 40 cases. 

2.3.4 Performance of MGM on Lung Disease Data 

It is difficult to evaluate the edge recovery performance of MGM in real clinical datasets since 

the ground truth (all associations between variables) is not generally known. Alternatively, we 

evaluate MGM performance indirectly, by (1) recovering the small number of interactions that 

are known, (2) using external datasets (GO categories) to see if connected genes have similar 

function, (3) performing classification on a target variable in the network (disease diagnosis).  

We applied our MGM learning approach to the LGRC biomedical data (described 

above). On this data StEPS selected the same value of !!! , !!" =  .2 for an average instability 

threshold of ! =  .05 and !!! , !!" =  .1 for ! =  .1. The selection of !!! proved more 
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problematic. Even with  ! =  .1, !!! was selected to be so high that only one edge was selected 

(FEV1-FVC). This issue is likely caused by the fact that there are only 28 possible edges 

between the 8 clinical variables, and we expect that many of these variables are connected. 

Because of this and the fact that the experiments we perform below depend more on the 

continuous-discrete edges, we set all three penalties to the same value for our parameter searches 

in this section.  

2.3.5 Recovering Known Interactions 

 

Figure 2.4 Learned sub-network of gene expression and clinical features connected to lung disease diagnosis, lung 

tests and cigarette smoking. Nodes are colored by data type, blue for gene expression, red for clinical variables. 

Edges were filtered by weight with a threshold of .05. Node size is proportional to the diagonal of the ! matrix for 

continuous variables and !!! ! for each categorical variable, y. 
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Figure 2.4 shows part of the network learned over the lung (LGRC) dataset with !!! , !!" , !!! =

 .1. We only show the nodes adjacent to the clinical variables most relevant for lung disease: 

diagnosis, spirometry tests and cigarette smoking. This model found a very strong connection 

between the FEV1 and FVC variables. A number of relevant gene expression variables are 

linked to diagnosis in this network. IL13 is part of the family of interleukin signaling molecules, 

which are associated with inflammatory response to tissue damage, and COPD is an 

inflammatory disease. We also see a link between diagnosis and MMP7, a previously discovered 

biomarker for idiopathic pulmonary fibrosis which is categorized as ILD (Rosas et al. 2008). A 

link between diagnosis and AZGP1, another previously studied marker for COPD (Mazur et al. 

2012), was also recovered. FGG and CYP1A1 were found to be linked to cigarette smoking 

history. CYP1A1 is known to convert polycyclic aromatic hydrocarbons, found in cigarette 

smoke, into carcinogens (Walsh et al. 2013), and FGG codes for fibrinogen, a marker for 

inflammation, which is positively correlated with risk of mortality and COPD severity (Mannino 

et al. 2012). 
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2.3.6 Recovering Functional Relationships 

 

Figure 2.5 Counts of GO terms with uncorrected p < .05 for groups of genes with expression variables linked to 

each discrete clinical variable in: a. MGM networks at different values of λ and b. qp-graphs at different values of q. 

Edge thresholds for qp-graphs were chosen to select similar numbers of connected genes to an MGM network with λ 

= .1 

 

We also compared the functional relevance of MGM networks learned with StEPS and those 

learned by qp-graphs (Tur and Castelo 2012), another method for learning networks over mixed 

data. Like SCGGM, qp-graphs do not attempt to learn edges between two discrete variables, but 

qp-graphs do not make a linearity assumption about the discrete variables. To assess the 

biological relevance of networks learned at different levels of sparsity, we performed enrichment 

analyses on genes with expression variables linked to each clinical variable. For each group of 

genes linked to each clinical variable we counted GO terms with an uncorrected enrichment p < 

.05 (via Fisher’s exact test). These counts are shown in Figure 2.5. Since each clinical variable 

represents a phenotype, we would hope that genes linked to those variables share similar 
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biological function as measured by functional enrichment. We would like to choose a value of λ 

that maximizes the number of enriched GO terms.  

The setting of λ =  .1 recovers the most annotations for diagnosis, FEV1 and FVC, and 

also corresponds to an instability threshold of ! =  .1. qp-graphs output a “non-rejection rate” for 

each edge, which corresponds to the number of different conditional independence tests that 

rejected the presence of each edge. To predict edges, this output needed to be thresholded, so we 

chose thresholds that produced similar numbers of edge predictions to λ =  .1. While qp-graphs 

perform comparably well to MGMs in this test, we found the learning procedure to be very 

computationally expensive. On a quad-core laptop, learning a qp-graph with q = 25 took over 3 

hours (running time scales linearly with q) while learning an MGM took 4.4 minutes on average 

when the iteration limit was reached.   

2.3.7 Evaluating MGM in Classification Tasks 

We also evaluated MGMs for predicting the status of a given target variable. We chose the lung 

disease diagnosis as a clinically relevant target variable. The MGM was compared to SVM and 

lasso. We optimized the settings of SVM, lasso and our mixed models to maximize the 8-fold 

cross-validation accuracy of predicting lung disease diagnosis using the 530 expression variables 

and 7 clinical variables. For SVM, we found that a linear kernel worked best on this data. For 

lasso and MGM, the parameter scan found that λ = 0.05 maximized this accuracy. Figure 2.6a 

shows a comparison between the optimized classification accuracies of these three methods. For 

MGM classification, we expected similar results to lasso because the conditional distribution of a 

discrete variable in the mixed model reduces to a (multivariate) logistic regression. It is 

interesting to see that the generative MGMs are not significantly different from discriminative 
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lasso and SVM models in this experiment. While ! =  .05 maximized the cross-validation 

accuracy for MGMs, Figure 2.6b shows that the StARS selected sparsity values of λ =.1 and .2 

do not perform significantly worse than ! =  .05. Ιn addition, we ran experiments using StEPS 

with settings of [!!!, !!" , !!!] = [.1, .1, .2] and [!!! , !!" , !!!] = [.2, .2, .3] which correspond to 

instability thresholds of ! =  .1 and ! =  .05, respectively, and found that these changes did not 

significantly alter classification performance. 

a b  

Figure 2.6 a. 8-fold cross validation accuracies for COPD/ILD classification using different methods b. 

Regularization effects on classification accuracy (with error bars of 1 standard deviation). 

2.4 DISCUSSION 

Learning graphical models over variables of mixed type is very important for biomedical 

research. The most widely used types of genomic data include continuous (gene expression, 

methylation, and protein data) and discrete (polymorphism and mutation data) variables. 

Similarly, clinical variables can be either continuous or discrete (numerical, categorical, 

boolean). We are interested in learning graphical models from these heterogeneous data to 

identify significant interactions between variables and uncover important biological pathways. 
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As an added advantage, a learned network and joint probability can be used to ask an arbitrary 

number of classification questions over the data without the need for retraining each time 

(Tsamardinos et al. 2003). These models would be broadly applicable to biological network 

inference, biomarker selection and patient stratification. Although calculating the MGM requires 

certain distributional assumptions about the data, the two distributions that make up the model in 

this work, a multivariate Gaussian for the continuous variables and a pairwise Markov random 

field for discrete variables, are well studied and have been successfully applied to many types of 

data. Additionally, using Gaussian copula methods (Liu et al. 2009) in conjunction with MGM 

learning would allow users to relax the normality assumption for the continuous data.  

Our simulation study strongly supports the need for separate sparsity penalty for each 

edge type when learning an MGM. In addition we show the effectiveness of our extension of the 

StARS procedure, StEPS, to select these penalty terms. By using instability estimates from the 

single sparsity parameter model to select parameters for the three parameter model, we are 

making the assumption that each edge type set is independent from the others. We showed that 

StEPS performance under this independence assumption is comparable to a stability selection 

procedure that does not make this assumption. The pay off for StEPS is that we can select three 

parameters in linear time (over the number of parameter values searched) rather than cubic time. 

StEPS is a general methodology, which can be applied to a variety of mixed distribution settings, 

and will be especially useful in problems with many different edge types. 

One could argue that StEPS substitutes an arbitrary setting of ! for an arbitrary setting of 

the instability threshold, !. As Liu et al. point out, ! has a more intuitive meaning than !, and we 

feel that setting this threshold compares to the common practice of setting an arbitrary 

significance threshold for rejecting the null hypothesis. Our results from applying StEPS to 
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MGMs highlights the fact that the same setting of ! applies well to all edge types while different, 

edge type specific settings of ! are required for accurate edge recovery. Although it is possible to 

set the sparsity parameters based on some prior knowledge of the expected number of edges in 

the network, the data driven methods we present here allow for wide application of MGMs to 

domains where such knowledge is not available. 

Furthermore, we show that our approach to MGM learning is competitive with a state-of-

the-art eQTL learning method, SCGGMs. Although SCGGMs can be learned more quickly than 

our MGMs due to the fact that they treat all variables as continuous, we showed that MGMs have 

a clear advantage when the discrete variables have non-linear relationships with the continuous 

variables. The assumption of linearity is common in eQTL learning and it makes sense in the 

haploid yeast datasets (e.g. (Brem et al. 2005)) used in the SCGGM study. In more complex 

organisms, however, an MGM that can handle non-linear interactions may be necessary. 

While we had difficulty setting the discrete-discrete edge penalty in the lung dataset, we 

were still able to show the utility of MGM based analysis on biological data. Also, results from 

our classification experiment were robust to variation in the setting of this parameter. We do not 

expect MGMs to perform better than standard classification methods because they minimize the 

prediction error of the classification problem directly while the pseudolikelihood optimization in 

the MGM must take into account the relationships between all of the variables, not just between 

the target variable and the rest. Our results show, however, that the MGM-based classification is 

comparable to standard methods while offering two key advantages: (1) the same trained MGM 

can be used to make predictions about any variable without additional learning, and (2) the graph 

structure allows us to look at the second neighbors of the target variable and beyond for possible 

functional significance.  
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2.5 CONCLUSIONS 

Mixed graphical models are becoming popular in the statistics and machine learning literature, 

and there is a lot of potential for their application to high dimensional biological data. We have 

broached that potential in this study. We showed that MGMs can accurately learn undirected 

graphical models over a mixture of discrete and continuous variables in a high dimensional 

setting. In addition, we showed that using a separate sparsity parameter for each edge type in a 

graph can significantly improve edge recovery performance. These separate parameters can 

account for the differences in both the difficulty of learning such an edge and differences in the 

sparsity of edge types in the true graph. Finally, we showed that stability based methods are well 

suited for model selection in this setting and that our method StEPS allow us to perform a search 

over the sparsity penalties in linear time. 
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3.0  CAUSAL SEARCH WITH MIXED VARIABLES 

In this chapter we shift from searching for undirected graph structures to directed structures. 

Directed graphical models are closely related to undirected models in that they both encode 

conditional probability relationships between variables, but they differ in their assumptions and 

ability to represent certain structures. The power of directed models come with their ability to 

encode causation, which is especially desirable in the study of biological systems. Of course, 

inferring causation from observational data is a difficult task, but these predictions can guide 

interventional studies to better understand these systems. We will show in this chapter that an 

undirected model learned over data that is generated from a directed graph is a superset of the 

true graph (specifically, a moralization of the true graph). This fact suggests the strategy that we 

adopt in this chapter of first learning an undirected graph using the methods we presented in 

chapter 2, and then filtering and orienting our predicted edges using a directed graph search 

algorithm.  

3.1 CHAPTER SUMMARY 

Graphical causal models are an important tool for biomedical research because they can 

simultaneously represent both the influence pathways and complex, multivariate probability 

distributions that are useful for modeling biological data. Learned models can be used for 
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classification, biomarker selection, and functional analysis. These models are generally designed 

to handle only one type of data, however, and this limits their applicability to a large class of 

biological datasets with both continuous and discrete variables. To address this issue, we develop 

new methods that modify and combine existing methods for finding undirected graphs with 

methods for finding directed graphs. These hybrid methods are not only faster, but also perform 

better than the directed graph estimation methods alone for a variety of parameter settings and 

data set sizes. When applied to breast cancer data, our methods recovered relevant connections 

between gene expression variables and clinical variables for hormone receptor status and subtype 

label. 

3.2 INTRODUCTION 

3.2.1 Background 

Commonly studied biological data are multi-modal: they include both discrete variables 

(polymorphisms, mutations) and continuous variables (gene expression, methylation, and protein 

data). The sizes of relevant databases containing these data have become enormous. In many 

problems, the number of potentially relevant variables and cellular pathways demands the aid of 

fast, accurate, computerized search methods for identifying causal relations. These methods 

produce network models, represented as directed graphs or collections of directed graphs, that 

can provide guidance to experimentalists and clinicians and are useful for classification and 

prediction of clinical outcomes. A number of such methods have been developed in the past, but 

they typically assume (for proof of asymptotic correctness) that all variables are of the same 



35 

distribution type—categorical (multinomial), Gaussian, conditional Gaussian, or linear non-

Gaussian—but not of the mixed types characteristic of biomedical data. In this paper, we test 

existing and develop new methods to learn directed graphs over mixed data types.  

Regarding existing methods, we test PC-stable and CPC-stable (Colombo and Maathuis 

2014). PC-stable is a modification of PC (Spirtes and Glymour 1991), the oldest correct 

algorithm for searching for directed acyclic graphs when there are no feedback relations and no 

unrecorded common causes and sampling is independent and identically distributed. PC-stable 

allows for parallelization and produces graph estimates that are independent of the ordering of 

the input variables. PC-stable relies on conditional independence tests, which can easily be 

varied according to the distributions of the variables. Similarly CPC-stable is the order 

independent variant of Conservative PC (CPC) (Ramsey et al. 2006), which modifies the edge 

orientation procedure of PC to make it robust to ambiguous conditional independence test 

results. 

The main idea behind our two new algorithms is to first learn the undirected graph over 

mixed data types and then prune-and-orient this graph using methods derived from existing 

algorithms for directed graph learning. Undirected graphs are found using a modified version of 

the method of (Lee and Hastie 2013) (which we call MGM for Mixed Graphical Model). For the 

prune-and-orient step we use the strategies implemented in PC-stable (MGM-PCS) and CPC-

stable (MGM-CPCS). The directed search algorithms rely on testing the conditional 

independence of pairs of nodes using larger and larger conditioning sets. The pairwise Markov 

property of undirected graphical models tells us that the absence of an edge in an undirected 

model implies that the two nodes incident to that absent edge are conditionally independent 

given all other variables. So, another way to think of our approach is that by learning an 
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undirected graphical model, we are performing pairwise independence tests conditioned on all 

other nodes in the network. Edge orientation is only implied by absence from the conditioning 

set, so because all nodes are in the conditioning sets for the undirected search step, this procedure 

should not lose information needed by the directed search step to make edge direction 

predictions. In addition to our newly proposed algorithms, this chapter contributes an in-depth 

study of constraint-based causal learning algorithms on high-dimensional mixed data, which is a 

currently underdeveloped area in the causal learning literature. 

