498 research outputs found

    Multi-task additive models with shared transfer functions based on dictionary learning

    Get PDF
    Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models is their interpretability: the transfer functions provide visual means for inspecting the models and identifying domain-specific relations between inputs and outputs. However, in large-scale problems involving the prediction of many related tasks, learning independently additive models results in a loss of model interpretability, and can cause overfitting when training data is scarce. We introduce a novel multi-task learning approach which provides a corpus of accurate and interpretable additive models for a large number of related forecasting tasks. Our key idea is to share transfer functions across models in order to reduce the model complexity and ease the exploration of the corpus. We establish a connection with sparse dictionary learning and propose a new efficient fitting algorithm which alternates between sparse coding and transfer function updates. The former step is solved via an extension of Orthogonal Matching Pursuit, whose properties are analyzed using a novel recovery condition which extends existing results in the literature. The latter step is addressed using a traditional dictionary update rule. Experiments on real-world data demonstrate that our approach compares favorably to baseline methods while yielding an interpretable corpus of models, revealing structure among the individual tasks and being more robust when training data is scarce. Our framework therefore extends the well-known benefits of additive models to common regression settings possibly involving thousands of tasks

    Sparse, hierarchical and shared-factors priors for representation learning

    Get PDF
    La représentation en caractéristiques est une préoccupation centrale des systèmes d’apprentissage automatique d’aujourd’hui. Une représentation adéquate peut faciliter une tâche d’apprentissage complexe. C’est le cas lorsque par exemple cette représentation est de faible dimensionnalité et est constituée de caractéristiques de haut niveau. Mais comment déterminer si une représentation est adéquate pour une tâche d’apprentissage ? Les récents travaux suggèrent qu’il est préférable de voir le choix de la représentation comme un problème d’apprentissage en soi. C’est ce que l’on nomme l’apprentissage de représentation. Cette thèse présente une série de contributions visant à améliorer la qualité des représentations apprises. La première contribution élabore une étude comparative des approches par dictionnaire parcimonieux sur le problème de la localisation de points de prises (pour la saisie robotisée) et fournit une analyse empirique de leurs avantages et leurs inconvénients. La deuxième contribution propose une architecture réseau de neurones à convolution (CNN) pour la détection de points de prise et la compare aux approches d’apprentissage par dictionnaire. Ensuite, la troisième contribution élabore une nouvelle fonction d’activation paramétrique et la valide expérimentalement. Finalement, la quatrième contribution détaille un nouveau mécanisme de partage souple de paramètres dans un cadre d’apprentissage multitâche.Feature representation is a central concern of today’s machine learning systems. A proper representation can facilitate a complex learning task. This is the case when for instance the representation has low dimensionality and consists of high-level characteristics. But how can we determine if a representation is adequate for a learning task? Recent work suggests that it is better to see the choice of representation as a learning problem in itself. This is called Representation Learning. This thesis presents a series of contributions aimed at improving the quality of the learned representations. The first contribution elaborates a comparative study of Sparse Dictionary Learning (SDL) approaches on the problem of grasp detection (for robotic grasping) and provides an empirical analysis of their advantages and disadvantages. The second contribution proposes a Convolutional Neural Network (CNN) architecture for grasp detection and compares it to SDL. Then, the third contribution elaborates a new parametric activation function and validates it experimentally. Finally, the fourth contribution details a new soft parameter sharing mechanism for multitasking learning

    Algorithm-dependent generalization bounds for multi-task learning

    Get PDF
    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization 1 ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1=n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1=T ), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples

    NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways.

    Get PDF
    While sensory representations in the brain depend on context, it remains unclear how such modulations are implemented at the biophysical level, and how processing layers further in the hierarchy can extract useful features for each possible contextual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can, within physiological constraints, implement contextual modulation of feedforward processing. Such neuron-specific modulations exploit prior knowledge, encoded in stable feedforward weights, to achieve transfer learning across contexts. In a network of biophysically realistic neuron models with context-independent feedforward weights, we show that modulatory inputs to dendritic branches can solve linearly nonseparable learning problems with a Hebbian, error-modulated learning rule. We also demonstrate that local prediction of whether representations originate either from different inputs, or from different contextual modulations of the same input, results in representation learning of hierarchical feedforward weights across processing layers that accommodate a multitude of contexts

    Machine Learning for Robust Understanding of Scene Materials in Hyperspectral Images

    Get PDF
    The major challenges in hyperspectral (HS) imaging and data analysis are expensive sensors, high dimensionality of the signal, limited ground truth, and spectral variability. This dissertation develops and analyzes machine learning based methods to address these problems. In the first part, we examine one of the most important HS data analysis tasks-vegetation parameter estimation. We present two Gaussian processes based approaches for improving the accuracy of vegetation parameter retrieval when ground truth is limited and/or spectral variability is high. The first is the adoption of covariance functions based on well-established metrics, such as, spectral angle and spectral correlation, which are known to be better measures of similarity for spectral data. The second is the joint modeling of related vegetation parameters by multitask Gaussian processes so that the prediction accuracy of the vegetation parameter of interest can be improved with the aid of related vegetation parameters for which a larger set of ground truth is available. The efficacy of the proposed methods is demonstrated by comparing them against state-of-the art approaches on three real-world HS datasets and one synthetic dataset. In the second part, we demonstrate how Bayesian optimization can be applied to jointly tune the different components of hyperspectral data analysis frameworks for better performance. Experimental validation on the spatial-spectral classification framework consisting of a classifier and a Markov random field is provided. In the third part, we investigate whether high dimensional HS spectra can be reconstructed from low dimensional multispectral (MS) signals, that can be obtained from much cheaper, lower spectral resolution sensors. A novel end-to-end convolutional residual neural network architecture is proposed that can simultaneously optimize both the MS bands and the transformation to reconstruct HS spectra from MS signals by analyzing a large quantity of HS data. The learned band can be implemented in sensor hardware and the learned transformation can be incorporated in the data processing pipeline to build a low-cost hyperspectral data collection system. Using a diverse set of real-world datasets, we show how the proposed approach of optimizing MS bands along with the transformation rather than just optimizing the transformation with fixed bands, as proposed by previous studies, can drastically increase the reconstruction accuracy. Additionally, we also investigate the prospects of using reconstructed HS spectra for land cover classification
    • …
    corecore