3.2.2 Graphical Structures 

Graphical models represent families of probability distributions restricted by conditional 

independence relations between their variables. Undirected graphical models represent 

distributions in which a variable, X, is independent of all other variables in a system given the set 

of variables directly connected to X by an edge (i.e., variables adjacent to X), and any two 

variables connected by an undirected path are associated. Directed graphical models often 

restrict the network structures to directed acyclic graphs (DAGs), and represent distributions in 

which a variable X is independent of all other variables conditional on its Markov Blanket: the 

parents of X (direct causes of X), the children (direct effects) of X, and the parents of the 

children of X. Two variables are dependent or conditionally dependent if they are represented by 

a d-connection relation (Geiger et al. 1990). The essential difference is that for an undirected 

graph a structure ! − ! − ! represents that X and Z are associated but X is independent of Z 

conditional on Y. As a shorthand for this last relationship we write X ⊥ Z | Y. For a DAG with 

the same adjacencies, the independence relations depend on the orientations of the edges: if 

! → ! ← ! (this is called a v-structure) then X and Z are independent but they become 



37 

dependent when conditioned on Y; the independence relations for other orientations of the edges 

in the example are the same as for undirected graphs. When the distribution accords with the 

structure ! → ! ← !, an undirected graph search will return an undirected graph in which X and 

Z are connected by an edge (this is called a moralized graph). These basic properties suggest a 

search strategy that finds an undirected moralized graph, prunes the edges introduced by the v-

structures and directs the remaining edges Here we consider using the Lee and Hastie algorithm 

for undirected graph search and then pruning and orienting edges by PC-stable or CPC-stable. 

We contrast this strategy with using the original PC-stable or CPC-stable procedures directly on 

mixed data types. 

3.2.3 Related Work 

Recently, learning a sparse undirected graph structure over multi-modal datasets has attracted 

attention (Bøttcher 2001; Romero et al. 2006; Tur and Castelo 2011; Cheng et al. 2013; 

Fellinghauer et al. 2013; Lee and Hastie 2013; Chen et al. 2014; Yang et al. 2014). There is 

publically available software for several of these methods (Tur and Castelo 2011; Fellinghauer et 

al. 2013; Lee and Hastie 2013). The Tur and Castelo method is not able to learn connections 

between categorical variables, so their approach is appropriate for the study expression 

quantitative trait loci (eQTLs). But, their model does not allow for analysis of downstream 

discrete clinical variables, for example. A number of proposals suggest a nodewise regression 

approach for learning networks over a variety of distributions of continuous and discrete 

variables (Cheng et al. 2013; Fellinghauer et al. 2013; Chen et al. 2014), Lee and Hastie (Lee and 

Hastie 2013) propose optimizing the pseudolikelihood of a mixed distribution over Gaussian and 

categorical variables. We developed our algorithms using Lee and Hastie’s method as a starting 
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point, both because we will only look at Gaussian and categorical variables in this study and 

because their approach involves learning fewer parameters than with nodewise regression 

methods. 

The idea of using an undirected method to estimate a superstructure of the true graph, and 

then restricting the search space of a directed search algorithm to the superstructure has 

previously been studied for continuous, possibly non-Gaussian data with linear interactions 

between nodes (Loh and Bühlmann 2014). Like our proposed method, Loh and Bühlmann first 

find an undirected graph which serves as an estimate of the moralization of the true graph, and 

then use this undirected graph as an estimate for a directed search method. The two primary 

differences between this study and our proposals are that Loh and Bühlmann only look at 

continuous data in their study, and that the directed search is a score-based method while we 

focus on constraint-based directed search methods here.  

Adapting score-based methods to mixed data is a challenging problem that we are very 

interested in. The concept behind score-based methods is to efficiently search over the space of 

DAGs to find the structure that has the best score given the data. In general, these scores take 

advantage of the fact that joint probability distributions represented by DAGs are factorizable, so 

adding or subtracting edges from the estimated graph only require re-calculating scores of the 

incident nodes. Scores are usually related to likelihood calculations, for example, the Bayesian 

information criterion (BIC) is commonly used for continuous data and is calculated by 

penalizing the log-likelihood for the degrees of freedom and sample size. The challenge is to find 

a mixed score that is factorizable and efficient to compute. Preliminary experiments showed that 

a mixed BIC score based on Lee and Hastie’s pseudolikelihood presented in chapter 2 could 

recover small graphs of ~10 variables, but was too computationally expensive to use on larger 
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graphs. This is an open area of research, but should a useable score for mixed data be developed, 

these methods can take advantage of an initial undirected graph by using it to restrict the search 

space of the score-based search algorithm. 

3.3 MATERIALS AND METHODS 

3.3.1 Simulated Data 

We simulated data from 2 sizes of networks with 50 directed graph structures each. Our low 

dimensional (LD) datasets consisted of 500 samples drawn from a network structure of 50 

variables, 25 Gaussian and 25 3-level categorical. The high dimensional (HD) datasets consisted 

of 100 samples drawn from a network structure of 200 variables, 100 Gaussian and 100 3-level 

categorical. The structures are sampled uniformly from the space of all directed acyclic graphs 

(DAGs) with maximum node degree of 10 and a maximum of average node degree of 2.  

The relationships between variables are set up in a similar fashion to (Lee and Hastie 

2013). Here, for an edge ! → !  we refer to X as the parent and Y as the child. Parents of the 

Gaussian variables contribute linearly to the mean of each child; the value of continuous parents 

is multiplied by an edge parameter and the value of discrete parents is associated with an edge 

parameter where a separate edge parameter is specified for each category of the discrete variable. 

Parents of discrete variables contribute log-linearly to the probabilities of each category, with 

separate parameters for each category of the child variable. With this set up, each edge 

connecting two continuous variables (cc) depends on 1 edge parameter, each edge connecting a 

continuous and a discrete variable (cd) depends on a vector of 3 parameters and edges 
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connecting two discrete variables (dd) depend on a 3 by 3 matrix of 9 edge parameters. In order 

to ensure identifiability, the cd parameter vector, and the rows of the dd parameter matrix are 

constrained to sum to 0 leaving these edges with 2 and 6 degrees of freedom, respectively. Edge 

weights were drawn uniformly from the union of the regions [-1.5, -1] and [1, 1.5]. For cc edges 

the parameter is equal to the weight; for cd edge parameters we draw a vector three values 

uniformly from [0,1] and shift and scale the values so they sum to zero and the largest parameter 

is equal to the edge weight; for dd edge parameters we draw one vector of three values as with cd 

edges  and set the rows of the matrix as the three permutations of this vector. Depending on the 

graph structure, there may be covariance between parents of a node, but since cycles are not 

allowed, this will take the form of a feed forward loop. 

To generate data from these distributions we used TETRAD (version 5.3.0, 

https://github.com/cmu-phil/tetrad), a Java package for causal modeling that uses linear or non-

linear structural equation models (SEMs) to generate data from network distributions. Our fork 

of TETRAD can be found at https://github.com/ajsedgewick/tetrad/. In the continuous case, zero-

mean, Gaussian error terms with standard deviation uniformly drawn from the interval [1, 2], are 

drawn for every variable and then the variable means are resolved. In DAGs this resolution is 

trivial as we can start from root nodes with no parents and propagate downwards. To make this 

process accommodate categorical distributions, we use a uniform draw over [0, 1]  as an error 

term for each discrete variable and this term is used to determine the value of the variable given 

the probabilities of each category. In generating simulated models, these probabilities that are 

then updated in the same way as are the means of the continuous variables. This approach 

ensures convergence of each discrete variable for each sample. 
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3.3.2 Biological Data 

The breast cancer dataset was obtained from The Cancer Genome Atlas (TCGA) (Cancer 

Genome Atlas 2012). This data (BRCA, n=448 samples) included RNA-seq data normalized 

with RSEM for 20530 transcripts, and clinical variables (PAM50 subtypes, Progesterone, 

Estrogen and HER2 receptor status, and tumor and node stage codes). We used only the 500 

genes with the most variant expression across all samples. 

3.3.3 Undirected Graph Search Algorithms 

We use Lee and Hastie’s model (Lee and Hastie 2013) as the basis for both algorithms and we 

refer to the undirected graph produced by this method as an MGM. This model has a form 

similar to a pairwise Markov Random Field (MRF) and learns the undirected graph over mixed 

data by maximizing a penalized pseudo-likelihood over all mixed type variables. Since this 

objective function is convex but not smooth, Lee and Hastie use proximal gradient methods 

implemented in a Matlab library called TFOCS (Becker et al. 2011) for optimization. We 

implemented the MGM model and the accelerated proximal gradient method (Nesterov’s 1983 

method as described by (Becker et al. 2011)) in Java and incorporated it into the TETRAD 

project. 

To improve speed, we made an important change to Lee and Hastie’s optimization 

scheme: instead of waiting for the penalized pseudo-likelihood to converge, we keep track of 

edge changes between iterations of the accelerated proximal gradient method and we terminate 

the search when three iterations in a row have the same graph structure. 
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In our experiments with synthetic data we learned MGM graphs across a range of edge 

sparsity penalties for the Lee and Hastie algorithm, 7 values evenly spaced on the log2 scale over 

the range . 05 ≤  ! ≤  .4. For the HD data we add two values to extend this range to ! ≤  .8. For 

simplicity, in these experiments we use the same ! edges connecting different types of variables. 

3.3.4 Directed Graph Search Algorithms 

We compared two popular causal discovery methods, PC-stable and CPC-stable, implemented in 

TETRAD, with our proposed hybrid methods MGM-PCS and MGM-CPCS. In addition, as a 

proof of concept, we ran experiments with Complementary Pairs Stability Selection (CPSS) a 

stability based method that ensures the predicted network only includes a small proportion of 

low-probability edges that are unlikely to generalize well to small changes in the data. We 

present results from all algorithms using a range of values for the conditional independence test 

threshold: ! ∈ {.001, .01, .05, .1}.  

PC-stable  (Colombo and Maathuis 2014) is a graph search algorithm that is a 

modification of PC (Spirtes and Glymour 1991). PC assumes that the underlying graph is acyclic 

with no latent (unmeasured) variables. The PC algorithm and its descendants depend on 

conditional independence decisions that are made by a user-specified test and significance level, 

! (described below). PC starts with a complete graph and in step 1 it sequentially tests all edges 

for independence given conditioning sets of increasing size. Starting with the empty set, these 

conditioning sets are subsequently made up of every set (of the given size) of common neighbors 

of the two nodes incident to the edge being tested. Edges that are found to be conditionally 

independent are immediately removed and not considered in future tests. When an edge is 

removed, the conditioning set that lead to the independence decision is saved. Step 2 directs 
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edges based on the fact that common neighbors of nodes incident to a removed edge that are not 

in the conditioning set must be in a v-structure. It is possible that two implied v-structures will 

induce conflicting edge directions. In the TETRAD implementation of PC-stable this direction 

conflict results in a bi-directed edge: ! ⟷ !. Step 3 further directs edges based on a set of rules 

that ensure the directions will not induce any cycles or new v-structures (Spirtes et al. 2000). PC-

stable modifies PC by waiting to update the edge removals in phase 1 until all tests for a given 

conditioning set size are completed. This leads to an output that is independent of variable 

ordering and allows for parallelization of the independence tests.  

CPC-stable (Colombo and Maathuis 2014) is the variable order independent variant of 

Conservative PC (Ramsey et al. 2006) which revises step 2 of PC, described above to perform 

conditional independence tests with all possible conditioning sets between two nodes, A and C, 

that have had an edge between them removed. The conditioning sets are determined by taking 

subsets of neighbors of the two nodes found in the skeleton graph returned by step 1 of PC, 

described above. For any node, B that is incident to both A and C, the v-structure ! → ! ← ! is 

only predicted if B is not in any separating set S such that A ⊥ C | S. Otherwise no direction is 

predicted from this triplet of nodes. If B participates in some sets that result in the conditional 

independence of A and C and some that result in a conditional dependence, the ambiguity is 

recorded. Since the change to the PC algorithm takes place after adjacency has been determined, 

PC and CPC algorithms will produce the same adjacency predictions. 

MGM-PCS and MGM-CPCS first learns an MGM and then uses the predicted 

undirected graph instead of a full graph as the starting point for PC-stable and CPC-stable 

respectively. 
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CPSS (Shah and Samworth 2013) is an a variation of the Stability Selection 

(Meinshausen and Bühlmann 2010) that both loosens the assumptions on the selection procedure 

(i.e. our network prediction algorithms are “selecting” edges), and tightens the bounds on the 

error rate, allowing for a less stringent threshold. Besides the obvious benefit of tighter bounds, 

the loose assumptions are especially attractive to us, as we would like to be able to substitute a 

variety of algorithms without worrying about violating the theoretical framework of the method. 

As with StARS and StEPS in chapter two, this method works by learning networks over 

subsamples of the data and counting how many times an edge appears. Rather than calculating 

network instabilities from these empirical edge probabilities, edges are selected by simply 

thresholding the probabilities. The threshold is calculated from the number of subsamples, the 

average number of selected edges, and the number of variables using Shah and Samworth’s 

procedure. The user specifies an error control rate where errors are defined as edges that have a 

lower than random probability of being selected in a given subsample. We use a heuristic to 

adapt this method to directed edge recovery: the empirical selection probability of each edge 

direction setting (two directions or undirected) is calculated and thresholded separately. We ran 

CPSS in conjunction with MGM-PCS and MGM-CPCS with ! =  .05 and ! =  .1 for the LD 

dataset, and with ! =  .2 for the HD dataset with error rates ! ∈ {.001, .01, .05, .1}. 

3.3.5 Conditional Independence Tests 

The following test, used by PC-stable and MGM-PCS, is a hypothesis test for conditional 

dependence of two variables, X and Y, given a conditioning set of variables, S. The null 

hypothesis is that X and Y are independent given S, or  ! ⊥ ! | !. By definition, if this null 

hypothesis is true: 
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! !,! !) = ! ! ! !(!|!) 

Rearranging, we find: 

! ! ! =  !(!,!|!)!(!|!) = ! ! !, !) 

So, to test ! ⊥ ! | ! it suffices to test if ! ! ! = ! ! !, !) which is done via likelihood ratio 

test (LRT) of two regressions: 

2 ln  ! θ!"#! θ!"
~ !!(!!!!) 

Where the !s represent the regression coefficients to model X given S with and without Y as an 

additional independent variable. The degrees of freedom, !! and !!, of each variable are 1 if the 

variable is continuous and the number of categories minus 1 if the variable is categorical. 

Although this description uses regressions with X as the dependent variable, the same reasoning 

allows us to use Y as the dependent variable instead. 

The regressions in this test allow us to formulate this test so that any of the variables can 

be continuous or categorical. We preform linear or multinomial logistic regressions if the 

dependent variable is continuous or categorical, respectively. Because of this, if X and Y are of 

different variable types, we have a choice of whether X or Y should be the independent variable 

that determines whether we perform logistic or linear regressions. Our own experiments and 

observations in previous studies (Chen et al. 2014) suggest that a linear regression will give a 

more accurate test result than a logistic regression for these continuous-discrete edges. To handle 

any independent categorical variables in the regression, use the standard practice of converting 

each k-level categorical variable to k-1 binary variables. 

 It is also possible to conduct these tests by regressing Y and S onto X, and using a t-test 

to determine if the regression coefficient of Y is significantly different from 0. If Y is categorical 
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this procedure requires performing a test on each dummy variable associated with Y and then 

combining them using Fisher’s method. The main advantage of using t-tests over the LRT that it 

only requires one regression instead of two, so it is significantly faster. The downside is that in 

our experiments we found that it had less power to detect true edges, and was less robust to low 

sample sizes, particularly on edges that required a logistic regression. Because of this we will 

work exclusively with the LRT based test here. 

3.3.6 Edge Recovery Evaluation 

To evaluate network estimation performance, we compare the Markov equivalence classes of the 

estimated and true networks. Markov equivalence classes represent the variable independence 

and conditional relationships for an acyclic directed graph by removing the direction from edges 

that are free to point in either direction without altering the independence relationships in the 

network. For example, directed graphs ! → ! → !, and ! ← ! ← ! both have the Markov 

equivalence class ! − ! − ! while the graph ! → ! ← ! (v-structure) would remain the same 

when converted to a Markov equivalence class. Thus, Markov equivalent graphs share the same 

variables, have the same adjacencies, and imply the same independence and conditional 

independence relations among their variables. We also consider performance on skeleton 

estimation, (i.e. the set of node adjacencies, without edge orientations). 

We use standard classification statistics to evaluate the recovery of the undirected 

adjacencies from the skeleton of the true graph. Precision, also known as true discovery rate or 

positive predictive value, is the proportion of predicted edges that are found in the true graph. 

Recall, also known as sensitivity or true positive rate, is the proportion of edges in the true graph 

that were found in the predicted graph. For direction recovery we use these same statistics 
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applied to the recovery of only the directed edges in the Markov equivalence class of the true 

graph. So, in the context of direction recovery, precision is the number of directed edges in the 

predicted graph that are found in the true graph out of the total number of directed edges in the 

predicted graph. Bi-directed edges are treated as undirected edges for these statistics because 

they do not give an indication of which edge direction is more likely. These statistics can be 

easily calculated from confusion matrices, which are shown for the undirected and directed graph 

estimation in Figure 3.1. 

a.   

b.  

Figure 3.1 Confusion matrices for edge recovery on a. undirected graphs and b. directed graphs. 
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We use the Matthews correlation coefficient (MCC) (Matthews 1975) as a measure for 

overall recovery performance that strikes a balance between precision and recall. The MCC is a 

formulation of Pearson’s product-moment correlation for two binary variables (i.e. true edge 

indicators and predicted edge indicators). In addition, we use the structural Hamming distance 

(SHD) (Tsamardinos et al. 2006) as a combined measure of adjacency and direction recovery. 

The SHD is the minimum number of edge insertions, deletions, and direction changes, where 

only undirected edges are inserted or deleted, to get from the true Markov equivalence class to 

the estimated equivalence class. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Simulation Experiments 

In order to determine which algorithms have the most general applicability, we performed 

experiments using two different dataset sizes and randomly drawn DAG structures. In addition 

since optimal parameter setting is a difficult problem that may depend on the needs and goals of 

the user, we studied a range of possible parameter settings to show the relationship between these 

settings and edge recovery performance. 

3.4.1.1 Adjacency Recovery  

Figure 3.2 shows the (undirected) adjacency recovery performance of PC-stable, MGM-PCS 

and CPSS on the HD dataset. CPC-stable and MGM-CPCS are not shown because they have the 
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same adjacency predictions as the PC algorithms. Settings of ! < .2 for the MGM-PCS algorithm 

are omitted from the figure because they mostly overlap with the PC-stable curves. Despite the 

apparent overlap, these denser MGM structures do cause a slight decrease in the precision of 

MGM-PCS compared to PC-stable, although this difference is not significant at any of the tested 

settings. For example, at ! =  .05 and ! =  .14, MGM-PCS has an average precision of .739 

(standard error of .0057) compared to PC-stable which achieves mean precision of .744 (standard 

error is .0055). In the limit of ! → 0, the MGM graph will become fully connected so MGM-

PCS becomes equivalent to PC-stable.  

On the other extreme, the highest settings of lambda result in very sparse initial graphs 

which have good precision but poor recall. In general, we see that adding the MGM step 

increases precision of the PC-stable procedure, at a small cost to recall, depending on the sparsity 

parameter setting. We see a similar trend in the LD dataset as well (see Appendix A for 

equivalent figures for the LD data). In addition, all of our algorithms have both lower precision 

and recall on edges involving discrete variables which suggests that they are more difficult to 

learn. This observations differs from the LD setting where we actually achieve the best recall on 

these dd edges, although still diminished precision compared to cc and cd. Finally, these results 

show that CPSS is a good option for users that want to ensure very high precision in their 

network estimates, and is certainly preferable to using an overly sparse setting of lambda. 
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Figure 3.2 Precision-Recall curves of edge adjacency recovery on high-dimensional dataset for . 2 ≤ ! ≤  .8 

(represented by different shaped points) and . 001 ≤ ! ≤  .1. For a given setting of  !, the different settings of ! are 

connected by lines with colors corresponding to the algorithm. The cpss line shows the settings of error rate 

! ∈ {.001, .01, .05, .1}. 
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3.4.1.2 Direction Recovery  

Next, we evaluated how well each algorithm was able to recover the directions in the directed 

edges of the true Markov equivalence class. For these tests, the positive class is all estimated 

directed edges, and the negative class is both undirected edges and the absence of an edge. So, an 

estimated edge is only considered a true positive if it correctly identifies both the existence and 

the orientation of the edge. Figure 3.3a shows these results across all of our algorithms. Starting 

from an MGM graph increases direction recovery performance in PC-stable. The main reason for 

this improvement appears to be the fact that PC-stable alone returns a large number of bidirected 

edges and only finds a small number of edges with a single direction. Bidirected edges are 

returned when the v-structure orientation rule in step 2 of PC-stable implies both directions for 

an edge. We treat these as undirected edges in our statistics. Starting from an MGM graph 

reduces the number of bidirected edges and increases the number of directed edge predictions. 

This is evident by the large increase in directed edge recall, but comes at the price of reduced 

precision for higher independence test thresholds, ! ∈ {.05, .1}. 

Figure 3.3b gives us a detailed view of the direction recovery performance of CPC-

stable, MGM-CPCS, and CPSS. As with adjacency recovery we see that as we increase lambda 

we achieve higher precision at the cost of recall. The reduced recall in ! ∈ {.28, .4} is only slight 

combined with a significant increase in precision. We can also see that our heuristic for adapting 

CPSS to directed network recovery is perhaps too conservative as the recall is greatly reduced 

while precision is near perfect. Indeed with this set up CPSS predicts the directions of less than 

10 edges on average, for the most lenient error rate, ! =  .05, so it does not seem to be a useful 

option for edge direction predictions. 
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a.  

b.  

Figure 3.3 Precision-Recall curves of edge direction recovery on high-dimensional dataset for . 2 ≤ ! ≤  .8 and 

. 001 ≤ ! ≤  .1. a Full range of algorithms and edge types. b Detail view of CPC-Stable and MGM-CPC-Stable  

performance averaged over all edge types. 
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Overall, direction recovery is difficult in high dimensions. While MGM-PCS approaches 

direction recall of .3, this is paired with abysmal precision of less than .5. CPC-stable and MGM-

CPCS give us high precision, but are able to recall less than 15% of true directed edges. Given 

that our heuristic to adapt CPSS to the problem of direction estimation that produces extremely 

high precision but very low recall, there is room for improvement in developing a less stringent 

heuristic. 

3.4.1.3 Combined measures of network recovery 

The Structural Hamming Distance (SHD) is a combined measure of adjacency and direction, that 

gives us an alternative network estimation metric that does not necessitate balancing precision 

versus recall. Table 3.1 shows the “best case” performance of our algorithms, where the 

parameters settings are chosen to maximize the SHD both averaged over all edges, and broken 

down by each edge type. Since SHD is a distance measure, smaller values indicate better 

performance. By this measure, MGM-PCS and MGM-CPCS both significantly outperform their 

counterparts on the HD data. We see a similar trend in the LD data (Appendix A), where MGM-

PCS performs significantly better than PC-stable, while MGM-CPCS has a slight but non-

significant advantage over CPC-Stable. 
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Table 3.1 Parameter settings with the best SHD performance by edge type 

in high-dimensional data set 

Algorithm !  ! Type SHD 

PC-Stable 

0.01 none all 600.95 (2.25) 
0.01 none cc 130.00 (2.340) 
0.01 none cd 308.40 (4.20) 
0.001 none dd 160.45 (3.24) 

MGM-PCS 

0.01 0.14 all 567.75 (3.34) 
0.05 0.14 cc 108.45 (2.21) 
0.01 0.14 cd 294.70 (3.74) 
0.001 0.1 dd 157.30 (3.28) 

CPC-Stable 

0.01 none all 588.10 (2.37) 
0.05 none cc 111.60 (2.44) 
0.01 none cd 307.05 (4.18) 
0.01 none dd 160.80 (2.85) 

MGM-CPCS 

0.1 0.4 all 564.90 (4.46) 
0.1 0.57 cc 107.05 (2.32) 
0.1 0.4 cd 296.70 (4.17) 
0.1 0.4 dd 157.05 (3.25) 

 

Since the best case performance will be difficult to achieve when the true graph is 

unknown, especially in this setting where a robust parameter setting scheme is not readily 

available, we also show SHD performance versus the number of predicted graph edges. These 

results, presented in figure Figure 3.4 show that for parameter settings for MGM-CPCS that 

produce similar numbers of edge predictions to CPC-stable, the hybrid algorithm can improve 

SHD performance. Very sparse settings of ! result in networks with a large SHD because so 

many edges are missing compared to the true graph. These too-sparse settings of the MGM are 

evident from the number of predicted edges, however, so they should be easy for a user to 

identify. 
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Figure 3.4 Structural Hamming Distance on high-dimensional dataset for CPC-stable and MGM-CPCS with for 

. 2 ≤ ! ≤  .8 and . 001 ≤ ! ≤  .1. The lower the SHD, the closer the predicted graph is to the true graph. 

3.4.1.4 Run Time 

We compared the running times of our algorithms at different parameter settings. Figure 3.5 

shows these results for the HD dataset. MGM-PCS and MGM-CPCS are significantly faster than 

PC-stable for sparser settings of !, but significantly slower for low values of ! and low values of 

!. In the LD data (Appendix A), we see the increase in speed from the MGM step at almost all 

settings of ! and !. It is important to note that our MGM learning method is not parallelized, but 

the directed learning steps are, so a parallelized MGM learning algorithm could result in even 

larger speed improvements. The edge convergence approach we use to learning the MGM is 

essential to this performance improvement.  
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Figure 3.5 Average running times with 95% confidence interval error bars of search algorithms on high dimensional 

data. Each row of bars corresponds to a different setting of ! and each color corresponds to a different setting of !. 

Directed search steps were run in parallel on a 4 core laptop. 

3.4.2 Application to Breast Cancer Data 

We applied MGM-PCS to gene expression and clinical data from breast cancer patients curated 

by TCGA (Cancer Genome Atlas 2012). For the analysis we used the 500 genes with the highest 

variance across samples. We also included the clinical variables for hormone receptor status, 

node and tumor staging codes, and PAM50 subtype. PAM50 is a subtyping scheme that uses 

gene expression patterns from 50 genes to categorize tumors (Parker et al. 2009), thirteen of 

which were in the high variance set. We ran MGM-PCS with a sparsity of λ = .2 (selected based 

on stability of edges across subsamples, (Liu et al. 2010)), and α = .05. The output network 
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(Figure 3.6) had 8 high variance genes connected to the PAM50 variable, 3 of which were 

among the 13 included in the analysis (Fisher’s test, p=1.83*10-5).  

 In addition, we find a number of predicted edges that are supported by biological 

knowledge. Each clinical variable corresponding to receptor status (ER, PR, HER2) was linked 

with the gene expression profile of that receptor: progesterone receptor with PGR1, HER2 with 

ERBB2, and estrogen receptor with ESR1. We find GATA3 is linked to ESR1, which relates to a 

recent study (Cimino-Mathews et al. 2013) that found GATA3 to be central in luminal (i.e. 

estrogen receptor positive). The lymph node stage variable, which indicates degree of lymph 

node metastasis, in our predicted network was only linked to the expression of E-cadherin gene 

(CDH1). Hypermethylation and decreased expression of CDH1 has been linked to infiltrating 

breast cancer (Caldeira et al. 2006). 

 

Figure 3.6 Predicted subnetwork for breast cancer dataset, with discrete clinical variables shown in red 
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3.5 CONCLUSIONS AND FUTURE WORK 

We have shown that the combination of undirected graph search by optimizing conditional-

Gaussian pseudo-likelihood over mixed data types, followed by directed graph search can 

recover causal information in complex systems containing both Gaussian and categorical 

variables. We have also shown that these methods can recover valuable information in real 

biomedical data. In many cases, our hybrid searches are faster and perform better than the 

directed search steps by themselves. In the worse case, our hybrid algorithms do no worse than 

the single algorithms searches and are slightly slower. 

 In addition to our newly proposed algorithms, this work provides an in-depth study of the 

challenges of causal learning on mixed data types. At both high and low dimensional settings, we 

are able to recover true edges from simulated data with high precision. Recall is more 

challenging, especially of edge direction and at high-dimensional settings. As expected, 

recovering edges and directions involving categorical variables was more difficult in high-

dimensional settings, but this trend was surprisingly not obvious in the low-dimensional setting. 

 Directed MGMs are promising tools for exploratory biomedical research. As shown in 

this chapter and the next, they are able to recover both known and novel relationships between 

variables. We expect further work with these models to yield many more viable hybrid 

algorithms, as an undirected MGM can be adapted to serve as a starting point for a wide range of 

casual discovery algorithms. 
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4.0  APPLICATION TO METASTATIC MELAOMA 

Here we present a case study for integrative data analysis that begins with an application of 

MGM-PCS, described in the previous chapter, to multimodal data from a cohort of metastatic 

melanoma patients, and follows our work to both validate and study the mechanism behind a 

biomarker identified by our algorithm. This study serves as an example of a successful 

application for our network learning algorithm for identifying a direct causal relationship 

between a single nucleotide polymorphism in the PARP1 gene, rs1805407, and response to 

chemotherapy. Through a combination of computational work performed by us and cell line 

experiments performed by Irina Abecassis and Maria Kapetanaki, we found evidence for a 

mechanism that begins the explain the causal link between these two variables. Because this 

mechanism does not involve any of the other variables that were measured in the melanoma 

cohort, it confirms our initial prediction of a direct connection between the variables given the 

available data. 

4.1 CHAPTER SUMMARY 

Personalized cancer therapy relies on the identification of patient subsets with differential 

responses to therapeutic interventions and stratifying them to maximize the therapeutic index or 

administer alternative regimens. We applied MGM-PCS to analyze mRNA and microRNA 
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expression, DNA methylation, SNP, and clinical variables in a cohort of metastatic melanoma 

patients in order to identify direct causal interactions between variables. Our results show that 

ten gene expression, four methylation variables and SNP rs1805407 are directly linked to 

response to chemotherapy. SNP rs1805407 is located in PARP1, a DNA repair gene critical for 

chemotherapy response and for which FDA-approved inhibitors are clinically available 

(olaparib). We demonstrate that PARP inhibitors are synergistic to chemotherapy in cancer cells 

carrying the PARP1 variant, but they are additive or antagonistic to chemotherapy in wild-type 

cancer cells. Additionally, we found that TCGA melanoma and ovarian cancer patients that carry 

this SNP have increased expression of the PARP1-003 splice variant, a truncated form of 

PARP1. Based on these results we postulate that SNP rs1805407 is directly linked to increased 

sensitivity to PARP inhibitors, potentially through enhanced PARP1 trapping, in cancer cell lines 

from various histologies and most importantly ovarian cancer. Our results suggest that the 

combination of chemotherapy and PARP1 inhibition may benefit the carriers of the PARP1 SNP 

rs1805407. These findings demonstrate the utility of MGM-PCS and will inform personalized 

therapy to select patients more likely to respond to PARP inhibitors.  

4.2 BACKGROUND 

Cancer is among the leading causes of morbidity and mortality worldwide, with approximately 

14 million new cases and 8.2 million cancer related deaths in 2012 (World Cancer Report 2014 

and (de Martel et al. 2012)). The number of new cases is expected to rise by about 70% over the 

next 2 decades. Advances in cancer management have improved the overall outlook of patients 

with metastatic malignancies but chemotherapy remains a mainstay of treatment for most 
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common cancers. Virtually all patients develop resistance to chemotherapy after prolonged 

exposure given the first order kinetics of cytotoxics that generally cannot eradicate cancer. 

Understanding the mechanisms of this resistance presents new opportunities to improve the 

therapeutic index of cytotoxic agents and identify novel drug targets. 

A large proportion of cytotoxic agents exert their effect through DNA damage. Thus, 

DNA repair pathways constitute cells’ main resistance mechanisms and potential drug targets. 

Base excision repair, a predominant pathway for single strand break (SSB) damage repair, 

utilizes a family of related enzymes termed poly-(ADP-ribose) polymerases (PARP), which are 

activated by DNA damage (Luo and Kraus 2012). Given the critical role of PARP1 in base 

excision repair, PARP inhibition emerged as a therapeutic target and early studies demonstrated 

dramatic potentiation of chemotherapeutic agents in the presence of PARP inhibition (Bryant et 

al. 2005; Farmer et al. 2005). Recent evidence indicates that, in addition to the catalytic 

inhibition of PARP activity, PARP inhibitors (PARPi) induce cytotoxic PARP-DNA complexes 

through PARP “trapping” that augment the cytotoxicity of alkylating agents. It is therefore of 

utmost importance to identify molecular features that act not only as biomarkers for patient 

stratification but also offer insights into the mechanisms of resistance to chemotherapy. 

Metastatic melanoma remains an excellent model for chemotherapy resistance given its 

refractory nature, despite the fact that current management of metastatic melanoma is mostly 

based on non-chemotherapy based strategies (e.g., targeted and immune-based therapies). 

In this study, we apply a novel graphical method we developed, MGM-PCS, to high-

throughput data from a cohort of metastatic melanoma patients on chemotherapy. We identified 

various features that were directly linked to response to treatment, including a SNP in the PARP1 

gene that is highly predictive of resistance to chemotherapy. We went on to characterize the 
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impact of this PARP1 variant on PARPi sensitivity and demonstrated its utility as a predictive 

biomarker of PARPi sensitivity in vitro. Given the role of PARP1 in DNA repair, we propose 

this SNP as a biomarker for PARPi sensitivity to guide patient selection for treatment regimens 

incorporating PARPi’s in combination with alkylating agents. 

4.3 MATERIALS AND METHODS 

4.3.1 Melanoma study design 

Using a retrospective cohort study design, we evaluated 69 patients with metastatic melanoma 

who were treated with alkylator-based chemotherapy at the Melanoma Center of the University 

of Pittsburgh Cancer Institute (UPCI). Frozen tissues were available from metastatic lesions on 

21 patients and formalin-fixed paraffin embedded tissues from 45 patients (total n=69). Only pre-

treatment tumor specimens were included in this analysis. In addition, chemotherapy regimens 

studied were primarily single-agent dacarbazine (DTIC), single-agent temozolomide (TMZ) or 

DTIC-based combinations (including CVD, Cisplatin + Vinblastine + DTIC). Response to 

chemotherapy was defined as documented objective tumor regression upon treatment. Patients 

with disease progression after 2 cycles of chemotherapy or with stable disease lasting less than 4 

months were considered non-responders. 
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4.3.2 Using Mixed Graphical Model learning (MGM-PCS) to integrate -omics and clinical 

data 

We normalized the data for use with MGM-PCS in the following way. Each continuous variable 

was transformed so that its distribution across patients was normal with truncated tails using the 

non-paranormal method (Liu et al. 2009). In addition, the 10% of SNPs with the lowest variance 

were filtered out. 

To filter this large dataset down to a size that was feasible to use with MGM-PCS, we 

filtered the variables based on their pair-wise correlation with the response to treatment variable. 

In order to accurately calculate correlation between this discrete variable and other discrete or 

continuous variables, we used a generalized correlation metric, described below. With this 

metric, we filtered the data down to the 1000 variables that were most correlated with response 

to treatment.  

4.3.3 Filtering with generalized correlation 

We use the following strategy to measure association between a continuous and categorical 

variable or two categorical variables. We would like to calculate the equivalent of Pearson’s 

product moment coefficient for each possible pairing of these variables. The general formula for 

Pearson’s correlation between two vectors of observations, X and Y, with means !! and !! and 

standard deviations !! and !! is !!" = !"#(!,!)
!!!!

 where covariance is defined as !"# !,! =

 ![ ! −  !! ! − !! ]. This is a standard calculation for pairs of continuous variables because 

mean and standard deviation are well defined. For pairs of binary variables, these values are also 

well defined, and this formulation is called the Matthews’ Correlation Coefficient. For 
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categorical variables we can calculate the covariance on a category by category basis. So for a 

categorical X continuous Y, we can focus on a, one of the categories of X when calculating a 

sample covariance: !"# !! ,! =  ! !! −  !!! ! − !! =  !
!!! [ ! !! = ! −  !! !! −!

!!!

 !! ] where !(!! = !) is an indicator function that is 1 when !! = ! and zero otherwise, and 

!! =  !! !(!! = !)!
!!!  or the empirical probability of observing a in X. Since ! !! = !  is 

equivalent to a Bernoulli random variable now it is easy to see that the sample standard deviation 

is !!! =  !
!!! !! 1− !! . Similarly, if both X and Y are categorical we now look at each 

possible pairing of categories separately so !"# !! ,!! =  !
!!! [ !(!! = !)−  !! (!(!! =!

!!!

!)−  !!)] where !! is the empirical probability of observing b in Y. So, in a discrete-continuous 

pair, we now have a vector for the covariance and a vector for the standard deviations 

corresponding to the different levels of the categorical variable, we use the !! norm to calculate a 

single score from these vectors (where X is categorical): !!" = !"# !,! !
!! !!

. In the discrete-

discrete case we have two matrices corresponding to the possible pairs of levels in the two 

variables, and we combine them with the Frobenius norm: !!" = !"# !,! ! 
!!!! !

. Both of these cases 

result in non-negative values so to make the continuous-continuous values comparable with the 

others we take the absolute value so scores for all pairs of edges fall on the interval [0,1]. 

One motivation for this approach is that these sample covariances turn out to be 

proportional to the partial gradients of negative log pseudolikelihood in a factorized (i.e. zero 

edges) MGM as described above with respect to the edge parameters and variable levels (see 

(Lee and Hastie 2013) supplement). Namely: !!
!!!"

= −2 ∗ (! − 1) ∗ !"#(!,!),  !!
!!!"(!)

= −2 ∗
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(! − 1) ∗ !"# !! ,!   and !!
!!!"(!,!)

= −2 ∗ (! − 1) ∗  !"# !! ,!!  where X is the indexed by i 

and Y is indexed by j in the MGM and the pairs of X and Y are continuous-continuous, discrete-

continuous, and discrete-discrete respectively. 

4.3.4 Patient data from The Cancer Genome Atlas 

We collected publically available RNAseq and genotype data generated by the The Cancer 

Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/) for 418 ovarian cancer 

tumors and 293 melanoma tumors. RSEM (Li and Dewey 2011) quantified transcript abundances 

from TCGA were used for genome-wide mRNA expression profiling. We used Kallisto (Bray et 

al. 2015) to quantify PARP1 splice variant abundance. Genotype data came from the Affymetrix 

Genome-Wide Human SNP Array 6.0 platform. 

4.3.5 SNP imputation on TCGA samples and NCI-60 cell lines 

We obtained NCI-60 data from Cell Miner in June 2013 (http://discover.nci.nih.gov/cellminer/). 

For those cell lines or TCGA samples for which the identity of SNP rs1805407 was not available 

we used imputation to infer its identity. Using SNAP (Johnson et al. 2008) we found 51 SNPs to 

be in perfect linkage disequilibrium (LD) with rs1805407 (R2 = 1). Of these, 9 variants were 

covered by the Affymetrix SNP Array 6.0 used by the TCGA. To determine the rs1805407 

genotype in TCGA samples we used birdseed calls (Korn et al. 2008) available from the 

genotype data. Only samples with a birdseed confidence less than 0.1 or where all 9 SNPs in 

perfect LD agreed with the birdseed call were used. 
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4.4 RESULTS  

4.4.1 Identifying predictive markers of treatment for metastatic melanoma patients 

Our melanoma dataset consisted of gene expression, microRNA expression, DNA methylation, 

and data from the selected SNP panel. We used MGM-PCS to learn a network over the top 1000 

features most correlated (pairwise) with “response” clinical variable, a binary variable indicating 

response/no response to TMZ treatment dichotomized at presence of a response or stability of 

disease at 4 months of therapy. The 1000 most correlated features in the input dataset included 

557 mRNA expression probes, 425 methylation probes, 14 miRNA probes and 4 SNPs. BRAF 

mutation status was also included in the input variables to see if it had an effect on any of the 

features linked to response, although its direct correlation with it in this dataset was poor 

(R2=0.025). The largest interconnected output network included 20 features directly connected to 

the response variable in our initial (undirected) learned network (Figure 4.1a). We emphasize 

that these features were connected to the response variable not only because they have high 

pairwise correlation with it (Figure 4.1b), but also because they are dependent on response even 

when conditioned on all other variables in the filtered dataset. In this sense, they represent direct 

(causal) interactions and not simple biomarkers. From the 20 features initially connected to 

response in the undirected MGM model, 15 were left connected after the causal filtering (Figure 

4.1a, black lines). A methylation feature for DXS9879E (LAGE3) is one of them, and it has been 

linked to survival in non-small cell lung cancer (Lokk et al. 2012). Notably, this important 

feature is not present in the top 20 (pairwise) correlated features with response, as other 

(indirect) interactions yielded higher pairwise correlation values. ID2 expression is also directly 
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linked to response, and is known to induce growth and proliferation in squamous cell carcinoma 

(Wang et al. 2012a). 

a.  

b.  

Figure 4.1 a. Conditional Gaussian sub-network around response to treatment with edge filter. Blue nodes represent 

methylation probes, green nodes represent mRNA expression probes and yellow nodes represent SNPs. Dashed red 

lines indicated edges removed by filtering step. b. Heatmap of directly connected links to response to TMZ. Black 

bars show rs1805407 status and response to treatment. Rows marked with green are mRNA expression profiles and 

those marked with blue are methylation profiles. 
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4.4.2 SNP rs1805407 in PARP1 is strongly associated with worse outcome in melanoma 

patients 

SNP rs1805407 (PARP1) is the only SNP in our dataset that is directly linked to response. We 

found this SNP to be an excellent predictor of worse outcome since all 21 patients that had the 

SNP (C/T or C/C) showed no response to TMZ treatment while of the remaining 48 patients with 

rs1805407 T/T, 22 responded to treatment (p-value=4.6e-5). Because of the strong direct (causal) 

association, the role that PARP1 plays in repairing TMZ mediated DNA damage, and the 

availability of PARP inhibitors, we decided to investigate this finding further. rs1805407 is 

located on the 2nd intron of PARP1, ~4 Kbp downstream of the PARP1 transcription start site 

and 35 bp downstream of the 3’ splice site of exon 2. We used SNAP (Johnson et al. 2008) to 

find other SNPs in strong linkage disequilibrium (LD) with rs1805407. The CEU population 

panel of 1000 Genomes pilot 1 contained 51 variants in perfect LD (R2 = 1) (Appendix B, Table 

B.1) with our selected variant. Of these, two are upstream of the transcription start site (TSS). 

Specifically, rs6665208 is 3,573 bases upstream of the PARP1 TSS and overlaps with ENCODE 

ChIP peaks for MAFF and MAFK, which are both related to blood cancers (Balkhi et al. 2006). 

rs2077197 is 238 bases upstream and overlaps peaks for AP-2α, CTCF, HA-E2F1, ZBTB7A, 

Pol2, CEBPB and YY1. Many of these factors are related to cancer. For example, AP-2α and 

ZBTB7A are known tumor suppressors (Liu et al. 2014; Su et al. 2014). CEBPB plays a role in 

senescence of prostate cancer cells (Barakat et al. 2015) and in multi-drug resistance (Riganti et 

al. 2015). E2F1 is induced by DNA damage (Lin et al. 2001). CTCF is an insulator protein and 

YY1 participates in long-range chromosomal interactions. 

Another SNP (rs1805405) is also in perfect LD with rs1805407 (R2 = 1) and is annotated 

as a ‘Splice region variant’ because it is located 5 bp upstream from the splice site between 
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intron 2 and exon 3. Finally, we found a strong dependence between rs1805407 and two other 

SNPs that have been previously associated with melanoma susceptibility: rs3219090 (D’ = 1, R2 

= 0.43 (Macgregor et al. 2011) and rs2249844 (D’ = 1, R2 = 0.46) (Davies et al. 2014).  Due to 

high LD values with rs1805407 none of them was included in our original SNP panel. 

4.4.3 SNP rs1805407 is related to decreased cytotoxicity of alkylating agents in cell lines 

with the variant 

Given that rs1805407 is associated with worse outcome of melanoma patients treated with TMZ 

and that PARP1 has a critical role in repair of DNA lesions caused by TMZ, one plausible 

hypothesis is that rs1805407 is either associated with increased PARP1 expression and/or 

activity or decreased PARP1 trapping after treatment with alkylating agents (Murai et al. 2012; 

Murai et al. 2014a; Murai et al. 2014b). We looked for more insights into the role of rs1805407 

in cell response to various drugs. The NCI-60 Cell Miner database (Reinhold et al. 2012) 

contains the response of 60 cell lines to ~50,000 compounds. We evaluated whether drugs affect 

differentially the cell lines that have at least one copy of rs1805407 (C/T or C/C) vs WT (T/T). 

The Affymetrix 500k SNP arrays used by Cell Miner did not include rs1805407, so we used the 

k-nearest neighbors method with three of the 51 perfectly correlated variants with probes in the 

array (rs1073991, rs10799349 and rs3219027) to infer the rs1805407 genotype in each cell line. 

Analysis of the IC50 values in cell lines predicted to have at least one allele of rs1805407 (n = 23; 

C/T or C/C) vs wild type (n=37; T/T) showed statistically significant resistance or sensitivity to 

four compounds, three of which are alkylating agents with action similar to TMZ (TMZ is not 

included in the NCI-60 dataset) (Table 4.1). Cell lines containing the PARP1 SNP showed only 

a slight increase in sensitivity to the PARPi olaparib used as a single agent (Table 4.1). 
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Carmustine and Cyclophosphamide are classical DNA damaging alkylating agents. Parthenolide, 

a compound that induces apoptosis in acute myelogenous leukemia (AML) and progenitor cells 

(Guzman et al. 2005). Increased sensitivity was observed for Irofluven, an alkylating agent that 

inhibits DNA replication (Wang et al. 2007).  For comparison purposes, we also added the 

PARP1 inhibitor Olaparib (which is not statistically significant when used as single agent). 

These results are compatible with the hypothesis that SNP rs1805407 (or one of the 51 SNPs in 

perfect LD with it) may cause increased PARP1 expression and/or activity thus helping to repair 

the damage caused by TMZ; or decreased PARP1 trapping potentially eliminating the additional 

cytotoxic effects of PARP-DNA complexes induced by PARP inhibition.  

 

Table 4.1 Drug compounds with differential IC50 values on WT vs SNP cell lines for rs1805407. GI50 values 

derived from NCI60. Statistical significance was assessed with Wilcoxon rank sum test.  

NSC Name FDA status u p 
26271 Cyclophosphamide FDA approved 175 0.01 
157035 Parthenolide FDA approved 148 0.02 
683863 Irofulven (Hydroxymethylacylfulvene) FDA approved 267.5 0.02 
409962 Carmustine FDA approved 294 0.03 
747856 Olaparib FDA approved 342.5 0.64 

 

4.4.4 SNP rs1805407 is related to PARP inhibitor potentiation of alkylating agent 

cytotoxicity 

Experimental validation of the association of a SNP to increased PARP1 activity in patient-

derived tissues is not straightforward because PARP1 is an inducible enzyme and its activity may 

depend on the timing of the biopsy with respect to prior therapies. Alternatively, one can use cell 

lines to test whether PARP1 inhibition affects the response to alkylating agents in an SNP-



71 

dependent way. This can be done by blocking PARP1 after treatment with an alkylating agent in 

cells with or without the SNP.  

Literature search (performed in conjunction with Irina Abecassis) identified 13 cell lines  

(Table B.2) from various tumor types, which had reported activity of alkylating agents alone or 

in combination with a PARPi (CEP-6800, AG14361, NU1085, NU1025 or ABT-888) (Delaney 

et al. 2000a; Miknyoczki and Jones-Bolin 2003; Tentori et al. 2003; Calabrese et al. 2004a; 

Wang et al. 2012b; Davidson et al. 2013). We used qRT-PCR (experiments preformed by Irina 

Abecassis) to confirm the rs1805407 genotypes in these cell lines. We classified cell lines as 

“resistant” to the combination of TMZ with PARPi if the reported experiments did not show 

potentiation of cytotoxicity of TMZ when a PARPi was added; likewise, cell lines that showed 

significant potentiation of TMZ cytotoxicity with PARPi were classified as “sensitive”. Four of 

Seven cell lines that had at least one C in position rs18050407 were sensitive, and all six cell 

lines that were WT (T/T) were resistant (p=0.01, G test).  

Although these are intriguing observations, the information used in the analysis was 

collected from different labs that used different PARPi to determine sensitivity or resistance. 

Therefore, we performed similar experiments on nine cell lines from various histologies 

(melanoma, lung, colon, ovarian, and breast cancer): five WT (T/T) and four C/T for SNP 

rs1805407 (Table B.3). MMS was used as alkylating agent and ABT-888 was used to inhibit 

PARP activity. All four SNP cell lines were found to be significantly more sensitive to the 

combination treatment in agreement with our hypothesis; while in all five WT cell lines the 

combination treatment had no potentiation effect (Figure 4.2a). Notably, for the WT cell line 

SW620 ABT-888 significantly increased the IC50 of MMS suggesting potential antagonism 

(experiments performed by Irina Abecassis).   
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a b  

Figure 4.2 PARP1/SNP genotype is predictive of MMS+PARPi combination treatment efficacy. Plot of the IC50 

values. a. ABT-888; and b. olaparib treatment. MMS: alkylating agent used; ABT-888 or olaparib: PARP1 inhibitor 

used; left bars: MMS only; right bars: MMS+PARPi. Dark grey bars: wild type (T/T) for rs1805407; light grey 

bars: heterozygotes (C/T). Star indicates that combination treatment (MMS+PARPi) has significantly different 

effect than alkylating agent alone (p<0.05, Student’s t-test, paired two-tailed).  

 

We extended those results to olaparib treatment of A2780 (SNP) and SW620 (WT) cell 

lines and observed similarly significant potentiation of MMS cytotoxicity with the addition of 

olaparib in A2780 and no potentiation in the SW620 cells (Figure 4.2b). We note that the 

potentiation factor in A2780 cells increased from 2.35 with ABT-888 (10 nM) to 4.65 with 

olaparib (5 nM) (Table B.3). 

4.4.5 PARP inhibitors and alkylating agents exhibit synergy in relation to SNP rs1805407 

and antagonism in relation to the wild-type genotype 

We investigated the potential combinatorial effects of alkylating agent (MMS) and PARPi 

(ABT-888) on cell lines with different rs1805407 genotypes. Exponentially dividing cells were 
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exposed for 72h to increasing concentrations of ABT-888 (0-500 µM) or MMS (0-1 mM) alone 

(single drug treatment) or combined at a fixed ratio based on their corresponding IC50 value 

(drug combination treatment). Cell survival was assessed by MTT assay. We then determined the 

Chou-Talalay combination index (C.I.) (Chou and Talalay 1984) of ABT-888 with MMS in four 

established cell lines: two with the variant C/T (A2780-ovarian cancer and M14-melanoma) and 

two WT T/T (SW620-colon and H522-lung cancer). Although C.I. is not a statistical measure, it 

nevertheless provides insight into whether the effect of both agents is additive (C.I.=1), 

synergistic (C.I.<1), or antagonistic (C.I.>1). Both cell lines with the SNP variant exhibited 

synergy (strong and moderate effect in A2780 and M14, respectively; Table 4.2). In WT cell 

lines the effect is additive at best (H522). Interestingly, the SW620 cell line had decreased MMS 

cytotoxicity after the addition of ABT-888. This might indicate antagonism as the C.I. was 

substantially higher than 1.   

 

Table 4.2 ABT-888/MMS combination indices (C.I.-ED50) in WT vs PARP SNP rs1805407 carrier cell lines. C.I.-

ED50 values (mean ± SD) are indicated. For each cell line, equipotency ratios were calculated from the IC50 of 

MMS and ABT-888 used as single agent by MTT assay as outlined in the Methods section. Data from n≥3 

independent experiments was used to calculate the Combination Index (C.I.) with the Compusyn program according 

to the method of Chou and Talalay. A C.I. < 1, = 1, and >1 is indicative of synergism, additivity and antagonism, 

respectively. ED50 is defined as the median effective dose.  

Cell line  PARP1/SNP genotype  Combination ratio  C.I.-ED50  Interpretation  
A2780  C/T 3.8:1 0.18 (± 0.04)  strong synergy  
M14  C/T 2.3:1 0.74 (± 0.08)  moderate synergy  
H522  T/T 2.0:1 1.26 (± 0.26)  slight antagonism/additivity  
SW620  T/T 1.2:1 1.41 (± 0.08)  moderate antagonism  
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4.4.6 SNP rs1805407 is linked to higher expression of PARP1-003 splicing variant 

So far, we have established that PARP1 SNP rs1805407 is directly linked to worse response to 

alkylating therapy in metastatic melanoma patients and in combination treatment of cell lines. 

Furthermore, we have shown that there is a synergistic effect of alkylating agent MMS and ABT-

888 in cell lines with the SNP. However, we do not have a plausible molecular mechanism for 

this phenomenon.  Analysis of our melanoma cohort and the TCGA melanoma data showed that 

PARP1 expression does not increase significantly in metastatic versus non-metastatic patients 

(data not shown). According to Ensembl, however, there are ten PARP-1 alternatively spliced 

transcript isoforms, four of which are protein coding: the predominant form, PARP1-001, and 

PARP1-003, PARP1-005 and PARP1-201. In the predominant form of PARP1 transcript, SNP 

rs1805407 is located 35 bases downstream of the end of exon 2 and it is in perfect LD with SNP 

rs1805405, which is s located 5 bp upstream from the intron 2/exon 3 splice junction and is 

annotated as ‘Splice region variant’. PARP1-003 (ENST00000366790) misses the splice site at 

the end of exon 2/exon-3 (chr1:226,590,083; hg19) and continues translating another 59 amino 

acids before it reaches a stop codon (Figure 4.3). Thus the resulting protein, PARP1-003, is 

short (155 amino acids instead of 1,014) and contains only the first of the two zinc finger 

domains (ZF1) and none of the two catalytic PARP1 domains (Eustermann et al. 2011). It is 

known that ZF1 plays a role both in recognition and DNA binding and PARP catalytic activity 

(Ikejima et al. 1990; Mortusewicz et al. 2007; Altmeyer et al. 2009), but its overexpression leads 

to inhibition of alkylation-induced DNA repair in mammalian cells (Molinete et al. 1993). 
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Figure 4.3 Genomic structure of the fist exons of PARP1 main transcript (PARP1-001) and its truncated 

alternatively spliced form (PARP1-003). This variant is found to be increased in patients with at least one rs1805407 

minor allele. 

 

To further study the potential role of rs1805407 in the function of PARP1, we calculated 

the abundances of the various PARP1 isoforms in 418 TCGA ovarian cancer patients (Level 2 

data) and compared these abundances between groups of patients with and without rs1805407. 

We found a strong association between rs1805407 and the abundance of the PARP1-003 

isoform. Carriers of at least one variant allele (N = 132) have small but statistically significantly 

higher ratio of PARP1-003 abundance to PARP1-001 abundance compared to non-carriers 

(N=286) (p = 4e-08, Mann Whitney U test). This ratio ranges from 0.11% for non-carriers to 

0.32% for SNP homozygotes. Similar, but less significant, results were observed in the 293 

TCGA metastatic melanoma patients (data not shown). 

Finally, we performed quantitative PCR (qRT-PCR) on three cell lines (T/T: H522, 

SW620; C/T: A2780) with primers specific for the full length PARP1 (PARP1-001) and PARP1-

003 (experiments performed by Maria Kapetanaki). The qRT-PCR was performed on RNA 

collected before and after treatment with either DMSO as control or ABT-888.  We found that 

the expression of both isoforms in A2780 cells is significantly higher than in WT cells. Also, 
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ABT-888 significantly inhibits PARP1-003 mRNA expression, while it has no effect on full 

length PARP1. However, PARP1-003 downregulation in WT cells is more profound than in SNP 

cells (74% and 69% for H522 and SW620, respectively compared to 38% for A2780). This result 

shows a trend that is consistent with the theory that SNP carrier cells have increased expression 

of the short, ZF1 containing PARP1-003 isoform, which makes them more sensitive to a 

combination therapy as its overexpression leads to inhibition of alkylation-induced DNA repair 

(Molinete et al. 1993) and catalytic inhibition of PARP leads to PARP trapping (Hopkins et al. 

2015). 

4.5 DISCUSSION 

Application of different therapies in well-defined subgroups of patients is the holy grail of cancer 

precision medicine. Using MGM-PCS, a new method for learning probabilistic graphical models 

over multi-modal biomedical and clinical data (Sedgewick et al, in preparation), we discovered a 

novel biomarker (PARP1 SNP rs1805407) that can be used to identify patients who respond 

poorly to chemotherapy and potentially more favorably to PARP inhibition. SNP rs1805407 has 

relatively high prevalence (24-32% and 65.5% in European and African populations, 

respectively). Adequately powered future validation studies will test the clinical application of 

this SNP as a response biomarker. 

PARP1 acts as a “molecular sensor” to identify DNA single strand breaks. It is then 

recruited and activated as a homodimer in a fast reaction which is amplified 10 to 500-fold with 

formation of poly-(ADP-ribose) (PAR) polymers within 15-30 seconds. Upon binding to a 

damaged strand via its zinc finger DNA-binding domains, PARP-1 undergoes a conformational 
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change inducing the C-terminal catalytic domain to transfer ADP-ribose moieties to protein 

acceptors, including the central auto-modification domain of PARP1 itself. AutoPARylation of 

PARP1 and PARylation of chromatin proteins promote the recruitment of DNA repair factors 

(Masson et al. 1998; El-Khamisy et al. 2003; Schreiber et al. 2006). Extensive autoPARylation 

of PARP1 results in dissociation from DNA, which is required for DNA repair completion 

(Satoh and Lindahl 1992).  The impact of PARP inhibition is more profound than simple 

inhibition of catalysis. For instance, wild-type cells are more sensitive to a PARPi combined with 

the alkylating agent MMS than Parp1−/− mouse cells (Horton et al. 2005; Heacock et al. 2010; 

Kedar et al. 2012).  Furthermore, PARP inhibition delays DNA repair to a greater extent than 

PARP depletion (Strom et al. 2011).  To explain these results, a PARP1-trapping model has been 

proposed (Helleday 2011; Kedar et al. 2012).  This model is based on the idea that PARP1 is 

trapped on DNA by PARPi’s since the automodification and PAR synthesis electrostatically 

destabilizes the PAPR1-DNA complex and lead to rapid dissociation.  PARPi’s therefore 

stabilize PARP-DNA complexes, which are themselves cytotoxic and may underlie the 

differential efficacy of clinically relevant PARPi’s, which differ markedly in their PARP 

trapping potency (Murai et al. 2014a). 

Based on our findings we postulated that SNP rs1805407 affects PARP1 activity during 

treatment with alkylating agents. We found that SNP cell lines were sensitive to combination 

therapy, while WT in general were not. We repeated these experiments with the FDA approved 

PARPi olaparib in A2780 SNP carrier cells and the results were consistent and perhaps more 

profound than with ABT-888. Furthermore, we showed that in SNP cell lines the combination 

treatment was synergistic, while in WT cell lines was at best additive or even antagonistic.  We 

also note that this effect is independent of BRCA1 mutation since none of the tested cell lines 
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carried this mutation. These are very important results as SNP rs1805407 can be potentially used 

in the future to decide whether a patient will receive a combination therapy or not.  

Next, we investigated potential molecular mechanisms that can explain these data. SNP 

rs1805407, located in the beginning of intron-2, is in perfect LD with rs1805405, which is 

located just 5 bp upstream of the intron-2/exon-3 splice junction.  We investigated whether 

rs1805407 is signifying an increase in expression of PARP1-003, an alternatively spliced 

isoform that codes for a shortened protein that includes only exons 1 and 2, thus coding only for 

the first zinc finger (ZF1) of PARP1. In PARP1 protein, ZF1 is responsible for recognition of 

DNA lesions and for initiation of DNA repair (Ikejima et al. 1990; Mortusewicz et al. 2007; 

Altmeyer et al. 2009). However, its overexpression can lead to inhibition of DNA repair 

(Molinete et al. 1993). Also, the short isoform uniquely maintains the auto-modification domain, 

which is most critical to PARP trapping 

By analyzing the TCGA RNA-seq melanoma data we discovered that patients with one 

or two alleles of rs1805407 have significantly increased relative abundance of isoform PARP1-

003 vs PARP1-001 (the full length mRNA), but the difference was small in absolute numbers. 

We should note, however, that. TCGA data are generated from pre-treatment samples, generally 

from primary tumors, and in melanoma predominantly from metastatic sites. PARP1 expression 

is accelerated at the time of DNA damage. The presence of SNP rs1805405 may affect the 

splicing rates and relative abundances of PARP1 isoforms, thus altering their relative protein 

levels. This is relevant in patients, especially knowing that TMZ is utilized in regimens that span 

either 5 days or 21 days out of 28-day cycles. Further experiments in a clinical setting are 

required to determine whether this hypothesis is true.  



79 

We performed qRT-PCR to measure expression of PARP1-001 and PARP1-003 before 

after ABT-888 treatment. While qRT-PCR results can not measure relative abundance of 

PARP1-001 and PARP1-003, they showed that SNP carrier A2780 cells have higher baseline 

expression of PARP1-003 than WT cells. Our analysis identified two SNPs in the 

PARP1proximal promoter, which are in perfect LD with rs1805407, and overlap peaks of many 

cancer-related transcription factors. These may account for the differences in baseline abundance 

of both isoforms in SNP vs WT cells. 

qRT-PCR also showed that ABT-888 downregulates PARP1-003 mRNA levels 

significantly in WT cells, while reduction in A2780 cells is modest. When a PARPi is utilized, 

then full length protein PARP can bind to the DNA lesion, but not initiate catalysis. Therefore, it 

becomes non-functional and trapped.  This occurs on WT and SNP carriers at similar rates. 

However, SNP cells express significantly more PARP1-003 than WT cells, and PARP trapping 

will occur at a higher rate in the presence of more PARP1-003, resulting in increased 

cytotoxicity and synergism of PARPi with chemotherapy in cells with the variant SNP. In WT 

cells, the levels of PARP1-003 are likely not high enough to have a noticeable effect on 

cytotoxicity as our results show. Our findings were validated in cancer cell lines from various 

histologic subtypes indicating their relevance to the underlying biology of PARP inhibition; and 

are most remarkable in ovarian cancer for which the PARP inhibitor olaparib is FDA-approved. 

Taken together, we postulate that SNP rs1805405 causes increased expression of both 

PARP1-001 and PARP1-003 in patients with one or two variant alleles.  Higher baseline PARP1 

expression may explain the resistant phenotype in patients in the absence of a PARPi, since 

higher expression of PARP1 is correlated with worse outcome (Goncalves et al. 2011). PARP 

trapping is not relevant in this case, since PARP1-001 is expressed at much higher level than 



80 

PARP1-003 (TCGA pre-treatment results), and a small fraction of PARP1-003 does not mitigate 

the resistant phenotype observed. However, PARP1-003 expression becomes important when 

PARPi is used, as the PARP1-001 will be trapped on the DNA and PARP1-003 may augment 

this trapping. In summary, this study identified PARP1 SNP rs1805405 as a key biomarker for 

stratification of cancer patients in combination therapy (chemotherapy + PARP inhibition). We 

did so by applying a new computational approach for data integration and analysis to a cohort of 

metastatic melanoma patients. We validated, in vitro, the biologic impact of rs1805407 on the 

outcome of PARP1 inhibition in combination with alkylating agents and generated testable 

hypotheses that will further solidify its role in patient selection.  The potential limitations of the 

paper and future directions are twofold. One is that the current manuscript contains mostly in 

vitro confirmation of our findings from our melanoma patient cohort and TCGA data for 

melanoma and ovarian cancer. We plan to apply this methodology on prospective clinical trials 

that have been conducted with PARP inhibitors. Second, the details of the potential mechanism 

of action of this SNP need further investigation.  

The accurate prediction of therapy outcomes based on the molecular characteristics of 

tumors may alter the current landscape of cancer therapy given that immunotherapy results in 

substantial objective responses only in subsets of patients. One can therefore expect that the 

accurate patient stratification into therapy-response categories may allow the overall percentage 

of disease control to soar utilizing the current therapeutic armamentarium. In addition, insights 

into the molecular mechanism that characterizes a therapy-resistant phenotype may usher in new 

strategies to overcome therapy resistance. 
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5.0  PATHWAY BASED DATA INTEGRATION 

Up until this point, this dissertation has focused on de novo network reconstruction methods that 

attempt to learn a network from a given dataset without any prior knowledge of the relationships 

between the variables. Essentially, we have been fitting a network structure to the data. We have 

drawn from the large amount of available biological knowledge to validate the network 

predictions generated by these methods, but not to learn the networks themselves. In this chapter 

we will present new work on a well established method that comes from the opposite direction in 

that it relies on a network structure curated from biological data and fits the data to this network. 

The algorithm we work with here, PARADIGM(Vaske et al. 2010; Sedgewick et al. 2013), also 

fits with the overall theme of this dissertation in that it is designed to integrate multiple data 

sources in order to accurately model the protein and pathway activity in the cell. PARADIGM is 

a popular algorithm for studying cancer data and is well established for its ability to integrate 

genome-wide DNA copy number and mRNA data. In addition since PARADIGM constructs its 

network from user defined “dogmas” (as in the central dogma of molecular biology) and network 

knowledge files, it is in principal easy to extend to more data types. In this chapter we will 

describe our work on adding another data type commonly used in cancer research, microRNA 

(miRNA) to the PARADIGM model. Our new model is able to recover miRNA markers in 

breast cancer tumors that are well established in the literature, which suggests that it will also be 

useful for detecting new miRNA markers to assist with diagnosis and treatment of cancer. 
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5.1 CHAPTER SUMMARY 

MicroRNAs play an important role in regulation of gene expression, and are known biomarkers 

for breast cancer as well as other malignancies. PARADIGM is a pathway based algorithm that 

allows for integration of multiple genomic data types with a curated pathway database to make 

pathway activity predictions. We added a model of gene silencing due to miRNA to the 

PARADIGM algorithm in order to study miRNA expression in a pathway context. We curated a 

set of 7751 miRNA-mRNA interactions from the union of 3 target prediction algorithms. These 

interactions involved 66 miRNA and 2814 mRNA transcripts. We ran our model on copy 

number, RNAseq and miRNAseq data from 697 patients in the TCGA breast cancer cohort, and 

studied changes in the learned interactions between active miRNAs and their targets between 

different subtypes. The miRNA-target pairs with the largest correlation changes between Basal 

and Luminal A subtypes were enriched for known oncogenes, and for miRNAs and genes related 

to the activity of miRNAs in cancer. In addition these targets are involved in a number of 

relevant signaling pathways including PI3K-AKT, JAK-STAT, RAP1 and RAS. Most of these 

highly differential links involved the miR-16 family of miRNAs which are known tumor 

suppressors. Two miRNA-mRNA target pairs showed the largest changes in link strength of any 

pathway links between Basal and Luminal A groups. The miRNAs in these pairs, miR-195 and 

miR-221, are both previously documented markers in breast cancer. By looking at changes in 

miRNA-target links between tumor subtypes, our extension to PARADIGM allowed us to 

identify both miRNAs and target genes involved in pathways relevant to breast cancer. 
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5.2 BACKGROUND 

MicroRNA, or miRNA, are short (18-25 nucleotide) non-coding RNA molecules that target 

mRNA transcripts and silence genes via a variety of mechanisms. Gene silencing due to miRNA 

targeting plays a part in many biological processes, and miRNA target sequences have been 

predicted in as many as 30% of genes (Lewis et al. 2005). Dysregulation of miRNAs has been 

linked to a variety of human diseases including pulmonary fibrosis (Pandit et al. 2010), and 

atherosclerosis (Toba et al. 2014). miRNAs have been studied extensively in cancer, and many 

reviews of their role are available (Melo and Esteller 2011; Jansson and Lund 2012; Malumbres 

2013; Ohtsuka et al. 2015). In order to post-transcriptionally silence genes, miRNAs associate 

with several proteins to form an RNA Induced Silencing Complex (RISC) that carries out the 

biological process that leads to silencing. While the membership of RISC can vary depending on 

the organism and context, the minimal component proteins in humans are the RNAase Dicer, 

which processes the miRNA transcripts into a mature form, the Argonaute family of proteins, the 

catalytic component of RISC, and TRBP, which recruits the Argonaute proteins to Dicer and the 

bound miRNA molecule (Chendrimada et al. 2005). 

A key challenge for working with miRNA that is applicable to this study is how to 

identify the mRNA targeted by each miRNA. Due to the difficulty of experimental verification 

of miRNA-mRNA targeting, there are relatively few validated targets. Instead, a variety of 

methods exist to predict targeting based on factors such as sequence, binding energy and 

conservation. Often the amount of overlap between these various methods is low relative to the 

number of predicted targets, so a common approach is to use the union of several of these 

methods to find a set of high-confidence target predictions (Huang et al. 2011; Coronnello and 

Benos 2013). We follow the approach of mirConnX (Huang et al. 2011), and use the union of 3 
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popular methods: TargetScan (Friedman et al. 2009), miRanda (Enright et al. 2004), and PicTar 

(Krek et al. 2005). 

A number of previous studies have attempted to combine miRNA target predictions with 

either pathway data (Lu et al. 2012), mRNA expression (Zhang et al. 2014), or both (Huang et al. 

2011). MirSystem (Lu et al. 2012) links miRNA to pathway knowledge via their mRNA targets, 

and performs enrichment tests to determine which pathways are likely to be regulated by a given 

group of miRNAs. Zhang et al (Zhang et al. 2014) use causal learning methods combined with 

matched miRNA and mRNA data to predict miRNA activity in a condition specific manner. 

MirConnX (Huang et al. 2011) combines matched miRNA and mRNA data with target 

predictions and transcription factor regulation data to find condition specific regulatory 

networks. PARADIGM offers several advantages over these methods. First, while a number of 

these methods offer condition specific models, PARADIGM is able model patient-specific 

pathway activities, which allow for more flexible downstream analyses. In addition  these 

methods study paired miRNA and mRNA data by looking at pairwise correlations between the 

miRNA-target pairs, while PARADIGM allows us to study these interactions using predictions 

of active miRNA silencing complexes. Thus, if proteins essential to the silencing pathway such 

as Argonaute or DICER are not active in the sample, PARADIGM will predict less miRNA 

regulation in that sample. 

PARADIGM builds a factor graph out of a curated database of pathways in order to infer 

the unobserved levels of activity of individual proteins, protein complexes and families from 

observed DNA and mRNA data. The observed data is discretized to three levels corresponding to 

high, low and normal. For every protein in the PARADIGM pathway, a model of the central 

dogma of molecular biology (see Figure 5.1) is included in the factor graph. Each step in the 
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dogma has an unobserved node in the graph: DNA, RNA, protein, and active (for activated 

protein). Each of these latent nodes is linked to observed data, if available, and to the active 

nodes of other genes that are annotated as regulators in the pathway database. The states of the 

latent nodes are then inferred from the data using loopy-belief propagation to perform 

Expectation-Maximization. 

Although the relationships between the variables in PARADIGM are set, the parameters 

of the factors, which model the relationships between the nodes they connect, are learned by the 

algorithm. In our previous work with PARADIGM (Sedgewick et al. 2013), we added a model of 

regulation that allows the algorithm to learn parameters that describe the regulatory relationship 

between active proteins and the transcription, translation, or activation of the proteins that they 

regulate. So, although it is not possible to learn new edges with PARADIGM, by looking at the 

regulation parameters learned from the observed data, we can measure how strong edge is in a 

given set of samples.  

5.3 METHODS 

5.3.1 Pathway Model 

miRNA is included in the PARADIGM model using the same dogma that coding RNAs use. The 

only dogma node that doesn’t apply to miRNA is the protein node, and since there are not 

translational or activation regulators for the miRNA in our pathway, the active node will have the 

same state as the RNA node for a miRNA with high probability. 
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a.  

b.  

Figure 5.1 a Minimal RNA Induced Silencing Complex model, separated for transcriptional (TX) and translational 

(TL) regulation. b Model of how the active RISC-miRNA complexes interact with a protein dogma model. 

Our RISC model uses the built-in complex model in PARADIGM, which is a “noisy 

AND” function. In other words, the predicted activity state of the complex is the minimum of the 

states of all the components of the complex with high probability, or another state with small 

error probabilities. Figure 5.1a shows our RISC model, which is separated by the putative 

regulation mechanisms of the different proteins in the Argonaute family. Argonaute 2 (AGO2) is 

part of a complex that regulates transcription because of its endoribunuclease activity that allows 

it to cleave mRNA molecules thereby silencing them (Kobayashi and Tomari 2016). Although 

this process happens post-transcription, kinetic studies of cleavage by AGO2 suggest that it 

happens rapidly enough that it will affect observed mRNA transcript levels (Ameres et al. 2007). 
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We treat the rest of the Argonaute family as translational regulators because their alternative 

silencing mechanisms are less likely to affect the observed mRNA transcript levels. These 

mechanisms include translation regulation activity such as direct translational repression via 

recruitment of additional factors and deadenylation of the poly(A) tail of the mRNA molecule, 

which in turn inhibits translation (Kobayashi and Tomari 2016). These different regulation 

models interact with the regulation nodes of a predicted target protein as shown in Figure 5.1b.  

We compare 2 models in this study: the full model with both transcriptional and 

translational repression by RISC as presented in Figure 5.1b, and a simpler model that only adds 

the transcriptional regulation component corresponding to mRNA cleavage by AGO2. We work 

with the simpler model in case the full model gives too much weight to miRNA silencing. Given 

that  without miRNA silencing there are 11,120 regulatory interactions in the pathway, none of 

which are translational regulators, it seems possible that adding 7,751 miRNA interactions as 

both transcriptional and translational repressors may drown out the signal of the rest of the 

pathway. 

5.3.2 miRNA Target Predictions 

We use intersection of miRNA-mRNA target predictions from 3 miRNA target prediction 

algorithms: TargetScan (Enright et al. 2004), miRANDA (Friedman et al. 2009), and Pictar 

(Krek et al. 2005). This database of targets comes from mirConnX (Huang et al. 2011). This 

procedure generated 7751 miRNA-mRNA interactions involving 66 miRNA and 2814 mRNA 

transcripts. 
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5.3.3 TCGA Breast Cancer 

We used matched RNAseq, miRNAseq and DNA copy number data for 697 patients from the 

TCGA Breast Cancer Cohort. For the DNA copy number data we used GISTIC 2.0 predictions 

(Center 2016). To normalize the RNAseq data, we removed transcripts with zero reads in  more 

than 50% of samples, log-scaled TPM values and median normalized each transcript across all 

samples. For miRNA normalization we filtered miRNAs with zeros reads in more than 75% of 

samples then log scaled the raw counts and median normalized each miRNA across all samples. 

For validation of our PARADIGM model, we also use Reverse Phase Protein Array 

(RPPA), hormone receptor status from immunohistochemistry, survival and PAM50 subtype 

predictions for these patients. 

5.3.4 PARADIGM Application Tests 

To score how well a learned PARADIGM model matches the underlying biology of a sample, 

we use a battery of previously developed application tests. One test compares the pathway 

activities of the Estrogen Receptor gene ESR1 as well as the dimer ER! to the ER status 

determined by immunohistochemistry (IHC). Similarly, HER2 status from IHC is compared to 

the predicted activity of the corresponding gene, ERBB2. For another validation test, we 

compare protein data from RPPA to the PARADIGM predicted protein activities. A new test 

added in this study looks at the correlation of pathway activities of PLK1 and one of its 

transcriptional regulators, FOXM1. PLK1 is a hub in the PARADIGM network and involved in 

several feedback loops, one of which involves FOXM1, and we have found that a strong 

correlation between these closely linked genes is indicative of a good model fit. 
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Another dimension of testing is survival prediction. For this test, we filter out censored 

patients (i.e. alive at last checkup) and split the cohort of patients in to quartiles based on 

survival times. The top 25% of patients with the longest survival times are treated as the positive 

class, and the bottom 25% are used as the negative class. We performed this experiment on both 

the whole breast cancer cohort (15 patients of each class) and only the estrogen receptor positive 

(ER+) patients (9 patients of each class. We fit a linear SVM (from scikit-learn: http://scikit-

learn.org/stable/index.html) on these labels (positive samples labeled as +1, negative as -1) using 

the Integrated Pathway Activities (IPA) produced by PARADIGM. We measure the 

classification accuracy using leave one out cross-validation. 

5.3.5 Functional Enrichment 

To asses the biological relevance of groups of genes we use standard gene set enrichment 

analysis methodology to test which pathways or gene annotations are over-represented in our set 

of genes. Specifically we use the ‘kegga’ and ‘goana’ functions built into the R package, limma 

(Ritchie et al. 2015). 

5.4 RESULTS AND DISCUSSION 

5.4.1 Distribution of miRNA-target Links 

We compared the distributions of the PARADIGM link parameter correlations for models 

learned with both the transcription only model (Figure 5.1a), and the full model (Figure 5.1b). 
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Correlations are calculated from the parameters (which are essentially conditional probability 

tables, CPTs, see (Sedgewick et al. 2013) for more detail) that connect the “active” node of the 

regulating protein to one of the “regulation” nodes (either transcriptional, translation, or protein 

activation as shown in Figure 5.1b). The distributions of the different types of regulatory links 

are essentially the same between the models other than the additional miRNA translation 

regulation links added in the full model. This indicates that the translation links don’t seem to 

have a noticeable affect on other links in the pathway.  

All links are started from the same set of initial parameters which are either positive or 

negatively correlated based on whether the link is annotated as activation or inhibition in the 

pathway (specifically, a probability of .8 on the diagonal of the CPT and .1 off the diagonal). 

From Figure 5.2 we can see that the miRNA translation regulation links do not seem to stray 

very far from the initial inhibition parameter setting, while the other link types spread nicely to 

match the data, with links not supported by the data drifting towards 0 and links that are 

consistent with the data spreading towards the positive and negative extremes. Possible 

explanations for this lack of learning include the fact  
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a   

b  

Figure 5.2 Density plots of Pearson’s correlation of regulation links from parameters learned with PARADIGM 

using a the transcription only RISC model and b the full transcription and translation RISC model. 
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that these links are the only translational regulation links in the pathway, so they are not balanced 

by any activating translational regulation links, and secondly, the translation regulation nodes 

may be receiving less signal from the data because of their spot on the pathway between the 

mRNA node which is directly linked to the observed data and the protein node which is not. 

Activation regulation links are similarly positioned some distance from the data nodes in the 

pathway, but they seem to better able to conform to the data, perhaps because of the connections 

of the active nodes to the regulation nodes of other proteins and complexes. 

5.4.2 Survival Prediction 

To see how well the Integrated Pathway Activities (IPAs) predicted by the different 

PARADIGM models represent the underlying biology of the tumors, we studied how well they 

are able to predict patient survival. We treat this task as a classification problem where the two 

classes are patients in the top quartile or the bottom quartile of survivals. Due to incomplete 

survival data for many patients, this left us with a set of 30 patients, 15 high survival and 15 low 

survival. The miRNA transcription regulation model performed the best, an SVM trained on 

IPAs from this model achieved a leave-one-out cross validation accuracy of 60% while the full 

model achieved poor accuracy of 43%, as did a model learned without any miRNA data, 37% 

accuracy. The performance of the simpler model is comparable to doing the classification with 

RNAseq data (59% accuracy) or RNAseq and miRNAseq data together (62% accuracy). 



93 

5.4.3 Correlation of IPAs with Protein and IHC Data 

Another method for validating our models is to compare to other data types. We compare the 

IPAs from each model for ESR1 and the ER! homodimer to compare to estrogen receptor status 

as measured by IHC, and for ERBB2 to compare to IHC measured HER2 status. The IHC 

experiment gives a call of positive or negative for each hormone receptor, so we performed a two 

sample ranksum test of the IPAs for the positive versus negative groups of the corresponding 

hormone receptor. All three models performed well on these tests. The full miRNA model had 

highly significant p-values from the tests: 2.9e-48 for ESR1, 2.9e-47 for the ER! homodimer, 

and 1.2e-9 for ERBB2. The transcription-only miRNA model has slightly lower p-values: 1.4e-

49 for ESR1, 7.9e-48 for ER! homodimer, and 2.8e-11 for ERBB2. The original PARADIGM 

model without any miRNA data had the lowest p-values for ESR1 (8.5e-50) and ERBB2 (9.1e-

12), but the highest for ER! homodimer (9e-46). 

We compared the IPAs from each model to protein concentrations from 173 proteins in 

the TCGA breast cancer samples measured with RPPA. For each protein we measured the 

correlation of the RPPA data with the IPAs across all patients with RPPA measurements. We 

then averaged these correlations. There was no separation between the 3 models for this test. All 

three models had an average of Spearman correlations of .24 between the RPPA and IPAs with 

standard errors between .017 and .018. This result is somewhat surprising since 45 of the 173 

proteins found in the RPPA data are targets of the miRNAs that we added to PARADIGM. It is 

possible, however, that these proteins are strongly regulated in the original PARADIGM network 

so that adding miRNA did not alter their IPAs noticeably. 
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5.4.4 Top miRNA-target Links 

Although the battery of tests in the previous section does not clearly separate either of the 

miRNA regulation models, we now choose to focus on the links learned by the transcription-only 

model because it performed better in all tests and because Figure 5.2 shows that the transcription 

regulation links are likely to have more informative parameters. In this section we investigate 

how our miRNA-target links change between breast cancer subtypes, specifically we compare 

the 97 patients with the aggressive basal tumors to 288 patients with more treatable luminal A 

tumors. 

We sorted miRNA-target links by the largest change in correlation between the basal and 

luminal A subgroups. Of the top 10 links with large correlation changes between the groups, 9 of 

them involve miR-16. This is likely due to the very low IPA of miR-16 in basal tumors (median -

4.0) compared to luminal A tumors (median 0) (Wilcoxon p < 2e-16). miR-16 is a known tumor 

suppressor that has been characterized in a variety of cancers including lymphoma, leukemia and 

breast cancer (Aqeilan et al. 2010; Rivas et al. 2012). The targets of the top 200 links by 

correlation change are significantly enriched (false discovery rate < .05) for a number of 

pathways relevant to cancer, shown in Table 5.1. While the majority of these pathways are 

cancer related, the fact the we recovered the “MicroRNAs in cancer” pathway as an enrichment 

for targets, not just the miRNAs gives us a good verification that we have found relevant links. 
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Table 5.1 KEGG enrichment for the gene targets of the top 200 miRNA-target links by correlation change between 

basal and luminal A breast cancer subgroups. 

Pathway Pathway Size Number Found FDR 
Jak-STAT signaling pathway 32 8 3.499e-06 
Rap1 signaling pathway 70 10 1.506e-05 
PI3K-Akt signaling pathway 95 9 2.470e-03 
MicroRNAs in cancer 78 8 4.457e-03 
Melanoma 23 5 4.649e-03 
Pathways in cancer 132 10 5.570e-03 
Focal adhesion 65 7 1.121e-02 
Regulation of actin cytoskeleton 67 7 1.362e-02 
Endocytosis 70 7 1.806e-02 
Ras signaling pathway 73 7 2.360e-02 
HTLV-I infection 73 7 2.360e-02 
Proteoglycans in cancer 73 7 2.360e-02 
Wnt signaling pathway 55 6 3.732e-02 
Transcriptional misregulation in cancer 57 6 4.546e-02 

 

In addition to correlation, we commonly use a G-test to measure the statistical 

dependence of the variables, which we refer to as link “strength”. The G-test allows us to 

uncover links that are highly dependent, but do not necessarily have a linear relationship that can 

be captured by Pearson’s correlation. Looking at the rank difference of G-test p-values between 

the basal and luminal groups, reveals that two miRNA regulation links have the largest change 

out of all links in the pathway. miR-221-ARF4 shows a strong connection in the luminal A 

subgroup (FDR = 9.9e-7), but a relatively weaker relationship in basal tumors (FDR = 1.5e-3). 

Both nodes in this link have been previously linked to breast cancer: overexpression of miR-221 

is linked to aggressive, basal tumors through promotion of epithelial-to-mesenchymal transition 

(Shah and Calin 2011) and ARF4 expression is linked to cell migration and metastasis in breast 

cancer (Jang et al. 2012). Similarly, miR-195-BDNF has a strong silencing relationship in 

luminal A tumors (FDR = 5.6e-21) that is weaker in basal patients (FDR = 3.2e-3). miR-195 has 

been identified as a potential circulating biomarker to diagnose breast cancer (Heneghan et al. 

2010) and BDNF is a growth factor that has been shown to promote tumor growth and 

proliferation in colon cancer (Yang et al. 2013). 
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5.5 CONCLUSIONS 

By adding miRNAs, miRNA target predictions, and a model of the RNA induced silencing 

complex to PARADIGM, we were able to create a model that can interrogate miRNA induced 

gene silencing in a pathway context. Based on our comparison between a transcription regulation 

only model to a RISC model that regulates genes at both the transcriptional and translational 

level, we find that our model is better able to learn miRNA-target links at the transcriptional 

regulation level. By comparing differential miRNA silencing in tumor subgroups we identified 

miR-221, miR-195 and miR-16 as important regulators in breast cancer. All of these miRNAs 

had been previously studied in breast cancer, and the genes they targeted proved to be enriched 

for cancer related pathways as well. Thus the predictions made by our model had strong support 

in the literature. 
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6.0  CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have presented a variety of network based data integration methods. On 

one end of the spectrum we have developed algorithms that attempt to reconstruct causal 

networks de novo, on the other end, we extended an algorithm for pathway based inference of 

protein activity. We have shown that these types of integrative methods are powerful tools that 

we believe are essential for modern biomedical research. Using our methods we were able to 

identify a prognostic biomarker for response to treatment temozolomide in metastatic melanoma. 

This marker also suggests that a combination treatment strategy that may help treat non-

responders more effectively. In addition, by adding miRNA to PARADIGM, we were able to 

effectively study changes in gene silencing that differentiate more or less aggressive breast 

cancer subtypes. As collecting multimodal data from patient samples becomes the standard of 

care in cancer and other diseases, we expect integrative analyses like ours to continue to assist in 

the understanding, diagnosis and treatment of human disease. 

There are many opportunities for future development of the methods described in this 

thesis. For the MGM described in chapter one, a pressing challenge is to make the learning 

procedure efficient enough to handle genome scale data. This could be achieved by using a 

different optimization algorithm, or by switching to a learning method that uses separate 

regressions rather than optimizing the pseudolikelihood. A model based on separate regression 

would have more flexibility in distributional assumptions and be easy to parallelize. In both 



98 

MGM and the hybrid MGM-causal search methods, more work needs to be done towards 

encoding prior knowledge in the model. It is simple to force a model to always include or 

exclude edges based on knowledge, but a more nuanced approach is necessary for biological 

pathway knowledge where an edge may only exist in certain cell types under certain conditions. 

Another exciting direction for causal search over mixed data is to develop an efficient scoring 

method to use with score-based causal search methods. Recent work with score based methods 

on continuous data has been promising for application to very large datasets, so a mixed score 

may allow us to take advantage of these new methods. Finally, there are many more data types 

that could be added to the PARADIGM model including DNA methylation, ribosome profiling 

data, and protein measurements. As with miRNA, the challenges for any addition of new data 

types to the pathway model are to balance the added model complexity with potential gains in 

inference accuracy. 
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APPENDIX A 

PERFORMANCE OF DIRECTED SEARCH ON LOW-DIMENSIONAL DATA 

 

Figure A.2 Precision-Recall curves of edge adjacency recovery for . 05 ≤ ! ≤  .2 and . 001 ≤ ! ≤  .1. and the full 

range of algorithms and edge types. 
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Figure A.2 Precision-Recall curves of edge direction recovery for . 05 ≤ ! ≤  .2 and . 001 ≤ ! ≤  .1. and the full 

range of algorithms and edge types.  
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Figure A.3 Running times of search algorithms on low dimensional data. Directed search steps were run in parallel 

on a 4 core laptop. 
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Table A.1 Parameter settings with the best SHD performance by edge type 

in low-dimensional data set 

Algorithm !  ! Type SHD 

PC-Stable 

0.05 none all 95.35 (2.4786)   
0.05 none cc 20.70 (1.6481)   
0.05 none cd 52.45 (1.5139)   
0.05 none dd 22.20 (1.2599)   

MGM-PCS 

0.05 0.071 all 63.25 (2.8385)   
0.1 0.1 cc 11.40 (1.3638)   
0.05 0.071 cd 35.50 (1.9310)   
0.01 0.071 dd 14.75 (1.4343)   

CPC-Stable 

0.1 none all 67.05 (2.7772)   
0.05 none cc 11.20 (1.4190)   
0.1 none cd 39.45 (2.1502)   
0.05 none dd 15.80 (1.3111)   

MGM-CPCS 

0.1 0.14 all 63.35 (2.7513)   
0.1 0.2 cc 10.75 (1.3116)   
0.1 0.14 cd 37.70 (2.0877)   
0.1 0.14 dd 14.70 (1.2011)   
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APPENDIX B 

SUPPLEMENTARY TABLES FOR PARP1 CASE STUDY 

Table B.1 PARP1 SNPs in LD with rs1805407. 

SNP Distance R2 D’ Chr Coord_hg18 GeneVariant 
rs3219031 437 1 1 chr1 224656019 INTRONIC 
rs3219027 580 1 1 chr1 224657036 INTRONIC 
rs6701634 1792 1 1 chr1 224654664 INTRONIC 
rs3754370 2445 1 1 chr1 224658901 INTRONIC 
rs3768347 2912 1 1 chr1 224659368 INTRONIC 
rs3768346 3021 1 1 chr1 224659477 INTRONIC 
rs7522351 3435 1 1 chr1 224659891 INTRONIC 
rs7525191 3438 1 1 chr1 224659894 INTRONIC 
rs4653732 4273 1 1 chr1 224660729 INTRONIC 
rs10799349 4317 1 1 chr1 224652139 INTRONIC 
rs7542788 4530 1 1 chr1 224651926 INTRONIC 
rs7548007 4553 1 1 chr1 224651903 INTRONIC 
rs4653733 4780 1 1 chr1 224661236 INTRONIC 
rs60698376 5024 1 1 chr1 224661480 N/A 
rs4653731 5861 1 1 chr1 224650595 INTRONIC 
rs2077197 6206 1 1 chr1 224662662 UPSTREAM 
rs12240196 6350 1 1 chr1 224650106 INTRONIC 
rs59672299 7760 1 1 chr1 224664216 N/A 
rs1073991 8759 1 1 chr1 224647697 INTRONIC 
rs2136876 8880 1 1 chr1 224647576 INTRONIC 
rs1000033 9446 1 1 chr1 224647010 INTRONIC 
rs6665208 9541 1 1 chr1 224665997 UPSTREAM 
rs1002153 9646 1 1 chr1 224646810 INTRONIC 
rs2280712 9740 1 1 chr1 224646716 INTRONIC 
rs1805405 9812 1 1 chr1 224646644 SPLICE_SITE, INTRONIC 
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rs6679573 11114 1 1 chr1 224667570 INTERGENIC 
rs10915987 11848 1 1 chr1 224668304 INTERGENIC 
rs3219043 12239 1 1 chr1 224644217 INTRONIC 
rs77173384 12382 1 1 chr1 224668838 N/A 
rs28407557 12564 1 1 chr1 224669020 INTERGENIC 
rs4653445 12927 1 1 chr1 224643529 INTRONIC 
rs2293464 13537 1 1 chr1 224642919 INTRONIC 
rs12068460 13912 1 1 chr1 224670368 INTERGENIC 
rs3219053 15279 1 1 chr1 224641177 INTRONIC 
rs1805408 16431 1 1 chr1 224640025 INTRONIC 
rs3219058 17039 1 1 chr1 224639417 INTRONIC 
rs6681537 19603 1 1 chr1 224676059 INTERGENIC 
rs3219073 20458 1 1 chr1 224635998 INTRONIC 
rs2271343 22270 1 1 chr1 224634186 INTRONIC 
rs732284 22825 1 1 chr1 224633631 INTRONIC 
rs3219115 32892 1 1 chr1 224623564 INTRONIC 
rs752308 38327 1 1 chr1 224618129 INTRONIC 
rs747658 38655 1 1 chr1 224617801 INTRONIC 
rs747659 39092 1 1 chr1 224617364 INTRONIC 
rs6664761 39642 1 1 chr1 224616814 INTRONIC 
rs2282400 42834 1 1 chr1 224613622 DOWNSTREAM 
rs6675427 45851 1 1 chr1 224610605 DOWNSTREAM 
rs6675327 45924 1 1 chr1 224610532 DOWNSTREAM 
rs6661762 46142 1 1 chr1 224610314 DOWNSTREAM 
rs1991865 48782 1 1 chr1 224607674 INTERGENIC 
rs12092726 50806 1 1 chr1 224605650 INTERGENIC 
rs3219023 1223 0.947 1 chr1 224657679 INTRONIC 
rs7531668 6186 0.945 1 chr1 224662642 UPSTREAM 
rs12025487 15060 0.945 1 chr1 224671516 INTERGENIC 
rs1109032 28430 0.945 1 chr1 224628026 INTRONIC 
rs3754375 28768 0.945 1 chr1 224627688 INTRONIC 
rs4653735 10521 0.891 1 chr1 224666977 UPSTREAM 
rs878367 52311 0.891 1 chr1 224604145 INTERGENIC 
rs7527192 6246 0.838 1 chr1 224662702 UPSTREAM 
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Table B.2 Potentiation of response to chemotherapy or radiation combined with PARP inhibition (from literature).  

PARP1 SNP rs1805407 genotyping analysis of a panel of human cancer cell lines. All six of the cell lines reported 

in the literature to be "resistant" to chemotherapy + PARPi combination treatment were WT for the rs1805407 locus.  

Four out of the seven cell lines reported to be "sensitive" had at least one copy of C in this locus. Cell line was 

considered "sensitive" when chemopotentiation ratio was ≥ 2. S: sensitive; R: resistant. 

Cell line Tumor 
type Response Tumor 

type 
rs1805407 
Genotype  

Therapy 
type PARPi agent REFS 

LoVo Colon  R Colon  T/T 

TMZ NU1025/NU1085, 
AG14361 

(Delaney et al. 
2000b; 
Calabrese et al. 
2004b) 

SW620 Colorectal  R Colorectal  T/T Irinotecan ABT-888 (Davidson et 
al. 2013) 

H522 Lung R Lung T/T TMZ NU1025/NU1085 (Delaney et al. 
2000b) 

HT-29 Colon  R Colon  T/T TMZ NU1025/NU1085 (Delaney et al. 
2000b) 

SKOV-
3 Ovarian R Ovarian T/T TMZ NU1025/NU1085 (Delaney et al. 

2000b) 

LS174T Colon S Colon T/T TMZ NU1025/NU1085 (Delaney et al. 
2000b) 

HCT-
116 Colon  S Colon  T/T Irinotecan ABT-888 (Davidson et 

al. 2013) 
MDA-
MB-231 Breast  R Breast  T/T TMZ  NU1025/NU1085  (Delaney et al. 

2000b) 

MCF-7 Breast S Breast T/T TMZ NU1025/NU1085 (Delaney et al. 
2000b) 

Calu-6 Lung S Lung C/T TMZ  CEP-6800 (Miknyoczki et 
al. 2003) 

M14 Melanoma S Melanoma C/T TMZ 3-aminobenzamide (Tentori et al. 
2003) 

A549 Lung S Lung C/T 

TMZ  NU1025/NU1085, 
AG1436 

(Delaney et al. 
2000b; 
Calabrese et al. 
2004b) 

A2780 Ovarian S Ovarian C/T TMZ NU1025/NU1085 (Delaney et al. 
2000b) 
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Table B.3 Results from MMS treatment of cell lines with and without PARP1 inhibitor (ABT-888 or olaparib).  The 

data from the MTT assays were expressed as mean ± standard deviation (SD). The ratio between the IC50 means of 

MMS treatment alone and in combination with ABT-888 or olaparib was calculated for each cell line. A 

Potentiation factor (ratio) ≤ 1 indicates no chemo-potentiation. 

ABT-888 (10 nM): 
Cell line Tissue 

origin 
PARP1/SN
P genotype MMS IC50 (µM) MMS + ABT-

888 IC50 (µM) 
Potentiation 
factor 

p-
value: 

FEMX melanoma T/T 166.3 (± 20.2) 176.0 (± 40.4) 0.945 0.626 
A375 melanoma T/T 306.0 (± 22.1) 283.3 (± 33.5) 1.080 0.172 
H-522  lung T/T 577.7 (± 56.8) 745.3 (± 68.6) 0.775 0.147 
SW620  colon T/T 299.4 (± 37.0) 449.4 (± 89.1) 0.666 0.047 
MDA-MB-231  breast T/T 287.2 (± 28.7) 303.2 (± 45.1) 0.947 0.530 
M14  melanoma C/T 520.8 (± 63.4) 359.8 (± 56.7) 1.447 0.005 
A549 lung C/T 254.8 (± 23.9) 143.9 (± 37.8) 1.771 0.002 
A2780 ovarian C/T 190.0 (± 41.0) 80.8 (± 14.7) 2.351 0.003 
H460 lung C/T 227.0 (± 21.4) 134.9 (± 20.5) 1.682 0.002 
Olaparib (5 nM): 

Cell line Tissue 
origin 

PARP1/SN
P genotype MMS IC50 (µM) MMS + olaparib 

IC50 (µM) 
Potentiation 
factor 

p-
value 

SW620  colon T/T 342.7 (±68.7) 357 (±55.6) 0.960 0.720 
A2780 ovarian C/T 182.4 (± 24.0) 39.2 (± 8.8) 4.651 0.017 
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